CN100581262C - Code rate controlling method for video coding based on Rho domain - Google Patents

Code rate controlling method for video coding based on Rho domain Download PDF

Info

Publication number
CN100581262C
CN100581262C CN 200810112629 CN200810112629A CN100581262C CN 100581262 C CN100581262 C CN 100581262C CN 200810112629 CN200810112629 CN 200810112629 CN 200810112629 A CN200810112629 A CN 200810112629A CN 100581262 C CN100581262 C CN 100581262C
Authority
CN
China
Prior art keywords
mrow
frame
bit rate
msub
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200810112629
Other languages
Chinese (zh)
Other versions
CN101287123A (en
Inventor
戴琼海
肖红江
陆峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN 200810112629 priority Critical patent/CN100581262C/en
Publication of CN101287123A publication Critical patent/CN101287123A/en
Application granted granted Critical
Publication of CN100581262C publication Critical patent/CN100581262C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

The invention relates to a video coding code rate control method based on a Rho domain, which pertains to the technical field of multimedia communication; the invention comprises the steps as follows: the bit rate of a group of pictures (GOP) is confirmed according to a given target code rate, and the bit rate distribution of frame-level is further respectively confirmed according to three frames which are an I-frame (Intra-frame frame), a P-frame (unidirectional predictive frame) and a B-frame (bidirectional predictive frame); the characteristic parameters of the previous frames of the same type are checked to predict the slope parameter Theta of a linear code rate model, model interception difference Delta c, the ratio s of motion vector code rate and entropy coding code rate that is quantified by residual coefficient, and zero coefficient proportion Rho that meets the code rate limit is calculated; a Rho-QP mapping table is referred to obtain a quantization parameter (QP) which is used for coding the current video frame. The code rate control method of the invention is simple and practical, and has excellent performance and the original video coding standards.

Description

Video coding rate control method based on rho domain
Technical Field
The invention belongs to the technical field of multimedia communication, and particularly relates to a low-complexity video coding rate control method based on a rho domain.
Background
In video communication, network bandwidth for carrying data streams is time-varying and limited, and factors to be considered by researchers are not only pure compression efficiency, but also the matching relationship between channel bandwidth and information source rate, that is, rate control is performed on video coding to fully utilize channels. For the existing block-based hybrid video coding scheme, such as MPEG-4, the existing code rate control method usually starts from the aspects of frame type (I frame, P frame and B frame), group of picture (GOP) structure (IPP, IBP, IBBP, etc.), buffer limitation, bit rate model, computational complexity, etc., and approaches the expected bit number at the frame level or macroblock level by dynamically adjusting the encoder parameters such as Quantization Parameter (QP). However, the newly established video coding standard h.264 introduces many new features. On one hand, 21 prediction modes including intra-frame, inter-frame and SKIP (SKIP) greatly reduce the precision of a code rate control algorithm aiming at the conventional video coding standard, and even fail. On the other hand, Rate Distortion Optimization (RDO) couples quantization parameters that are not originally related to motion vectors, and global rate control becomes more difficult. More importantly, in h.264, QP is used as an input of RDO process, and then the optimal QP is estimated in reverse according to the output of RDO, and the computation overhead of such fully-coupled iterative optimization is not tolerable in real-time encoding.
He et al, in an article "unified rate-distortion analysis framework in transform coding" (a unified rate-distortion analysis framework for transform coding) published in the international society of electrical and electronics engineers (ieee transactions, on Circuits and Systems for Video Technology) journal of the society of electrical and electronics engineers, states that: in video coding, each quantization parameter QP corresponds to a fixed quantization step q, and there is a rough one-to-one mapping relationship between the quantization step q and the zero coefficient ratio ρ. Then, for the transform-coded residual coefficients (I frame is intra prediction residual, P and B frames are motion compensation residual), the mapping of this zero coefficient ratio ρ to the argument q can be obtained from the distribution of statistical transform coefficients, i.e.:
<math> <mrow> <mi>&rho;</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <msubsup> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mn>2</mn> <mi>q</mi> </mrow> <mrow> <mo>+</mo> <mn>2</mn> <mi>q</mi> </mrow> </msubsup> <msub> <mi>D</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>dx</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <msubsup> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mn>2.5</mn> <mi>q</mi> </mrow> <mrow> <mo>+</mo> <mn>2.5</mn> <mi>q</mi> </mrow> </msubsup> <msub> <mi>D</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>dx</mi> </mrow> </math>
<math> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <munder> <mi>&Sigma;</mi> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>&lt;</mo> <mn>2</mn> <mi>q</mi> </mrow> </munder> <msub> <mi>D</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <munder> <mi>&Sigma;</mi> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>&lt;</mo> <mn>2.5</mn> <mi>q</mi> </mrow> </munder> <msub> <mi>D</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein L is the coefficient number of the current video frame, D0(x) And D1(x) Is a statistical histogram (including ac and dc coefficients) of the residual coefficients after discrete cosine transform. Thus, the p-QP mapping table is obtained for the link with the quantization step q. Meanwhile, z.he also proposes a linear source-rate model in this article:
R(ρ)=θ·(1-ρ)
and an analysis based on the zero coefficient ratio is called a ρ -domain analysis. Where θ is the slope parameter, ρ is the proportion of the quantized zero coefficient, and R is the residual coefficient coding bit rate in bits per pixel (bpp). The disadvantage of this model is that the accuracy test of this model is only applicable to the international image coding standard JEPG, the international video coding standards MPEG-2, h.263 and MPEG-4, but not very applicable to the video coding standard h.264 (more SKIP mode macro blocks, 4x4 integer transform and scale transform, etc.) with a relatively large zero coefficient ratio, and further modification is needed.
In addition, for the low complexity video coding rate control method, the following patents can be found at present:
(a) the patent with application number 200610052814.5 discloses a video compression code rate control method based on a low memory consumption lookup table;
(b) the patent with application number 200510073985.1 discloses a low-complexity integral code rate control method;
(c) the patent with application number 200510135494.5 discloses a code rate control method based on the difference histogram statistics of the local motion of a video sequence;
although the code rate control methods ensure low complexity, the extracted video content feature description mode is not better than rho domain characteristics and can reflect the features of the video content, and has certain influence on the precision of a code rate control algorithm, so that a general control method which has low calculation complexity and high code rate control precision is required to be found.
Disclosure of Invention
The invention aims to overcome the defects of the prior art, and provides a low-complexity video coding rate control method based on rho domain based on the linear characteristic of spatial domain and time domain continuity of video content, which has the characteristics of simplicity, practicability, superior performance, and extremely low calculation complexity and memory requirement, and is not only suitable for the former video coding standards H.261, H.263, MPEG-2 and MPEG-4, but also suitable for the latest H.264 standard.
The invention provides a video coding rate control method based on rho domain, which is characterized in that a given target code rate
Figure C20081011262900061
The coding end performs a GOP-level and frame-level bit rate (bit/pixel unit) allocation algorithm based on a rho domain model to realize code rate control, and the coding end specifically comprises the following steps:
1) precoding a group of pictures to obtain initial characteristic parameters of a code rate control method
A group of GOP frames of a video sequence are coded by an initial quantization parameter QP, and a characteristic parameter { delta ] of each frame is recorded in an information basei,ρi,θi,Δci,siIn which the letter subscript i ∈ c[1,LGOP]∩Z+Representing the code frame number in the GOP, and taking a positive integer; deltai,ρi,θi,ΔciResidual texture complexity parameters, zero coefficient proportion parameters, code rate model slope parameters and code rate model data interception difference parameters in a rho domain model corresponding to the ith frame; siEncoding bit rate R for motion vectors in ith framej mvAnd entropy coding bit rate R after residual coefficient quantizationj coeThe ratio of (A) to (B);
2) calculating a GOP bit rate budget based on a target code rate
(21) Calculating the bit rate allocable for a GOP
Figure C20081011262900062
Updating remaining available bit rate(first run, right of equation
Figure C20081011262900064
Initialized to zero); wherein L isGOPGOP length (in frames), f video coding frame rate (in frames/second);
(22) if the video frame type is I frame (intra frame), skipping to step 3);
if the frame type is a P frame (unidirectional predicted frame) or a B frame (bidirectional predicted frame), it jumps to step 4).
3) According to the remaining available bit rate
Figure C20081011262900071
Calculating an expected I-frame bit rate
Figure C20081011262900072
And the corresponding zero coefficient ratio rho, skipping to step 5);
4) according to the residueAvailable bit rate
Figure C20081011262900073
Calculating a desired P-frame or B-frame bit rate and a corresponding zero coefficient ratio ρ;
5) estimating quantization coefficients QP of the current frame according to the desired zero coefficient ratio rhoj
(51) Inquiring a rho-QP mapping table to obtain conversion from a zero coefficient ratio rho to a quantization parameter QP;
(52) detecting the variation amplitude of the quantization parameter, and limiting the variation amplitude within delta QP;
6) with quantization parameter QPjEncoding a current video frame
(61) Encoding a video frame to obtain a true output bit rate for the frame
Figure C20081011262900074
(62) Calculating a remaining available bit rate
Figure C20081011262900075
Wherein the symbol max {. cndot } represents the maximum of the two numbers;
7) recording the actual coding characteristic parameter of the current frame in an information base, and selecting a jump position according to a frame number:
(71) storing the characteristic parameters { delta, rho, theta, deltac, s } of the current frame in an information base (for the characteristic parameter prediction of the subsequent video frame);
(72) if frame number j ≠ LGOPIf j is j +1, go to step 4);
(73) if the frame number j is LGOPThen let j equal 1 and jump to step 2).
The invention is simple and practical, has excellent performance and mainly has the following beneficial effects:
(a) a general processing framework is provided for video rate control based on transform coding, wherein the form of a modified rho domain bit rate model is more general, and is suitable for not only previous video coding standards H.261, H.263, MPEG-2 and MPEG-4, but also the latest H.264 standard;
(b) the method has extremely low computational complexity and memory requirements, only linear regression is carried out on parameter sample values of a plurality of historical airspace linear characteristics rho domain models, and then the coding rate of the current frame can be predicted by means of rho variables;
(c) the prediction process is error-free and can be dynamically adjusted adaptively to follow the input video data.
Drawings
Fig. 1 is a flow chart of a rho domain-based video coding rate control method according to the present invention.
Detailed Description
The video coding rate control method based on rho domain provided by the invention is explained in detail by combining the attached drawings and the embodiment as follows:
in the present invention:
(a) the spatial domain linearity is characterized by the p-domain model (a modified model for h.264 for the linear source-rate model for z.he in the introduction of the background art),
R(ρ)=θ·(1-ρ)+Δc
wherein rho is the proportion of the quantized zero coefficient in the current frame, deltac is the intercept difference, and R (rho) is the coding rate of the video single frame under the condition of the zero coefficient proportion rho; the model slope parameter θ is related to the video texture complexity δ of the current frame, and is further defined by a slope-texture complexity model
θ=σ2·eα(1-δ)
Where δ is measured by the normalized mean absolute error (MAD), which is the sum of the absolute values of all residual coefficients between the current frame and the predicted frame divided by 255. σ and α are model parameters.
(b) Temporal continuity is characterized by the parameters { θ, Δ c, s } of previously encoded frames; wherein, theta and delta c are parameters in a space domain model, and s is the ratio of the motion vector code rate in a frame to the entropy coding code rate after residual error coefficient quantization;
the method according to the invention is characterized in that a target code rate is specifiedThe coding end performs a GOP-level and frame-level bit rate (unit is bit/pixel) allocation algorithm based on a rho-domain model to realize code rate control, and the flow of the method is shown in fig. 1, and specifically comprises the following steps:
1) precoding a group of pictures to obtain initial characteristic parameters of a code rate control method
A group of GOP frames of a video sequence are coded by an initial quantization parameter QP, and a characteristic parameter { delta ] of each frame is recorded in an information basei,ρi,θi,Δci,siIn which the letter subscript i ∈ [1, L ]GOP]∩Z+Representing the code frame number in the GOP, and taking a positive integer; deltai,ρi,θi,ΔciResidual texture complexity parameters, zero coefficient proportion parameters, code rate model slope parameters and code rate model data interception difference parameters in a rho domain model corresponding to the ith frame; siEncoding bit rate R for motion vectors in ith framej mvAnd entropy coding bit rate R after residual coefficient quantizationj coeThe ratio of (A) to (B);
2) calculating a GOP bit rate budget based on a target code rate
(21) Calculating the bit rate allocable for a GOPUpdating remaining available bit rate
Figure C20081011262900083
(first run, right of equationInitialized to zero); wherein L isGOPGOP length (in frames), f video coding frame rate (in frames/second);
(22) if the video frame type is I frame (intra frame), skipping to step 3);
if the frame type is a P frame (unidirectional predicted frame) or a B frame (bidirectional predicted frame), it jumps to step 4).
3) According to the remaining available bit rate
Figure C20081011262900085
Calculating an expected I-frame bit rateAnd the corresponding zero coefficient ratio rho, skipping to step 5);
4) according to the remaining available bit rate
Figure C20081011262900087
Calculating a desired P-frame or B-frame bit rate and a corresponding zero coefficient ratio ρ;
5) estimating quantization coefficients QP of the current frame according to the desired zero coefficient ratio rhoj
(51) Inquiring a rho-QP mapping table to obtain conversion from a zero coefficient ratio rho to a quantization parameter QP;
(52) detecting the variation amplitude of the quantization parameter, and limiting the variation amplitude within delta QP;
6) with quantization parameter QPjEncoding a current video frame
(61) Encoding a video frame to obtain a true output bit rate for the frame
(62) Calculating a remaining available bit rate
Figure C20081011262900089
Wherein the symbol max {. cndot } represents the maximum of the two numbers;
7) recording the actual coding characteristic parameter of the current frame in an information base, and selecting a jump position according to a frame number:
(71) storing the characteristic parameters { delta, rho, theta, deltac, s } of the current frame in an information base (for the characteristic parameter prediction of the subsequent video frame);
(72) if frame number j ≠ LGOPIf j is j +1, go to step 4);
(73) if the frame number j is LGOPThen let j equal 1 and jump to step 2).
According to the residual available bit rate in the step 3) above
Figure C20081011262900091
Calculating an expected I-frame bit rate
Figure C20081011262900092
And a corresponding zero coefficient ratio p, comprising the steps of:
(31) calculating an expected I-frame bit rate
Figure C20081011262900093
Wherein, wI,wP,wBDesired bit rate weights, 1, y, for single frame video of type I, P, B, respectivelyP,γBThe number of GOPs for which they occupy;
(32) updating the characteristic parameters { slope theta and intercept difference delta c } of the current I frame, namely using the characteristic parameters { slope theta and intercept difference delta c } of the previous I frame adjacent to the current I frame as the characteristic parameters { slope theta and intercept difference delta c } of the current frame;
(33) calculating an expected zero coefficient ratio
Figure C20081011262900094
Jumping to step 5); wherein,is the bit rate of the video frame header;
according to the residual available bit rate in the step 4) above
Figure C20081011262900096
Calculating the expected bit rate of the P frame or the B frame and the corresponding zero coefficient proportion rho, and specifically comprising the following steps:
(41) calculating an available bit rate of the current frame j;
(411) if the available bit rate remains
Figure C20081011262900097
Then frame skipping is performed (without encoding the frame);
(412) if the available bit rate remains
Figure C20081011262900098
Then
(a) If the current frame is a P frame, the frame is assigned a desired bit rate of:
Figure C20081011262900099
the number of P frames in the GOP waiting for allocated bit rate minus 1:
γP=γP-1;
(b) if the current frame is a B frame, the frame is assigned a desired bit rate of:
Figure C200810112629000910
the number of B frames in the GOP waiting for allocated bit rate minus 1:
γB=γB-1;
(42) detecting characteristic parameters of the previous similar type frame, and updating the characteristic parameters { slope theta, intercept difference delta c and bit rate ratio s } of the current frame;
(43) calculating the desired bit rate of the current frame
Figure C200810112629000911
Limiting the corresponding zero coefficient ratio:
<math> <mrow> <mi>&rho;</mi> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <mfrac> <mrow> <msub> <mi>R</mi> <mi>j</mi> </msub> <mo>-</mo> <msup> <mi>R</mi> <mi>hdr</mi> </msup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>s</mi> </mrow> </mfrac> <mo>-</mo> <mi>&Delta;c</mi> </mrow> <mi>&theta;</mi> </mfrac> </mrow> </math>
the step 42) of detecting the characteristic parameters of the previous frame of the same type, and updating the characteristic parameters { slope θ, intercept difference Δ c, and bit rate ratio s } of the current frame specifically includes the following steps:
(421) taking N nearest video frames of the same type before the current frame as prediction reference frames, and taking N groups of characteristic parameter values { theta ] corresponding to the N nearest video frames of the same type from an information basei,δi,Δcis i1 ≦ i ≦ N, and is converted to { ln θ ≦ Ni,δi,Δci,si}; wherein N is a positive integer, and the subscript i belongs to Z+Indicating adjacent reference frame numbers; thetaiLinear rate model slope, delta, for the ith reference frameiResidual texture complexity for the ith reference frame;
(422) linearizing a slope-texture complexity model to
lnθ(δ)=2lnσ+α(1-δ)
And performing least square fitting on the N groups of sample point values, solving model parameters alpha and sigma, and updating characteristic parameters { theta, delta c, s }:
(a) estimating slope-texture complexity model parameter values for a current encoded frame
<math> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mfrac> <mrow> <mover> <mi>&delta;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>ln</mi> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mi>ln</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msubsup> <mi>&delta;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mi>n</mi> <msup> <mover> <mi>&delta;</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>&sigma;</mi> <mo>=</mo> <mi>exp</mi> <mo>[</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <mrow> <mo>(</mo> <mi>ln</mi> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msubsup> <mi>&delta;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mover> <mi>&delta;</mi> <mo>&OverBar;</mo> </mover> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mi>ln</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>n</mi> <mover> <mi>&delta;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>ln</mi> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msubsup> <mi>&delta;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mi>n</mi> <msup> <mover> <mi>&delta;</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>]</mo> </mrow> </math>
Wherein, <math> <mrow> <mover> <mi>&delta;</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> </mrow> <mi>N</mi> </mfrac> <mo>;</mo> </mrow> </math>
(b) updating the characteristic parameters { theta, deltac, s } of the current frame:
rho-domain bit rate model slope value theta-sigma2eα(1-δ)
Rho-domain bit rate model truncation data difference <math> <mrow> <mi>&Delta;c</mi> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&Delta;c</mi> <mi>i</mi> </msub> <mo>/</mo> <mi>N</mi> <mo>;</mo> </mrow> </math>
Ratio of motion vector coding bit rate to entropy coding bit rate after residual coefficient quantization <math> <mrow> <mi>s</mi> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>/</mo> <mi>N</mi> <mo>.</mo> </mrow> </math>
The method of the invention is further described in detail with reference to the accompanying drawings and examples.
The conditions of this example are as follows:
setting a reference software JM of an international video coding standard H.264 adopted by an encoder; an encoder GOP structure is ibpbp. I. P, B frame type single frame expected bit number weight is wI=10,wP1.5 and w B1, the number of which in a GOP is 1, 7 and 7 respectively; the coding frame rate f is 30. The test sequence adopts a Foreman sequence of a standardized image format (CIF, 352x 288);
the method of the embodiment comprises the following steps: given target code rate
Figure C20081011262900111
(unit is bit/pixel/second), the encoder can perform a GOP level and frame level bit rate (unit is bit/pixel) allocation algorithm based on the rho domain model to realize rate control, and the method specifically comprises the following steps:
1) precoding a group of pictures to obtain initial characteristic parameters of a code rate control method
A GOP of a video sequence is encoded with an initial quantization parameter QP 28, and a characteristic parameter { δ } of each frame is recorded in an information basei,ρi,θi,Δci,siIn which the letter subscript i ∈ [1, L ]GOP]∩Z+Indicating the code frame number, Z, in the present GOP+Represents taking a positive integer; deltai,ρi,θi,ΔciResidual texture complexity parameters, zero coefficient proportion parameters, code rate model slope parameters and code rate model data interception difference parameters in a rho domain model corresponding to the ith frame; siEncoding bit rate R for motion vectors in ith framej mvAnd entropy coding bit rate R after residual coefficient quantizationj coeThe ratio of (A) to (B);
2) calculating a GOP bit rate budget based on a target code rate
(21) Calculate a GOP energyAllocated bit rateUpdating remaining available bit rate
Figure C20081011262900113
(first run, right of equation
Figure C20081011262900114
Initialized to zero);
(22) if the video frame type is I frame, skipping to step 3);
if the frame type is P or B frame, jump to step 4).
3) According to the remaining available bit rateCalculating an expected I-frame bit rate
Figure C20081011262900116
And a corresponding zero coefficient ratio p, comprising the steps of:
(31) calculating an expected I-frame bit rate
Figure C20081011262900117
(32) Updating the characteristic parameters { slope theta and intercept difference delta c } of the current I frame, namely using the characteristic parameters { slope theta and intercept difference delta c } of the previous I frame adjacent to the current I frame as the characteristic parameters { slope theta and intercept difference delta c } of the current frame;
(33) calculating an expected zero coefficient ratio
Figure C20081011262900118
Jumping to step 5); wherein,
Figure C20081011262900119
is the bit rate of the video frame header;
4) according to the remaining available bit rate
Figure C200810112629001110
Calculating a desired P-frame or B-frame bit rate and a corresponding zero coefficient ratio ρ, comprising the steps of:
(41) calculating an available bit rate of the current frame j;
(411) if the available bit rate remains
Figure C200810112629001111
Then frame skipping is performed (without encoding the frame);
(412) if the available bit rate remains
Figure C200810112629001112
Then
(a) If the current frame is a P frame, the frame is assigned a desired bit rate of:
Figure C20081011262900121
the number of P frames in the GOP waiting for allocated bit rate is reduced by one:
γP=γP-1;
(b) if the current frame is a B frame, the frame is assigned a desired bit rate of:
the number of B frames in the GOP waiting for allocated bit rate is reduced by one:
γB=γB-1;
(42) detecting the characteristic parameters of the previous frames of the same type, and updating the characteristic parameters { slope theta, intercept difference delta c and bit rate ratio s } of the current frame, namely predicting by the characteristic parameters of the two frames of the same type which are most adjacent to the current frame (the P frame is predicted by the two previous P frames, and the B frame is predicted by the two previous B frames).
(421) Extracting 2 groups of model parameter values (theta) corresponding to 2 nearest video frames of the same type before the current frame from the information base1,δ1,Δc1,s1},{θ2,δ2,Δc2,s2And is converted into { ln θ }1,δ1,Δc1,s1},{lnθ2,δ2,Δc2,s2}; wherein, theta1,θ2The slope of the bit rate model, δ, for the 1 st and 2 nd reference frames, respectively1,δ2Residual texture complexity, Δ c, for 1, 2 reference frames1,Δc2Is the intercept data difference of the linear code rate model of the 1 st and 2 nd reference frames, s1,s2Is the ratio of the motion vector code rate of the 1 st and 2 nd reference frames and the entropy coding code rate after residual error coefficient quantization.
(422) Linearization with slope-texture complexity model
lnθ(δ)=2lnσ+α(1-δ)
And performing least square fitting on the 2 groups of sample values, solving model parameters alpha and sigma, and updating characteristic parameters { theta, delta c, s }:
(a) estimating slope-texture complexity model parameter values for a current encoded frame
<math> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mfrac> <mrow> <mfrac> <mrow> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mi>ln</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>2</mn> </munderover> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mi>ln</mi> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>&delta;</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&delta;</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>&sigma;</mi> <mo>=</mo> <mi>exp</mi> <mo>[</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mi>ln</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msubsup> <mi>&delta;</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&delta;</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>2</mn> </munderover> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mi>ln</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>ln</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msubsup> <mi>&delta;</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&delta;</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>]</mo> </mrow> </math>
(b) Updating the characteristic parameters { theta, deltac, s } of the current frame:
rho domain code rate model slope value theta-sigma2eα(1-δ)
Rho domain code rate model intercept data difference <math> <mrow> <mi>&Delta;c</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&Delta;c</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&Delta;c</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> <mo>;</mo> </mrow> </math>
Ratio of motion vector code rate to entropy coding code rate after residual error coefficient quantization s = s 1 + s 2 2 ;
(43) Calculating the desired bit rate of the current frame
Figure C20081011262900132
Limiting the corresponding zero coefficient ratio:
<math> <mrow> <mi>&rho;</mi> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <mfrac> <mrow> <msub> <mi>R</mi> <mi>j</mi> </msub> <mo>-</mo> <msup> <mi>R</mi> <mi>hdr</mi> </msup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>s</mi> </mrow> </mfrac> <mo>-</mo> <mi>&Delta;c</mi> </mrow> <mi>&theta;</mi> </mfrac> </mrow> </math>
5) estimating quantization coefficients QP of the current frame according to the desired zero coefficient ratio rhoj
(51) Inquiring a rho-QP mapping table to obtain conversion from a zero coefficient ratio rho to a quantization parameter QP; wherein the p-QP mapping table is obtained in the manner introduced in the background art.
In this embodiment, the ρ -QP mapping table is exemplified by a Foreman standard test sequence with medium motion complexity in CIF format, and for an I frame, the mapping table is as follows:
for P and B frames, the mapping tables are as follows:
Figure C20081011262900135
Figure C20081011262900141
that is, the QP value is set when the calculated ρ is closest to the boundary of the section. For example, for an I frame, if ρ is 0.953, it belongs to the interval [0.951, 0.95793], nearest to 0.951, so the quantization parameter 33 corresponding to 0.951 is taken;
(52) detecting the variation amplitude of the quantization parameter, and limiting the variation amplitude to be within the range of delta QP +/-2; that is, if the last frame QP was 26, but the QP given in step (51) was 29 (or 23), then at most only QP 28 (or 24) could be obtained; if the QP given in step (51) is 27, it is in the range of [24, 28], so the current frame does not have to be clipped.
6) With quantization parameter QPjEncoding a current video frame
(61) Encoding a video frame to obtain a true output bit rate for the frame
Figure C20081011262900142
(62) Calculating a remaining available bit rate
Figure C20081011262900143
Wherein the symbol max {. cndot } represents the maximum of the two numbers;
7) recording the actual coding characteristic parameter of the current frame in the information base, and selecting the jump position according to the frame number
(71) Storing the characteristic parameters { delta, rho, theta, deltac, s } of the current frame in an information base (for the characteristic parameter prediction of the subsequent video frame);
(72) if frame number j ≠ LGOPIf j is j +1, go to step 4);
(73) if the frame number j is LGOPThen let j equal 1 and jump to step 2).
Although the invention has been described and illustrated with reference to specific embodiments, it is not intended that the invention be limited to these described embodiments. The present invention is described by way of example in the international video coding standard h.264, but is not limited thereto, and all equivalent changes and modifications made within the scope of the claims of the present invention are within the scope of patent protection.

Claims (4)

1. A video code rate control method based on rho domain is characterized in that a target code rate is given
Figure C2008101126290002C1
The encoding end sequentially performs a bit rate allocation algorithm of an image group level and a frame level based on a rho domain model to realize code rate control, and the method specifically comprises the following steps:
1) pre-coding a group of images, and acquiring the initial characteristic parameters of the code rate control method:
encoding video with initial quantization parameter QPA group of GOP frames of the sequence, and recording the characteristic parameter of each frame in an information basei,ρi,θi,Δci,siIn which the letter subscript i ∈ [1, L ]GOP]∩Z+Indicating the code frame number, Z, in the present GOP+Represents taking a positive integer; deltai,ρi,θi,ΔciResidual texture complexity parameters, zero coefficient proportion parameters, code rate model slope parameters and code rate model data interception difference parameters in a rho domain model corresponding to the ith frame; siEncoding bit rate R for motion vectors in ith framej mvAnd entropy coding bit rate R after residual coefficient quantizationj coeThe ratio of (A) to (B);
2) calculating a GOP bit rate budget according to the target code rate:
(21) calculating the bit rate that a GOP can be allocated to
Figure C2008101126290002C2
Updating remaining available bit rate
Figure C2008101126290002C3
Figure C2008101126290002C4
Initialization is zero; wherein L isGOPThe GOP length is defined, and f is a video coding frame rate;
(22) if the video frame type is I frame, skipping to step 3);
if the frame type is P frame or B frame, jumping to step 4);
3) according to the remaining available bit rate
Figure C2008101126290002C5
Calculating an expected I-frame bit rateAnd the corresponding zero coefficient ratio rho, skipping to step 5);
4) according to the remaining available bit rate
Figure C2008101126290002C7
Calculating a desired P-frame or B-frame bit rate and a corresponding zero coefficient ratio ρ;
5) estimating quantization coefficients QP of the current frame according to the desired zero coefficient ratio rhoj
(51) Inquiring a rho-QP mapping table to obtain conversion from a zero coefficient ratio rho to a quantization parameter QP;
(52) detecting the variation amplitude of the quantization parameter, and limiting the variation amplitude within delta QP;
6) with quantization parameter QPjEncoding the current video frame:
(61) encoding a video frame to obtain a true output bit rate for the frame
Figure C2008101126290002C8
(62) Calculating a remaining available bit rate
Figure C2008101126290002C9
Wherein the symbol max {. cndot } represents the maximum of the two numbers;
7) recording the actual coding characteristic parameter of the current frame in an information base, and selecting a jump position according to a frame number:
(71) storing characteristic parameters { delta, rho, theta, delta c, s } of the current frame in an information base;
(72) if frame number j ≠ LGOPIf j is j +1, go to step 4);
(73) if the frame number j is LGOPThen let j equal 1 and jump to step 2).
2. The method as claimed in claim 1, wherein the step 3) is performed according to the remaining available bit rate
Figure C2008101126290002C10
Calculating an expected I-frame bit rate
Figure C2008101126290002C11
And a corresponding zero coefficient ratio p, comprising the steps of:
(31) calculating an expected I-frame bit rate
Figure C2008101126290002C12
Wherein, wI,wP,wBDesired bit rate weights, 1, γ, for single frame video of type I, P and B, respectivelyP,γBThe number of GOPs for which they occupy;
(32) updating the characteristic parameters { slope theta and intercept difference delta c } of the current I frame, and using the characteristic parameters { slope theta and intercept difference delta c } of the previous I frame adjacent to the current I frame as the characteristic parameters { slope theta and intercept difference delta c } of the current frame;
(33) calculating an expected zero coefficient ratio
Figure C2008101126290003C1
Jumping to step 5); wherein,
Figure C2008101126290003C2
is the bit rate of the video frame header.
3. The method as claimed in claim 1, wherein the step 4) is performed according to the remaining available bit rate
Figure C2008101126290003C3
Calculating the expected bit rate of the P frame or the B frame and the corresponding zero coefficient proportion rho, and specifically comprising the following steps:
(41) calculating an available bit rate of the current frame j;
(411) if the available bit rate remains
Figure C2008101126290003C4
Performing frame skipping processing;
(412) if the available bit rate remains
Figure C2008101126290003C5
Then
(a) If the current frame is a P frame, the frame is assigned a desired bit rate of:
the number of P frames in the GOP waiting for allocated bit rate minus 1:
γP=γP-1;
(b) if the current frame is a B frame, the frame is assigned a desired bit rate of:
Figure C2008101126290003C7
the number of B frames in the GOP waiting for allocated bit rate minus 1:
γB=γB-1;
(42) detecting characteristic parameters of the previous similar type frame, and updating the characteristic parameters { slope theta, intercept difference delta c and bit rate ratio s } of the current frame;
(43) calculating the desired bit rate of the current frame
Figure C2008101126290003C8
Limiting the corresponding zero coefficient ratio:
<math> <mrow> <mi>&rho;</mi> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <mfrac> <mrow> <msub> <mi>R</mi> <mi>j</mi> </msub> <mo>-</mo> <msup> <mi>R</mi> <mi>hdr</mi> </msup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>s</mi> </mrow> </mfrac> <mo>-</mo> <mi>&Delta;c</mi> </mrow> <mi>&theta;</mi> </mfrac> </mrow> </math>
4. the method as claimed in claim 3, wherein said step (42) of detecting the characteristic parameters of the previous homogeneous frame and updating the characteristic parameters { slope θ, intercept difference Δ c and bit rate ratio s } of the current frame comprises the steps of:
(421) taking N nearest video frames of the same type before the current frame as prediction reference frames, and taking N groups of characteristic parameter values { theta ] corresponding to the N nearest video frames of the same type from an information basei,δi,Δci,si1 ≦ i ≦ N, and is converted to { ln θ ≦ Ni,δi,Δci,si}; wherein N is a positive integer, and the subscript i belongs to Z+Indicating adjacent reference frame numbers; thetaiLinear rate model slope, delta, for the ith reference frameiResidual texture complexity for the ith reference frame;
(422) linearize the slope-texture complexity model as:
lnθ(δ)=2lnσ+α(1-δ)
and performing least square fitting on the N groups of sample point values, solving model parameters alpha and sigma, and updating characteristic parameters { theta, delta c, s }:
(a) estimating the slope-texture complexity model parameter value of the current coding frame:
<math> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mfrac> <mrow> <mover> <mi>&delta;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>ln</mi> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mi>ln</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msubsup> <mi>&delta;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mi>n</mi> <msup> <mover> <mi>&delta;</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>&sigma;</mi> <mo>=</mo> <mi>exp</mi> <mo>[</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <mrow> <mo>(</mo> <mi>ln</mi> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msubsup> <mi>&delta;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mover> <mi>&delta;</mi> <mo>&OverBar;</mo> </mover> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mi>ln</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>n</mi> <mover> <mi>&delta;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>ln</mi> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msubsup> <mi>&delta;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mi>n</mi> <msup> <mover> <mi>&delta;</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>]</mo> </mrow> </math>
wherein, <math> <mrow> <mover> <mi>&delta;</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> </mrow> <mi>N</mi> </mfrac> <mo>;</mo> </mrow> </math>
(b) updating the characteristic parameters { theta, deltac, s } of the current frame:
rho-domain bit rate model slope value theta-sigma2(1-δ)
Rho-domain bit rate model truncation data difference <math> <mrow> <mi>&Delta;c</mi> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mi>&Delta;</mi> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>/</mo> <mi>N</mi> <mo>;</mo> </mrow> </math>
Ratio of motion vector coding bit rate to entropy coding bit rate after residual coefficient quantization <math> <mrow> <mi>s</mi> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>/</mo> <mi>N</mi> <mo>.</mo> </mrow> </math>
CN 200810112629 2008-05-23 2008-05-23 Code rate controlling method for video coding based on Rho domain Expired - Fee Related CN100581262C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810112629 CN100581262C (en) 2008-05-23 2008-05-23 Code rate controlling method for video coding based on Rho domain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810112629 CN100581262C (en) 2008-05-23 2008-05-23 Code rate controlling method for video coding based on Rho domain

Publications (2)

Publication Number Publication Date
CN101287123A CN101287123A (en) 2008-10-15
CN100581262C true CN100581262C (en) 2010-01-13

Family

ID=40059055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810112629 Expired - Fee Related CN100581262C (en) 2008-05-23 2008-05-23 Code rate controlling method for video coding based on Rho domain

Country Status (1)

Country Link
CN (1) CN100581262C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10091504B2 (en) 2015-01-08 2018-10-02 Microsoft Technology Licensing, Llc Variations of rho-domain rate control

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036062B (en) * 2009-09-29 2012-12-19 华为技术有限公司 Video coding method and device and electronic equipment
CN105407354A (en) * 2015-11-06 2016-03-16 济南草履虫电子科技有限公司 Video flicker suppression method through computer control
TWI554083B (en) * 2015-11-16 2016-10-11 晶睿通訊股份有限公司 Image processing method and camera thereof
CN106791848B (en) * 2016-12-20 2020-01-03 中国电建集团河南省电力勘测设计院有限公司 Two-Pass code rate control method based on HEVC
CN109561311A (en) * 2018-12-07 2019-04-02 莆田学院 A kind of 3 d video encoding bit rate control method and storage equipment based on the domain ρ
CN110198444B (en) * 2019-04-16 2021-07-09 浙江大华技术股份有限公司 Video frame encoding method, video frame encoding apparatus, and device having storage function
CN110740324B (en) * 2019-09-11 2023-03-31 浙江大华技术股份有限公司 Coding control method and related device
CN114422783B (en) * 2021-12-07 2024-04-12 网宿科技股份有限公司 Video encoding method, electronic device, and storage medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种基于频域图像质量控制的自适应码率调整方法. 徐一凡,尔桂花,戴琼海.2004国际有线电视技术研讨会. 2004
一种基于频域图像质量控制的自适应码率调整方法. 徐一凡,尔桂花,戴琼海.2004国际有线电视技术研讨会. 2004 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10091504B2 (en) 2015-01-08 2018-10-02 Microsoft Technology Licensing, Llc Variations of rho-domain rate control

Also Published As

Publication number Publication date
CN101287123A (en) 2008-10-15

Similar Documents

Publication Publication Date Title
CN100581262C (en) Code rate controlling method for video coding based on Rho domain
US7764740B2 (en) Fast block mode determining method for motion estimation, and apparatus thereof
CN101395923B (en) Method and apparatus for determining in picture signal encoding the bit allocation for groups of pixel blocks in a picture
CN100463523C (en) Video encoding methods and systems with frame-layer rate control
Wang et al. Rate-distortion optimization of rate control for H. 264 with adaptive initial quantization parameter determination
US8855196B2 (en) Adaptive motion information cost estimation with dynamic look-up table updating
JP4914100B2 (en) Method for controlling the encoder output bit rate in a block-based video encoder and corresponding video encoder device
CN1949877B (en) Adaptive quantization controller and method thereof
CN102932641B (en) A kind of constant-quality bit rate control method
JP2009540636A (en) Method and apparatus for adaptively determining a bit budget for encoding a video picture
CN101141636A (en) Data rate control method and video signal encoder
CN1223199C (en) Method of performing video encoding rate control using bit budget
CN1902939A (en) Encoding method, decoding method, and encoding apparatus for a digital picture sequence
JP2006157881A (en) Variable-length coding device and method of same
CN1774070A (en) Motion estimation method using adaptive mode decision
CN101867814A (en) Image encoding apparatus, image encoding method, and computer program
CN101141647A (en) AVS video coding based fast intraframe predicting mode selecting method
KR101405549B1 (en) Video coding
CN101313581A (en) Method and device for coding a video image
CN1194544C (en) Video encoding method based on prediction time and space domain conerent movement vectors
KR101086724B1 (en) ?? Deciding Method of H.264/AVC Encoder using Complexity of Frame, and H.264/AVC Encoder implementing the same
US8442113B2 (en) Effective rate control for video encoding and transcoding
JP4130617B2 (en) Moving picture coding method and moving picture coding apparatus
KR100751423B1 (en) Fast determining method of block mode, and the apparatus therefor motion estimation
KR20040007818A (en) Method for controlling DCT computational quantity for encoding motion image and apparatus thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100113