CN100545098C - On-line monitoring secondary water supply ozone purification system and utilize the method for this system - Google Patents

On-line monitoring secondary water supply ozone purification system and utilize the method for this system Download PDF

Info

Publication number
CN100545098C
CN100545098C CNB2007100229913A CN200710022991A CN100545098C CN 100545098 C CN100545098 C CN 100545098C CN B2007100229913 A CNB2007100229913 A CN B2007100229913A CN 200710022991 A CN200710022991 A CN 200710022991A CN 100545098 C CN100545098 C CN 100545098C
Authority
CN
China
Prior art keywords
water
ozone
line monitoring
ozonizer
links
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2007100229913A
Other languages
Chinese (zh)
Other versions
CN101066797A (en
Inventor
乐飞
薛飞
孙荣生
王林丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU KONER OZONE CO Ltd
Original Assignee
JIANGSU KONER OZONE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU KONER OZONE CO Ltd filed Critical JIANGSU KONER OZONE CO Ltd
Priority to CNB2007100229913A priority Critical patent/CN100545098C/en
Publication of CN101066797A publication Critical patent/CN101066797A/en
Application granted granted Critical
Publication of CN100545098C publication Critical patent/CN100545098C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The invention provides a kind of on-line monitoring secondary water supply ozone purification system, the outlet side of the oxygen generator of this on-line monitoring secondary water supply ozone purification system links to each other with the inlet end of ozonizer, the outlet side of ozonizer links to each other with air-water mixing pump by the suction hole of air-water mixing pump, the water outlet end of air-water mixing pump links to each other with the inlet end of oxidation tank, the exhaust side of oxidation tank links to each other with the inlet end of ozone tail gas splitter, the water outlet of oxidation tank connects strainer, flow out clean water from the water outlet of strainer, since the present invention can be in monitoring out the aqueous solution ozone concn, and can discern automatically according to water quality characteristic, adjust the output of ozonizer, control water-soluble ozone concn, thereby the water quality that guarantees secondary water supply reaches standard.

Description

On-line monitoring secondary water supply ozone purification system and utilize the method for this system
Technical field
The present invention relates to a kind ofly can carry out the ozone purification system of ozonization and be used for the purifying method of this system to drinking public water supply.
Background technology
The city is because the tap water pipe network is outmoded, and the pipe network distance, so only utilize pipe network water supply, can not guarantee the quality that the city resident drinks water, and is necessary pipe network water supply is carried out secondary-cleaned.Secondary-cleaned means to pipe network water supply in the prior art are simple, lack continuity, equipment dependability is poor, particularly at the continuous characteristics that change of the water yield of secondary water supply, there is not a kind of energy to realize continuously, sterilize reliably at present, and energy on-line monitoring thimerosal concentration, the dosage of in good time closed-loop control sterilizing agent makes equipment remain the water-soluble disinfection concentration of constant with the variation of rate of water added.Traditional disinfection way generally is to add liquid chlorine or dioxide peroxide in water, though this mode can on-line monitoring water in the concentration of chlorine, the water-soluble back of chlorine easily generates clo 2 -, clo 3 -, the sterilization of utilization liquid chlorine can produce the chlorination organism, harmful HUMAN HEALTH.
Adopt the mode of ozonization, be in water, to add ozone, though this method comparison safety utilizes the relevant device of ozonization simple at present, controlled function is incomplete, as, the ozone addition can not be regulated automatically, and when service discharge or water quality changed, single fixed amount added ozone, make water-soluble ozone concn instability, thereby directly influence the ozonization sterilization effects; Can not accomplish the water-soluble ozone concn of automatic continuous monitoring, adopting great concentration to carry out disinfection for different quality is effective, concentration monitor had both just been arranged, can not possess the control signal output function, feedback control ozonizer equipment is adjusted the ozone generating capacity in good time, but needs manual intervention, this will cause the water quality behind the secondary-cleaned still unstable, does not reach the purpose of secondary-cleaned.So existing ozonization mode can not satisfy the high standard of people to water quality requirement.
Summary of the invention
Technical problem:
The technical problem to be solved in the present invention provides a kind of on-line monitoring secondary water supply ozone purification system and is used for the method for this system, ozone concn in the energy on-line monitoring water, dosage with the in good time closed-loop control ozone of the variation of the water yield, make the aqueous solution keep the constant ozone concn, reach good secondary-cleaned effect tap water.
Technical scheme:
For reaching above-mentioned technical purpose, the invention provides a kind of on-line monitoring secondary water supply ozone purification system, its technical scheme is, the outlet side of oxygen generator links to each other with the inlet end of ozonizer, the outlet side of ozonizer links to each other with air-water mixing pump by the suction hole of air-water mixing pump, the water outlet end of air-water mixing pump links to each other with the inlet end of oxidation tank, the exhaust side of oxidation tank links to each other with the inlet end of ozone tail gas splitter, the water outlet of oxidation tank connects strainer, flow out clean water from the water outlet of strainer, the electrode measurement end that passes through the redox potential electrode of on-line monitoring instrument links to each other with oxidation tank, the control signal output terminal of on-line monitoring instrument links to each other with the control signal input terminus of ozonizer controller, and the control signal output terminal of ozonizer controller links to each other with the power supply of ozonizer inverter circuit driving signal input of ozonizer.
Preferably, first voltage signal output end of the redox potential electrode probe of on-line monitoring instrument links to each other with potentiometric reference electrode input terminus, and second voltage signal output end of redox potential electrode probe is connected with potentiometric measurement signal input terminus; The temperature-compensating device of connecting between potentiometric temperature signal input terminus and the redox potential electrode probe temperature inductor, the potentiometer voltage signal output end connects the voltage signal input terminus of multifunctional digital arithmetic processing apparatus, the water quality characteristic means of identification of connecting between the reference signal input terminus of potentiometric indicator electrode electrical signal and multifunctional digital arithmetic processing apparatus, the electrical signal of multifunctional digital arithmetic processing apparatus connects the electric signal input end of digital display unit.
Preferably, in the ozonizer controller, the output terminal of first wave filter links to each other with first signal input part of pulse width modulator, second filter output links to each other with the second signal input terminus of pulse width modulator, the pulse width signal output terminal of pulse width modulator is connected with the direct-flow input end of DC/AC inverter, the low pressure input terminus of step-up transformer is connected with the ac output end of DC/AC inverter, the electrode tip of ozonizer is connected with the high-voltage output end of step-up transformer, the suction hole of air-water mixing pump is connected with the ozone delivery port of ozonizer, the water-in of oxidation tank is connected with the water outlet of air-water mixing pump, oxidation tank is connected with the probe measurement end of the redox potential electrode of on-line monitoring instrument, the measurement signal input terminus of on-line monitoring instrument is connected with the electric potential signal output terminal of redox potential electrode, and the feedback signal input terminus of second wave filter links to each other with the feedback signal output terminal of on-line monitoring instrument.
Preferably, the signal input part of first wave filter connects setting signal, the feedback control signal that is provided by the on-line monitoring instrument is provided the signal input part of second wave filter, the inverting input of pulse width modulator is connected with the signal output part of first wave filter, the in-phase input end of pulse width modulator is connected with the signal output part of second wave filter, first dc terminal of DC/AC inverter is connected with second pulse signal output end with first pulse signal output end of pulse width modulator respectively with second dc terminal, first low voltage terminal of step-up transformer exchanges end with first of DC/AC inverter respectively with second low voltage terminal and the second interchange end is connected, the high voltage electric of ozonizer extremely is connected with the high-pressure side of step-up transformer, the earthing pole of ozonizer is connected with the zero end of step-up transformer, the suction end of air-water mixing pump is connected with the ozone outlet side of ozonizer, the water-in of oxidation tank is connected with the ozone water water side of air-water mixing pump, the redox potential electrode probe measuring junction of on-line monitoring instrument is connected with oxidation tank, the signals collecting end of on-line monitoring instrument is connected with the signal output part of redox potential electrode, and the feedback signal output terminal of on-line monitoring instrument is connected with the signal input part of second wave filter.
The present invention also provides the method for the monitoring secondary water supply ozone purification of on-line monitoring secondary water supply ozone purification system, the pending former water of the tap water that is polluted flows out through air-water mixing pump from tank and pressurizes, suction opening at air-water mixing pump adds into ozone gas simultaneously, make ozone gas and tap water mixed dissolution, the tap water of going into ozone through dissolved under pressure flow in the oxidation tank again, carry out catalytic oxidation once more, make ozone in water solubleness reach a certain amount of formation ozone water, consistency of ozone water in the oxidation tank carries out continuous monitoring by connected on-line monitoring instrument, the concentration value that measures shows at the on-line monitoring instrument, ozonizer receives the feedback control signal of connected on-line monitoring instrument simultaneously, the change output rating of control ozonizer, thereby reach the purpose of control ozone dosage, it is consistent with set(ting)value that consistency of ozone water is remained; The undissolved ozone gas of residue in the oxidation tank is by connected ozone tail gas splitter, being reduced into oxygen is disposed in the atmosphere, the ozone water that forms at oxidation tank flows into charcoal filter from water outlet, residual ozone and other impurity in the filtering water, reach the purification purpose, flow to the user by upright the connecing of the effusive clean water of charcoal filter exit end.
Beneficial effect:
Since the present invention can be in monitoring out the aqueous solution ozone concn, and can discern automatically according to water quality characteristic, adjust the output of ozonizer, control water-soluble ozone concn, thereby the water quality that guarantees secondary water supply reaches standard.
Description of drawings
Fig. 1 is a structured flowchart of the present invention;
Fig. 2 is the schematic circuit of on-line monitoring instrument of the present invention;
Fig. 3 is the circuit block diagram of ozonizer controller of the present invention;
Fig. 4 is the schematic circuit of ozonizer controller of the present invention;
Fig. 5 is the method synoptic diagram of the monitoring secondary water supply ozone purification of on-line monitoring secondary water supply ozone purification system.
Embodiment
As shown in Figure 1, the invention provides a kind of on-line monitoring secondary water supply ozone purification system, the outlet side of oxygen generator 2 links to each other with the inlet end of ozonizer 1, the outlet side of ozonizer 1 links to each other with air-water mixing pump 6 by the suction hole 61 of air-water mixing pump 6, the water outlet end of air-water mixing pump 6 links to each other with the inlet end of oxidation tank 5, the outlet side of oxidation tank 5 links to each other with the inlet end of ozone tail gas splitter 4, the water outlet of oxidation tank 5 connects strainer 8, flow out clean water from the water outlet of strainer 8, the electrode measurement end that passes through redox potential electrode 31 of on-line monitoring instrument 3 links to each other with oxidation tank 5, the control signal output terminal of on-line monitoring instrument 3 links to each other with the control signal input terminus of ozonizer controller 7, and the control signal output terminal of ozonizer controller 7 links to each other with the power supply of ozonizer inverter circuit driving signal input of ozonizer 1.
As shown in Figure 2, first voltage signal output end 11 of the redox potential electrode probe 310 of on-line monitoring instrument 3 and the reference electrode input terminus 41 of potentiometer 340 link to each other, and second voltage signal output end 13 of redox potential electrode probe 310 is connected with the measurement signal input terminus 42 of potentiometer 340; The temperature-compensating device 320 of connecting between the temperature signal input terminus 45 of potentiometer 340 and redox potential electrode probe 310 temperature inductors 12, potentiometer 340 voltage signal output ends 43 connect the voltage signal input terminus 51 of multifunctional digital arithmetic processing apparatus 350, the water quality characteristic means of identification 330 of connecting between the reference signal input terminus 53 of the indicator electrode electrical signal 44 of potentiometer 340 and multifunctional digital arithmetic processing apparatus 350, the electrical signal 52 of multifunctional digital arithmetic processing apparatus 350 connects the electric signal input end 61 of digital display units 360.
As shown in Figure 3, in the ozonizer controller 7, the output terminal of first wave filter 74 links to each other with first signal input part of pulse width modulator 71, second wave filter, 75 output terminals link to each other with the second signal input terminus of pulse width modulator 71, the pulse width signal output terminal of pulse width modulator 71 is connected with the direct-flow input end of DC/AC inverter 72, the low pressure input terminus of step-up transformer 73 is connected with the ac output end of DC/AC inverter 72, the electrode tip of ozonizer 1 is connected with the high-voltage output end of step-up transformer 73, the suction hole of air-water mixing pump 6 is connected with the ozone delivery port of ozonizer 1, the water-in of oxidation tank 5 is connected with the water outlet of air-water mixing pump 2, oxidation tank 5 is connected with the probe measurement end of the redox potential electrode 31 of on-line monitoring instrument 3, the measurement signal input terminus of on-line monitoring instrument 3 is connected with the electric potential signal output terminal of redox potential electrode 31, and the feedback signal input terminus of second wave filter 75 links to each other with the feedback signal output terminal of on-line monitoring instrument 3.
As shown in Figure 4, the signal input part 742 of first wave filter 74 connects setting signal, the feedback control signal that is provided by on-line monitoring instrument 3 is provided the signal input part of second wave filter 75, the inverting input 712 of pulse width modulator 71 is connected with the signal output part 741 of first wave filter 74, the in-phase input end 711 of pulse width modulator 71 is connected with the signal output part 751 of second wave filter 75, first dc terminal 721 of DC/AC inverter 72 is connected with second pulse signal output end 714 with first pulse signal output end 713 of pulse width modulator 71 respectively with second dc terminal 722, first low voltage terminal 731 of step-up transformer 73 exchanges end 723 with first of DC/AC inverter 72 respectively with second low voltage terminal 732 and the second interchange end 724 is connected, the high voltage electric of ozonizer 1 extreme 101 is connected with the high-pressure side 733 of step-up transformer 73, the earthing pole 102 of ozonizer 1 is connected with the zero end 734 of step-up transformer 73, the suction end 601 of air-water mixing pump 6 is connected with the ozone outlet side 103 of ozonizer 1, the water-in 501 of oxidation tank 5 is connected with the ozone water water side 602 of air-water mixing pump 6, the redox potential electrode 31 probe measurement ends 319 of on-line monitoring instrument 3 are connected with oxidation tank 5, the signals collecting end 301 of on-line monitoring instrument 3 is connected with the signal output part 318 of redox potential electrode 31, and the feedback signal output terminal 317 of on-line monitoring instrument 3 is connected with the signal input part 752 of second wave filter 75.
The present invention also provides the method for the monitoring secondary water supply ozone purification of on-line monitoring secondary water supply ozone purification system, as shown in Figure 5, the pending former water of the tap water that is polluted flows out through air-water mixing pump from tank and pressurizes, suction opening at air-water mixing pump adds into ozone gas simultaneously, make ozone gas and tap water mixed dissolution, the tap water of going into ozone through dissolved under pressure flow in the oxidation tank again, carry out catalytic oxidation once more, make ozone in water solubleness reach a certain amount of formation ozone water, consistency of ozone water in the oxidation tank carries out continuous monitoring by connected on-line monitoring instrument, the concentration value that measures shows at the on-line monitoring instrument, ozonizer receives the feedback control signal of connected on-line monitoring instrument simultaneously, the change output rating of control ozonizer, thereby reach the purpose of control ozone dosage, it is consistent with set(ting)value that consistency of ozone water is remained; The undissolved ozone gas of residue in the oxidation tank is by connected ozone tail gas splitter, being reduced into oxygen is disposed in the atmosphere, the ozone water that forms at oxidation tank flows into charcoal filter from water outlet, residual ozone and other impurity in the filtering water, reach the purification purpose, flow to the user by upright the connecing of the effusive clean water of charcoal filter exit end.
First wave filter and the adoptable model of second wave filter are LM358, the adoptable model of control driver module of pulse width modulator is TL494, the adoptable model of DC/AC inverter power device is 20N120CND, the adoptable model U22-100/200-0.8 of step-up transformer.

Claims (4)

1, a kind of on-line monitoring secondary water supply ozone purification system, it is characterized in that, the outlet side of oxygen generator (2) links to each other with the inlet end of ozonizer (1), the outlet side of ozonizer (1) links to each other with air-water mixing pump (6) by the suction hole (61) of air-water mixing pump (6), the water outlet end of air-water mixing pump (6) links to each other with the inlet end of oxidation tank (5), the exhaust side of oxidation tank (5) links to each other with the inlet end of ozone tail gas splitter (4), the water outlet of oxidation tank (5) connects strainer (8), flow out clean water from the water outlet of strainer (8), on-line monitoring instrument (3) links to each other with oxidation tank (5) by the electrode measurement end of redox potential electrode (31), the control signal output terminal of on-line monitoring instrument (3) links to each other with the control signal input terminus of ozonizer controller (7), and the control signal output terminal of ozonizer controller (7) links to each other with the power supply of ozonizer inverter circuit driving signal input of ozonizer (1); In the ozonizer controller (7), the output terminal of first wave filter (74) links to each other with first signal input part of pulse width modulator (71), second wave filter (75) output terminal links to each other with the second signal input terminus of pulse width modulator (71), the pulse width signal output terminal of pulse width modulator (71) is connected with the direct-flow input end of DC/AC inverter (72), the low pressure input terminus of step-up transformer (73) is connected with the ac output end of DC/AC inverter (72), the electrode tip of ozonizer (1) is connected with the high-voltage output end of step-up transformer (73), the suction hole of air-water mixing pump (6) is connected with the ozone delivery port of ozonizer (1), the water-in of oxidation tank (5) is connected with the water outlet of air-water mixing pump (2), oxidation tank (5) is connected with the probe measurement end of the redox potential electrode (31) of on-line monitoring instrument (3), the measurement signal input terminus of on-line monitoring instrument (3) is connected with the electric potential signal output terminal of redox potential electrode (31), and the feedback signal input terminus of second wave filter (75) links to each other with the feedback signal output terminal of on-line monitoring instrument (3).
2, on-line monitoring secondary water supply ozone purification system as claimed in claim 1, it is characterized in that, first voltage signal output end (11) of the redox potential electrode probe (310) of on-line monitoring instrument (3) links to each other with the reference electrode input terminus (41) of potentiometer (340), and second voltage signal output end (13) of redox potential electrode probe (310) is connected with the measurement signal input terminus (42) of potentiometer (340); The temperature-compensating device (320) of connecting between the temperature signal input terminus (45) of potentiometer (340) and redox potential electrode probe (310) temperature inductor (12), potentiometer (340) voltage signal output end (43) connects the voltage signal input terminus (51) of multifunctional digital arithmetic processing apparatus (350), the water quality characteristic means of identification (330) of connecting between the reference signal input terminus (53) of the indicator electrode electrical signal (44) of potentiometer (340) and multifunctional digital arithmetic processing apparatus (350), the electrical signal (52) of multifunctional digital arithmetic processing apparatus (350) connects the electric signal input end (61) of digital display unit (360).
3, on-line monitoring secondary water supply ozone purification system as claimed in claim 1, it is characterized in that, the signal input part (742) of first wave filter (74) connects setting signal, the feedback control signal that is provided by on-line monitoring instrument (3) is provided the signal input part of second wave filter (75), the inverting input (712) of pulse width modulator (71) is connected with the signal output part (741) of first wave filter (74), the in-phase input end (711) of pulse width modulator (71) is connected with the signal output part (751) of second wave filter (75), first dc terminal (721) of DC/AC inverter (72) is connected with second pulse signal output end (714) with first pulse signal output end (713) of pulse width modulator (71) respectively with second dc terminal (722), first low voltage terminal (731) of step-up transformer (73) exchanges end (723) with first of DC/AC inverter (72) respectively with second low voltage terminal (732) and the second interchange end (724) is connected, ozonizer (1) high voltage electrode section (101) is connected with the high pressure section (733) of step-up transformer (73), the earthing pole (102) of ozonizer (1) is connected with the zero end (734) of step-up transformer (73), the suction end (601) of air-water mixing pump (6) is connected with the ozone outlet side (103) of ozonizer (1), the water-in (501) of oxidation tank (5) is connected with the ozone water water side (602) of air-water mixing pump (6), redox potential electrode (31) the probe measurement end (319) of on-line monitoring instrument (3) is connected with oxidation tank (5), the signals collecting end (301) of on-line monitoring instrument (3) is connected with the signal output part (318) of redox potential electrode (31), and the feedback signal output terminal (317) of on-line monitoring instrument (3) is connected with the signal input part (752) of second wave filter (75).
4, a kind of method of utilizing the described on-line monitoring secondary water supply of claim 1 ozone purification system to carry out the secondary water supply ozone purification, it is characterized in that, the pending former water of the tap water that is polluted flows out through air-water mixing pump from tank and pressurizes, suction opening at air-water mixing pump adds into ozone gas simultaneously, make ozone gas and tap water mixed dissolution, the tap water of going into ozone through dissolved under pressure flow in the oxidation tank again, carry out catalytic oxidation once more, make ozone in water solubleness reach a certain amount of formation ozone water, consistency of ozone water in the oxidation tank carries out continuous monitoring by connected on-line monitoring instrument, the concentration value that measures shows at the on-line monitoring instrument, ozonizer receives the feedback control signal of connected on-line monitoring instrument simultaneously, the change output rating of control ozonizer, thereby reach the purpose of control ozone dosage, it is consistent with set(ting)value to be that consistency of ozone water remains; Residue in the oxidation tank not dissolved ozone gas is passed through connected ozone tail gas splitter, being reduced into oxygen is disposed in the atmosphere, the ozone water that forms at oxidation tank flows into charcoal filter from water outlet, residual ozone and other impurity in the filtering water, reach the purification purpose, flow to the user by the effusive clean water quality of charcoal filter exit end.
CNB2007100229913A 2007-05-29 2007-05-29 On-line monitoring secondary water supply ozone purification system and utilize the method for this system Active CN100545098C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100229913A CN100545098C (en) 2007-05-29 2007-05-29 On-line monitoring secondary water supply ozone purification system and utilize the method for this system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100229913A CN100545098C (en) 2007-05-29 2007-05-29 On-line monitoring secondary water supply ozone purification system and utilize the method for this system

Publications (2)

Publication Number Publication Date
CN101066797A CN101066797A (en) 2007-11-07
CN100545098C true CN100545098C (en) 2009-09-30

Family

ID=38879520

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100229913A Active CN100545098C (en) 2007-05-29 2007-05-29 On-line monitoring secondary water supply ozone purification system and utilize the method for this system

Country Status (1)

Country Link
CN (1) CN100545098C (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126707A (en) * 2011-03-08 2011-07-20 杭州盛大高科技机电有限公司 Concentration-adjustable ozone generator
CN102557230B (en) * 2011-05-17 2014-02-26 济南市供排水监测中心 Equipment and method for determining ozone dosage in water treatment
CN102342260A (en) * 2011-11-09 2012-02-08 深圳力合环保技术有限公司 Aquaculture system
JP2013126628A (en) * 2011-12-19 2013-06-27 Panasonic Corp Water purification apparatus
CN103127854A (en) * 2012-07-23 2013-06-05 周美荣 Electrolysis-type high-pressure ozone water mixing device
CN104110872B (en) * 2013-07-31 2017-08-25 芜湖美的厨卫电器制造有限公司 Water-heater system and the control method sterilized for water-heater system
CN103673178A (en) * 2013-12-24 2014-03-26 山东建筑大学 Air-purification system with water generation and oxygen generation integrated
TWI594944B (en) * 2014-02-26 2017-08-11 財團法人工業技術研究院 Module and method of ozone monitoring and ozone generating apparatus
CN105905953A (en) * 2016-04-27 2016-08-31 杭州娃哈哈集团有限公司 Pure water produced ozone online automatic control method
CN106517600A (en) * 2016-12-29 2017-03-22 上海铱钶环保科技有限公司 Ozone shunting system in PAM-containing wastewater treatment system
CN111392852B (en) * 2020-04-24 2023-12-19 华能国际电力股份有限公司 Feedforward-feedback cooperative control ozone accurate feeding system and method
CN114471335B (en) * 2021-12-15 2023-06-27 珠海格力电器股份有限公司 Sterilizer and variable power compensation control method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
控制电位型水中臭氧电化学传感器的试验研究. 李素芬,刘钟阳,许东卫.传感器与微系统,第25卷第1期. 2006
控制电位型水中臭氧电化学传感器的试验研究. 李素芬,刘钟阳,许东卫.传感器与微系统,第25卷第1期. 2006 *
水中臭氧浓度的检测方法. 石晓荣,朱天宇,陈家财.河海大学常州分校学报,第21卷第1期. 2007
水中臭氧浓度的检测方法. 石晓荣,朱天宇,陈家财.河海大学常州分校学报,第21卷第1期. 2007 *

Also Published As

Publication number Publication date
CN101066797A (en) 2007-11-07

Similar Documents

Publication Publication Date Title
CN100545098C (en) On-line monitoring secondary water supply ozone purification system and utilize the method for this system
US20080237060A1 (en) Methods and apparatus for electrolytic treatment of water
CN201746592U (en) Water electrolysis device
CN206127025U (en) Water purifier
CN111233112B (en) Secondary water supply intelligent chlorine supplementing disinfection system and chlorine supplementing method
US20170174538A1 (en) Hydrogen Generation Device
CN210419378U (en) Acidic oxidation potential water generator
EP4054657A1 (en) Ultrasonic scaler having an ozonated water system
CN202530504U (en) Non-negative-pressure direct drinking water preparation and supply device
CN201049903Y (en) On-line monitoring secondary water supply ozone purification device
KR20120133517A (en) Sterile Water Producing Controlling Method of Sterile Water Producing Apparatus and Sterile Control Method of Bidet
JP6909600B2 (en) Electrolyzed hydrogen water generator
JP4462157B2 (en) Electrolyzed water generating device and sink equipped with the same
CN202437767U (en) Multifunctional all-in-one machine for producing ozone electrolytically
CN210621814U (en) Central direct drinking water dual water supply system with automatic pipeline disinfection function
EP1233932B1 (en) Domestic method and apparatus for dispensing purified water
CN211041387U (en) Water heating device
CN201495127U (en) Multifunctional ozone water generator
KR101729690B1 (en) Clorine generator and management system using the same
CN215479929U (en) Waterway disinfection system of oral comprehensive treatment table and control unit thereof
CN206692386U (en) A kind of function aquatic generating apparatus
CN220412991U (en) Non-consumable antibacterial water generator suitable for oral cavity comprehensive treatment table
JP2003088867A (en) Apparatus for producing functional water
CN209940714U (en) Healthy water equipment of electrolysis water
CN213924368U (en) Integrated water purifier with medium-pressure ultraviolet sterilization function

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant