CN100517466C - 控制磁致电阻传感器的自由层中的磁致伸缩的方法 - Google Patents

控制磁致电阻传感器的自由层中的磁致伸缩的方法 Download PDF

Info

Publication number
CN100517466C
CN100517466C CNB200610171216XA CN200610171216A CN100517466C CN 100517466 C CN100517466 C CN 100517466C CN B200610171216X A CNB200610171216X A CN B200610171216XA CN 200610171216 A CN200610171216 A CN 200610171216A CN 100517466 C CN100517466 C CN 100517466C
Authority
CN
China
Prior art keywords
layer
nonmagnetic spacer
deposition
oxygen
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200610171216XA
Other languages
English (en)
Other versions
CN1988002A (zh
Inventor
太龙平
杜利普·A·韦利皮蒂亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Publication of CN1988002A publication Critical patent/CN1988002A/zh
Application granted granted Critical
Publication of CN100517466C publication Critical patent/CN100517466C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/306Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling conductive spacer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/063Magneto-impedance sensors; Nanocristallin sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/18Measuring magnetostrictive properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • H01F41/304Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation using temporary decoupling, e.g. involving blocking, Néel or Curie temperature transitions by heat treatment in presence/absence of a magnetic field
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明涉及一种用于控制磁致电阻传感器的自由层中的磁致伸缩的方法。沉积被钉扎层结构且然后沉积优选为Cu的间隔层。氧被引入到该间隔层中。氧可以在间隔层的沉积期间或者在已经沉积间隔层之后被引入。然后自由层结构沉积在间隔层之上。帽层例如Ta可以沉积在自由层结构之上。该传感器被退火从而设置被钉扎层的磁化。在退火该传感器的工艺中氧迁移到间隔层外。退火之后,没有显著量的氧存在于间隔层或自由层结构中,仅微量的氧存在于Ta帽层中。尽管没有氧存在于间隔层或自由层中,但是制造期间氧的引入使得完成的自由层具有较低磁致伸缩(即更大的负磁致伸缩)。

Description

控制磁致电阻传感器的自由层中的磁致伸缩的方法
技术领域
本发明涉及磁致电阻传感器,更特别地,涉及控制磁致电阻传感器的自由层中的磁致伸缩的方法。
背景技术
计算机的核心是称为磁盘驱动器的组件。磁盘驱动器包括旋转磁盘、被与旋转磁盘的表面相邻的悬臂悬吊的写和读头、以及转动悬臂从而将读和写头置于旋转盘上选定环形道(track)之上的致动器。读和写头直接位于具有气垫面(ABS)的滑块上。当盘不旋转时,悬臂偏置滑块接触盘的表面,当盘旋转时,空气被旋转的盘旋动。当滑块骑在气垫上时,写和读头被用来写磁印到旋转盘且从旋转盘读取磁印。读和写头连接到根据计算机程序运行的处理电路从而实现写和读功能。
写头包括嵌入在第一、第二和第三绝缘层(绝缘堆叠)中的线圈层,绝缘堆叠夹在第一和第二极片层之间。在写头的气垫面(ABS)处间隙通过间隙层形成在第一和第二极片层之间,极片层在背间隙处连接。传导到线圈层的电流在极片中感应磁通,其使得磁场在ABS处在写间隙弥散出来以用于在移动介质上的道中写上述磁印,例如在上述旋转盘上的环形道中。
近来的读头设计中,自旋阀传感器,也称为巨磁致电阻(GMR)传感器,已被用来检测来自旋转磁盘的磁场。该传感器包括下文称为间隔层的非磁导电层,其夹在下文称为被钉扎层和自由层的第一和第二铁磁层之间。第一和第二引线(lead)连接到该自旋阀传感器以传导电流通过该传感器。被钉扎层的磁化被钉扎为垂直于气垫面(ABS),自由层的磁矩位于平行于ABS,但是可以响应于外磁场自由旋转。被钉扎层的磁化通常通过与反铁磁层交换耦合来被钉扎。
间隔层的厚度被选择为小于通过传感器的传导电子的平均自由程。采用此布置,部分传导电子通过间隔层与被钉扎层和自由层的每个的界面被散射。当被钉扎层和自由层的磁化彼此平行时,散射最小,当被钉扎层和自由层的磁化反平行时,散射最大。散射的变化与cosθ成比例地改变自旋阀传感器的电阻,其中θ是被钉扎层和自由层的磁化之间的角。在读模式中,自旋阀传感器的电阻与来自旋转盘的磁场的大小成比例地变化。当检测电流传导通过自旋阀传感器时,电阻变化导致电势变化,其被检测到且作为重放信号被处理。
当自旋阀传感器采用单个被钉扎层时,其被称为简单自旋阀。当自旋阀采用反平行(AP)被钉扎层时,其被称为AP被钉扎自旋阀。AP自旋阀包括通过薄的非磁耦合层例如Ru分隔开的第一和第二磁层。选择间隔层的厚度从而反平行耦合被钉扎层的铁磁层的磁化。自旋阀还根据钉扎层在顶部(在自由层之后形成)还是在底部(在自由层之前)被称为顶或底型自旋阀。
自旋阀传感器位于第一和第二非磁电绝缘读间隙层之间,第一和第二读间隙层位于铁磁的第一和第二屏蔽层之间。在合并式磁头中,单个铁磁层充当读头的第二屏蔽层且充当读头的第一极片层。在背负式头中,第二屏蔽层和第一极片层是分开的层。
被钉扎层的磁化通常通过将铁磁层之一(AP1)与反铁磁材料例如PtMn的层交换耦合来被固定。虽然反铁磁(AFM)材料例如PtMn本身没有磁化,但是当与磁材料交换耦合时,它能够强烈地钉扎铁磁层的磁化。
日益提高的对数据速率和数据容量的需求不断推动具有改善的信号幅度和减小的道宽的磁致电阻传感器的研发。然而,随着传感器变得更小,这样的传感器中的自由层变得不稳定。自由层稳定性指的是自由层的磁化保持偏置在与ABS平行的期望方向上的能力。非常小的传感器中的此不稳定是由于若干因素,包括偏置层可以静磁地作用在其上来提供偏置场的区域的减小。影响稳定性的另一因素是自由层本身的小尺寸,其使得自由层内在地磁不稳定。
控制自由层稳定性的重要参数是自由层的磁致伸缩。磁致电阻传感器具有沿与ABS平行的方向作用的内在压应力。除了别的以外,此压应力尤其是由于当定义气垫面(ABS)时研磨所产生的应力。自由层内的正磁致伸缩将诱导沿垂直于ABS且垂直于期望偏置方向的方向上的磁各向异性。这当然妨碍了自由层的稳定性,使得自由层磁化的适当偏置非常困难。
自由层一般构造为CoFe层和NiFe层的组合,CoFe层位于最接近间隔层(或者在隧道阀的情况下的势垒层)。公知CoFe具有正磁致伸缩,但是需要接近于间隔/势垒层以使得传感器最优地运行。NiFe层具有负磁致伸缩,其可以用来稍微抵消CoFe层的正磁致伸缩。然而,自由层的总体厚度受到限制,因为随着自由层变厚,其矫顽力增大,由此降低传感器性能。另一方面,CoFe层的特定最小厚度必须被保持以使得传感器正常地起作用。因此,可以理解,不能简单地增大自由层的NiFe层的厚度以产生期望的负或中性磁致伸缩。
因此,需要一种控制自由层的磁致伸缩而无需增大自由层的NiFe层的厚度的方法。这样的方法必须不干扰自由层的其他磁属性而使传感器性能受损。例如,这样的调整磁致伸缩的方法不应导致增大的自由层矫顽力,由于这样的增大矫顽力将降低传感器的灵敏度。
发明内容
本发明提供一种用于制造磁致电阻传感器的方法,其允许控制自由层的磁致伸缩。该方法包括沉积间隔层和将氧引入到该间隔层中。该自由层然后沉积在该间隔层上。退火该传感器以设置该被钉扎层的磁化使得该间隔层中的氧迁移到该间隔层外且还到该自由层外。
该间隔层可以是Cu且可以沉积在被钉扎层结构上,该被钉扎层结构可以是AP被钉扎结构,其交换耦合到AFM层。该自由层可包括CoFe层和形成在其上的NiFe层。Ta帽层可形成在该自由层之上。
已发现,在退火后,实质上没有氧保留在该间隔层或该自由层中,仅微量氧保留在Ta帽层中。然而,制造其间将氧引入该间隔层使得该自由层具有较低(更负)磁致伸缩。
有利地,实现了此减小的磁致伸缩而没有影响传感器的其他重要磁属性。还实现了此减小的磁致伸缩而不需要调节自由层的CoFe和NiFe层的相对厚度。
根据本发明的一个方面,提供一种控制磁致电阻传感器中的磁自由层的磁致伸缩的方法,该方法包括:沉积磁被钉扎层结构;在该磁被钉扎层结构上沉积非磁间隔层;将氧引入到该非磁间隔层中;在该非磁间隔层之上沉积所述磁自由层;以及加热该磁被钉扎层结构、该非磁间隔层和该磁自由层以设置该磁被钉扎层结构的磁化。
根据本发明的另一方面,提供一种用于控制磁致电阻传感器中的磁自由层的磁致伸缩的方法,该方法包括:沉积磁被钉扎层结构;在该磁被钉扎层结构上沉积非磁间隔层;将氧引入到该非磁间隔层中;在该非磁间隔层之上沉积所述磁自由层;以及退火该磁被钉扎层结构、该非磁间隔层和该磁自由层以设置该磁被钉扎层结构的磁化。
根据本发明的另一方面,提供一种用于制造磁致电阻传感器的方法,包括:提供衬底;在该衬底之上沉积反铁磁材料层;在该反铁磁材料层之上沉积磁被钉扎层结构;在该磁被钉扎层结构之上沉积非磁间隔层;将氧引入到该非磁间隔层中;在该非磁间隔层之上沉积磁自由层;以及退火所沉积的层从而设置该磁被钉扎层结构的磁化。
根据本发明的另一方面,提供一种用于构造磁致电阻传感器的方法,包括:提供沉积室,该沉积室包括夹盘;放置晶片在该沉积室内的该夹盘上;沉积反铁磁材料层,该反铁磁材料层具有截止温度;沉积磁被钉扎层在该反铁磁材料层上;在该磁被钉扎层之上沉积非磁间隔层;将氧引入到该非磁间隔层中;在该非磁间隔层之上沉积磁自由层;在该磁自由层之上沉积帽层;在该帽层上形成掩模;进行离子研磨从而去除该磁致电阻传感器材料的未被该掩模覆盖的部分;以及进行退火从而设置该磁被钉扎层结构的磁化。
参照附图阅读下面对优选实施例的详细描述,本发明的这些和其他特征和优点将变得明显,附图中相似的附图标记始终表示相似的元件。
附图说明
为了更全面理解本发明的本质和优点、及其优选使用模式,请结合附图参考下面的详细描述,附图未按比例绘制。
图1是其中可实现本发明的盘驱动器系统的示意图;
图2是滑块的ABS视图,示出其上磁头的位置;
图3是沿图2的环3截取且逆时针旋转90度的放大ABS视图;
图4是在制造的中间阶段示出的磁致电阻传感器的ABS视图,示出根据本发明一实施例制造传感器的方法;
图5是沉积室的示意图,其中可沉积传感器层;
图6-11是在制造的各个中间阶段的传感器的视图,示出根据本发明一实施例制造传感器的方法;以及
图12是流程图,总结了根据本发明一实施例制造传感器的方法。
具体实施方式
下面的描述是关于实施本发明的当前预期的较佳实施例。进行此描述以用于说明本发明的基本原理而不意味着限制这里主张的发明概念。
现在参照图1,示出实现本发明的盘驱动器100。如图1所示,至少一个可旋转磁盘112支承在心轴(spindle)114上且被盘驱动器马达118所旋转。每个盘上的磁记录是磁盘112上同心数据道(未示出)的环形图案形式。
至少一个滑块113位于磁盘112附近,每个滑块113支承一个或更多磁头组件121。磁盘旋转时,滑块113在盘表面122上方径向进出移动使得磁头组件121可以存取磁盘的写有所需数据的不同道。每个滑块113借助于悬臂115连接到致动器臂119。悬臂115提供轻微的弹力,其将滑块113偏置朝向盘表面122。每个致动器臂119连接到致动器装置127。如图1所示的致动器装置127可以是音圈马达(VCM)。VCM包括在固定磁场内可动的线圈,线圈移动的方向和速度通过由控制器129提供的马达电流信号来控制。
盘存储系统运行期间,磁盘112的旋转产生滑块113与盘表面122之间的气垫,其对滑块施加向上的力或举力。因此在正常运行期间气垫反平衡悬臂115的弹力,支承滑块113离开盘表面且以一小的、基本恒定的间隔稍微在盘表面上方。
盘存储系统的各种部件运行时由控制单元129产生的控制信号控制,例如存取控制信号和内部时钟信号。通常,控制单元129包括逻辑控制电路、存储装置和微处理器。控制单元129产生控制信号从而控制各种系统操作,例如线123上的驱动马达控制信号和线128上的头定位和寻道控制信号。线128上的控制信号提供期望电流分布(current profile)从而将滑块113优化地移动和定位到盘112上期望的数据道。写和读信号借助于记录通道125传送到写和读头121且从其传出。
参照图2,可以更详细地观察滑块113中磁头121的取向。图2是滑块113的ABS视图,如图所见,包括感应写头和读传感器的磁头位于滑块的尾缘。以上关于普通磁盘存储系统的描述以及附图1仅用于示例。应是显然的,盘存储系统可包括多个盘和致动器,且每个致动器可支承多个滑块。
现在参照图3,根据本发明一实施例的磁致电阻传感器300包括夹在第一和第二非磁、电绝缘间隙层304、306之间的传感器堆叠302。间隙层304、306可以由例如氧化铝构成。第一和第二硬偏置层308、310可设置在传感器堆叠302的任一侧,且可以由例如CoPtCr或某些其他硬磁材料构成。由例如Au、Cu、Rh等构成的第一和第二引线层312、314可设置在硬偏置层308、310上从而便于检测电流传送到传感器。
继续参照图3,传感器堆叠302包括自由层结构316、被钉扎层结构318和夹在自由层和被钉扎层结构之间的非磁导电间隔层320。间隔层可以由Cu构成。籽层322可以设置在传感器堆叠302的底部从而促进传感器层中期望的结晶生长,由例如Ta构成的帽层324可以设置在传感器堆叠302顶部从而保护传感器层在制造期间免于损坏。
被钉扎层结构可以是各种类型的,例如自钉扎、简单钉扎,但是优选是AFM钉扎、包括跨非磁AP耦合层330例如Ru反平行耦合的第一和第二铁磁层AP1326和AP2328的AP被钉扎结构。AP1和AP2层326、328可以由例如CoFe构成。反铁磁材料层332例如PtMn或IrMn与AP1层326交换耦合,其强烈地钉扎AP1层326的磁化334在垂直于ABS的期望方向上。AP1层326与AP2层328之间的反平行耦合钉扎AP2层的磁化336。
继续参照图3,自由层可以由CoFe层338和NiFe层340构成,CoFe层338设置得最接近于间隔层320。自由层具有沿平行于ABS的期望方向偏置但响应于磁场自由转动的磁化342。自由层316的磁化342通过来自硬偏置层308、310的每个的偏置场被偏置。供选地,偏置可通过堆叠内偏置结构(未示出)实现。
如根据设计要求所期望的那样,自由层具有中性或负的净磁致伸缩。如上所述,当与传感器堆叠302中固有存在的压应力结合时负磁致伸缩导致平行于ABS且平行于自由层316的偏置磁化342取向的磁各向异性。这样的负磁致伸缩是期望的,因为它辅助自由层316的偏置且提高自由层稳定性。然而,过多的负磁致伸缩将妨碍自由层灵敏度,使得自由层太僵硬(即磁化342会变得对信号场不灵敏)。因此,根据本发明,自由层316具有期望的磁致伸缩量。
自由层316的磁致伸缩通过下面将描述的新颖制造工艺来控制。利用此新颖制造工艺,自由层316的磁致伸缩可以被控制而不必调整自由层316的层338、340的厚度。这有利地允许层338、340形成至向传感器300提供理想磁性能的厚度。
现在参照图4-12,将描述根据本发明一实施例构造磁致电阻传感器的工艺。特别参照图4,一系列传感器层沉积到衬底402上,衬底402可以是非磁电绝缘间隙层例如图3所示的间隙层304。沉积在衬底上的传感器层可以包括籽层404例如NiFeCr、或者NiFeCr和NiFe。AFM层406例如PtMn或IrMn沉积在籽层上,接着是AP1层408、Ru间隔层410和AP2层412。AP1和AP2层408、412可以是例如CoFe,但是也可以是某些其他材料。然后,非磁导电间隔层414优选Cu沉积在AP2层412之上。
上述层402-414可以在图5所示的溅射沉积室502中沉积。溅射沉积室502包括离子束枪504和靶506。晶片508保持在室502内在夹盘510上。来自离子束枪的离子束512使离子和/或原子514从靶驱离且沉积到晶片508上。
再次参照图4,所需量的氧(O2)被引入到间隔层414(对应于图3所示的间隔层320)中。有至少两种方法用于引入氧到间隔层414中。一种方法是通过在间隔层414的表面上若干氧单层的吸附。这可以通过首先沉积间隔层414且然后将间隔层414暴露于含氧气氛来进行。
用于引入氧到间隔层414中的另一种方法是通过在中间层414的溅射沉积期间引入氧。这可以或者通过引入所需量的氧到溅射沉积室502(图5)的气氛中或者通过使所需量的氧包括在沉积室502内的靶506中来实现。例如,靶506可由氧化铜构成。
现在参照图6,可以沉积其余的传感器层。自由层的第一层602沉积在间隔层414上,该第一次优选含CoFe。自由层的第二层604然后被沉积,其优选含NiFe。之后,帽层606例如Ta可以被沉积。
现在参照图7,掩模结构702形成在传感器层402-414和602-606上。掩模702可包括诸如氧化铝、DLC等的硬掩模层704,诸如
Figure C20061017121600111
或一些类似材料的图像转移层706,以及光致抗蚀剂掩模708。掩模结构702可通过全膜沉积层704-708且然后光刻构图光致抗蚀剂层708来形成。然后可进行材料去除工艺例如RIE来转移光致抗蚀剂掩模708的图像到下面的层704、706上。参照图8,可进行离子掩模802从而定义传感器。应指出,可进行一掩模化和研磨操作从而定义传感器的道宽,而可进行另一类似掩模化和研磨操作来定义传感器的条高(从ABS的尺寸)。
现在参照图9,硬磁材料层902例如CoPt或CoPtCr被沉积,接着是导电引线材料层904例如Au、Cu或Rh。然后,参照图10,可进行化学机械抛光(CMP)工艺来去除掩模结构702。也可进行反应离子蚀刻(RIE)来去除硬掩模层704。然后,参照图11,非磁间隙材料层1102例如氧化铝被沉积。
为了如参照图3描述的那样设置磁化336、334,传感器必须经历退火工艺。传感器通过加热该传感器(或者实际上含有许多传感器的晶片)至AFM层406的截止温度(blocking temperature)附近的温度而被退火。例如,如果AFM由PtMn构成,则传感器将提升至260-275华氏度的温度。磁场被施加从而将第一磁层408的温度取向在垂直于ABS的期望方向。在传感器冷却至室温的同时该磁场被维持。
虽然如图4所示氧被引入到间隔层414中,已发现退火该传感器的工艺使得氧完全迁移到间隔层外。结果,完成的头中的Cu层保持期望的Cu纯度和高导电性(即间隔层不是氧化物)。而且,退火之后的材料检验发现,实际上也没有氧保留在自由层的磁层602、604中。因此,自由层保持其所需磁属性。在Ta帽层606中检测到了微量的氧,但是这不会负面影响传感器性能。
尽管没有氧保留在间隔层414或自由层的磁层602、604中,但是制造期间氧的存在导致磁层602、604的磁致伸缩的减小(即层602、604具有更强的负磁致伸缩)。因此,如上所述,自由层602、604(或图3的316)的磁致伸缩可通过添加的氧(O2)被控制,而不负面影响传感器层的任何磁或其他属性。
参照图12,总结了根据本发明一实施例构造传感器的方法1200。在步骤1202中,晶片放置到溅射沉积室中。在步骤1204中,一个或更多传感器层被沉积。然后,在步骤1206,间隔层(优选Cu)被沉积。在步骤1208,氧被引入到间隔层。这可以在沉积间隔层时或者在已经沉积间隔层之后进行。然后,在步骤1210,自由层和帽层被沉积。自由层的沉积可包括首先沉积CoFe层且然后沉积NiFe层。帽层可以是Ta。
在步骤1212,进行一个或更多掩模化和研磨工序以定义该传感器。然后,在步骤1214,硬偏置和引线层被沉积。在步骤1216,可进行CMP从而去除掩模,非磁间隙层可被沉积。最后,在步骤1218,传感器被退火从而设置传感器的磁化且还从间隔层和自由层去除所注入的氧。
虽然上面描述了各种实施例,但是应理解,它们仅以示例而不是限制的方式给出。例如,尽管传感器被描述为面内电流传感器(CIP GMR),但是也还可以在电流垂直平面传感器例如CPP GMR传感器中实现。落入本发明的范围内的其他实施例也会对本领域技术人员变得明显。因此,本发明的广度和范围不应局限于任何上述示例性实施例,而应仅根据所附权利要求及其等价物来定义。

Claims (26)

1.一种控制磁致电阻传感器中的磁自由层的磁致伸缩的方法,该方法包括:
沉积磁被钉扎层结构;
在该磁被钉扎层结构上沉积非磁间隔层;
将氧引入到该非磁间隔层中;
在该非磁间隔层之上沉积所述磁自由层;以及
加热该磁被钉扎层结构、该非磁间隔层和该磁自由层以设置该磁被钉扎层结构的磁化。
2.根据权利要求1的方法,其中所述非磁间隔层是Cu。
3.根据权利要求1的方法,其中所述沉积磁自由层的步骤包括沉积CoFe层。
4.根据权利要求1的方法,其中所述沉积磁自由层的步骤包括沉积CoFe层且然后沉积NiFe层。
5.根据权利要求1的方法,还包括在沉积磁自由层之后沉积帽层。
6.根据权利要求1的方法,还包括在沉积磁自由层之后沉积Ta层。
7.根据权利要求1的方法,其中所述加热该磁被钉扎层结构,该非磁间隔层和该磁自由层包括加热至260-275华氏度的温度。
8.一种用于控制磁致电阻传感器中的磁自由层的磁致伸缩的方法,该方法包括:
沉积磁被钉扎层结构;
在该磁被钉扎层结构上沉积非磁间隔层;
将氧引入到该非磁间隔层中;
在该非磁间隔层之上沉积所述磁自由层;以及
退火该磁被钉扎层结构、该非磁间隔层和该磁自由层以设置该磁被钉扎层结构的磁化。
9.一种用于制造磁致电阻传感器的方法,包括:
提供衬底;
在该衬底之上沉积反铁磁材料层;
在该反铁磁材料层之上沉积磁被钉扎层结构;
在该磁被钉扎层结构之上沉积非磁间隔层;
将氧引入到该非磁间隔层中;
在该非磁间隔层之上沉积磁自由层;以及
退火所沉积的层从而设置该磁被钉扎层结构的磁化。
10.根据权利要求9的方法,还包括在沉积该磁自由层之后沉积Ta层。
11.根据权利要求9的方法,其中所述沉积磁自由层包括沉积CoFe层且然后沉积NiFe层。
12.根据权利要求9的方法,其中所述将氧引入到该非磁间隔层中包括沉积该非磁间隔层且然后将该非磁间隔层暴露于含氧气氛。
13.根据权利要求9的方法,其中所述将氧引入到该非磁间隔层中包括在该非磁间隔层的沉积期间将氧引入到该非磁间隔层中。
14.根据权利要求9的方法,其中该非磁间隔层由Cu构成。
15.一种用于构造磁致电阻传感器的方法,包括:
提供沉积室,该沉积室包括夹盘;
放置晶片在该沉积室内的该夹盘上;
沉积反铁磁材料层,该反铁磁材料层具有截止温度;
沉积磁被钉扎层在该反铁磁材料层上;
在该磁被钉扎层之上沉积非磁间隔层;
将氧引入到该非磁间隔层中;
在该非磁间隔层之上沉积磁自由层;
在该磁自由层之上沉积帽层;
在该帽层上形成掩模;
进行离子研磨从而去除该磁致电阻传感器材料的未被该掩模覆盖的部分;以及
进行退火从而设置该磁被钉扎层结构的磁化。
16.根据权利要求15的方法,其中所述进行退火包括加热所沉积的层至该反铁磁材料层的所述截止温度附近的温度。
17.根据权利要求15的方法,其中该反铁磁材料层包括PtMn。
18.根据权利要求15的方法,其中该反铁磁材料层包括IrMn。
19.根据权利要求15的方法,其中所述沉积磁被钉扎层结构包括沉积第一磁层、沉积Ru耦合层以及然后沉积第二磁层。
20.根据权利要求15的方法,其中该非磁间隔层包括Cu。
21.根据权利要求15的方法,其中所述将氧引入到该非磁间隔层中包括在该非磁间隔层的沉积期间引入含氧气氛到该沉积室中。
22.根据权利要求15的方法,其中所述引入氧到该非磁间隔层中包括利用含氧的靶沉积该非磁间隔层。
23.根据权利要求15的方法,其中所述引入氧到该非磁间隔层中包括利用由氧化铜构成的靶沉积该非磁间隔层。
24.根据权利要求15的方法,其中所述引入氧到该非磁间隔层中包括利用含氧化铜的靶沉积该非磁间隔层。
25.根据权利要求15的方法,其中所述引入氧到该非磁间隔层中包括沉积该非磁间隔层、然后引入氧到该沉积室中从而将该非磁间隔层暴露于含氧气氛。
26.根据权利要求15的方法,其中所述沉积磁自由层包括沉积CoFe层且然后沉积NiFe层。
CNB200610171216XA 2005-12-22 2006-12-21 控制磁致电阻传感器的自由层中的磁致伸缩的方法 Expired - Fee Related CN100517466C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/318,274 US7524381B2 (en) 2005-12-22 2005-12-22 Method for controlling magnetostriction in a free layer of a magnetoresistive sensor
US11/318,274 2005-12-22

Publications (2)

Publication Number Publication Date
CN1988002A CN1988002A (zh) 2007-06-27
CN100517466C true CN100517466C (zh) 2009-07-22

Family

ID=38184770

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200610171216XA Expired - Fee Related CN100517466C (zh) 2005-12-22 2006-12-21 控制磁致电阻传感器的自由层中的磁致伸缩的方法

Country Status (2)

Country Link
US (1) US7524381B2 (zh)
CN (1) CN100517466C (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2983306B1 (fr) * 2011-11-25 2014-01-10 Commissariat Energie Atomique Capteur de champ magnetique
US8896974B2 (en) * 2013-03-29 2014-11-25 Tdk Corporation Thin film magnetic head with side layers under compression stress
US9047893B1 (en) * 2014-01-31 2015-06-02 HGST Netherlands B.V. Magnetic sensor having narrow trackwidth and small read gap
KR102144660B1 (ko) * 2014-03-18 2020-08-18 삼성전자 주식회사 자기 장치에 사용할 수 있는 자기 접합 및 자기 메모리를 기판 상에 제공하는 방법 및 자기 접합
US9559296B2 (en) 2014-07-03 2017-01-31 Samsung Electronics Co., Ltd. Method for providing a perpendicular magnetic anisotropy magnetic junction usable in spin transfer torque magnetic devices using a sacrificial insertion layer
CN112305468B (zh) * 2019-07-29 2023-09-26 甘肃省科学院传感技术研究所 一种可用于巨磁阻传感器退火的方法与结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020101689A1 (en) * 2000-04-05 2002-08-01 Xuefei Tang High sensitivity spin valve stacks using oxygen in spacer layer deposition
US6661622B1 (en) * 2000-07-17 2003-12-09 International Business Machines Corporation Method to achieve low and stable ferromagnetic coupling field
US7038891B2 (en) * 2002-01-02 2006-05-02 International Business Machines Corporation Method and apparatus for providing precise control of magnetic coupling field in NiMn top spin valve heads and amplitude enhancement
US6937448B2 (en) * 2002-11-13 2005-08-30 Hitachi Global Storage Technologies Netherlands, B.V. Spin valve having copper oxide spacer layer with specified coupling field strength between multi-layer free and pinned layer structures
US7234228B2 (en) * 2002-12-03 2007-06-26 Headway Technologies, Inc. Method of fabricating novel seed layers for fabricating spin valve heads
US6998150B2 (en) * 2003-03-12 2006-02-14 Headway Technologies, Inc. Method of adjusting CoFe free layer magnetostriction
US7256971B2 (en) * 2004-03-09 2007-08-14 Headway Technologies, Inc. Process and structure to fabricate CPP spin valve heads for ultra-high recording density

Also Published As

Publication number Publication date
US20070144616A1 (en) 2007-06-28
CN1988002A (zh) 2007-06-27
US7524381B2 (en) 2009-04-28

Similar Documents

Publication Publication Date Title
US9396742B1 (en) Magnetoresistive sensor for a magnetic storage system read head, and fabrication method thereof
US6052263A (en) Low moment/high coercivity pinned layer for magnetic tunnel junction sensors
CN100461265C (zh) 具有各向异性硬偏置而没有缓冲层的磁致电阻传感器及构造传感器的方法
US9042062B2 (en) Magnetic sensor with recessed AFM shape enhanced pinning and soft magnetic bias
CN100495755C (zh) 具有各向异性被钉扎层的磁致电阻传感器及其制造方法
US7820455B2 (en) Method for manufacturing a tunnel junction magnetoresistive sensor with improved performance and having a CoFeB free layer
US9153258B2 (en) Scissor magnetic read sensor with novel multi-layer bias structure for uniform free layer biasing
US7405909B2 (en) Current perpendicular to plane (CPP) magnetoresistive sensor with free layer biasing by exchange pinning at back edge
US20070019339A1 (en) Magnetic tunnel transistor with high magnetocurrent and stronger pinning
US7251110B2 (en) GMR sensor having layers treated with nitrogen for increased magnetoresistance
US20090155629A1 (en) Tunnel junction magnetoresistive sensor having a near zero magnetostriction free layer
CN1838245A (zh) 具有提供改善的自由层偏置的Ru/Si基种子层的磁传感器
JP5852541B2 (ja) 磁気抵抗センサーのための磁気バイアス構造
US8213132B2 (en) Magnetic sensor having a physically hard insulation layer over a magnetic bias structure
US20060218774A1 (en) Method for manufacturing a magnetic read sensor employing oblique etched underlayers for inducing uniaxial magnetic anisotropy in hard magnetic bias layers
US20150002961A1 (en) Scissor magnetic sensor having a back edge soft magnetic bias structure
CN100517466C (zh) 控制磁致电阻传感器的自由层中的磁致伸缩的方法
US20050269288A1 (en) Dual angle milling for current perpendicular to plane (CPP) magnetoresistive sensor definition
US7848061B2 (en) Current perpendicular to plane (CPP) magnetoresistive sensor with back flux guide
US7457085B2 (en) Magnetic read sensor employing oblique etched underlayers for inducing uniaxial magnetic anisotropy in hard magnetic bias layers
US20120187079A1 (en) Method for manufacturing a magnetic sensor having a flat upper shield
US20020159205A1 (en) Underlayer for high amplitude spin valve sensors
US7414817B2 (en) Magnetoresistive sensor having a laminated hard magnet structure for free layer biasing
CN104821171B (zh) 具有窄轨道宽度和小读间隙的磁传感器
US20160307587A1 (en) Underlayer for reference layer of polycrystalline cpp gmr sensor stack

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090722

Termination date: 20100121