CN100538574C - Signal processing apparatus, method, pick-up unit and servo control mechanism - Google Patents

Signal processing apparatus, method, pick-up unit and servo control mechanism Download PDF

Info

Publication number
CN100538574C
CN100538574C CNB2005101338711A CN200510133871A CN100538574C CN 100538574 C CN100538574 C CN 100538574C CN B2005101338711 A CNB2005101338711 A CN B2005101338711A CN 200510133871 A CN200510133871 A CN 200510133871A CN 100538574 C CN100538574 C CN 100538574C
Authority
CN
China
Prior art keywords
signal
position information
signal processing
unit
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005101338711A
Other languages
Chinese (zh)
Other versions
CN1831691A (en
Inventor
藤田纯
伊东隆充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Publication of CN1831691A publication Critical patent/CN1831691A/en
Application granted granted Critical
Publication of CN100538574C publication Critical patent/CN100538574C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

Carry out signal Processing to detect the actuating speed of motor for the location information signal of exporting from sensor corresponding to the activation point of motor (Asin θ, Acos θ).Possess: the location information signal carries out the location information signal handling part (410) of signal Processing with the actuating speed information of calculating motor; The up-to-date actuating speed information (ω that reflection is calculated by location information signal handling part (410) n) be used as the interior location information generating unit (460) of interior location information with the up-to-date estimated position that generates motor.Location information signal handling part (410) basis is from the location information signal (Asin θ, Acos θ) of sensor and interior location information (the Asin θ that is generated by interior location information generating unit (460) n, Acos θ n) difference come the actuating speed information (ω of calculating motor n).

Description

信号处理装置、方法、检测装置及伺服机构 Signal processing device, method, detection device and servo mechanism

技术领域 technical field

本发明涉及信号处理装置,例如,涉及对从检测电动机的旋转角度的编码器输出的双相信号进行处理,检测电动机的驱动速度(旋转角速度)的信号处理装置、信号处理方法、信号处理程序、记录媒体、速度检测装置以及控制电动机驱动速度的伺服机构。The present invention relates to a signal processing device, for example, to a signal processing device, a signal processing method, a signal processing program, A recording medium, a speed detection device, and a servo mechanism that controls the driving speed of the motor.

背景技术 Background technique

以往,已知控制电动机的驱动速度(例如旋转速度)的伺服机构(例如,文献1:特开2004-5218号公报)。Conventionally, there is known a servo mechanism that controls the driving speed (for example, rotational speed) of a motor (for example, Document 1: JP-A-2004-5218).

现有的伺服机构1如图12所示具备:作为控制对象的电动机11;检测电动机11的旋转位置(旋转角度)并且输出位置数据的编码器12;以及根据来自编码器12的位置数据来计算电动机旋转速度的同时控制施加到电动机11上的电流以使得电动机旋转速度为目标速度的控制部13。Existing servomechanism 1 is equipped with as shown in Figure 12: as the electric motor 11 of control object; The control unit 13 controls the current applied to the motor 11 so that the motor rotation speed becomes a target speed while simultaneously controlling the rotation speed of the motor.

编码器12检测电动机11的旋转位置(旋转角度)的同时进行锁存,用绝对码(absolute code)输出电动机11的旋转位置信息。而且,通过串行通信线路14连接编码器12和控制部13。The encoder 12 performs latching while detecting the rotational position (rotation angle) of the motor 11, and outputs information on the rotational position of the motor 11 in absolute code. Furthermore, the encoder 12 and the control unit 13 are connected via a serial communication line 14 .

在图13中表示具备上述结构的伺服机构中的、电动机11的旋转速度控制的时序图。FIG. 13 shows a timing chart of the rotation speed control of the motor 11 in the servo mechanism having the above-mentioned configuration.

首先,通过串行通信线路14从控制部13向编码器12发送位置检测的指令S1。当接收检测指令S1时,编码器12检测电动机11的旋转位置(图13中表示为P0、P1、P2)的同时,对该检测值进行锁存并将电动机11的位置数据输出到控制部13。First, a command S 1 for position detection is transmitted from the control unit 13 to the encoder 12 via the serial communication line 14 . When receiving the detection instruction S1 , the encoder 12 detects the rotational position of the motor 11 (shown as P 0 , P 1 , P 2 in FIG. 13 ), and at the same time, latches the detection value and outputs the position data of the motor 11. to the control section 13.

控制部13从编码部12接收电动机11的旋转位置数据时,根据电动机旋转位置控制电动机11的速度。即,控制部13将接收到的电动机旋转位置与一个周期前接收到的电动机旋转位置进行比较计算出电动机11的旋转速度,将计算出的电动机旋转速度与目标速度进行比较。于是,根据电动机速度和目标速度之差计算施加在电动机11上的电流的占空比,同时按照计算出的占空比控制电动机11的速度。When receiving the rotational position data of the motor 11 from the encoder 12, the control unit 13 controls the speed of the motor 11 according to the rotational position of the motor. That is, the control unit 13 compares the received motor rotational position with the motor rotational position received one cycle before to calculate the rotational speed of the motor 11 , and compares the calculated motor rotational speed with the target speed. Then, the duty ratio of the current applied to the motor 11 is calculated from the difference between the motor speed and the target speed, and the speed of the motor 11 is controlled in accordance with the calculated duty ratio.

通过重复上述的控制周期,将电动机11的旋转速度控制成为目标速度。By repeating the above-mentioned control cycle, the rotation speed of the motor 11 is controlled to be the target speed.

然而,如上所述,基于通过获得按照一定的采样周期检测出的电动机旋转位置数据并且根据它们的差分计算出的电动机速度进行速度控制的情况下,通过计算获得的速度数据成为当前的控制周期的速度和前一个周期的速度之平均速度数据。这样,在速度控制中,产生采样周期T的1/2的空耗时间(时间延迟)。由于存在这样的空耗时间,所以控制系统的相位延迟增大,其结果是会产生损坏控制稳定性的问题。However, as described above, when the speed control is performed based on the motor speed calculated from the difference between the motor rotational position data detected at a certain sampling cycle and the speed data obtained by the calculation becomes the current control cycle. Velocity and the average velocity data of the velocity of the previous cycle. In this way, in speed control, a dead time (time delay) of 1/2 of the sampling period T occurs. Due to such dead time, the phase delay of the control system increases, resulting in a problem that control stability is impaired.

发明内容 Contents of the invention

本发明的主要的目的在于,提供一种根据来自编码器的信号迅速地获得控制对象的驱动速度的信号处理装置、信号处理方法、信号处理程序、速度检测装置以及将电动机驱动速度控制为稳定的伺服机构。The main object of the present invention is to provide a signal processing device, a signal processing method, a signal processing program, a speed detection device, and a method for controlling the driving speed of a motor to be stable according to a signal from an encoder to quickly obtain the driving speed of the controlled object. servo mechanism.

本发明的信号处理装置是对与驱动体的驱动位置对应地从传感器输出的位置信息信号进行信号处理并且检测所述驱动体的驱动速度的信号处理装置,其特征在于,具备:位置信息信号处理部,对所述位置信息信号进行信号处理并计算所述驱动体的驱动速度信息;以及内部位置信息生成部,反映由所述位置信息信号处理部计算出的最新的所述驱动速度信息,生成所述驱动体的最新的推定位置来作为内部位置信息,其中,所述位置信息信号处理部根据来自所述传感器的所述位置信息信号和由所述内部位置信息生成部生成的所述内部位置信息的差分,来计算所述驱动体的驱动速度信息。The signal processing device of the present invention is a signal processing device that performs signal processing on a position information signal output from a sensor corresponding to the driving position of the driving body and detects the driving speed of the driving body, and is characterized in that it includes: position information signal processing an internal position information generating unit that reflects the latest driving speed information calculated by the position information signal processing unit to generate The latest estimated position of the driving body is used as internal position information, wherein the position information signal processing unit uses the position information signal from the sensor and the internal position generated by the internal position information generating unit information to calculate the driving speed information of the driving body.

在该结构中,在内部位置信息生成部生成反映了驱动体的最新的驱动速度信息的驱动体的位置信息作为内部位置信息,一旦从传感器输入驱动体的位置信息信号,则立即在位置信息信号处理部中计算传感器的位置信息信号和所述内部位置信息的差分。根据该差分计算并输出驱动体的驱动速度。该驱动速度例如在作为驱动体的驱动速度信息输出到设置在外部的控制部件的同时输入到内部位置信息生成部以用于推定驱动体的最新位置。In this structure, the position information of the driving body reflecting the latest driving speed information of the driving body is generated as the internal position information in the internal position information generation part, and once the position information signal of the driving body is input from the sensor, the position information signal is immediately displayed on the position information signal. The processing unit calculates the difference between the position information signal of the sensor and the internal position information. Based on this difference, the driving speed of the driving body is calculated and output. The driving speed is output to an external control unit as driving speed information of the driving body, for example, and is input to the internal position information generating unit for estimating the latest position of the driving body.

这里,内部位置信息生成部由于生成通常反映了最新的驱动速度信息的驱动体的位置信息,因此,持有尽可能推定的最新的驱动体的位置信息。因此,能够缩小由该内部位置信息生成部生成的内部位置信息与从传感器输入的位置信息信号的时间间隙(Δt),例如,若看做极其微小的时间(Δt→0),则来自传感器的位置信息信号和由内部位置信息生成部生成的内部位置信息的差分即成为来自传感器的位置信息信号的微分值,不作改变地就成为驱动体的驱动速度。Here, since the internal position information generation unit usually generates the position information of the driving body reflecting the latest driving speed information, it holds the latest position information of the driving body estimated as much as possible. Therefore, the time gap (Δt) between the internal position information generated by the internal position information generation unit and the position information signal input from the sensor can be reduced. The difference between the position information signal and the internal position information generated by the internal position information generating unit becomes the differential value of the position information signal from the sensor, and becomes the driving speed of the driving body without change.

由于由内部位置信息生成部预先生成驱动体的推定位置作为内部位置信息,因此,一旦从传感器输入位置信息信号时,则立即计算出两者的差分,得到驱动体的驱动速度。而且,所获得的驱动速度信息大致等于将从传感器输入的位置信息信号立即进行微分所得到的驱动速度信息,能够获得相对于输入的位置信息没有延迟的速度信息。Since the estimated position of the driver is generated in advance as the internal position information by the internal position information generator, once the position information signal is input from the sensor, the difference between the two is immediately calculated to obtain the driving speed of the driver. Furthermore, the obtained driving speed information is substantially equal to the driving speed information obtained by immediately differentiating the position information signal input from the sensor, and it is possible to obtain speed information without delay with respect to the input position information.

以往由于是采用以一定的采样周期获得的位置数据计算出当前周期和一个周期前的控制周期的位置之差,因此,只不过是得到1/2周期延迟的平均速度,然而,本发明中,由于能够获得输入采样信号(位置信息信号)的该时刻的驱动速度,因此,时间延迟极其微小,能够发挥可跨时代地改善现有的时间延迟这样的特别效果。In the past, the difference between the position of the current cycle and the control cycle before one cycle is calculated by using the position data obtained with a certain sampling cycle, so it is only the average speed obtained by 1/2 cycle delay. However, in the present invention, Since the driving speed at the moment when the input sampling signal (position information signal) can be obtained, the time delay is extremely small, and a special effect of improving the existing time delay across generations can be exhibited.

因此,例如,若将由该信息处理装置获得的驱动速度信息作为反馈信号对驱动体进行驱动控制时,则由于没有相位延迟,因此,能够使得控制系统极其稳定。Therefore, for example, if the driving speed information obtained by the information processing device is used as a feedback signal to drive and control the driving body, since there is no phase delay, the control system can be extremely stable.

在本发明中,最好是,内部位置信息生成部根据将从所述位置信息信号处理部输出的所述驱动速度信息依次积分得到的积分值,来生成所述内部位置信息。In the present invention, preferably, the internal position information generation unit generates the internal position information based on an integrated value obtained by sequentially integrating the driving speed information output from the position information signal processing unit.

根据这样的结构,由于从位置信息信号处理部输出的是驱动体时时刻刻的驱动速度,因此,通过在该内部位置信息生成部将该驱动速度依次进行积分,能够获得基于该速度信息的驱动体的位置信息。而且,通过对直至最新的驱动速度信息进行积分,通过估计从上次的输入位置信息信号到下一时刻为止驱动体驱动的驱动量,获得推定驱动体的位置的内部位置信息。According to such a configuration, since the output from the position information signal processing unit is the driving speed of the driving body at all times, the driving speed based on the speed information can be obtained by sequentially integrating the driving speed in the internal position information generating unit. body location information. Furthermore, internal position information for estimating the position of the driving body is obtained by integrating the latest driving speed information and estimating the driving amount of the driving body from the last input position information signal to the next time.

如此,由于由内部位置信息生成部预先生成驱动体的推定位置作为内部位置信息,因此,一旦从传感器输入位置信息信号时,则能够立即计算出两者的差分获得驱动体的驱动速度。In this way, since the estimated position of the driver is generated in advance as the internal position information by the internal position information generator, once the position information signal is input from the sensor, the difference between the two can be immediately calculated to obtain the driving speed of the driver.

在本发明中,最好所述位置信息信号处理部具备:差分计算部件,计算来自所述传感器的所述位置信息信号和由所述内部位置信息生成部生成的内部位置信息的差分;以及驱动速度计算部件,根据来自所述差分计算部件的所述差分,计算所述驱动体的驱动速度信息。In the present invention, it is preferable that the positional information signal processing unit includes: a difference calculation means for calculating the difference between the positional information signal from the sensor and the internal positional information generated by the internal positional information generation unit; A speed calculating unit calculates driving speed information of the driving body based on the difference from the difference calculating unit.

这里,作为驱动速度计算部件,列举了作为示例的以在所述差分计算部件计算出的所述差分上乘以规定增益来计算所述驱动速度信息。Here, as the driving speed calculating means, the driving speed information is calculated by multiplying the difference calculated by the difference calculating means by a predetermined gain as an example.

利用该结构,在由差分计算部件计算出的位置信息信号和内部位置信息的差分上例如乘以适当的增益,计算出对应于驱动体的特性的驱动速度信息。With this configuration, the difference between the position information signal and the internal position information calculated by the difference calculation means is multiplied by, for example, an appropriate gain to calculate drive speed information corresponding to the characteristics of the driving body.

例如,当从传感器输入对应于驱动体的驱动位置而周期性变化的正弦波状信号的情况下,位置信息信号是以相位作为参数的三角函数值,作为驱动速度信息希望获得相位变化量时,利用驱动速度计算部件从三角函数值变换成相位变化量,求得作为驱动速度信息的相位变化量。For example, when a sinusoidal signal that changes periodically corresponding to the driving position of the driving body is input from the sensor, the position information signal is a trigonometric function value with the phase as a parameter, and when it is desired to obtain the phase change amount as the driving speed information, use The driving speed calculation means converts the trigonometric function value into the phase change amount, and obtains the phase change amount as driving speed information.

在本发明中,最好是,从所述传感器输出的位置信息信号是对应于驱动体的驱动而周期性变化的周期函数信号,所述位置信息信号处理部输出所述周期函数信号的相位变化量作为所述驱动体的驱动速度信息,所述内部位置信息生成部件具备:积分部件,对来自所述位置信息信号处理部的所述相位变化量进行积分并计算与所述驱动体的位置信息相当的相位;以及内部位置信息变换部,计算出与由所述积分部件计算出的所述相位相对应的周期函数值来作为所述内部位置信息。In the present invention, preferably, the position information signal output from the sensor is a periodic function signal that changes periodically in response to the driving of the driving body, and the position information signal processing unit outputs a phase change of the periodic function signal. As the driving speed information of the driving body, the internal position information generation part includes: an integrating part that integrates the phase change amount from the position information signal processing part and calculates the position information of the driving body. a corresponding phase; and an internal position information conversion unit that calculates, as the internal position information, a periodic function value corresponding to the phase calculated by the integrating means.

在上述的结构中,相对于从传感器输入的周期函数的位置信息信号,计算相位变化量以作为驱动速度信息。而且,对该相位变化量即驱动速度信息进行积分之后计算相位,进一步地,计算出对应于该相位的周期函数值作为内部位置信息。In the above configuration, the amount of phase change is calculated as the drive speed information with respect to the position information signal of the periodic function input from the sensor. Then, the phase is calculated by integrating the drive speed information which is the amount of change in the phase, and furthermore, a periodic function value corresponding to the phase is calculated as internal position information.

由于输入的是周期函数值,因此,为了求出输入的位置信息信号和内部位置信息的差分,即使作为内部位置信息也需要持有函数值时,根据由积分部件计算出的相位,利用内部位置信息变换部件计算对应于该相位的函数值。由此,立即计算出输入的位置信息信号和内部位置信息的差分,获得相对于输入的位置信息没有延迟的速度信息。Since the input is a periodic function value, in order to obtain the difference between the input position information signal and the internal position information, even if it is necessary to have a function value as internal position information, the internal position is used according to the phase calculated by the integrating part. The information conversion section calculates a function value corresponding to the phase. As a result, the difference between the input position information signal and the internal position information is immediately calculated, and velocity information without delay with respect to the input position information is obtained.

此外,通过具有计算出以相位为参数的预定函数值的内部位置信息变换部,即使从传感器输入的位置信息信号即使不是相位信息其本身,也可以是正弦波状信号等,因此,由于能够将一般作为传感器使用的编码器(光电式、磁性、静电电容式等)原样地作为传感器使用,并且不需要仅适合于本发明的信号处理装置的特殊的设计变更,因此,是简便的,同时能够避免成本上升。In addition, by having an internal position information conversion unit that calculates a predetermined function value using the phase as a parameter, even if the position information signal input from the sensor is not the phase information itself, it can be a sinusoidal signal or the like. The encoder (photoelectric, magnetic, capacitive, etc.) used as a sensor is used as a sensor as it is, and does not require special design changes that are only suitable for the signal processing device of the present invention. Therefore, it is simple and can avoid Costs rise.

在本发明中,最好是,所述周期函数信号是由相互具有预定相位差的第1信号以及第2信号构成的双相信号,所述位置信息信号处理部具备:第1信号处理部,对所述第1信号进行信号处理并且输出所述第1信号的相位变化量作为所述驱动速度信息;以及第2信号处理部,对所述第2信号进行信号处理并且输出所述第2信号的相位变化量作为所述驱动速度信息,在所述位置信息信号处理部的后级侧设置信号切换部,该信号切换部切换选择来自所述第1信号处理部的输出信号和来自所述第2信号处理部的输出信号中的、基于相对于相位变化量所述周期函数信号的信号值变化量大的一方的周期函数信号的输出信号。In the present invention, preferably, the periodic function signal is a two-phase signal composed of a first signal and a second signal having a predetermined phase difference with each other, and the position information signal processing unit includes: a first signal processing unit, performing signal processing on the first signal and outputting a phase change amount of the first signal as the driving speed information; and a second signal processing unit performing signal processing on the second signal and outputting the second signal The amount of phase change is used as the driving speed information, and a signal switching unit is provided on the rear stage side of the position information signal processing unit, and the signal switching unit switches and selects the output signal from the first signal processing unit and the output signal from the first signal processing unit. 2 An output signal based on the periodic function signal whose signal value change amount is larger with respect to the phase change amount, among the output signals of the signal processing unit.

利用该结构,由于由信号切换部选择根据双相信号中相对于相位变化量信号值变化大的一方的信号计算出的相位变化量(驱动速度信息),因此,能够高精度地获得作为驱动速度信息的相位变化量。With this structure, since the phase change amount (driving speed information) calculated from the signal of the two-phase signal with a larger change in the signal value of the phase change amount is selected by the signal switching unit, it is possible to obtain the driving speed as the driving speed with high precision. The amount of phase change of the information.

若从传感器输出的位置信息信号是周期函数,则存在相对于相位的变化函数值的变化率变小的区域,因此,即使从该周期函数值中减去内部位置信息,也有可能不能够高精度地求得相位的变化量,然而,若切换具有相位差的双相信号并采用相对于相位变化信号变化量大的信号(第1信号或第2信号),则能够在整个范围中高精度地获得相位变化量。If the position information signal output from the sensor is a periodic function, there is an area where the rate of change of the function value with respect to the phase change becomes small, so even if the internal position information is subtracted from the periodic function value, it may not be possible to achieve high accuracy. However, if two-phase signals with a phase difference are switched and a signal (the first signal or the second signal) with a large change amount relative to the phase change signal is used, it can be obtained with high precision over the entire range. The amount of phase change.

这里,例如,周期函数信号是具有90度相位差的三角函数信号,可以是第1信号为正弦波信号(Asinθ)、第2信号为余弦波信号(Acosθ),或者,也可以是第1信号为tanθ、第2信号为1/tanθ。Here, for example, the periodic function signal is a trigonometric function signal with a phase difference of 90 degrees, the first signal may be a sine wave signal (Asinθ), the second signal may be a cosine wave signal (Acosθ), or the first signal may be is tanθ, and the second signal is 1/tanθ.

进一步地,即使从传感器输出的双相信号是正弦波信号(Asinθ)以及余弦波信号(Acosθ)的情况下,也可以利用基于变换成tanθ(=Asinθ/Acosθ)和1/tanθ(=Acosθ/Asinθ)的双相信号的信号处理,检测驱动体的驱动速度。如此,若取得2个信号之比,就能够获得不会受到信号振幅变动影响的输入信号。Further, even when the biphase signal output from the sensor is a sine wave signal (Asinθ) and a cosine wave signal (Acosθ), it is also possible to use Asinθ) signal processing of the two-phase signal to detect the driving speed of the driving body. Thus, if the ratio of the two signals is obtained, an input signal that is not affected by fluctuations in signal amplitude can be obtained.

在本发明中,最好是,所述周期函数信号是正弦波状信号,所述信号切换部具备:判断部,将所述第1信号以及所述第2信号中的任意一方的信号值和预定阈值进行比较并且进行大小判断;以及切换部件,根据由所述判断部产生的判断结果,在来自所述第1信号处理部的输出信号和来自所述第2信号处理部的输出信号之间进行切换。In the present invention, preferably, the periodic function signal is a sinusoidal signal, and the signal switching unit includes a judging unit that compares the signal value of any one of the first signal and the second signal with a predetermined value. Threshold values are compared and size judgment is performed; and switching means, based on the judgment result produced by the judgment part, performs switching between the output signal from the first signal processing part and the output signal from the second signal processing part switch.

例如,若一方信号值的绝对值比阈值小,则使用该方的信号值即可,若一方的信号值的绝对值比阈值高,则使用另一方的信号值即可。For example, if the absolute value of one signal value is smaller than the threshold value, that signal value may be used, and if the absolute value of one signal value is higher than the threshold value, the other signal value may be used.

根据这样的结构,正弦波状信号当绝对值较大,则相对于相位的变化率变小时,根据与预定阈值的大小判断,选择相对于相位的变化率较大的信号。由此,在整个范围中能够高精度地获得相位变化量。而且,在判断相对于相位变化的信号变化量大的一方时,不需要复杂的运算处理,只要将一方的信号值与阈值进行比较并判断大小即可,因此,是简便的。According to such a configuration, when the absolute value of the sinusoidal signal is large, the rate of change with respect to the phase becomes small, and a signal with a large rate of change with respect to the phase is selected based on the magnitude of the predetermined threshold value. Thus, the amount of phase change can be obtained with high precision over the entire range. In addition, it is simple to determine which one has a larger amount of signal change with respect to the phase change than complicated arithmetic processing, and only needs to compare one signal value with a threshold value to determine the magnitude.

在本发明中,最好是,具备符号变换部,该符号变换部将从所述位置信息信号处理部输出的相位变化量的符号变换成表示与所述驱动体移动方向相对应的增减的符号。In the present invention, it is preferable to include a sign conversion unit that converts the sign of the phase change amount output from the position information signal processing unit into a sign indicating an increase or decrease corresponding to the moving direction of the driving body. symbol.

当来自传感器的位置信息信号是周期性增减的周期函数时,即使在驱动体向正向位移、相位增大的情况下,也产生作为位置信息信号的信号值减少的区域。若从上述减少的信号值中单纯地减去内部位置信息,则无论驱动体向正向位移、相位增大,相位变化量也会变成负值。这一点,在本发明中,由于具备符号变换部,因此,假设即使在驱动体向正向位移时将相位变化量计算成负值的情况下,也能够将相位变化量的符号变换成对应于驱动体的移动方向的增减方向,获得增减方向的正确驱动速度(相位变化量),并且,根据该增减方向的正确驱动速度(相位变化量)生成内部位置信息。When the position information signal from the sensor is a periodic function that increases and decreases periodically, even when the driver is displaced in the positive direction and the phase increases, a region where the signal value of the position information signal decreases occurs. If the internal position information is simply subtracted from the above-mentioned reduced signal value, the amount of phase change will also become a negative value regardless of whether the driving body is displaced in the positive direction or the phase increases. In this regard, in the present invention, since the sign conversion unit is provided, even if the phase change amount is calculated as a negative value when the driving body is displaced in the positive direction, the sign of the phase change amount can be converted into a value corresponding to In the increase/decrease direction of the moving direction of the driving body, the correct drive speed (phase change amount) in the increase/decrease direction is obtained, and the internal position information is generated based on the correct drive speed (phase change amount) in the increase/decrease direction.

而且,一般地,在作为传感器的编码器中,输出周期性变化的正弦波状的信号作为传感器的输出,在本发明的信号处理装置中,由于具备符号变换部,能够通过对一般的传感器输出的传感器信号作适当处理之后获得控制对象的驱动速度,不需要仅适合于本发明的信号处理装置的特殊的设计变更,因此,是简便的,同时能够避免成本上升。Moreover, generally, in an encoder as a sensor, a periodically changing sinusoidal signal is output as the output of the sensor. In the signal processing device of the present invention, since a sign conversion unit is provided, it is possible to pass the signal output from a general sensor. The drive speed of the controlled object can be obtained after the sensor signal is properly processed, and no special design change is required only for the signal processing device of the present invention, so it is simple and can avoid cost increase.

在本发明中,最好是,所述内部位置信息生成部件具备:第1积分部件,对从所述第1信号处理部输出的所述第1信号的相位变化量进行积分以计算与所述驱动体的位置信息相当的相位;第1内部位置信息变换部,根据由所述第1积分部件计算出的相位计算所述第1信号的函数值;第2积分部件,对从所述第2信号处理部输出的所述第2信号的相位变化量进行积分,计算与所述驱动体的位置信息相当的相位;以及第2内部位置信息变换部,根据由所述第2积分部件计算出的相位,计算所述第2信号的函数值。In the present invention, it is preferable that the internal position information generating unit includes: a first integrating unit that integrates the phase change amount of the first signal output from the first signal processing unit to calculate the The phase corresponding to the position information of the driving body; the first internal position information conversion part calculates the function value of the first signal based on the phase calculated by the first integration part; integrating the phase change amount of the second signal output by the signal processing unit to calculate a phase corresponding to the position information of the driving body; phase, calculating the function value of the second signal.

在上述结构中,从传感器作为双相信号输出第1信号和第2信号,第1信号由第1信号处理部处理输出第1信号的相位变化量,第2信号由第2信号处理部处理输出第2信号的相位变化量。由第1积分部件将从第1信号处理部输出的第1信号的相位变化量依次积分,计算第1信号的最新的相位。将由第1积分部件计算出的相位输入到第1内部位置信息变换部,由第1内部位置信息变换部计算第1信号的函数值作为驱动体的最新的推定位置。在第1信号处理部中,计算由第1内部位置信息变换部计算出的第1信号的函数值和从传感器输入的第1信号的差分,根据该差分计算驱动体的驱动速度。In the above configuration, the sensor outputs the first signal and the second signal as two-phase signals, the first signal is processed by the first signal processing unit to output the phase change amount of the first signal, and the second signal is processed and output by the second signal processing unit The amount of phase change of the second signal. The phase change amount of the first signal output from the first signal processing unit is sequentially integrated by the first integrating means to calculate the latest phase of the first signal. The phase calculated by the first integrating unit is input to the first internal position information conversion unit, and the first internal position information conversion unit calculates the function value of the first signal as the latest estimated position of the driving body. In the first signal processing unit, the difference between the function value of the first signal calculated by the first internal position information conversion unit and the first signal input from the sensor is calculated, and the driving speed of the driving body is calculated based on the difference.

由第2积分部件将从第2信号处理部输出的第2信号的相位变化量依次积分,计算第2信号的最新的相位。将由第2积分部件计算出的相位输入到第2内部位置信息变换部,由第2内部位置信息变换部计算第2信号的函数值作为驱动体的最新的推定位置。在第2信号处理部中,计算由第2内部位置信息变换部计算出的第2信号的函数值和从传感器输入的第2信号的差分,根据该差分计算驱动体的驱动速度。The phase change amount of the second signal output from the second signal processing unit is sequentially integrated by the second integrating means to calculate the latest phase of the second signal. The phase calculated by the second integrating means is input to the second internal position information conversion unit, and the second internal position information conversion unit calculates the function value of the second signal as the latest estimated position of the driving body. The second signal processing unit calculates the difference between the function value of the second signal calculated by the second internal position information conversion unit and the second signal input from the sensor, and calculates the driving speed of the driver based on the difference.

而且,将来自第1信号处理部的输出信号和来自第2信号处理部的输出信号中由信号切换部选择出的信号作为驱动体的驱动速度输出。And, the signal selected by the signal switching unit among the output signal from the first signal processing unit and the output signal from the second signal processing unit is output as the driving speed of the driving body.

根据上述的结构,当从传感器输出第1信号和第2信号的双相信号时,与处理第1信号的第1信号处理部对应地具备第1积分部件和第1内部位置信息变换部,与处理第2信号的第2信号处理部对应地具备第2积分部件和第2内部位置信息变换部。由此,在计算基于第1信号的驱动体的驱动速度时,在以基于第1信号的相位变化量为反馈信息的第1积分部件以及第1内部位置信息变换部构成的回路中,能够利用仅基于第1信号的运算处理计算驱动速度信息。According to the above-mentioned structure, when the biphase signal of the first signal and the second signal is output from the sensor, the first integrating unit and the first internal position information converting unit are provided corresponding to the first signal processing unit that processes the first signal, and The second signal processing unit that processes the second signal includes a second integrating unit and a second internal position information converting unit correspondingly. Thus, when calculating the driving speed of the driving body based on the first signal, in the loop composed of the first integrating part and the first internal position information conversion part using the phase change amount based on the first signal as feedback information, it is possible to use The driving speed information is calculated based only on the arithmetic processing of the first signal.

又,同样地,在计算基于第2信号的驱动体的驱动速度时,在以基于第2信号的相位变化量为反馈信息的第2积分部件以及第2内部位置信息变换部构成的回路中,能够利用仅基于第2信号的运算处理计算驱动速度信息。Again, similarly, when calculating the driving speed of the driving body based on the second signal, in the loop formed by the second integral part and the second internal position information conversion part using the phase change amount based on the second signal as feedback information, The driving speed information can be calculated by arithmetic processing based only on the second signal.

因此,例如,即使在第1信号和第2信号振幅不同的情况下,从各个位置信息处理部(第1信号处理部、第2信号处理部)输出的各个速度信息也不会受到第1信号和第2信号的振幅差的影响。由此,抑制了第1信号和第2信号的振幅差的影响,即使在利用信号切换部切换输出从第1信号处理部和第2信号处理部输出的驱动速度信息的情况下,输出的驱动速度信息也是平滑地连续。Therefore, for example, even if the amplitudes of the first signal and the second signal are different, each speed information output from each position information processing unit (first signal processing unit, second signal processing unit) will not be influenced by the first signal. and the influence of the amplitude difference of the second signal. Thus, the influence of the amplitude difference between the first signal and the second signal is suppressed, and even when the driving speed information output from the first signal processing part and the second signal processing part is switched by the signal switching part, the output driving Velocity information is also smoothly continuous.

在本发明中,最好是,所述驱动体是具有转子的电动机,从所述传感器输出的位置信息信号是对应于所述电动机的旋转驱动而周期性变化的周期函数信号,所述位置信息信号处理部输出旋转角速度作为所述电动机的驱动速度信息,积分部件将来自所述位置信息信号处理部的所述旋转角速度进行积分,计算电动机的旋转相位角,所述内部位置信息变换部计算基于所述电动机的旋转相位角的周期函数值。In the present invention, preferably, the driving body is a motor having a rotor, the position information signal output from the sensor is a periodic function signal that changes periodically corresponding to the rotational driving of the motor, and the position information signal The signal processing unit outputs the rotation angular velocity as the driving speed information of the motor, the integrating unit integrates the rotation angular velocity from the position information signal processing unit, and calculates the rotation phase angle of the motor, and the internal position information conversion unit calculates based on A periodic function value of the motor's rotational phase angle.

根据该结构,能够根据对应于电动机的旋转驱动从传感器输出的周期函数信号来获得旋转角速度作为电动机的驱动速度。According to this configuration, the rotational angular velocity can be obtained as the driving speed of the motor from the periodic function signal output from the sensor corresponding to the rotational drive of the motor.

本发明的信号处理方法是对于对应于驱动体的驱动位置从传感器输出的位置信息信号进行信号处理并检测所述驱动体的驱动速度的信号处理方法,其特征在于,具备:位置信息信号处理工序,对所述位置信息信号进行信号处理,计算所述驱动体的驱动速度信息;以及内部位置信息生成工序,反映由所述位置信息信号处理工序计算出的最新的所述驱动速度信息,生成所述驱动体的最新的推定位置来作为内部位置信息,其中,所述位置信息信号处理工序根据来自所述传感器的所述位置信息信号和由所述内部位置信息生成工序生成的所述内部位置信息的差分,来计算所述驱动体的驱动速度信息。The signal processing method of the present invention is a signal processing method for performing signal processing on a position information signal output from a sensor corresponding to the driving position of the driving body to detect the driving speed of the driving body, and is characterized in that it includes: a position information signal processing step , performing signal processing on the position information signal to calculate the driving speed information of the driving body; and an internal position information generating step reflecting the latest driving speed information calculated by the position information signal processing step to generate the The latest estimated position of the driving body is used as internal position information, wherein the position information signal processing step is based on the position information signal from the sensor and the internal position information generated by the internal position information generating step. to calculate the driving speed information of the driving body.

利用上述的结构,能够发挥与上述发明相同的作用效果。With the above-mentioned structure, the same effect as that of the above-mentioned invention can be exhibited.

本发明的信号处理程序是由组装入信号处理装置中的计算机来执行的信号处理程序,所述信号处理装置对于对应于驱动体的驱动位置从传感器输出的位置信息信号进行信号处理并检测所述驱动体的驱动速度,其特征在于,使所述计算机作为位置信息信号处理部和内部位置信息生成部来发挥作用,所述位置信息信号处理部对所述位置信息信号进行信号处理并且计算所述驱动体的驱动速度信息,所述内部位置信息生成部反映由所述位置信息信号处理部计算出的最新的所述驱动速度信息并生成所述驱动体的最新的推定位置来作为内部位置信息,同时,所述位置信息信号处理部根据来自所述传感器的所述位置信息信号和由所述内部位置信息生成部生成的所述内部位置信息的差分,来计算所述驱动体的驱动速度信息。The signal processing program of the present invention is a signal processing program executed by a computer incorporated in a signal processing device that performs signal processing on a position information signal output from a sensor corresponding to the driving position of the driving body and detects the The driving speed of the driving body is characterized in that the computer functions as a position information signal processing unit and an internal position information generating unit, and the position information signal processing unit performs signal processing on the position information signal and calculates the the driving speed information of the driving body, the internal position information generation unit reflects the latest driving speed information calculated by the position information signal processing unit and generates the latest estimated position of the driving body as the internal position information, At the same time, the position information signal processing unit calculates driving speed information of the driving body based on a difference between the position information signal from the sensor and the internal position information generated by the internal position information generating unit.

本发明的记录媒体的特征在于,记录了上述信号处理程序。The recording medium of the present invention is characterized in that the above-mentioned signal processing program is recorded.

如此,若将信号处理程序装载到计算机并且使该计算机作为各功能部发挥作用,则能够容易地进行各种参数的改变等等。In this way, by loading the signal processing program into the computer and making the computer function as each functional unit, it is possible to easily change various parameters and the like.

又,在装载该信号处理程序时,可以将存储卡或CD-ROM等直接插入信号处理装置中,也可以将这些存储媒体通过外接读取设备与信号处理装置连接。进一步地,可以用LAN电缆、电话线等与信号处理装置连接并通过通信供给并装载信号处理程序,也可以是以无线方式供给并装载信号处理程序。Also, when loading the signal processing program, a memory card or CD-ROM may be directly inserted into the signal processing device, or these storage media may be connected to the signal processing device through an external reading device. Furthermore, the signal processing program may be supplied and loaded by connecting to the signal processing device with a LAN cable, a telephone line, etc. through communication, or supplied and loaded wirelessly.

本发明的速度检测装置的特征在于,具备:传感器,输出与驱动体的驱动位置相对应的位置信息信号;以及上述信号处理装置。A speed detection device according to the present invention is characterized by comprising: a sensor that outputs a position information signal corresponding to the driving position of the driving body; and the above-mentioned signal processing device.

利用该结构,能够作成通过信号处理装置处理来自传感器的位置信息信号以迅速获得驱动体的驱动速度的速度检测装置。With this configuration, it is possible to create a speed detection device that processes the position information signal from the sensor by the signal processing device to quickly obtain the driving speed of the driving body.

本发明的伺服机构,其特征在于,具备:驱动体;传感器,输出与所述驱动体的驱动位置相对应的位置信息信号;所述信号处理装置;以及中央控制部,将由所述信号处理装置检测出的所述驱动体的驱动速度和外部预先设定的预定目标速度进行比较并且同时将所述驱动体的驱动速度控制成所述预定目标速度。The servomechanism of the present invention is characterized in that it comprises: a driving body; a sensor that outputs a position information signal corresponding to the driving position of the driving body; the signal processing device; and a central control unit configured by the signal processing device The detected driving speed of the driving body is compared with an external predetermined target speed and simultaneously the driving speed of the driving body is controlled to the predetermined target speed.

利用上述的结构,将由信号处理装置获得的驱动速度信息作为反馈信号并由中央控制部进行驱动体的驱动控制。这样,由于不存在相位延迟,所以能够使得控制系统极其稳定。With the above configuration, the driving speed information obtained by the signal processing device is used as a feedback signal, and the driving control of the driving body is performed by the central control unit. In this way, since there is no phase delay, the control system can be made extremely stable.

本发明的信号处理装置是对于对应于驱动体的驱动位置从传感器输出的位置信息信号进行信号处理并且检测所述驱动体的驱动速度,其特征在于,具备:位置信息信号处理部,对所述位置信息信号进行信号处理,计算所述驱动体的驱动速度信息;以及内部位置信息生成部,反映由所述位置信息信号处理部计算出的最新的所述驱动速度信息,生成所述驱动体的最新的推定位置来作为内部位置信息,从所述传感器输出的位置信息信号是对应于驱动体的驱动而周期性变化的周期函数信号,所述位置信息信号处理部计算所述周期函数信号的相位变化量作为所述驱动体的驱动速度信息,所述内部位置信息生成部具备:积分部件,对来自所述位置信息信号处理部的所述相位变化量进行积分并计算与所述驱动体的位置信息相当的相位;以及内部位置信息变换部,计算出与由所述积分部件计算出的所述相位相对应的周期函数值来作为所述内部位置信息,所述位置信息信号处理部根据来自所述传感器的所述位置信息信号和由所述内部位置信息生成部生成的所述内部位置信息的差分,来计算所述驱动体的驱动速度信息。The signal processing device of the present invention performs signal processing on the position information signal output from the sensor corresponding to the driving position of the driving body and detects the driving speed of the driving body, and is characterized in that it includes: a position information signal processing unit for the performing signal processing on the position information signal to calculate driving speed information of the driving body; and an internal position information generating unit reflecting the latest driving speed information calculated by the position information signal processing unit to generate the driving speed information of the driving body. The latest estimated position is used as internal position information, the position information signal output from the sensor is a periodic function signal that changes periodically in response to the driving of the driving body, and the position information signal processing unit calculates the phase of the periodic function signal The amount of change is used as the driving speed information of the driving body, and the internal position information generation unit includes an integrating unit for integrating the phase change amount from the position information signal processing unit to calculate the position of the driving body. a phase corresponding to the information; and an internal position information conversion unit that calculates a periodic function value corresponding to the phase calculated by the integrating unit as the internal position information, the position information signal processing unit according to the information from the The driving speed information of the driving body is calculated based on the difference between the position information signal of the sensor and the internal position information generated by the internal position information generating unit.

附图说明 Description of drawings

图1是表示有关本发明的伺服机构的第1实施方式的框图。FIG. 1 is a block diagram showing a first embodiment of a servo mechanism according to the present invention.

图2是表示上述第1实施方式中从编码器输出的双相信号的示例的图。FIG. 2 is a diagram showing an example of a biphase signal output from an encoder in the first embodiment.

图3是表示上述第1实施方式中速度计算部的结构的框图。FIG. 3 is a block diagram showing the configuration of a speed calculation unit in the first embodiment.

图4是表示上述第1实施方式中从编码器输入的正弦波信号(Asinθ)和由内部位置信息生成部生成的内部位置信息(Asinθn)之间的关系的图。4 is a diagram showing a relationship between a sine wave signal (Asinθ) input from an encoder and internal position information (Asinθn) generated by an internal position information generating unit in the first embodiment.

图5是表示作为本发明第2实施方式的信号处理装置的速度计算部的结构的图。FIG. 5 is a diagram showing a configuration of a speed calculation unit of a signal processing device according to a second embodiment of the present invention.

图6是表示在第2实施方式中根据来自编码器的双相信号之比生成的正切信号(tanθ)和余切信号(1/tanθ)的示例的图。6 is a diagram showing an example of a tangent signal (tanθ) and a cotangent signal (1/tanθ) generated from a ratio of biphase signals from an encoder in the second embodiment.

图7是表示在第3实施方式中速度计算部的结构的框图。FIG. 7 is a block diagram showing the configuration of a speed calculation unit in the third embodiment.

图8是表示在第1实施方式的结构中,正弦波信号和余弦波信号振幅有5%不同的情况下输出的电动机旋转用速度ω的示例的图。8 is a diagram showing an example of the motor rotation speed ω output when the amplitude of the sine wave signal and the cosine wave signal differ by 5% in the configuration of the first embodiment.

图9是表示在第3实施方式的结构中,正弦波信号和余弦波信号振幅有5%不同的情况下输出的电动机旋转角速度ω的示例的图。9 is a diagram showing an example of the motor rotational angular velocity ω output when the amplitude of the sine wave signal and the cosine wave signal differ by 5% in the configuration of the third embodiment.

图10是表示第4实施方式的结构的图。FIG. 10 is a diagram showing a configuration of a fourth embodiment.

图11是表示本发明的变形示例的图。FIG. 11 is a diagram showing a modified example of the present invention.

图12是表示现有的伺服机构的结构的图。FIG. 12 is a diagram showing the structure of a conventional servo mechanism.

图13是表示现有的伺服机构中的电动机的旋转速度控制的时序图。FIG. 13 is a time chart showing the rotation speed control of the motor in the conventional servo mechanism.

具体实施方式 Detailed ways

以下,在图示本发明的实施方式的同时,参照赋予图中各部分的符号来进行说明。Hereinafter, the embodiments of the present invention will be described with reference to symbols assigned to respective parts in the drawings.

(第1实施方式)(first embodiment)

对于本发明的伺服机构的第1实施方式进行说明。A first embodiment of the servo mechanism of the present invention will be described.

在图1中表示伺服机构的框图。A block diagram of a servo mechanism is shown in FIG. 1 .

该伺服机构100具备:作为控制对象的电动机(驱动体)110;作为对应于电动机110的旋转驱动输出正弦波(Asinθ)以及余弦波(Acosθ)的位置信息信号(周期函数信号)的传感器的编码器120;以及根据来自编码器120的位置信息信号计算电动机旋转速度(驱动速度信息)并且同时根据从外部输入的目标速度控制电动机旋转速度的控制部300。This servomechanism 100 includes: a motor (drive body) 110 as a control object; and a code as a sensor that outputs a position information signal (periodic function signal) of a sine wave (Asinθ) and a cosine wave (Acosθ) corresponding to the rotational drive of the motor 110. and a controller 300 that calculates the motor rotation speed (drive speed information) based on the position information signal from the encoder 120 and simultaneously controls the motor rotation speed based on a target speed input from the outside.

编码器120是现有已知的旋转编码器120,其详细情况省略说明,它具有与电动机110的转子一体旋转的转动体,并且输出位置信息信号(Asinθ,Acosθ),其中,上述位置信息信号(Asinθ,Acosθ)是随着该转动体的旋转而周期性变化的周期函数。该位置信息信号如图2所示是相互具有90度相位差的正弦波(Asinθ)以及余弦波(Acosθ)的双相信号。作为这样的旋转编码器120,能够使用光电式编码器、静电电容式编码器、磁性编码器等。The encoder 120 is a conventionally known rotary encoder 120 whose details are omitted, has a rotating body that rotates integrally with the rotor of the motor 110, and outputs position information signals (Asinθ, Acosθ), wherein the above-mentioned position information signals (Asinθ, Acosθ) is a periodic function that changes periodically with the rotation of the rotor. As shown in FIG. 2 , the position information signal is a two-phase signal of a sine wave (Asinθ) and a cosine wave (Acosθ) having a phase difference of 90 degrees. As such a rotary encoder 120 , a photoelectric encoder, a capacitive encoder, a magnetic encoder, or the like can be used.

控制部300具备:作为对来自编码器120的位置信息信号进行信号处理并计算电动机旋转速度的信号处理装置的速度计算部400;以及作为将速度计算部400计算出的电动机旋转速度与从外部输入的目标速度进行比较以将电动机旋转速度控制成目标速度的中央控制部的CPU310。The control unit 300 includes: a speed calculation unit 400 as a signal processing device that processes the position information signal from the encoder 120 and calculates the motor rotation speed; The CPU 310 of the central control section controls the motor rotation speed to the target speed by comparing with the target speed.

对于速度计算部400的结构进行说明。The configuration of the speed calculation unit 400 will be described.

图3是表示速度计算部400的结构的框图。FIG. 3 is a block diagram showing the configuration of the velocity calculation unit 400 .

速度计算部400具备:对从编码器120输出的双相信号(Asinθ、Acosθ)进行信号处理以计算电动机旋转速度(ωn)的位置信息信号处理部410;与预定条件相对比切换选择基于双相信号中的任意一方信号的电动机旋转速度信息的信号切换部450;根据来自位置信息信号处理部410的电动机旋转速度(ωn)生成反映了最新的电动机旋转速度的电动机驱动位置信息(θn)作为内部位置信息的内部位置信息生成部460;以及输出电动机110的旋转速度信息(ωn)以及电动机驱动位置信息(θn)的输出部470。The speed calculation unit 400 includes: a position information signal processing unit 410 that performs signal processing on the two-phase signals (Asinθ, Acosθ) output from the encoder 120 to calculate the motor rotation speed (ω n ); The signal switching part 450 of the motor rotation speed information of any one signal in the phase signal; Generate the motor driving position information (θ n ) reflecting the latest motor rotation speed based on the motor rotation speed (ω n ) from the position information signal processing part 410 ) an internal position information generator 460 as internal position information; and an output unit 470 that outputs rotational speed information (ω n ) of the motor 110 and motor drive position information (θ n ).

位置信息信号处理部410具备:对于从编码器120输出的双相信号中的正弦波信号(Asinθ)进行信号处理并计算电动机110的旋转变化量(Δθ1)的正弦信号处理部(第1信号处理部)420;对从编码器120输出的双相信号中的余弦波信号(Acosθ)进行信号处理并计算电动机110的旋转变化量(Δθ2)的余弦信号处理部(第2信号处理部)430;将来自正弦信号处理部420以及余弦信号处理部430的旋转变化量(Δθ1、Δθ2)配合正转动方向作成电动机110的旋转角速度(ω1、ω2(rad/s))的符号转换部440。The position information signal processing unit 410 includes a sinusoidal signal processing unit ( first signal processing unit) 420; a cosine signal processing unit (second signal processing unit) that performs signal processing on the cosine wave signal (Acosθ) of the two-phase signal output from the encoder 120 and calculates the amount of rotation change (Δθ 2 ) of the motor 110 430; Make the rotational angular velocity (ω 1 , ω 2 (rad/s)) of the motor 110 from the rotation variation (Δθ 1 , Δθ 2 ) from the sine signal processing unit 420 and the cosine signal processing unit 430 in conjunction with the positive rotation direction conversion unit 440 .

正弦信号处理部420具备:从编码器120输入的正弦波信号(Asinθ)中减去由内部位置信息生成部460生成的内部位置信息(Asinθn)并输出差分信号的第1减法部件(差分计算部件)421;在第1减法部件421输出的差分信号上乘以预定增益(K)之后计算电动机旋转变化量(Δθ1)的第1增益乘法部(驱动速度计算部件)422。The sinusoidal signal processing unit 420 includes a first subtraction means (difference calculation means) that subtracts the internal position information (Asinθ n ) generated by the internal position information generation unit 460 from the sinusoidal wave signal (Asinθ) input from the encoder 120 and outputs a difference signal. means) 421; a first gain multiplication unit (drive speed calculation means) 422 that calculates the motor rotation variation (Δθ 1 ) after multiplying the differential signal output by the first subtraction means 421 by a predetermined gain (K).

第1减法部件421是从编码器120输入的正弦波信号(Asinθ)中减去由内部位置信息生成部460生成的电动机驱动位置信息(内部位置信息Asinθn)。The first subtraction unit 421 subtracts the motor drive position information (internal position information Asinθ n ) generated by the internal position information generation unit 460 from the sine wave signal (Asinθ n ) input from the encoder 120 .

而且,当第1减法部件421计算出的差分成为函数值之差(Asinθ-Asinθn)时,在第1增益乘法部422中,在第1减法部件421输出的差分信号上乘以预定增益(K)之后输出电动机110的旋转变化量(Δθ1)。And, when the difference calculated by the first subtraction unit 421 becomes the difference (Asinθ−Asinθ n ) of the function value, in the first gain multiplication unit 422, the differential signal output by the first subtraction unit 421 is multiplied by a predetermined gain (K ) after which the rotation change amount (Δθ 1 ) of the motor 110 is output.

余弦信号处理部430具备:从由内部位置信息生成部460生成的内部位置信息(Acosθn)中减去由编码器120输入的余弦波信号(Acosθ)并且输出差分信号的第2减法部件(差分计算部件)431;在第2减法部件431输出的差分信号上乘以预定增益(K)之后计算电动机旋转变化量(Δθ2)的第2增益乘法部(驱动速度计算部件)432。The cosine signal processing unit 430 is provided with a second subtraction means (difference calculating means) 431; second gain multiplying means (driving speed calculating means) 432 which calculates the amount of motor rotation change ( Δθ2 ) after multiplying the differential signal output by the second subtracting means 431 by a predetermined gain (K).

符号变换部440具备:根据余弦波信号(Acosθ)的符号来变换从正弦信号处理部420输出的电动机旋转变化量(Δθ1)的第1符号变换部441;根据正弦波信号(Asinθ)的符号来变换从余弦信号处理部430输出的电动机旋转变化量(Δθ2)的第2符号变换部442。The sign conversion unit 440 includes: a first sign conversion unit 441 for converting the motor rotation variation (Δθ 1 ) output from the sine signal processing unit 420 according to the sign of the cosine wave signal (Acosθ); The second sign conversion unit 442 converts the motor rotation variation (Δθ 2 ) output from the cosine signal processing unit 430 .

第1符号变换部441在余弦波信号(Acosθ)为负(负的值)的情况下,在来自第1增益乘法部422的电动机旋转变化量(Δθ1)上乘以-1(负1),在余弦波信号(Acosθ)为正(正的值)的情况下,在来自第1增益乘法部422的电动机旋转变化量(Δθ1)上乘以+1(正1)。The first sign conversion unit 441 multiplies the motor rotation variation (Δθ 1 ) from the first gain multiplication unit 422 by -1 (minus 1) when the cosine wave signal (Acosθ) is negative (negative value), When the cosine wave signal (Acosθ) is positive (positive value), +1 (positive 1) is multiplied by the motor rotation change amount (Δθ 1 ) from the first gain multiplication unit 422 .

同样地,第2符号变换部442在正弦波信号(Asinθ)为负(负的值)的情况下,在来自第2增益乘法部的电动机旋转变化量(Δθ2)上乘以-1(负1),在正弦波信号(Asinθ)为正(正的值)的情况下,在来自第2增益乘法部的电动机旋转变化量(Δθ2)上乘以+1(正1)。Similarly, when the sine wave signal (Asinθ) is negative (negative value), the second sign conversion unit 442 multiplies the motor rotation variation (Δθ 2 ) from the second gain multiplication unit by -1 (minus 1 ), when the sine wave signal (Asinθ) is positive (positive value), the motor rotation variation (Δθ 2 ) from the second gain multiplication unit is multiplied by +1 (positive 1).

当从编码器120输入的正弦波信号(Asinθ)如图2所示随着电动机110的旋转周期性地反复增减时,即使在电动机110旋转使旋转相位角增加的情况下,也存在正弦波信号(Asinθ)减小的区域,因此,若从输入的正弦波信号(Asinθ)中单纯地减去由内部位置信息生成部460生成的内部位置信息(Asinθn),则有时尽管电动机110正转使相位增加,而电动机110的旋转变化量也会变为负值。因此,在第1符号变换部441中,根据从编码器120输入的另一个相位信号即余弦波信号(Acosθ)的符号,将来自第1增益乘法部422的输出信号的符号变换成电动机110的旋转变化量(Δθ1)增加的方向。由此,将从第1增益乘法部422输出的电动机旋转变化量(Δθ1)通常向增加方向变换,能够获得电动机110的旋转角速度(ω1)。When the sine wave signal (Asinθ) input from the encoder 120 repeatedly increases and decreases periodically with the rotation of the motor 110 as shown in FIG. Therefore, if the internal position information (Asinθ n ) generated by the internal position information generation unit 460 is simply subtracted from the input sine wave signal (Asinθ), the motor 110 may When the phase is increased, the amount of change in the rotation of the motor 110 also becomes a negative value. Therefore, in the first sign conversion unit 441, the sign of the output signal from the first gain multiplication unit 422 is converted into the sign of the motor 110 based on the sign of the cosine wave signal (Acosθ) which is another phase signal input from the encoder 120. The direction in which the amount of rotation change (Δθ 1 ) increases. In this way, the motor rotation change amount (Δθ 1 ) output from the first gain multiplier 422 is usually converted in an increasing direction, and the rotation angular velocity (ω 1 ) of the motor 110 can be obtained.

同样地,在第2符号变换部442中,根据从编码器120输入的另一个相位信号即正弦波信号(Asinθ)的符号,将来自第2增益乘法部432的输出信号的符号变换成电动机110的旋转变化量(Δθ2)增加的方向。由此,将从第2增益乘法部432输出的电动机旋转变化量(Δθ2)通常向增加方向变换,能够获得电动机110的旋转角速度(ω2)。Similarly, in the second sign conversion unit 442, the sign of the output signal from the second gain multiplication unit 432 is converted into the sign of the motor 110 according to the sign of the sine wave signal (Asinθ) which is another phase signal input from the encoder 120. The direction in which the amount of rotation change (Δθ 2 ) increases. In this way, the motor rotation change amount (Δθ 2 ) output from the second gain multiplier 432 is usually converted in an increasing direction, and the rotation angular velocity (ω 2 ) of the motor 110 can be obtained.

信号切换部450具备:判断部451,将从编码器120输入的正弦波信号(Asinθ)与预定阈值进行比较以判断正弦波信号和阈值的大小;以及,切换部件452,根据判断部451进行的大小判断,用来自正弦信号处理部420的输出信号和来自余弦信号处理部430的输出信号切换向输出部以及内部位置信息生成部460的输入。The signal switching section 450 is equipped with: a judging section 451, which compares the sine wave signal (Asinθ) input from the encoder 120 with a predetermined threshold value to judge the magnitude of the sine wave signal and the threshold value; For size determination, the output signal from the sine signal processing unit 420 and the output signal from the cosine signal processing unit 430 are used to switch the input to the output unit and the internal position information generation unit 460 .

从编码器120输入的位置信息信号(Asinθ、Acosθ)随电动机110的旋转周期性地增减时,例如,如图2所示,在正弦波信号(Asinθ)中,在相位90°(π/2)及270°(3π/2)的附近,存在相对于相位(θ)的变化量的信号值的变化量变小等、无论是正弦波信号(Asinθ)还是余弦波信号(Acosθ)相对于相位变化量的信号值变化较小的区域。When the position information signal (Asinθ, Acosθ) input from the encoder 120 increases and decreases periodically with the rotation of the motor 110, for example, as shown in FIG. 2) and 270°(3π/2), there is a small change in the signal value relative to the change in the phase (θ), etc., whether it is a sine wave signal (Asinθ) or a cosine wave signal (Acosθ) relative to the phase The area where the signal value of the delta varies less.

因此,为了利用相对于相位变化量信号值的变化较大的区域,信号切换部450切换正弦波信号(Asinθ)和余弦波信号(Acosθ)。Therefore, the signal switching unit 450 switches between the sine wave signal (Asinθ) and the cosine wave signal (Acosθ) in order to utilize a region in which the signal value varies greatly with respect to the amount of phase change.

判断部451将正弦波信号的绝对值|Asinθ|与作为预定阈值的0.7A进行比较,判断两者的大小。这里,±0.7约相当于±√2/2,以正弦波信号为例,相当于45°(π/4)、135°(3π/4)、225°(5π/4)、315°(9π/4)的相位。The judging unit 451 compares the absolute value |Asinθ| of the sine wave signal with a predetermined threshold value of 0.7A, and judges the magnitude of both. Here, ±0.7 is approximately equivalent to ±√2/2. Taking a sine wave signal as an example, it is equivalent to 45°(π/4), 135°(3π/4), 225°(5π/4), 315°(9π /4) phase.

切换部件452具有输入来自正弦信号处理部420的信号的正弦侧端子453和输入来自余弦信号处理部430的信号的余弦侧端子454,由开关部件构成,该开关部件用正弦侧端子453和余弦侧端子454切换向内部位置信息生成部460以及输出部470的输入。The switching part 452 has a sine-side terminal 453 for inputting a signal from the sine-signal processing part 420 and a cosine-side terminal 454 for inputting a signal from the cosine-signal processing part 430, and is constituted by a switching part. The switching part uses the sine-side terminal 453 and the cosine-side The terminal 454 switches the input to the internal position information generating unit 460 and the output unit 470 .

而且,信号切换部450根据判断部451的大小判断在|Asinθ|小于0.7A(|Asinθ|<0.7A)时选择正弦侧端子453、在|Asinθ|为0.7A或以上(|Asinθ|≥0.7A)时选择余弦端子454。Furthermore, the signal switching unit 450 selects the sinusoidal side terminal 453 when |Asinθ| In case of A), select the cosine terminal 454.

由此,如图2所示,在正弦波信号(Asinθ)以及余弦波信号(Acosθ)中,依次切换利用信号值变化大的区域。As a result, as shown in FIG. 2 , among the sine wave signal (Asinθ) and the cosine wave signal (Acosθ), the region in which the signal value changes greatly is switched sequentially.

内部位置信息生成部460具备:对来自位置信息信号处理部410的电动机旋转角度(ω1、ω2)进行积分并且计算电动机110的旋转相位(θn)的积分部件461;变换成以积分部件461计算出的电动机110的旋转相位(θn)为参数的三角函数值并且计算内部位置信息(Asinθn、Acosθn)的内部位置信息变换部462。The internal position information generation unit 460 includes: an integration unit 461 for integrating the motor rotation angles (ω 1 , ω 2 ) from the position information signal processing unit 410 and calculating the rotation phase (θ n ) of the motor 110; 461 The internal position information conversion unit 462 calculates the internal position information (Asinθ n , Acosθ n ) of the trigonometric function value of the calculated rotational phase (θ n ) of the motor 110 as a parameter.

积分部件461对由切换部件452选择的输出信号即电动机旋转角速度(ω1或ω2)进行积分并且计算电动机110的旋转相位(θn)。即,计算反映了最新的电动机旋转角速度(ω1、ω2)的电动机旋转相位(θn)。然后,将计算出的电动机旋转相位(θn)输出到内部位置信息变换部462。The integrating section 461 integrates the motor rotational angular velocity (ω 1 or ω 2 ), which is the output signal selected by the switching section 452 , and calculates the rotational phase (θ n ) of the motor 110 . That is, the motor rotation phase (θ n ) reflecting the latest motor rotation angular velocity (ω 1 , ω 2 ) is calculated. Then, the calculated motor rotation phase (θ n ) is output to the internal position information conversion unit 462 .

内部位置信息变换部462具备:向正弦信号处理部420的第1减法部件421输出内部位置信息(Asinθn)的第1内部位置信息变换部463;以及向余弦信号处理部430的第2减法部件431输出内部位置信息(Acosθn)的第2内部位置信息变换部464。The internal position information conversion unit 462 includes: a first internal position information conversion unit 463 that outputs internal position information (Asinθ n ) to the first subtraction unit 421 of the sine signal processing unit 420; and a second subtraction unit to the cosine signal processing unit 430 431 outputs the second internal position information conversion unit 464 of the internal position information (Acosθ n ).

第1内部位置信息变换部463对应于从编码器120输入的位置信息信号即正弦波信号(Asinθ),计算由积分部件461计算出的相位(θn)为参数的正弦函数值(Asinθn)并作为内部位置信息。The first internal position information conversion unit 463 calculates a sinusoidal function value (Asinθ n ) in which the phase (θ n ) calculated by the integrating unit 461 is a parameter corresponding to the sine wave signal (Asinθ) which is the position information signal input from the encoder 120 And as internal location information.

又,第2内部位置信息变换部464对应于从编码器120输入的位置信息信号即余弦波信号(Acosθn),计算由积分部件461计算出的相位(θn)为参数的余弦函数值(Acosθn)并作为内部位置信息。 In addition , the second internal position information conversion unit 464 calculates the cosine function value ( Acosθ n ) and used as internal position information.

这里,积分部件461对从位置信息信号处理部410输出的电动机旋转角速度(ω1、ω2)进行积分并且计算电动机110的旋转相位(θn)时,通过对直至位置信息信号处理部410输出的最新的电动机旋转角速度(ω1、ω2)依次进行积分,计算尽可能能够推定的最新的电动机旋转相位(θn)。Here, when the integrating unit 461 integrates the motor rotation angular velocity (ω 1 , ω 2 ) output from the position information signal processing unit 410 and calculates the rotation phase (θ n ) of the motor 110 , the integration unit 461 calculates the rotation phase (θ n ) of the motor 110 , and calculates the output of the position information signal processing unit 410 . The latest motor rotational angular velocities (ω 1 , ω 2 ) are sequentially integrated to calculate the latest motor rotational phase (θ n ), which can be estimated as much as possible.

而且,由于计算出积分部件461计算出的最新的电动机旋转相位(θn)的三角函数值(Asinθn、Acosθn),第1以及第2内部位置信息变换部463、464持有有关图4所示的尽可能推定的最新的电动机旋转相位(θn)的三角函数值(Asinθn、Acosθn)。Furthermore, since the trigonometric function values (Asinθ n , Acosθ n ) of the latest motor rotational phase (θ n ) calculated by the integrating unit 461 are calculated, the first and second internal position information converting units 463 and 464 hold The latest trigonometric function values (Asinθ n , Acosθ n ) of the motor rotation phase (θ n ) estimated as possible are shown.

图4是表示从编码器输入的正弦波信号(Asinθ)和由内部位置信息生成部生成的内部位置信息(Asinθn)的关系的图。4 is a diagram showing a relationship between a sine wave signal (Asinθ) input from an encoder and internal position information (Asinθ n ) generated by an internal position information generating unit.

输出部470将由切换部件452选择的输出信号即电动机旋转角速度通过滤波器471输出到作为中央控制部的CPU310。又,这样的滤波器471,作为示例可以列举低通滤波器等。The output unit 470 outputs the motor rotation angular velocity, which is the output signal selected by the switching unit 452 , to the CPU 310 as a central control unit through the filter 471 . In addition, examples of such a filter 471 include a low-pass filter and the like.

再者,输出部470输出由积分部件461计算出的电动机旋转相位(θn)作为电动机驱动位置信息。Furthermore, the output unit 470 outputs the motor rotation phase (θ n ) calculated by the integrating unit 461 as motor drive position information.

作为中央控制部的CPU310将来自速度计算部400的电动机旋转角速度与从外部输入的目标速度进行比较,并且为了使得电动机旋转角速度(ω)为目标速度,作为中央控制部的CPU310在计算施加在电动机110上的电流(i)的占空比的同时对电动机110进行PWM控制。The CPU 310 as the central control section compares the motor rotation angular velocity from the speed calculation section 400 with the target velocity input from the outside, and in order to make the motor rotation angular velocity (ω) the target velocity, the CPU 310 as the central control section calculates and applies to the motor The motor 110 is PWM controlled while controlling the duty cycle of the current (i) on the 110 .

对于具有上述结构的伺服机构的动作进行说明。The operation of the servo mechanism having the above configuration will be described.

当电动机110进行旋转驱动时,由编码器120检测该电动机110的旋转,从编码器120输出随电动机110的旋转周期性变化的双相信号(Asinθ、Acosθ)。When the motor 110 is rotationally driven, the rotation of the motor 110 is detected by the encoder 120 , and a two-phase signal (Asinθ, Acosθ) periodically changing with the rotation of the motor 110 is output from the encoder 120 .

来自编码器120的双相信号(Asinθ、Acosθ)分别输入到正弦信号处理部420和余弦信号处理部430。由于此后正弦波信号(Asinθ)的处理和余弦波信号(Acosθ)的处理大致相同,因此,以正弦波信号(Asinθ)的处理为例对此后的动作进行说明。Biphase signals (Asinθ, Acosθ) from the encoder 120 are input to the sine signal processing unit 420 and the cosine signal processing unit 430 , respectively. Since the subsequent processing of the sine wave signal (Asinθ) is substantially the same as the processing of the cosine wave signal (Acosθ), the following operations will be described using the processing of the sine wave signal (Asinθ) as an example.

在第1减法部件421中将输入到正弦信号处理部420的正弦波信号(Asinθ)与由第1内部位置信息变换部463生成的内部位置信息(Asinθn)进行比较,将两者的差分从第1减法部件421输出到第1增益乘法部422。In the first subtraction unit 421, the sine wave signal (Asinθ) input to the sine signal processing unit 420 is compared with the internal position information (Asinθ n ) generated by the first internal position information conversion unit 463, and the difference between the two is calculated from The first subtraction unit 421 outputs to the first gain multiplication unit 422 .

在第1增益乘法部422中,在来自第1减法部件421的差分信号上乘以预定增益(K),输出电动机旋转变化量(Δθ1)。In the first gain multiplication unit 422, a predetermined gain (K) is multiplied by the difference signal from the first subtraction means 421, and an amount of change in motor rotation (Δθ 1 ) is output.

而且,根据双相信号中的另一个信号即余弦波信号(Acosθ)的符号,利用第1符号变换部441在来自第1增益乘法部422的电动机旋转变化量(Δθ1)上乘以+1或者-1,变换成电动机旋转变化量(Δθ1)增加的方向,生成电动机旋转角速度(ω1)。Then, depending on the sign of the cosine wave signal (Acosθ), which is the other signal of the two-phase signal, the motor rotation variation (Δθ 1 ) from the first gain multiplication unit 422 is multiplied by +1 or -1, converted to the direction in which the amount of motor rotation change (Δθ 1 ) increases, to generate the motor rotation angular velocity (ω 1 ).

同样地,生成基于输入到余弦信号处理部430的余弦波信号(Acosθ)的电动机旋转角速度(ω2)。Similarly, the motor rotation angular velocity (ω 2 ) based on the cosine wave signal (Acosθ) input to the cosine signal processing unit 430 is generated.

而且,在生成来自正弦信号处理部420的电动机旋转角速度(ω1)和来自余弦信号处理部430的电动机旋转角速度(ω2)时,根据判断部451中正弦波(Asinθ)和预定阈值0.7A的大小判断,由切换部件452进行切换,在正弦波信号以及余弦波信号中选择基于信号值变化大的区域的电动机旋转角速度(ω1或ω2)。Furthermore, when generating the motor rotational angular velocity (ω 1 ) from the sine signal processing unit 420 and the motor rotational angular velocity (ω 2 ) from the cosine signal processing unit 430, based on the sine wave (Asinθ) in the judging unit 451 and the predetermined threshold value 0.7A The magnitude of is judged by the switching unit 452 to select the motor rotation angular velocity (ω 1 or ω 2 ) based on the area where the signal value changes greatly among the sine wave signal and the cosine wave signal.

而且,将来自切换部件452的电动机旋转角速度(ωn)一分为二,将一方输入到积分部件461,利用积分部件461进行的积分,计算电动机旋转相位(θn),反映出最新的电动机旋转角速度(ωn),更新电动机110的旋转相位(θn)。将由积分部件461计算出的电动机旋转相位(θn)输出到正弦信号处理部420以及余弦信号处理部430的第1以及第2内部位置信息变换部463、464,利用内部位置信息变换部462分别生成以电动机旋转相位(θn)为参数的正弦函数值(Asinθn)或者余弦函数值(Acosθn)。Furthermore, the motor rotation angular velocity (ω n ) from the switching unit 452 is divided into two, and one of them is input to the integration unit 461, and the integration performed by the integration unit 461 is used to calculate the motor rotation phase (θ n ), reflecting the latest motor rotation speed. The rotational angular velocity (ω n ) updates the rotational phase (θ n ) of the motor 110 . The motor rotation phase (θ n ) calculated by the integrating unit 461 is output to the first and second internal position information conversion parts 463 and 464 of the sine signal processing part 420 and the cosine signal processing part 430, and the internal position information conversion part 462 is used to A sine function value (Asinθ n ) or a cosine function value (Acosθ n ) with the motor rotational phase (θ n ) as a parameter is generated.

又,将分支出来的另一方的电动机旋转角速度(ωn)从输出部470通过滤波器471输出到CPU310。Further, the branched motor rotational angular velocity (ω n ) is output from the output unit 470 to the CPU 310 through the filter 471 .

在CPU310中将来自速度计算部400的电动机旋转角速度(ωn)与目标速度进行比较,为了使得电动机旋转角速度(ω)为目标值,计算施加在电动机110上的电流(i)的占空比。然后,根据该占空比对电动机110进行PWM控制,以预定目标速度对电动机110进行旋转驱动控制。The CPU 310 compares the motor rotation angular velocity (ω n ) from the speed calculation unit 400 with the target speed, and calculates the duty ratio of the current (i) applied to the motor 110 so that the motor rotation angular velocity (ω) becomes the target value. . Then, the motor 110 is PWM-controlled based on the duty ratio, and the motor 110 is rotationally controlled at a predetermined target speed.

根据具有上述结构的第1实施方式,能够发挥下述的效果。According to the first embodiment having the above configuration, the following effects can be exhibited.

(1)内部位置信息生成部460由于生成通常反映了最新的电动机速度信息(ωn)的电动机110的位置信息(Asinθn、Acosθn),因此,持有尽可能推定的最新的电动机110的位置信息。因此,来自编码器120的位置信息信号(Asinθ、Acosθ)和内部位置信息生成部460生成的内部位置信息(Asinθn、Acosθn)的差分即成为来自编码器120的位置信息信号(Asinθ、Acosθ)的微分值,就此原样地成为电动机110的驱动速度(ω)。由此,当从编码器120输入位置信息信号(Asinθ、Acosθ)时,立即计算出两者的差分,获得电动机的驱动速度(ω),能够发挥可跨时代地改善现有的时间延迟的这样的特别效果。(1) Since the internal position information generator 460 usually generates the position information (Asinθ n , Acosθ n ) of the motor 110 reflecting the latest motor speed information (ω n ), it holds the latest position information of the motor 110 estimated as much as possible. location information. Therefore, the difference between the position information signal (Asinθ, Acosθ) from the encoder 120 and the internal position information (Asinθ n , Acosθ n ) generated by the internal position information generator 460 becomes the position information signal (Asinθ, Acosθ n ) from the encoder 120. ) becomes the driving speed (ω) of the motor 110 as it is. In this way, when the position information signal (Asinθ, Acosθ) is input from the encoder 120, the difference between the two is immediately calculated to obtain the driving speed (ω) of the motor, which can improve the existing time delay across generations. special effects.

(2)由于利用速度计算部400获得无时间延迟的电动机驱动速度(ωn),因此,通过将该电动机驱动速度信息(ωn)作为反馈信号由中央控制部(CPU)310对电动机110进行驱动控制,由此,能够作成没有相位延迟的、极其稳定的控制系统。(2) Since the motor drive speed (ω n ) without time delay is obtained by the speed calculation unit 400, the central control unit (CPU) 310 performs a process for the motor 110 by using the motor drive speed information (ω n ) as a feedback signal. Drive control, and thus, an extremely stable control system without phase delay can be created.

(3)由于具有计算以相位为参数的函数值的第1以及第2内部位置信息变换部463、464,从编码器120输入的位置信息信号即使不是相位信息本身,也可以是正弦波状信号等,因此,能够将一般用作为传感器的编码器(光电式、磁性、静电电容式等)120不作改变地直接作为传感器使用,由于不需要仅适于本实施方式的伺服机构100的特殊的设计变更,因此,不仅简便而且避免了成本上升。(3) Since there are first and second internal position information conversion units 463 and 464 for calculating the function value with the phase as a parameter, the position information signal input from the encoder 120 may be a sinusoidal signal or the like even if it is not the phase information itself. Therefore, the encoder (photoelectric, magnetic, capacitive, etc.) 120 that is generally used as a sensor can be directly used as a sensor without any change, and no special design change that is only suitable for the servo mechanism 100 of this embodiment is required. , therefore, it is not only simple but also avoids rising costs.

(4)由于由信号切换部450选择根据来自编码器120的双相信号(Asinθ、Acosθ)中相对于相位变化量信号值变化大的一方的信号计算出的相位变化量(驱动速度信息),因此,在整个的范围中,能够高精度地获取作为电动机速度信息的相位变化量(ω)。而且,在判断相对于相位变化的信号变化量大的一方的信号时,不需要复杂的运算处理,只要通过将一方的信号值(正弦波信号)与阈值(0.7A)进行比较以判断大小即可,因此,是简便的。(4) Since the signal switching unit 450 selects the phase change amount (drive speed information) calculated from the signal of the two-phase signal (Asinθ, Acosθ) from the encoder 120 with a larger change in the value of the phase change amount signal, Therefore, the phase change amount (ω) as the motor speed information can be acquired with high accuracy over the entire range. In addition, when judging the signal with a larger signal change amount with respect to the phase change, no complicated arithmetic processing is required, and only one signal value (sine wave signal) is compared with a threshold value (0.7A) to judge the magnitude. Can, therefore, be handy.

(5)由于具备符号变换部440,因此,假设即使电动机110向正方向变化的情况下将相位变化量计算成负值的情况下,也将相位变化量(Δθ)的符号变换成根据电动机的旋转方向的增减方向,能够获得增减方向的正确驱动速度(相位变化量ω)。(5) Since the sign conversion unit 440 is provided, even if the phase change amount is calculated as a negative value even when the motor 110 changes in the positive direction, the sign of the phase change amount (Δθ) is converted into In the increasing and decreasing direction of the rotation direction, the correct driving speed (phase change amount ω) in the increasing and decreasing direction can be obtained.

(第2实施方式)(second embodiment)

接着,参照图5对于本发明的伺服机构的第2实施方式进行说明。Next, a second embodiment of the servo mechanism of the present invention will be described with reference to FIG. 5 .

第2实施方式的基本结构与第1实施方式相同,而第2实施方式具有下述特征,即,将编码器120输出的双相信号之比作为输入信号。The basic configuration of the second embodiment is the same as that of the first embodiment, but the second embodiment has a feature that the ratio of the two-phase signals output from the encoder 120 is used as an input signal.

图5是表示第2实施方式的速度计算部(信号处理部)的结构的图。FIG. 5 is a diagram showing the configuration of a speed calculation unit (signal processing unit) according to the second embodiment.

在图5中,速度计算部500具备传感器信号变换部600,该传感器信号变换部600生成基于来自编码器120的双相信号即正弦波信号(Asinθ)和余弦波信号(Acosθ)之比的双相信号(参照图6)。In FIG. 5 , the speed calculation unit 500 includes a sensor signal conversion unit 600 that generates a dual phase signal based on the ratio of the sine wave signal (Asinθ) and the cosine wave signal (Acosθ) from the encoder 120 . phase signal (refer to Figure 6).

传感器信号变换部600具备:计算Asinθ/Acosθ并输出作为第1信号的正切信号(tanθ)的第1信号变换部610;计算Acosθ/Asinθ并输出作为第2信号的余切信号(1/tanθ)的第2信号变换部620。The sensor signal conversion unit 600 includes: a first signal conversion unit 610 that calculates Asinθ/Acosθ and outputs a tangent signal (tanθ) as a first signal; calculates Acosθ/Asinθ and outputs a cotangent signal (1/tanθ) as a second signal The second signal conversion unit 620.

位置信息信号处理部510具备:对第1信号(tanθ)进行信号处理以计算电动机旋转角速度的第1信号处理部520;对第2信号(1/tanθ)进行信号处理以计算电动机旋转角速度的第2信号处理部530。The position information signal processing unit 510 includes: a first signal processing unit 520 that performs signal processing on the first signal (tanθ) to calculate the motor rotational angular velocity; and a second signal that performs signal processing on the second signal (1/tanθ) to calculate the motor rotational angular velocity. 2 Signal processing unit 530.

而且,在第1信号处理部520中,利用第1减法部件521从第1信号(tanθ)中减去由内部位置信息生成部550生成的内部位置信息并且输出差分信号,利用第1增益乘法部件522在该差分信号上乘以预定增益并输出电动机旋转角速度(ω1)。Furthermore, in the first signal processing unit 520, the internal position information generated by the internal position information generating unit 550 is subtracted from the first signal (tanθ) by the first subtraction unit 521 to output a differential signal, and the first gain multiplication unit is used to 522 multiplies the differential signal by a predetermined gain and outputs the motor rotation angular velocity (ω 1 ).

又,在第2信号处理部530中,利用第2减法部件531从由内部位置信息生成部550生成的内部位置信息中减去第2信号(1/tanθ)并且输出差分信号,利用第2增益乘法部件532在该差分信号上乘以预定增益并输出电动机旋转角速度(ω2)。In addition, in the second signal processing unit 530, the second signal (1/tanθ) is subtracted from the internal position information generated by the internal position information generating unit 550 by the second subtraction unit 531 to output a differential signal, and the second gain The multiplying section 532 multiplies the differential signal by a predetermined gain and outputs the motor rotational angular velocity (ω 2 ).

在信号切换部540中,判断部541比较第1信号(tanθ)和1的大小,信号切换部540根据判断部541进行的大小判断,当第1信号(tanθ)为或1以下时选择基于第1信号的电动机旋转角速度(ω1)、当第1信号(tanθ)大于1时选择基于第2信号的电动机旋转角速度(ω2)。In the signal switching part 540, the judging part 541 compares the magnitude of the first signal (tanθ) and 1, and the signal switching part 540 judges the magnitude based on the judging part 541, and when the first signal (tanθ) is equal to or less than 1, selects the The motor rotation angular velocity (ω 1 ) of the 1 signal, and the motor rotation angular velocity (ω 2 ) based on the second signal is selected when the first signal (tanθ) is greater than 1.

即,如图6所示,第1信号(tanθ)以及第2信号(1/tanθ)具有不连续的区域时,交替切换地利用第1信号(tanθ)以及第2信号(1/tanθ)的连续区域。That is, as shown in FIG. 6, when the first signal (tanθ) and the second signal (1/tanθ) have discontinuous regions, the first signal (tanθ) and the second signal (1/tanθ) are alternately switched. continuous area.

在内部位置信息生成部550中,在积分部件551对来自位置信息信号处理部510的电动机旋转角速度(ω1、ω2)进行积分并计算电动机旋转相位(θn),在内部位置信息变换部552中将该电动机旋转相位(θn)变换成以电动机旋转相位(θn)为参数的三角函数值。In the internal position information generation part 550, the motor rotation angular velocity (ω 1 , ω 2 ) from the position information signal processing part 510 is integrated in the integration part 551 to calculate the motor rotation phase (θ n ), and the internal position information conversion part In step 552, the motor rotation phase (θ n ) is transformed into a trigonometric function value using the motor rotation phase (θ n ) as a parameter.

这里,第1内部位置信息变换部553计算出以电动机旋转相位(θn)为参数的正切函数值(tanθn)并且输出到第1减法部件521。Here, the first internal position information conversion unit 553 calculates a tangent function value (tanθ n ) using the motor rotational phase (θ n ) as a parameter, and outputs the value to the first subtraction unit 521 .

又,第2内部位置信息变换部554计算出以电动机旋转相位(θn)为参数的余切函数值(1/tanθn)并且输出到第2减法部件531。Also, the second internal position information conversion unit 554 calculates a cotangent function value (1/tanθ n ) with the motor rotation phase (θ n ) as a parameter, and outputs it to the second subtraction unit 531 .

又,在第1实施方式中,设置符号变换部440,并且配合电动机旋转的方向将来自第1增益乘法部422、432的输出信号向增加方向变换,而在第2实施方式中,由于只要电动机110向正转方向变化,第1信号(tanθ)的利用部分(tanθ≤1)是单调增加的、第2信号(1/tanθ)的利用部分(tanθ>1)是单调减少的,因此,若例如在第2减法部件531中从内部位置信息中减去第2信号(1/tanθ)等、预先决定减法的方向,则能够获得通常表示适当的增减方向的电动机旋转角速度。由此,在第2实施方式中,不需要符号变换部。Also, in the first embodiment, the sign conversion unit 440 is provided, and the output signals from the first gain multiplication units 422, 432 are converted in the increasing direction according to the rotation direction of the motor. However, in the second embodiment, since only the motor 110 changes in the direction of forward rotation, the utilization part (tanθ≤1) of the first signal (tanθ) increases monotonously, and the utilization part (tanθ>1) of the second signal (1/tanθ) decreases monotonically. Therefore, if For example, by subtracting the second signal (1/tanθ) from the internal position information in the second subtraction means 531 and determining the subtraction direction in advance, the motor rotation angular velocity generally indicating an appropriate increase or decrease direction can be obtained. Therefore, in the second embodiment, a sign converting unit is unnecessary.

根据具有上述结构的第2实施方式,能够发挥与第1实施方式相同的作用效果。According to the second embodiment having the above configuration, the same operational effects as those of the first embodiment can be exhibited.

再者,由于利用传感器信号变换部600生成基于来自编码器120的双相信号即正弦波信号(Asinθ)和余弦波信号(Acosθ)之比的双相信号(tanθ、1/tanθ),因此,能够去除来自编码器120的双相信号(Asinθ、Acosθ)的振幅A的变动。由此,能够基于稳定的位置信息信号(tanθ、1/tanθ)进行速度检测。Furthermore, since the sensor signal converting unit 600 generates the biphase signal (tanθ, 1/tanθ) based on the ratio of the biphase signal from the encoder 120, that is, the sine wave signal (Asinθ) to the cosine wave signal (Acosθ), therefore, It is possible to remove fluctuations in the amplitude A of the biphase signal (Asinθ, Acosθ) from the encoder 120 . Thereby, speed detection can be performed based on a stable position information signal (tanθ, 1/tanθ).

(第3实施方式)(third embodiment)

接着,参照图7~图9说明本发明的第3实施方式。Next, a third embodiment of the present invention will be described with reference to FIGS. 7 to 9 .

第3实施方式的基本结构与第1实施方式相同,而在第3实施方式中,在内部位置信息生成部的结构方面具有特点。The basic configuration of the third embodiment is the same as that of the first embodiment, but the third embodiment has its own characteristics in terms of the configuration of the internal position information generation unit.

图7是表示第3实施方式中速度计算部的结构的框图。FIG. 7 is a block diagram showing the configuration of a speed calculation unit in the third embodiment.

在图7中,下述方面与第1实施方式相同,即,内部位置信息生成部460对应于正弦信号处理部420具有第1内部位置信息变换部463、对应于余弦信号处理部430具有第2内部位置信息变换部464。In FIG. 7 , it is the same as the first embodiment in that the internal position information generation unit 460 has a first internal position information conversion unit 463 corresponding to the sine signal processing unit 420 , and has a second internal position information conversion unit corresponding to the cosine signal processing unit 430 . The internal position information conversion unit 464 .

这里,在第1实施方式(图3)中具有1个积分部件461。而且,当从正弦信号处理部420和余弦信号处理部430分别输出电动机旋转角速度(ω1、ω2)时,将信号切换部450选择的电动机旋转角速度(ω1或ω2)输入到积分部件461,积分部件461对该电动机旋转角速度(ω1或ω2)进行积分并计算出电动机旋转相位。将该积分部件461计算出的电动机旋转相位(θn)输出到第1内部位置信息变换部463和第2内部位置信息变换部464,由各个内部位置信息变换部计算内部位置信息(Asinθn、Acosθn)。Here, in the first embodiment ( FIG. 3 ), there is one integrating unit 461 . Furthermore, when the motor rotational angular velocity (ω 1 , ω 2 ) is output from the sine signal processing unit 420 and the cosine signal processing unit 430 respectively, the motor rotational angular velocity (ω 1 or ω 2 ) selected by the signal switching unit 450 is input to the integrating part 461. The integrating component 461 integrates the motor rotational angular velocity (ω 1 or ω 2 ) and calculates the motor rotational phase. The motor rotation phase (θ n ) calculated by the integrating unit 461 is output to the first internal position information conversion unit 463 and the second internal position information conversion unit 464, and the internal position information (Asinθ n , Acosθ n ).

这一点,在第3实施方式中,作为积分部件,设置第1积分部件461A和第2积分部件461B。即,在图7中,设置根据正弦波信号对从正弦信号处理部420输出的电动机旋转变化量(Δθ1)进行积分以计算基于正弦波信号的电动机旋转相位(θ1)的第1积分部件461A,以及根据余弦波信号对从余弦信号处理部430输出的电动机旋转变化量(Δθ2)进行积分以计算基于余弦波信号的电动机旋转相位(θ2)的第2积分部件461B。In this regard, in the third embodiment, a first integrating unit 461A and a second integrating unit 461B are provided as integrating units. That is, in FIG. 7 , a first integrating unit is provided that integrates the motor rotation variation (Δθ 1 ) output from the sinusoidal signal processing unit 420 based on the sinusoidal signal to calculate the motor rotation phase (θ 1 ) based on the sinusoidal signal. 461A, and a second integrating unit 461B that integrates the motor rotation variation (Δθ 2 ) output from the cosine signal processing unit 430 according to the cosine wave signal to calculate the motor rotation phase (θ 2 ) based on the cosine wave signal.

第1积分部件461A对从第1增益乘法部422输出的电动机110的旋转变化量(Δθ1)进行积分计算出电动机旋转相位(θ1)。而且,第1积分部件461A将计算出的电动机旋转相位(θ1)输出到第1内部位置信息变换部463。The first integrating unit 461A integrates the rotation change amount (Δθ 1 ) of the motor 110 output from the first gain multiplication unit 422 to calculate the motor rotation phase (θ 1 ). Furthermore, the first integrating unit 461A outputs the calculated motor rotation phase (θ 1 ) to the first internal position information conversion unit 463 .

第2积分部件461B对从第2增益乘法部432输出的电动机110的旋转变化量(Δθ2)进行积分计算出电动机旋转相位(θ2)。而且,第2积分部件461B将计算出的电动机旋转相位(θ2)输出到第2内部位置信息变换部464。The second integrating unit 461B integrates the rotation change amount (Δθ 2 ) of the motor 110 output from the second gain multiplication unit 432 to calculate the motor rotation phase (θ 2 ). Furthermore, the second integrating unit 461B outputs the calculated motor rotation phase (θ 2 ) to the second internal position information conversion unit 464 .

信号切换部450虽然在具备判断部451和切换部件452并且切换部件452用开关部件切换正弦侧端子453和余弦侧端子454的这一点上与第1实施方式相同,然而,这里,作为切换部件,具备速度信息输出用的第1切换部件452A和位置信息输出用的第2切换部件452B。The signal switching unit 450 is the same as the first embodiment in that it includes a judging unit 451 and a switching unit 452, and the switching unit 452 switches the sine-side terminal 453 and the cosine-side terminal 454 with a switching unit. However, here, as the switching unit, It includes a first switching member 452A for speed information output and a second switching member 452B for position information output.

第1切换部件452A的结构与第1实施方式中说明的切换部件的结构相同,是根据判断部451的判断切换正弦侧端子453和余弦侧端子454并输出电动机旋转角速度ωn。将该电动机旋转角速度ωn1或ω2)通过滤波器471输出到作为中央控制部的CPU310。The configuration of the first switching means 452A is the same as that described in the first embodiment. The sine-side terminal 453 and the cosine-side terminal 454 are switched according to the judgment of the judging part 451 to output the motor rotational angular velocity ω n . This motor rotation angular velocity ω n1 or ω 2 ) is output to the CPU 310 as a central control unit through the filter 471 .

又,在第1实施方式中,将来自切换部件452的输出信号ωn(电动机旋转角速度ω1、ω2)输入到积分部件461中,然而,在第3实施方式中,并没有将来自第1切换部件452A的输出信号ωn输入到积分部件(461A、461B)中。Also, in the first embodiment, the output signal ω n (motor rotational angular velocity ω 1 , ω 2 ) from the switching unit 452 is input to the integrating unit 461, however, in the third embodiment, the output signal ω n from the third embodiment is not input. 1 The output signal ω n of the switching section 452A is input to the integrating section (461A, 461B).

第2切换部件452B根据判断部451中的判断用开关部件切换正弦侧端子453和余弦侧端子454。The second switching means 452B switches between the sine-side terminal 453 and the cosine-side terminal 454 in accordance with the determination switch means in the determination part 451 .

这里,将利用第1符号变换部441对由第1积分部件461A计算出的电动机旋转相位(θ1)进行符号变换后的信号输入到正弦侧端子453。又,将利用第2符号变换部442对由第2积分部件461B计算出的电动机旋转相位(θ2)进行符号变换后的信号输入到余弦侧端子454。而且,将来自第2切换部件452B的输出通过滤波器作为位置信息θn(θ1或θ2)输出。Here, a signal obtained by sign-converting the motor rotation phase (θ 1 ) calculated by the first integrating unit 461A by the first sign converting unit 441 is input to the sine-side terminal 453 . Furthermore, a signal obtained by sign-converting the motor rotation phase (θ 2 ) calculated by the second integrating unit 461B by the second sign converting unit 442 is input to the cosine-side terminal 454 . Then, the output from the second switching unit 452B is output as position information θn (θ 1 or θ 2 ) through a filter.

根据具有上述结构的第3实施方式,在第1实施方式的效果之上能够发挥下述效果。According to the third embodiment having the above configuration, the following effects can be exhibited in addition to the effects of the first embodiment.

从编码器12输出正弦波信号和余弦波信号的双相信号时,在第3实施方式的速度计算部400中,与处理正弦波信号的正弦信号处理部420对应地具备第1积分部件461A和第1内部位置信息变换部463,与处理余弦波信号的余弦信号处理部430对应地具备第2积分部件461B和第2内部位置信息变换部464。由此,在计算基于正弦波信号的电动机旋转角速度ω1之时,在以基于正弦波信号的电动机旋转变化量Δθ1为反馈信息的第1积分部件461A以及第1内部位置信息变换部463构成的回路中,能够利用仅基于正弦波信号的运算处理计算电动机旋转角速度ω1。同样地,在计算基于余弦波信号的电动机旋转角速度ω2之时,在以基于余弦波信号的电动机旋转变化量Δθ2为反馈信息的第2积分部件461B以及第2内部位置信息变换部464构成的回路中,能够利用仅基于余弦波信号的运算处理计算电动机旋转角速度ω2When a two-phase signal of a sine wave signal and a cosine wave signal is output from the encoder 12, in the speed calculation unit 400 of the third embodiment, the first integrating unit 461A and The first internal position information conversion unit 463 includes a second integrating unit 461B and a second internal position information conversion unit 464 corresponding to the cosine signal processing unit 430 that processes the cosine wave signal. Thus, when calculating the motor rotation angular velocity ω1 based on the sine wave signal, the first integrating unit 461A and the first internal position information conversion unit 463 are configured using the motor rotation change amount Δθ1 based on the sine wave signal as feedback information. In the loop of , the motor rotation angular velocity ω 1 can be calculated by arithmetic processing based only on the sine wave signal. Similarly, when calculating the motor rotation angular velocity ω2 based on the cosine wave signal, the second integrating part 461B and the second internal position information conversion part 464 are composed of the motor rotation change amount Δθ2 based on the cosine wave signal as feedback information. In the loop of , the motor rotation angular velocity ω 2 can be calculated by arithmetic processing based only on the cosine wave signal.

这里,也可以例如第1实施方式那样,由信号切换部450对来自正弦信号处理部420和余弦信号处理部430的电动机旋转角速度(ω1、ω2)进行切换选择输入到积分部件461,并且由积分部件461计算电动机的旋转相位(θn)。Here, for example, as in the first embodiment, the motor rotation angular velocity (ω 1 , ω 2 ) from the sine signal processing unit 420 and the cosine signal processing unit 430 may be switched and selected by the signal switching unit 450 and input to the integrating unit 461, and The rotational phase (θ n ) of the motor is calculated by the integrating unit 461 .

然而,从编码器120输出的正弦波和余弦波振幅不同的情况下,在来自正弦信号处理部420的电动机旋转角速度ω1和来自余弦信号处理部430的电动机旋转角速度ω2之间会产生差。即,由于在正弦信号处理部420以及余弦信号处理部430各自的减法部件421、431中,分别计算A(sinθ-sinθ1)和A’(cosθ-cosθ2)并且根据它的差分计算电动机旋转角速度ω1、ω2,因此,一旦正弦波和余弦波的振幅(A、A’)不同,则旋转角速度ω1、ω2也就变得不同。进一步地,在信号切换部450中,选择基于正弦波信号和余弦波信号中相对于相位变化函数值的变化大的一方的电动机旋转角速度(ω1和ω2),因此,正弦波信号和余弦波信号的振幅的不同容易变得显著,若如此切换显著不同的电动机旋转角速度ω1、ω2并且依次由积分部件461进行积分时,则在切换时的相位的积分上,误差容易生成得较大。However, when the amplitudes of the sine wave and cosine wave output from the encoder 120 are different, a difference occurs between the motor rotational angular velocity ω1 from the sine signal processing unit 420 and the motor rotational angular velocity ω2 from the cosine signal processing unit 430. . That is, since A(sinθ- sinθ1 ) and A'(cosθ- cosθ2 ) are respectively calculated in the subtracting parts 421, 431 of the sine signal processing part 420 and the cosine signal processing part 430 and the motor rotation is calculated from the difference thereof Angular velocities ω 1 , ω 2 , therefore, when the amplitudes (A, A′) of the sine wave and cosine wave are different, the rotational angular velocities ω 1 , ω 2 also become different. Furthermore, in the signal switching unit 450, the motor rotation angular velocity (ω 1 and ω 2 ) based on the one of the sine wave signal and the cosine wave signal with a larger change in the phase change function value is selected, therefore, the sine wave signal and the cosine The difference in the amplitude of the wave signal tends to become conspicuous. If the significantly different motor rotational angular velocities ω 1 and ω 2 are switched in this way and integrated by the integrating unit 461 sequentially, an error tends to be relatively large in the integration of the phase at the time of switching. big.

例如,图8是在第1实施方式中正弦波信号Asinθ和余弦波信号A’cosθ振幅有5%不同的情况下输出的电动机旋转角速度ω的示例。在图8中,可知在信号切换的时刻,产生较大的误差。For example, Fig. 8 shows an example of the motor rotational angular velocity ω output when the amplitude of the sine wave signal Asinθ and the cosine wave signal A'cosθ differ by 5% in the first embodiment. In FIG. 8 , it can be seen that a large error occurs at the timing of signal switching.

这一点,在第3实施方式中,由于根据正弦信号处理部420计算出的电动机旋转变化量Δθ1由第1积分部件461A以及第1内部位置信息变换部463计算关于正弦波信号的内部位置信息,并且根据余弦信号处理部430计算出的电动机旋转变化量Δθ2由第2积分部件461B以及第2内部位置信息变换部464计算关于余弦波信号的内部位置信息,因此,来自各个位置信息处理部(正弦信号处理部420、余弦信号处理部430)的电动机旋转角速度ω1、ω2不会受到正弦波信号和余弦波信号的振幅差的影响。In this regard, in the third embodiment, the internal position information on the sine wave signal is calculated by the first integrating unit 461A and the first internal position information conversion unit 463 based on the motor rotation variation Δθ1 calculated by the sine signal processing unit 420. , and according to the motor rotation variation Δθ2 calculated by the cosine signal processing unit 430, the internal position information about the cosine wave signal is calculated by the second integrating unit 461B and the second internal position information conversion unit 464, therefore, from each position information processing unit (The sine signal processing unit 420, the cosine signal processing unit 430) The motor rotational angular velocity ω 1 , ω 2 is not affected by the amplitude difference between the sine wave signal and the cosine wave signal.

这里,图9是在第3实施方式的结构中正弦波信号Asinθ和余弦波信号A’cosθ振幅有5%不同的情况下输出的电动机旋转角速度ω的示例。如图9所示,利用第3实施方式,与第1实施方式相比(图8)抑制了正弦波信号和余弦波信号的振幅差的影响,电动机旋转角速度ω较平滑地连续。Here, Fig. 9 is an example of the motor rotational angular velocity ω output when the amplitude of the sine wave signal Asinθ and the cosine wave signal A'cosθ differ by 5% in the configuration of the third embodiment. As shown in FIG. 9 , according to the third embodiment, compared with the first embodiment ( FIG. 8 ), the influence of the amplitude difference between the sine wave signal and the cosine wave signal is suppressed, and the motor rotational angular velocity ω continues relatively smoothly.

(第4实施方式)(fourth embodiment)

接着,参照图10对本发明的第4实施方式进行说明。Next, a fourth embodiment of the present invention will be described with reference to FIG. 10 .

第4实施方式的基本结构与第1实施方式相同,然而,第4实施方式具有下述特点,即,根据利用A/D变换器将来自编码器120的信号进行变换后的数字信号,获得电动机旋转速度。The basic structure of the fourth embodiment is the same as that of the first embodiment. However, the fourth embodiment has the following feature that, based on the digital signal converted from the signal from the encoder 120 by the A/D converter, the motor spinning speed.

即,在图10中,设置将来自编码器120的正弦波信号进行A/D变换的第1A/D变换器710和将来自编码器120的余弦波信号进行A/D变换的第2A/D变换器720。That is, in FIG. 10 , a first A/D converter 710 for A/D converting the sine wave signal from the encoder 120 and a second A/D converter 710 for A/D converting the cosine wave signal from the encoder 120 are provided. converter 720 .

并且,速度计算部(信号处理部)400具备位置信息信号处理部、信号切换部、内部位置信息生成部等的功能,而上述功能是利用预定的信号处理程序来实现的。Furthermore, the speed calculation unit (signal processing unit) 400 has functions such as a position information signal processing unit, a signal switching unit, and an internal position information generating unit, and the above functions are realized by a predetermined signal processing program.

又,本发明不限定于上述实施方式,在能够实现本发明目的的范围中的变形、改良等是包含于本发明中的。In addition, the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope of achieving the object of the present invention are included in the present invention.

例如,在第1实施方式中,以具备对编码器120输出的双相信号(Asinθ、Acosθ)分别进行处理的正弦信号处理部420和余弦信号处理部430,并且切换利用来自正弦信号处理部420的输出信号和来自余弦信号处理部430的输出信号的情形为示例进行了说明,然而,也可以如图11所示,作为位置信息信号处理部410仅具备对正弦波信号(Asinθ)进行信号处理的正弦信号处理部420,并且输出仅基于正弦波信号(Asinθ)的电动机旋转速度(ω1)。又,在正弦波信号(Asinθ)周期性增减时,需要根据电动机110的旋转方向对电动机110的相位变化量的符号作变换的符号变换部440。For example, in the first embodiment, the sine signal processing unit 420 and the cosine signal processing unit 430 respectively processing the two-phase signals (Asinθ, Acosθ) output from the encoder 120 are provided, and the signals from the sine signal processing unit 420 are switched and used. The output signal from the cosine signal processing unit 430 and the output signal from the cosine signal processing unit 430 have been described as examples. However, as shown in FIG. The sinusoidal signal processing section 420, and outputs the motor rotational speed (ω 1 ) based only on the sinusoidal signal (Asinθ). Also, when the sine wave signal (Asinθ) increases and decreases periodically, a sign conversion unit 440 is required for converting the sign of the phase change amount of the motor 110 according to the rotation direction of the motor 110 .

以驱动控制对象是具有转子的电动机110并且速度计算部(信号处理部)400根据来自编码器120的双相信号计算电动机110的旋转速度(旋转相位)的情形为示例进行了说明,然而,作为驱动体,不限于具有转子的电动机,例如,也可以是线性电动机(Linear Motor)等。特别地,在线性电动机的控制中,时间延迟较大地影响控制性能时,若利用本发明的信号处理装置(速度计算部)迅速地计算驱动速度,并且基于该计算出的驱动速度进行速度控制的话,则能够不存在相位延迟并且使控制稳定。The case where the object of drive control is the motor 110 having the rotor and the speed calculation section (signal processing section) 400 calculates the rotation speed (rotation phase) of the motor 110 from the two-phase signal from the encoder 120 has been described as an example, however, as The driving body is not limited to a motor having a rotor, and may be, for example, a linear motor (Linear Motor) or the like. In particular, in the control of a linear motor, when the time delay greatly affects the control performance, if the signal processing device (speed calculation unit) of the present invention is used to quickly calculate the driving speed and perform speed control based on the calculated driving speed , then there is no phase delay and the control is stable.

Claims (9)

1.一种信号处理装置,对于对应于驱动体的驱动位置从传感器输出的位置信息信号进行信号处理并且检测所述驱动体的驱动速度,其特征在于,1. A signal processing device for performing signal processing on a position information signal output from a sensor corresponding to a driving position of a driving body and detecting a driving speed of the driving body, characterized in that, 具备:have: 位置信息信号处理部,对所述位置信息信号进行信号处理,计算所述驱动体的驱动速度信息;以及a position information signal processing unit, which performs signal processing on the position information signal, and calculates driving speed information of the driving body; and 内部位置信息生成部,反映由所述位置信息信号处理部计算出的最新的所述驱动速度信息,生成所述驱动体的最新的推定位置来作为内部位置信息,an internal position information generating unit reflecting the latest driving speed information calculated by the position information signal processing unit to generate the latest estimated position of the driving body as the internal position information, 从所述传感器输出的位置信息信号是对应于驱动体的驱动而周期性变化的周期函数信号,The position information signal output from the sensor is a periodic function signal that changes periodically corresponding to the driving of the driving body, 所述位置信息信号处理部计算所述周期函数信号的相位变化量作为所述驱动体的驱动速度信息,The position information signal processing unit calculates the phase change amount of the periodic function signal as the driving speed information of the driving body, 所述内部位置信息生成部具备:积分部件,对来自所述位置信息信号处理部的所述相位变化量进行积分并计算与所述驱动体的位置信息相当的相位;以及内部位置信息变换部,计算出与由所述积分部件计算出的所述相位相对应的周期函数值来作为所述内部位置信息,The internal position information generation unit includes: an integrating unit that integrates the phase change amount from the position information signal processing unit to calculate a phase corresponding to the position information of the driving body; and an internal position information conversion unit, calculating a periodic function value corresponding to the phase calculated by the integrating means as the internal position information, 所述位置信息信号处理部根据来自所述传感器的所述位置信息信号和由所述内部位置信息生成部生成的所述内部位置信息的差分,来计算所述驱动体的驱动速度信息。The position information signal processing unit calculates driving speed information of the driving body based on a difference between the position information signal from the sensor and the internal position information generated by the internal position information generating unit. 2.如权利要求1所述的信号处理装置,其特征在于,2. The signal processing device according to claim 1, wherein 所述周期函数信号是由相互具有预定相位差的第1信号以及第2信号构成的双相信号,The periodic function signal is a two-phase signal composed of a first signal and a second signal having a predetermined phase difference with each other, 所述位置信息信号处理部具备:The position information signal processing unit includes: 第1信号处理部,对所述第1信号进行信号处理并且输出所述第1信号的相位变化量作为所述驱动速度信息;以及a first signal processing unit that performs signal processing on the first signal and outputs a phase change amount of the first signal as the driving speed information; and 第2信号处理部,对所述第2信号进行信号处理并且输出所述第2信号的相位变化量作为所述驱动速度信息,a second signal processing unit that performs signal processing on the second signal and outputs a phase change amount of the second signal as the driving speed information, 在所述位置信息信号处理部的后级侧设置信号切换部,该信号切换部切换选择来自所述第1信号处理部的输出信号和来自所述第2信号处理部的输出信号中的、基于对于相位变化量所述周期函数信号的信号值变化量大的一方的周期函数信号的输出信号。A signal switching unit for switching between the output signal from the first signal processing unit and the output signal from the second signal processing unit is provided on the subsequent stage side of the position information signal processing unit. An output signal of the periodic function signal whose signal value change amount is larger with respect to the amount of phase change. 3.如权利要求2所述的信号处理装置,其特征在于,3. The signal processing device according to claim 2, wherein: 所述周期函数信号是正弦波状信号,The periodic function signal is a sine wave signal, 所述信号切换部具备:The signal switching unit has: 判断部,将所述第1信号以及所述第2信号中的任意一方的信号值和预定阈值进行比较并且进行大小判断;以及a judging unit that compares the signal value of any one of the first signal and the second signal with a predetermined threshold and judges the magnitude; and 切换部件,根据由所述判断部产生的判断结果,在来自所述第1信号处理部的输出信号和来自所述第2信号处理部的输出信号之间进行切换。The switching means switches between the output signal from the first signal processing unit and the output signal from the second signal processing unit based on a determination result by the determination unit. 4.如权利要求1所述的信号处理装置,其特征在于,4. The signal processing device according to claim 1, wherein: 具备符号变换部,该符号变换部将从所述位置信息信号处理部输出的相位变化量的符号变换成表示与所述驱动体移动方向相对应的增减的符号。A sign converting unit is provided which converts the sign of the phase change amount output from the position information signal processing unit into a sign indicating an increase or decrease corresponding to the moving direction of the driving body. 5.如权利要求2所述的信号处理装置,其特征在于,5. The signal processing device according to claim 2, wherein: 所述内部位置信息生成部具备:The internal location information generation unit includes: 第1积分部件,对从所述第1信号处理部输出的所述第1信号的相位变化量进行积分,计算与所述驱动体的位置信息相当的相位;a first integrating unit that integrates a phase change amount of the first signal output from the first signal processing unit to calculate a phase corresponding to the position information of the driving body; 第1内部位置信息变换部,根据由所述第1积分部件计算出的相位,计算所述第1信号的函数值;a first internal position information conversion unit that calculates a function value of the first signal based on the phase calculated by the first integrating unit; 第2积分部件,对从所述第2信号处理部输出的所述第2信号的相位变化量进行积分,计算与所述驱动体的位置信息相当的相位;以及a second integrating unit that integrates a phase change amount of the second signal output from the second signal processing unit to calculate a phase corresponding to the position information of the driving body; and 第2内部位置信息变换部,根据由所述第2积分部件计算出的相位,计算所述第2信号的函数值。The second internal position information converting unit calculates a function value of the second signal based on the phase calculated by the second integrating means. 6.如权利要求1所述的信号处理装置,其特征在于,6. The signal processing device according to claim 1, wherein: 所述驱动体是具有转子的电动机,从所述传感器输出的位置信息信号是对应于所述电动机的旋转驱动而周期性变化的周期函数信号,The driving body is a motor having a rotor, and the position information signal output from the sensor is a periodic function signal that changes periodically in response to rotational driving of the motor, 所述位置信息信号处理部输出旋转角速度作为所述电动机的驱动速度信息,The position information signal processing unit outputs a rotational angular velocity as drive speed information of the motor, 所述积分部件将来自所述位置信息信号处理部的所述旋转角速度进行积分,计算电动机的旋转相位角,the integrating means integrates the rotational angular velocity from the position information signal processing unit to calculate a rotational phase angle of the motor, 所述内部位置信息变换部计算基于所述电动机的旋转相位角的周期函数值。The internal position information conversion unit calculates a periodic function value based on a rotation phase angle of the motor. 7.一种信号处理方法,对于对应于驱动体的驱动位置从传感器输出的位置信息信号进行信号处理并检测所述驱动体的驱动速度,其特征在于,具备:7. A signal processing method, carrying out signal processing for the position information signal output from the sensor corresponding to the driving position of the driving body and detecting the driving speed of the driving body, characterized in that it has: 位置信息信号处理工序,对根据所述驱动体的驱动而周期性变化的周期函数信号,即所述位置信息信号进行信号处理,并计算所述周期函数信号的相位变化量;以及A position information signal processing step of performing signal processing on the position information signal, which is a periodic function signal which changes periodically according to the driving of the driving body, and calculating a phase change amount of the periodic function signal; and 内部位置信息生成工序,对由所述位置信息信号处理工序计算出的最新的所述相位变化量进行积分,并计算与所述驱动体的最新推定位置相当的相位,同时生成与所计算出的所述相位相对应的周期函数值来作为所述内部位置信息,The internal position information generation step integrates the latest phase change amount calculated in the position information signal processing step, calculates a phase corresponding to the latest estimated position of the driving body, and generates a phase corresponding to the calculated position information. The periodic function value corresponding to the phase is used as the internal position information, 所述位置信息信号处理工序根据来自所述传感器的所述位置信息信号和由所述内部位置信息生成工序生成的所述内部位置信息的差分,来计算所述驱动体的驱动速度信息。The position information signal processing step calculates driving speed information of the driving body based on a difference between the position information signal from the sensor and the internal position information generated by the internal position information generating step. 8.一种速度检测装置,其特征在于,具备:8. A speed detection device, characterized in that it has: 传感器,输出与驱动体的驱动位置相对应的位置信息信号;以及a sensor that outputs a position information signal corresponding to the driving position of the driving body; and 权利要求1至权利要求6的任意一项所述的信号处理装置。The signal processing device according to any one of claims 1 to 6. 9.一种伺服机构,其特征在于,具备:9. A servo mechanism, characterized in that it has: 驱动体;drive body; 传感器,输出与驱动体的驱动位置相对应的位置信息信号;a sensor that outputs a position information signal corresponding to the driving position of the driving body; 权利要求1至权利要求6的任意一项所述的信号处理装置;以及The signal processing device according to any one of claims 1 to 6; and 中央控制部,将由所述信号处理装置检测出的所述驱动体的驱动速度和从外部预先设定的预定目标速度进行比较并且将所述驱动体的驱动速度控制成所述预定目标速度。The central control unit compares the driving speed of the driving body detected by the signal processing device with a predetermined target speed set in advance from outside and controls the driving speed of the driving body to the predetermined target speed.
CNB2005101338711A 2004-12-22 2005-12-22 Signal processing apparatus, method, pick-up unit and servo control mechanism Expired - Fee Related CN100538574C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004371725 2004-12-22
JP2004371725 2004-12-22
JP2005155918 2005-05-27

Publications (2)

Publication Number Publication Date
CN1831691A CN1831691A (en) 2006-09-13
CN100538574C true CN100538574C (en) 2009-09-09

Family

ID=36994030

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101338711A Expired - Fee Related CN100538574C (en) 2004-12-22 2005-12-22 Signal processing apparatus, method, pick-up unit and servo control mechanism

Country Status (1)

Country Link
CN (1) CN100538574C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880763B2 (en) * 2010-01-19 2012-02-22 山洋電気株式会社 Motor control method and apparatus
JP6791515B1 (en) * 2019-10-16 2020-11-25 多摩川精機株式会社 Rotating equipment control system and encoder

Also Published As

Publication number Publication date
CN1831691A (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP4627746B2 (en) Phase detection circuit, resolver / digital converter using the same, and control system
JP5148394B2 (en) Microcomputer, motor control system
JP4923730B2 (en) Compensation method and angle detection apparatus using the same in resolver angle detection
KR100801405B1 (en) Signal processing device, signal processing method, recording medium recording signal processing program, speed detecting device, servo mechanism
CN102661754A (en) Digital converter for rotary transformer
CN107888119B (en) Control system and method of controlling an electric motor
JP2007248246A (en) Resolver signal processing device
JP2006343318A (en) Rotational position detector, and rotary electrical equipment driving unit provided therewith
EP1583217A1 (en) Motor drive-controlling device and electric power-steering device
JP2012042411A (en) Sensor error correction device, sensor error correction method, and program for sensor error correction
JP3686962B2 (en) Motor driver
CN112953339B (en) Soft decoding system and method for rotary transformer and storage medium
US7443128B2 (en) Method and device for controlling motors
CN100538574C (en) Signal processing apparatus, method, pick-up unit and servo control mechanism
JP2008008739A (en) Signal processing system, speed detection system, servomechanism
JP5138960B2 (en) Motor control device and motor control method
Kim et al. High-Performance Permanent Magnet Synchronous Motor Control With Electrical Angle Delayed Component Compensation
KR20040018716A (en) Apparatus and method for controlling velocity of BLDC motor
KR101937958B1 (en) Device for detecting error of sensorless motor using bemf signal
JP2011169823A (en) Signal processing circuit
KR100511274B1 (en) Senseless control method for magnet type synchronous motor
JP2003009565A (en) Angle/position detector and motor controller using the same
JP2003088164A (en) Detecting method for phase of synchronous motor and controller for synchronous motor
JP4650118B2 (en) Apparatus and method for estimating initial magnetic pole of AC synchronous motor
JP2002323911A (en) Sequence controller

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CI02 Correction of invention patent application

Correction item: Priority

Correct: 2005.05.27 JP 2005-155918

False: Lack of priority second

Number: 37

Page: The title page

Volume: 22

COR Change of bibliographic data

Free format text: CORRECT: PRIORITY; FROM: MISSING THE SECOND ARTICLE OF PRIORITY TO: 2005.5.27 JP 2005-155918

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090909

Termination date: 20151222

EXPY Termination of patent right or utility model