CN100514880C - 复数个封包数据控制通道的功率控制 - Google Patents

复数个封包数据控制通道的功率控制 Download PDF

Info

Publication number
CN100514880C
CN100514880C CNB038111322A CN03811132A CN100514880C CN 100514880 C CN100514880 C CN 100514880C CN B038111322 A CNB038111322 A CN B038111322A CN 03811132 A CN03811132 A CN 03811132A CN 100514880 C CN100514880 C CN 100514880C
Authority
CN
China
Prior art keywords
control channel
packet data
mobile station
channel
plural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB038111322A
Other languages
English (en)
Other versions
CN1653835A (zh
Inventor
查娅·斯坦尼斯瓦夫
杨洪魁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
MEISHANG WEIRUI ELECTRIC Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEISHANG WEIRUI ELECTRIC Co filed Critical MEISHANG WEIRUI ELECTRIC Co
Publication of CN1653835A publication Critical patent/CN1653835A/zh
Application granted granted Critical
Publication of CN100514880C publication Critical patent/CN100514880C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/343TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading taking into account loading or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure

Abstract

本发明是复数个封包数据控制通道的功率控制,其中复数封包数据控制通道关联至具有高速数据传输的蜂巢式通讯系统中一个或多个封包数据信道的共同区块。在一个基地台的涵盖服务范围内的行动台,根据预期接收信号传输能力来加以分类,其中预期接收信号传输能力以由位置、传送路径长度、回报信道品质、反向传输所需功率或其它方法来决定。复数封包数据控制通道与不同类别的行动台相关联,且传输时具有不同级别的稳健度。稳健度最佳的封包数据控制通道可与所有被服务的行动台取得联是,另外一个具有较差稳健度的封包数据控制通道于传输时具有更高的使用效率。在一个具有较差稳健度的封包数据控制通道上传输,可以减少功率,及/或增加数据密度。

Description

复数个封包数据控制通道的功率控制
技术领域
本发明是有关无线通讯,特别是关于使用高速封包数据传输的蜂巢式通讯系统。
背景技术
在CDMA通讯领域里,最新的技术通常被发表在标准文件中,而于本发明之前发表的标准文件为IS-2000 Release B(“IS-2000B”)。根据该份文件的标准,CDMA蜂巢式通讯(cellular communication)装置可以用来同时传送高速封包数据与语音。数据与语音传送能力的演变可参考1xEV-DV,1xEV-DV-enabled或是简单称为EV-DV,这样的系统和通讯协议典范。在那种系统中,需要具有数个不同的实体信道。此系统的一显著特征是能够同时提供非常高速的封包数据传输与语音传输。
众所皆知,蜂巢式通讯(cellular communication)系统使用被称为行动台(mobile station)的可携式收发器,作为使用者通讯之用。本质上,这是一种一对多,或者相对少数对非常多数的系统。其中一或相对少数指的是基地台(base station)的数量,而多或非常多数则指行动台的数量。每一个基地台与复数行动台之间通讯。基地台的架设是根据使用者所在地理范围与连接数量。在一个EV-DV服务,或是任何提供高速封包数据通讯的蜂巢式系统,基地台的架设也必须满足使用者对数据量的需求。
蜂巢式系统在操作上,通常有频率范围的限制,而进一步限制了每一个基地台所能服务的行动台数目。一个基地台的价值,取决于在某一个通讯品质之上,所能同时服务的行动台数目。因此,有必要找出一个方法,使得系统在频宽及通讯品质的限制下,能够增加每一个基地台同时能够服务的行动台数目。本发明所揭露的方法及装置,即为一具体实施例,可以应用在蜂巢式通讯系统中,用来增加每一个基地台同时能够服务的行动台数目。
发明内容
本发明主要目的在于提供一种于通讯系统中控制传送功率的方法及装置。此方法及装置在复数使用者分享系统封包数据传输资源时,可以在复数封包数据控制通道中更有效率地传送数据。经由一个代理服务器,可以评估由一个特定的基地台所服务的使用者行动台接收控制通道信息的能力,并以此为基础将使用者行动台分类。每一复数封包数据控制信道在传送数据时,具有不同的稳健度。在具有最强稳健度的信道上传输的数据,会被优先传送给归类为相对来说性能最差接收器类别的行动台。反之,稳健度较差的数据,则被传送到性能较佳的行动台。
有好几种不同的技术,可以被用来实作一个代理服务器,来评估一个特定行动台预期接收能力。举例来说,可以估量在一个基地台服务范围内的实际位置,可以估量基地台与行动台之间的传送路径长度,可以评估由行动台到基地台的传送品质,也可以解译由行动台传送给基地台的接收信号品质参数,或是以上几种技术的任意组合。
同样的,有好几种不同的技术,可以被用来降低至少一个封包数据控制通道的稳健度。举例来说,可以降低功率等级,或者,不同的调变编码技术可以提供至少一个封包数据控制信道额外的位容量。增加位容量的封包数据控制信道可以再被细分,来提供信息给一个或复数额外的行动台,使用这种作法的例子有TDM、CDM、及数据分享技术。
附图说明
图1表示现有技术中EV-DV数据-语音通讯行动台的层级架构区块图,其中,行动台具有数个实体信道来实现高速封包数据通讯;
图2表示由基地台区段提供服务的简化蜂巢结构示意图,显示行动台的分布,及每个基地台区段到行动台的距离及路径长度;
图3表示现有技术中CDMA蜂巢式系统的时槽时程图,显示时程以及基地台与行动台之间可能发生的互动;
图4表示两个控制通道及一个多使用者共享数据信道的序列图;
图5表示基地台传输时的组件区块图;
图6表示现有技术中EV-DV行动台的接收信号处理硬件区块图。
符号说明:
102~实体层
104~媒介存取控制(MAC)层
106~实体信道组
108、110~正向封包数据控制通道(F-PDCCH)
112~正向封包数据信道(F-PDCH)
114~反向信道品质指数信道(R-CQICH)
116~反向确认通道(R-ACKCH)
200~蜂巢单位
202~基地台
a、b、c~服务区段
204~周围部分
206~分隔虚线
208~远距区
210~近距区
212、220~行动台
214、218~距离长度
222、226~建筑物
224~信号路径
302~封包数据信道(PDCH)
304、306~封包数据控制通道(PDCCH)
308、310、312~参考时间点
314、318、320、322、326~信息
316、324、328~封包
330~反向确认通道(R-ACKCH)
332、334、336~确认信号
338~延迟
340~周期
502~基地台系统高阶处理区块
504~PDCCH0编码、Walsh覆盖及调变区块
508~PDCCH1编码、Walsh覆盖及调变选择区块
510~通道结合及复变展频区块
514~通道0增益区块
516~通道1增益区块
512~通道功率分配区块
518、520~乘法器
522、524~基频滤波器
528~行动台传递延迟评估器区块
530~正向功率控制区块
532~反向功率控制区块
534~行动台速度评估器区块
536~行动台回报信号品质区块
602、620~复变相关器及Walsh反覆盖区块
604~导频复变相关器区块
608~通道评估器区块
610~相位校准区块
612、624~最大比率合成器(MRC)
614~反交错及解调区块
616~Viterbi解碼区块
618~控制区块
622~相位校准区块
626~符号缓冲器
628~解调器区块
630~混合型自动传输响应及反交错区块
632~快速译码器区块
634、638~有效性检查区块
636~MCS选择区块
具体实施方式
概观
在过去,CDMA蜂巢式(cellular)电话通讯系统主要用来作语音通讯,然而最近出现了使用该系统提供高速数据通讯的需求。为了达到同时传输语音与传输有效的高速数据(以下称作EV-DV),CDMA系统被加入或修改了许多特性。举例来说,为了增加整体数据传输速率,数个额外的实体信道被加入具有EV-DV功能的行动台装置中,以提供高速封包数据传输。另外,为了增加传送数据给复数使用者时的弹性,原有CDMA通讯协议中基本20毫秒讯框架构(frame structure),现在已经可以被控制及寻址于长度为1.25毫秒的时槽(“slot”)中。
用来提供封包数据传输能力的实体信道包括正向信道及反向信道。图1表示CDMA EV-DV行动台中,实体层(physicallayer)102与媒介存取控制(MAC)层104之间的接口。实体信道(physical channels)组106上的每一个信道都标示有信道代号及箭头。箭头的方向代表信道中数据流的方向。正向信道(forward channel,信道代号为F-开头)传送数据至行动台(mobile station)的MAC层,而反向信道(reverse channel,通道代号为R-开头)由行动台的MAC层传送数据到基地台(basestation)。有些通道是双向的,标示为一个双向箭头及通道代号为F/R-开头。
正向封包数据控制功能(F-PDCF)的实体信道组件中包括两个正向封包数据控制通道(F-PDCCH,或简单称作PDCCH)F-PDCCH0 108及F-PDCCH1 110。正向封包数据控制信道承载由基地台传送而来的信息,其信息用来指出某一特定的封包是否属于一目标行动台,以及收到数据的行动台该如何对数据进行译码。主要用来承载数据的信道为正向封包数据信道(F-PDCH)F-PDCHi 112。正向封包数据信道112由服务基地台所提供可用的复数封包数据信道选取而来。一个特定的F-PDCHi(以下仅称为PDCH)可以再被细分,并且在复数使用者之间分享。如图所示,MAC层104经由F-PDCHi 112接收数据。经由反向信道品质指数信道(R-CQICH)114,行动台提供一个回馈信息给基地台,用来作为信号品质的指针。行动台经由反向确认通道(R-ACKCH)116送出收到正确数据时的确认信号(ACK),或是送出无法收到正确数据时的确认信号(NAK)。这些不同的实体信道具有相当不同的位速率容量(bitrate capacity)。举例来说,封包数据控制通道F-PDCCH0 108与F-PDCCH1 110每秒只能传输数千位,而F-PDCH封包数据信道每秒却可以传输大约3兆位。
蜂巢单位地理位置及行动台分类
图2表示由基地台区段a、b、及c提供服务的通讯蜂巢单位假想图,其地理区域被分为三部分,分别由基地台202的服务区段a、b、及c提供服务。这里,周围部分204用圆形表示,但是实际上其形状由地理状况、阻隔物、及与其它基地台互动关系来决定。此蜂巢周围部分204可以被想成以基地台为圆心,具有蜂巢半径RC的圆周。如图所示,经由一分隔虚线206,此蜂巢单位200可以被区分为距离较远的远距区208与距离较近的近距区210。假设在蜂巢单位内,行动台密度为常数,且分隔虚线206的半径为2-0.5RC或大约RC的71%,则恰好有一半的基地台位于距离较远的远距区208。
由基地台202传送到行动台的信号,其强度大致上随着行动台与基地台之间的距离而变化。此接收信号强度(SS)的衰减大致上与D的X次方成反比(即SS与1/DX成正比),其中X介于2到4之间,D为行动台与基地台之间的距离。
以CDMA EV-DV系统为例子来说明,所有行动台分享复数封包数据控制通道(PDCCHs)及一个对应的封包数据信道(PDCH)。为了使行动台能够接收封包数据信道上的数据,接收一个封包数据控制通道是必要的。因此,封包数据控制通道上的传输状况通常采用很高的稳健度,使得距服务基地台最远的行动台也能正确得接收到封包数据信道。以图2为例,行动台212的位置接近蜂巢单位200的周围部分,与基地台202距离为距离长度214,大约是一个RC,同时也是基地台202到行动台212的信号路径长度。通常,基地台202经由封包数据控制通道传输给行动台的信号,具有足够的信号强度,使得相对距离较远的行动台也能正确地接收到封包数据控制信道上的数据。
然而,大约一半左右的行动台位于分隔虚线206内的近距区210。如图所示,行动台216与基地台202之间的距离长度218(此亦为信号路径长度)小于0.707RC。因此,假设封包数据控制通道的传输振幅为常数,则大约一半的行动台所接收到的信号强度比距离最远的行动台所接收到的信号强度强21.5(约等于2.8)倍。可由以下的式子推得:if SS(D)=k/D3,andSS(RC)=SS0,then SS(RC/20.5)=21.5SS0。此关系式并非绝对精确,但是统计数据显示,在蜂巢单位里,一半的接收器经由封包数据控制信道所接收到的信号强度比维持系统可靠接收所需的信号强度强2.8倍。
行动台可以根据其对封包数据控制信道的预期接收信号能力来加以分类。这样的分类类别可以建立在行动台所在位置的基础上,可经由GPS或三边测量技术来决定位置。以图2为例,行动台可以分类成“近距离”行动台跟“远距离”行动台,“近距离”行动台指的是位于蜂巢单位200近距区210里的行动台,如行动台216,而“远距离”行动台则是指位于蜂巢单位200远距区208里的行动台,如行动台212。将行动台分类之后,可以由属于近距离类别行动台所具有的相对更高信号强度中获得好处。传送到不同类别的封包数据控制信道在处理方式上亦会有所不同。举例来说,经由封包数据控制通道,传送到属于近距离类别行动台的所需信号强度,可以降低至小于传送到属于远距离类别行动台的所需信号强度的一半。因为封包数据控制通道几乎为连续不间断地传输,而特定行动台的语音信道就统计得知大约使用一半的时间传输,所以降低封包数据控制通道上一半以上的传送功率,可以降低整体的传输需求,且足够使特定基地台提供一个额外的语音信道。因此,根据简单的分类技术,例如行动台与基地台之间的距离,在封包数据控制信道传送数据给行动台时,作不同的处理,可以显著地增加基地台的服务容量。
行动台220位于分隔虚线206内的近距区210,然而,行动台220与基地台202之间的直接通讯被一大型建筑物222所阻挡。因此,传送信号沿着非直线的信号路径224,经由另一个建筑物226折射到行动台220。信号路径224的长度实际上大于由基地台到分隔虚线206的距离长度。由此,可以用一个代理服务器,记录每一个行动台与基地台之间的信号路径长度,然后以此作分类的基础。根据这样一个代理服务器,行动台220被分类至“远距离”行动台类别,然而根据位置来评估,行动台220却会被分类至“近距离”行动台类别。以CDMA蜂巢式通讯系统为例子,当行动台接收到服务基地台的脉冲时,会将行动台脉冲锁至服务基地台的脉冲。因此,根据行动台脉冲,在精确的时间点,任何由行动台到基地台的反向连结传输,皆可以被分析并用来评估信号往返延迟。比较基地台接收到反向连结传输的实际时间点与根据基地台脉冲所计算的预期时间点,可以实作这种方法。
假设建筑物222并未完全阻挡掉信号传输,则行动台220有可能直接从基地台202接收到信号,而避免信号路径224的额外路径所造成的延迟。在此情形下,根据信号路径长度,行动台220可以被分类至“近距离”行动台类别。然而,到达行动台220的信号可能已经相当程度地被建筑物220所减弱。因此,可以更进一步地发展出新的分类技术,经由评估预期接收信号能力将行动台分类。回到图1,做为范例用的CDMAEV-DV系统包括由每一个行动台传输用的一个反向信道品质指数信道(R-CQICH,或简单称作CQICH)114。在此系统中,行动台在每个时槽时间中,于反向信道品质指数信道上传送信息,除非是在控制保留状态的时候,传送频率会降至每8个时槽时间传送一次。因此,由行动台传送至基地台的信道品质量测值也可以作为另一个评估行动台的基础,来决定它们的预期接收信号能力,并据此将它们分类。为了分类的目的,可以将由行动台传送的信道品质指数数值加以筛选出可用的结果,例如在周期为50毫秒至5秒的范围下,所得到的动态平均值,如行动台所提供的在100毫秒周期下的样本值。
在作为范例的CDMA系统中,由服务基地台为每一个行动台决定一个反向功率值。基地台传送该反向功率值给被服务的行动台,以指示行动台在反向信道上传输至基地台所应采用的适当传送功率等级。这个数值可以作为另一个基础,来评估目前行动台接收能力。另外,在某些系统里,此数值亦可用来决定被服务的行动台的预期移动率(例如,通过由在行动台或基地台登记的导频序列(pilot sequence)中,量测都卜勒(Doppler)位移),来预测衰退率,据此,可以通过由更精确的行动台分类预期未来的接收品质。
提高PDCCH的效率
有许多方法可以用来提高效率,于至少一个封包数据控制通道的传输上。这些方法包含的范围从可以与现存的CDMA标准兼容的简单技术,到为了能够更广泛实施而需要对现存CDMA标准做调整的具进步性且更复杂的技术。参照图3与图4中,通过由一个分享的封包数据信道与复数封包数据控制通道之间的封包计时关系,可以更加了解这些技术。
图3表示作为范例的EV-DV CDMA通讯系统中提供的信道上封包之间的关系。特别是表示可能被用来分享的封包数据信道PDCH 302及2个传送到行动台并分享PDCH 302的封包数据控制通道PDCCH0 304、PDCCH1 306之间的计时关系。当一个对象行动台被指派给一个封包数据信道时,一个媒介存取控制识别码,通常为8位,可用来唯一识别该行动台。
为了让复数不同的行动台接收器同时存取信道,封包数据信道(例如PDCH 302)为分时多任务处理(TDM)。使用导频信道所建立的分时系统,传统上每个通道被分为复数个1.25毫秒的时槽(slot)。大多数使用者可以同时维持主动连接,而每个使用者于不特定时间点接收数据。除此之外,使用分码多任务(CDM)技术,可以提供多数行动台同时存取分享的封包数据信道。
数据可以在伺服数据单位(SDU)传送,其中伺服数据单位的长度可以选择,从一个时槽到四个时槽,每个时槽为1.25毫秒。在系统组织更上层,基本上伺服数据单位为数据译码封包的次封包(sub-packet),在此这种更上层组织并不重要。每个伺服数据单位在传送参考时间点T0开始传送,例如参考时间点308、310、及312。为了方便起见,可以将封包数据控制信道上的伺服数据单位视为一个信息,将封包数据信道上的伺服数据单位视为数据封包,或简单视为封包。虽然封包数据控制通道信息也算是“封包”,然而这种术语上的界定,可以强调出实际上在高速数据传输时,主要封包为(正向)封包数据信道上的伺服数据单位。
举例来说,占满两个实体时槽的信息314,从传送参考时间点T0308开始,在封包数据控制通道PDCCH0 304上传送。占满相同两个实体时槽的封包316,也从传送参考时间点T0308开始,在封包数据信道PDCH 302上传送。同样地,占满相同两个实体时槽的信息318,亦从传送参考时间点T0 308开始,在第二个封包数据控制通道PDCCH1 306上传送。其中,封包316是更高层译码数据封包的第一个次封包。
在作为范例的CDMA系统中,传统上,所有在封包数据信道及/或相对应的封包数据控制通道上互相交错的伺服数据单位,均使用相同的启始时间及存续时间,虽然说这种传统做法并不是必要的。因此,PDCCH0上具4时槽大小的信息320、PDCCH1上具4时槽大小的信息322、及PDCH 302上具4时槽大小的封包324,均自传送参考时间点T0 310起开始传送,并且具有相同的存续时间。相同地,具1时槽大小的信息326,和相对应的具1时槽大小的封包328,均自传送参考时间点T0 312起开始传送。行动台经由反向确认通道(R-ACKCH,或简单称作ACKCH)330送出收到正确数据封包时的成功信号(ACK),或是送出无法收到正确数据封包时的失败信号(NAK)。其中,R-ACKCH 330对应到图1的116。确认信号,例如NAK 332、ACK 334、或NAK 336,在一延迟338之后送出,基本上等于两个时槽大小。在确认信号传送期间,行动台可以决定相关封包是否已经成功地译码。虽然图3只显示与特定行动台相关的封包,但是,在没有任何图示的时槽时间中,其它信息及封包也正被传送至其它行动台。然而,封包并非一定要在两个PDCCH上传送。举例来说,由于信息326提供行动台将PDCH 302上封包328译码所需要的信息,而在此时槽中,并无其它行动台在接收数据,因此,有可能说,在340所指的周期内,PDCCH1 306上没有任何信息在传送。
在作为范例的CDMA EV-DV系统中,由PDCCH上传输的信息中取得信息,用来指示及对PDCH上同时传送的封包解碼。为了取得对PDCH封包译码的正确指示,必须对一个或两个PDCCH完整地解碼。在图3中,由信息318右端延伸至PDCH上SDU 316开端的箭头表示信息318内的信息,用来解译SDU 316。然而,对PDCCH1作解调及译码,需要决定一个合适的调变编码方案。一种作法是,由事先译码过的SDU中取得信息,针对仍未解调及译码的SDU,来决定一个合适的调变编码方案。由PDCCH0上信息314右端延伸至PDCCH1上信息318开端的箭头表示用来作此决定的一个例子。其中,PDCCH0上解碼过的信息,包含一个指示,来决定一个正确的调变编码方案,对PDCCH1上同时传输的信息作解碼。PDCCH0上解碼过的信息也包含更多信息,例如PDCCH1是否该被处理等等。根据技术变化,除了从PDCCH0上同时传输的SDU中取得相关指示(例如识别出正确的调变编码方案)之外,也可以从先前于PDCCH0或PDCCH1上传送的信息中取得相关指示。这些技术由事先译码过的SDU中取得信息,来决定该如何将仍未译码过的SDU译码。
另一种作法是,经由试误法决定该使用哪一个调变编码方案,来对PDCCH1作解调及解碼,而非经由事先译码过的SDU中取得的信息来决定。由PDCCH1 SDU 322结束端延伸至其开端或左端的箭头表示此试误法的一个例子。根据一第一调变编码方案将SDU 322译码。假设最后信息被证实为有效的(例如,由一个成功的循环冗余码检查(cyclic redundancycheck)得知),则此信息可用来将数据封包324译码,在图3上表示为指向封包324开端的箭头。然而,假设最后信息被证实为无效的,则选择另一个不同的调变编码方案,处理程序回到SDU 322开端。
为了降低第一MCS不正确的机率,可以采取某些步骤。首先,譬如说,可以将用来处理SDU 322的调变编码方案数量,限制在一个小范围,传统上为2个或3个。接收端行动台必须知道这些可以用来处理或预期用来处理的调变编码方案。接着,可以根据最近一次将PDCCH1上SDU成功译码的调变编码方案,选取为第一调变编码方案。然后,也可以根据在先前时间周期内,将最多PDCCH1 SDU成功译码的调变编码方案,选取为第一调变编码方案。这些技术,以及许多其它技术,可以降低将PDCCH1 SDU错误解调及解碼时所浪费的功率。
图4表示封包时槽由i至i+3的序列,忽略分配至每个封包的1.25毫秒时槽数目。只要是在特定封包时槽内的所有PDCH封包及PDCCH信息,均具有相同的存续时间,则此作法并不会失去普遍性。在作为范例的CDMAEV-DV系统中,这是传统上的作法。不同于图3上只显示与特定行动台相关的SDU,图4中亦显示数个其它行动台的信息,在PDCCH0、PDCCH1、或被分享为PDCH A或PDCH B的PDCH上传输。在作为范例的CDMA EV-DV系统中,PDCH A及PDCH B这两个通道,乃针对每个封包时槽,个别地对PDCH作分码多任务处理而来。当然,通过由其它作法,包括分时多任务处理,或别的多任务技术,也可以产生此二(或更多的)PDCH通道。
传统上,PDCCH0作为每个行动台都应该接收到的控制通道。全域信息,例如对PDCH上任何使用者可使用的Walsh空间的限制,可以在PDCCH0上传输。因此,PDCCH0被视为主要的PDCCH0,其必须能够被属于远距离类别的行动台或相对而言较差的接收器接收。远距离接收器的控制信息可以优先在PDCCH0上传送。图4显示在封包时槽i时间内,PDCCH0通道上的信息包括行动台MS1的媒介存取控制地址码,其中MS1属于远距离类别行动台。此信息所包括的信息,足够使MS1将通道PDCH A上的封包解调及解碼。除了可用来指定PDCH A上数据封包所需要的调变编码方案,PDCCH0上的信息亦可用来指定构成信道PDCH A的分享信道PDCH可以使用Walsh空间的哪一部份。
封包时槽i内的PDCCH0信息也可能包括相关信息,使PDCCH1可以获得更有效率的使用。特别是当PDCCH1上的信息被传送至一个或复数属于近距离类别的行动台或相对而言较佳的接收器(例如MS2及MS3)。举例来说,封包时槽i内的PDCCH0信息可以指示PDCCH1使用一调变编码方案,使其能比PDCCH0提供更高的数据密度。因为MS2及MS3具有较佳的数据接收能力,在经过对PDCCH0解碼之后,MS2及MS3就可以对PDCCH1解调及解碼。由于具有较高的数据密度,PDCCH1可以被多任务处理以提供MS2及MS3媒介存取控制识别码及信息。特别是,PDCCH1可用来传送适当参数,例如调变编码方案及配置到PDCH B的Walsh空间,使得MS2能够解调、译码、以及由PDCH B取得数据。PDCCH1也可以传送媒介存取控制识别码和信息,来使得MS3由控制保留状态转移到作动状态,然后在之后的封包时槽里,MS3可以准备接收数据。
任何一种合适的技术,皆可用来将PDCCH1上信息作多任务处理,以服务两个行动台。举例来说,信息可以分时为两个不同的封包。另一种作法是,信息标头可以用来指示承载信息中属于某一行动台的部分,也可以用来指示另一个行动台(例如MS3)的媒介存取控制地址码,并且指示承载信息中属于该行动台的部分。高调变信息可以使用特殊的标头。然而,并不需要修改标头以加入第二个媒介存取控制地址码,可以在承载信息中放置第二个被服务的行动台(例如MS3)的媒介存取控制地址码,譬如说,放置在标头的后某一个已知位置,或者放置在承载信息中属于MS1的部分之后某一个已知位置。而且,还有很多其它可行的技术。例如,假设PDCCH1包括一个以上的代码空间,则可以使用分码多任务技术。根据封包时槽i内的PDCCH0信息所包括的信息,MS1可以由PDCH A取得资料,类似地,根据PDCCH1上同时传送的信息所包括的信息,MS2可以由PDCH B取得数据。
接者看图4上封包时槽i+1,PDCCH0上信息可以提供参数,用来定义PDCH A,以及用来使MS1能将PDCH A上SDU数据作解调及译码。此信息亦可以指示PDCCH1使用一调变编码方案,提供相对较低的数据密度,例如PDCCH0所使用的调变编码方案。在此例中,由于PDCCH1仅需提供一个信息,来传送使MS2能将PDCH B定义、解调、及译码的信息,因此,使用低数据密度即已足够。然而,由于MS2属于近距离类别的行动台或具较佳接收能力的行动台,基地台可以通过由降低PDCCH1的功率级数,来降低PDCH1的传输稳健度。简单地说,功率降低量可以经由MS2所属近距离类别的特性来决定。或者说,可以将类别分得更窄、更细,然后根据MS2所属类别的接收能力,等量地降低时槽i+1内PDCCH1传送信息功率。根据封包时槽i+1内的PDCCH0信息所包括的信息,MS1可以由PDCH A取得资料,类似地,根据PDCCH1上同时传送的信息所包括的信息,MS2可以由PDCH B取得数据。
如图4所示的例子,MS4被归类为远距离行动台。因此,在封包时槽i+2内,PDCCH0上稳健度高的信息包括用来指示MS4的信息,使得MS4由通讯减弱状态(即控制保留状态)转移到作动状态。然而,PDCH可用频宽仍需被分享,所以PDCCH0上的信息亦指示PDCCH1在高数据密度下调变及编码。在图4所示的例子中,MS2及MS3被归类为近距离行动台。因此,PDCCH1上高密度的信息提供了合适的参数和指令,使得MS2及MS3可以分别对PDCH A及PDCH B解碼。
在封包时槽i+3内,所有可供分享的通道PDCH使用的频宽被分配到属于MS3的数据封包。由于在分配PDCH A之后,并没有剩下任何频宽(代码空间),所以实际上在此时槽中PDCH B并不存在。再者,通道PDCCH上并无传送其它信息。因此,在封包时槽i+3内,PDCCH0上的信息会被传送至近距离行动台MS3。另外也会提供指示,指出PDCCH1没有任何传输活动。根据PDCCH0上的信息,MS3可以将PDCH A解调及解碼。
基地台传送器
图5表示在基地台传送系统中,用来增加多数PDCCH使用效率的装置。在一个基地台传送系统里,高阶处理区块502用来评估系统所服务的行动台。此高阶处理区块502可用来预测每个行动台可能的接收信号能力,并且据此将行动台分类成两个以上类别。将接收信号能力较差的行动台归类为“远距离”行动台,接收信号能力较佳的行动台归类为“近距离”行动台。在基地台系统中,高阶处理区块502优先指示PDCCH0编码、Walsh覆盖及调变区块504,准备“远距离”行动台的PDCCH信息,经由通道PDCCH0来传送。同样地,高阶处理区块502优先指示PDCCH1编码、Walsh覆盖及调变选择区块508,准备“近距离”行动台的PDCCH信息,经由通道PDCCH1来传送。
信道功率分配区块512,与基地台高阶处理区块502一起用来指示每个封包时槽的通道增益,并且在区块514中控制通道PDCCH0的增益值,以及在区块516中控制通道PDCCH1的增益值。区块514中的增益值,与区块504输出的调变编码Walsh覆盖符号,一同输入至乘法器518内做处理。区块514所设定的通道增益,基本上必须确保被基地台所服务的最远行动台能正确地接收到PDCCH0。这个值可以是一个固定值或变动值。
区块516所设定的通道增益,与区块508输出的信号,一同输入至乘法器520内做处理。PDCCH1符号的编码及/或调变方案可以是固定或可选择的。在许多实例中,区块516所设定的PDCCH1通道增益值,低于区块514所设定的PDCCH0通道增益值。在实施例中,区块516所设定的通道增益值,维持在小于区块514所设定的增益值的二分的一,特别是当区块508内选取的调变编码方案与PDCCH0的调变编码方案相符合时。在此实施例中,仅在少数情形下,需要将区块516所设定的PDCCH1通道增益值,增加至大于PDCCH0增益值的二分之一,譬如说,当两个PDCCH通道皆需要同时传送信息至两个“远距离”行动台时。因此,PDCCH1通道上大部分的传输功率,远小于PDCCH0通道的传输功率。通过由降低功率来降低PDCCH1传输稳健度,可以更有效地使用传输功率,进而保留更多有效频宽供其它传输使用。
通道功率分配区块512可以被用来控制区块508内选取的调变编码方案以及区块516所设定的增益值。通过此作法,基地台系统可以改变PDCCH1的信道增益或符号密度,或两者皆改变,因而能够由单个PDCCH1信息区块来提供服务给两个“近距离”行动台,如图4所示。同时传输的PDCCH0 SDU可以提供指示,用来在区块508内选择调变编码方案。在接收端行动台,这种指示可以使用PDCCH1传输时所用的调变编码方案的识别码。然而,不需要这种指示,就可以在两个或两个以上级别之间,选择PDCCH1的调变编码方案。在PDCCH0中未编址的行动台可以根据一第一调变编码方案,将PDCCH1上的信息“盲目地解碼”,若未通过正确值检查而解碼失败,则根据另一个不同的调变编码方案盲目地译码。假使可供选择的调变编码方案级别不多,则步骤很简单。举例来说,有两个调变编码方案级别可供PDCCH1使用,其中,第一调变编码方案级别与PDCCH0使用的调变编码方案级别相近,并且,与第一调变编码方案级别相比,第二调变编码方案级别提供大约两倍的数据密度(在已知传输功率下,等量降低的信号稳健度级别基础上做比较)。实施例提供了两个调变编码方案级别及两个或两个以上通道增益级别。
乘法器518及520分别用来控制PDCCH0及PDCCH1的调变编码符号增益。乘法器518及520处理后产生的信号输入到区块510,并合成一个复变信号(complex signal)。在作为范例的CDMA系统中,此复变信号在区块510中做展频处理。经过合成与复变展频之后,区块510所产生的复变信号的I项与Q项,分别被输入至基频滤波器522及524。经基频滤波处理后,由PDCCH0及PDCCH1符号合成的复变信号与适当相位移过的载波频率分别相乘后再相加,然后经由传输天线输出。此外,也可以进一步在天线前信号路径上加上射频(RF)硬件,例如提供第二级频率位移处理及/或进一步提供射频(RF)增益的硬件。
信道功率分配区块512可以根据基地台高阶处理区块502所提供复数输入值的一个或一个以上的值,来选择通道增益。举例来说,可能包括以下一个或一个以上的值:由行动台传递延迟评估器区块528所产生的信号传输时间估计值所推导出的行动台信号路径长度估计值、由正向功率控制区块530产生的正向语音信道功率控制估计值、由反向功率控制区块532所准备以传送至每个行动台的反向功率控制值、基于都卜勒位移估计值,由行动台速度评估器区块534所产生的行动台速度估计值所推导出的行动台信号衰减预测值、以及由行动台传回到行动台回报信号品质区块536处理的接收信号品质(例如C/I)的平均值。基于三边测量技术,例如使用GPS卫星信号或行动台与复数基地台之间的信号,来取得的行动台位置估计值亦可为选择值。任何这些输入值的组合可以用来建立一数值或“一代理值(proxy)”,以正确反映每个被服务的行动台的预期接收信号能力。然后,这些被服务的行动台可以根据此代理值来加以分类至两个或两个以上的类别。
行动台接收器
图6为简化的区块图,表示复数(如图6所示为两个)PDCCH信道的接收处理硬件、一个PDCH信道(其最多使用28个Walsh空间)、以及一个导频信号。双线条表示信号为复变(具有I和Q)形式。由RF部分(未图示出)接收的传入信号(如图6所示“由RF”)包括芯片传输速率的I项及Q项取样。三个区块用来接收原始取样信号,包括PDCCH复变相关器及Walsh反覆盖区块602、导频复变相关器区块604、及PDCH复变相关器及Walsh反覆盖区块620。每一个复变相关器区块包括堆栈或重迭在一起的复数区块,以表示实际上存在的两个或两个以上例项或“指项(fingers)”。这些多数指项如同一个可以大量处理的滤波器,分别处理在时域中彼此具有些微差异的信号。这种时域中的差异可归因于自然的多路径反射,或利用传输多样性技术来刻意制造。指项数目基于每个接收器设计时的工程考量来决定。导频复变相关器区块604接收复变信号,然后针对适当的导频伪随机(PN)代码,由每个指项将信号解展频,处理结果输入至通道评估器区块608的相对应指项。通道评估器区块608的每个指项提供不同的通道估计值给PDCCH及PDCH通道使用。图6中所有堆栈区块均表示使用复数不同处理指项的类似情形。
如图所示,在作为范例的CDMA EV-DV系统中,使用两个适合的PDCCH信道,其中PDCCH信道数目的选择是由设计及标准惯例来决定。因此,复变相关器及Walsh反覆盖区块602的每个指项提供两个复变相关及Walsh符号解展频信道。复变相关器及Walsh反覆盖区块602的每个指项输出I项及Q项复变符号至相位校准区块610的对应指项,并根据由通道评估器区块608的对应指项传来的输入值,做相位校准处理。经过相位校准处理后,由每个指项输出的符号被送至最大比率合成器(MRC)612,加以适当地合成并产生一单一符号串流。因此,MRC612在图上表示成一个区块,而非复数指项。为了能更加了解在MRC区块612之后,PDCCH处理区块中的互动,底下将PDCH接收处理做一简单描述。
与PDCCH信号路径类似,PDCH信号路径基本上亦包括具复数指项的复变相关器及Walsh反覆盖区块620及具复数指项的相位校准区块622,其中每一指项分别对应接收器大量处理滤波器的一个指项。与PDCCH处理相比较,由于PDCH使用更多Walsh空间及具有更广的调变编码技术选择范围,使得PDCH处理可以在非常高的位速率中完成。在范例系统中,复变相关器及Walsh反覆盖区块620的每个指项包括28个复变相关器,用来同时间做Walsh符号解展频处理,与此相较,如图标的两个PDCCH信道仅使用两个复变相关器。复变相关器及Walsh反覆盖区块620的每个指项输出复变符号至相位校准区块622的对应指项,并根据由通道评估器608的对应指项传来的信息,做相位校准处理。由相位校准区块622的每个不同指项输出的复变符号被送至最大比率合成器(MRC)624,加以适当地合成。由MRC区块624输出的复变符号被储存在符号缓冲器626。符号缓冲器626用来储存最多5时槽大小的未解调复变符号。
在传送端,PDCH符号调变范围变化很大,例如,从QPSK到16QAM或更高的范围。解调器区块628无法事先得知处理信号用的调变方案。因此,直到解调器区块628接收到由控制区块618传来的解调指示后,才开始将缓冲的符号解调。接着,控制区块618由PDCCH通道上同时接收的信息封包得知解调级别。由解调器区块628输出的已解调符号被送至区块630做反交错处理。区块630亦提供混合型自动传输响应(ARQ)。与解调器区块628类似,快速译码器区块632亦由控制区块618取得信息,例如有关封包大小的信息,然后快速译码器区块632应用快速解碼法至区块624输出的反交错过的符号,因而产生PDCH数据。
PDCCH信道的主要目的为提供信息给解调器区块628及快速译码器区块632,使得PDCH数据封包能被处理。传统上,在整个信息被完整地接收、解展频、解调、反交错、及译码的前,无法由PDCCH上的信息得到解调级别。因此,在整个PDCCH信息封包被完整地解译之前,PDCH符号无法被解调,更别提被译码。所以,符号缓冲器626对每个符号的储存时间超过最大封包长度(基本上为4时槽大小)。因此,符号缓冲器626基本上提供充足的复变储存空间给在5时槽时间内能被传送的最多符号。
由于要完整地处理PDCH通道,需要一个PDCCH信道上的信息,所以回过头去探讨PDCCH接收处里路径。在MRC区块612之后,有许多不同作法值得探讨,特别是在处理PDCCH1的部分。
传统上,通过由事先决定的接收器已知的调变编码方案(MCS),可以将PDCCH0调变及编码。MRC 612输出的符号可以立刻接着被送至反交错及解调区块614,处理后再送至Viterbi解碼区块616。产生的最后位由区块634做循环冗余码检查,以确定其有效性。若检查为有效,则此最后位被送至控制区块618,由该处完成PDCH数据封包的处理,至少假设PDCCH0上的信息被寻址至图示中的接收器。CRC区块634可能包括各种有效性检查,例如错误检查修正或仅做总和检查。若检查为无效,则忽略此信息,并尝试下一个不同信息。使用事先决定且稳健的调变编码方案提高了“远距离”行动台能正确将所有PDCCH0信息解碼的机率。
然而,根据其它不同作法,在处理PDCCH通道时,可以使用复数不同的调变编码方案,而非使用一个事先决定且不变的调变编码方案。根据某些“复数PDCCH1调变编码方案”作法,可以将复数调变编码方案应用在PDCCH1传输。因此,假设行动台位于一个接收情形良好的地区,即使数据传送密度更高但稳健度较差,仍然可以在PDCCH1上接收到更多数据。为了使用不同的解调及译码方案,至少PDCCH1通道需要被提供复变符号(如图6所示,由相位校准区块610到MRC区块612的双箭头,以及由MRC区块612到反交错及解调区块614的双箭头)。
根据一第一不同作法,PDCCH1的调变编码方案由一组调变编码方案(例如两个或三个)中选择而来,其中每个调变编码方案对行动台而言皆为已知的。依照此第一不同作法,在反交错处理之后,PDCCH1在区块614中,通过由预设的调变编码方案做“盲目地”解调处理。预设的调变编码方案可以是固定的,或者由MCS选择区块636根据控制区块618传来的准则做决定。举例来说,可以经由以下准则来决定调变编码方案:最近一次使用的调变编码方案、盲目选择的调变编码方案、依惯例规定的调变编码方案、或者在最近一段时间内,被正确使用频率最高的调变编码方案。经过“盲目地”解调处理之后,解碼区块616亦根据预设的调变编码方案做“盲目地”译码处理。接着,由有效性检查区块638做有效性评估。任何方便好用的有效性检查技术皆可加入或取代指定的CRC检查。假设PDCCH1信息为有效的,则此信息被送至控制区块618,并且根据信息中的地址码及指示,完成PDCH处理工作。然而,假设有效性检查失败,则经由MCS选择区块636选择一个不同的调变编码方案。使用仍储存于反交错内存中的符号,并根据不同的调变编码方案,做“盲目地”解调及解碼处理。成功后,PDCCH1信息被送至控制区块618。若仍然失败,则系统继续尝试下一个不同的调变编码方案。若所有已知调变编码方案均被尝试过且失败,则MCS选择区块636终止处理动作。
根据一第二不同作法,PDCCH0信息通过由PDCCH1的适当的调变编码方案来指示接收端行动台动作,所以不需要盲目地解碼。此适当的调变编码方案的指示可以由PDCCH0信息提供,而与此信息同时传输的PDCCH1正在被译码中,因此,需要等到PDCCH0先处理完成,PDCCH1才能继续处理MRC区块612的后的工作。然而,此指示亦可由先前传输的PDCCH0信息提供,甚至于由先前传输的PDCCH1提供(采用后者作法会有增加传输错误的风险)。根据上述第二不同作法,控制区块618指示MCS选择区块636开始处理PDCCH1,通过由正确的调变编码方案,此调变编码方案由同时传输的PDCCH0信息或先前信息所决定。在此作法中,若区块638对PDCCH1有效性检查失败,则数据会被忽略,区块636将不会再采用新的MCS方案。
根据一第三不同作法,使用PDCCH1上已知的调变编码方案处理PDCCH1。此作法类似于处理PDCCH0时的作法。只要PDCCH1的调变编码方案已经事先决定,则不必要使用相同的调变编码方案。在此情形下,PDCCH1符号在经过相位校准区块610之后不需要是复变的,也不需要使用MCS选择区块636来变换调变编码方案。因此,上述第三不同作法与现存行动台收发器及现存CDMA EV-DV系统标准兼容性最佳。传送器,如图5所示,可以在更低功率下传送PDCCH1,且行动台不需要特别指示。与PDCCH0信号相比,尽管PDCCH1信号具有较低功率及较差稳健度,假设行动台恰好位于接收良好的区域,则仍可以成功地对PDCCH1解碼。假设行动台并非位于接收良好的区域,因而无法成功地对PDCCH1信息译码,则忽略此PDCCH1信息。
结论
以上描述揭露本发明的实施例,提供创新方法及装置,用以将与一共享封包数据信道关联的复数封包数据控制通道的传输效率加强。此处列举了一些可能的实作方法,然而无法列举所有可能的实作方法。因此本发明的保护范围当视后附的申请专利范围所界定者为准。以上描述揭露的本发明特性,除非有加进后附的申请专利范围,否则并非用以限定本发明的范围。
虽然以上描述透过不同的实施例,指出本发明的创新处,任何熟习此项技艺者,在不脱离本发明的精神和范围内,当可做些许的删除、替换与改变。例如,熟习此项技艺者可以调整以上描述的细节,以应用在通讯系统,涵盖不同范围的调变技术、传送器与接收器架构、及广义来说任何不同的形式。特别是,在设计上,要调整通道的分配是很容易的。因此,以上描述中以第一PDCCH通道,或PDCCH0,作为主要的、更高功率的、及更广为存取的PDCCH通道,并非排除其它通道被分配来具备这些特性,不论是在固定或变动的基础上。以上描述中所命名的术语,例如封包数据控制通道,仅为命名方便的故,并非用以限定本发明方法及装置的范围。
根据以上描述的组件,所推导出任何可行的或创新的组合,及等效组件的任何可行的组合,当被视为本发明的实施例。因为更多不同的组件组合可被视为本发明的实施例,超过此处所能列举的实施例,因此本发明的保护范围当视后附的申请专利范围所界定者为准。任何针对申请专利范围中组件,在等效性的精神和范围内所做的改变,当视为本发明的保护范围。以下所提出的每个申请专利范围,其保护范围包括根据申请专利范围所做文字上的些许更动所得到的任何系统或方法,除非该系统或方法为现有技术的实施例。最后,每个申请专利范围中描述的组件,当适用最广的定义,且当包括任何等效组件,除非该等效组件为现有技术所揭露。

Claims (23)

1.一种控制功率的方法,适用于一蜂巢式通讯系统,其中上述蜂巢式通讯系统由一服务基地台提供高速封包数据至复数行动台,其特征在于,所述方法至少包含:
(a)评估由该服务基地台服务的该复数行动台的预期接收品质,所评估的预期接收品质包括由该复数行动台传送至该服务基地台的复数信道品质指数;
(b)将该服务基地台服务的该复数行动台分类至复数接收类别,其中该复数接收类别反映预期接收品质评估的结果;
(c)优先指派属于复数封包数据控制通道的一第一封包数据控制通道给属于一第一接收类别的复数行动台;
(d)传送具有一第一稳健度的该第一封包数据控制信道上的信息至属于该第一接收类别的复数行动台;以及
(e)传送具有一第二稳健度的不同于该第一封包数据控制通道的一第二封包数据控制信道上的信息至属于一第二接收类别的复数行动台,其中该第二稳健度低于该第一稳健度时,可分配较该第一封包数据控制通道高的传送功率于该第二封包数据控制通道。
2.如权利要求1所述的方法,其特征在于,所述复数封包数据控制通道与单一共享封包数据信道相关。
3.如权利要求1所述的方法,其特征在于,在所述步骤(e)之后更包括降低该第二封包数据控制通道传输时的稳健度,此乃通过由改变该第二封包数据控制通道的调变及/或编码方案来完成,使得传递时,该第二封包数据控制信道上的数据比该第一封包数据控制信道上的数据更为密集。
4.如权利要求3所述的方法,其特征在于,在降低该第二封包数据控制通道传输时的稳健度之后更包括调变及编码该第二封包数据控制信道的符号,操作在为一目标行动台已知的复数调变及/或编码方案级别中选择出来的一级别下。
5.如权利要求4所述的方法,其特征在于,在调变及编码该第二封包数据控制信道的符号之后更包括盲目地译码该目标行动台中该第二封包数据控制通道上的一信息,此乃根据一第一调变及/或编码方案来完成,若根据该第一调变及/或编码方案译码失败,则根据一第二调变及/或编码方案盲目地译码该信息。
6.如权利要求1所述的方法,其特征在于,造成该第二封包数据控制通道传输时具有较低稳健度的原因至少有部分为,在与该第一封包数据控制信道的单位信息同时传送的周期内,分时多任务处理该第二封包数据控制通道上的复数信息。
7.如权利要求1所述的方法,其特征在于,所述造成该第二封包数据控制通道传输时具有较低稳健度的原因至少有部分为,与该第一封包数据控制通道相比,该第二封包数据控制通道在较小的Walsh空间中传输。
8.如权利要求1所述的方法,其特征在于,所述对一特定行动台所做的上述评估预期接收品质的步骤包括评估该服务基地台与该特定行动台之间的路径长度。
9.如权利要求8所述的方法,其特征在于,所述对该特定行动台所做的上述评估预期接收品质的步骤更包括估计该特定行动台的位置参数。
10.如权利要求8所述的方法,其特征在于,所述对该特定行动台所做的上述评估预期接收品质的步骤更包括估计该服务基地台与该特定行动台之间的信号传递延迟。
11.如权利要求1所述的方法,其特征在于,对该特定行动台所做的上述评估预期接收品质的步骤包括评估由该特定行动台传送至该服务基地台的复数信道品质指数。
12.如权利要求11所述的方法,其特征在于,对该特定行动台所做的上述评估预期接收品质的步骤更包括过滤由该特定行动台传送至该服务基地台的该复数信道品质指数,使其具体反映且仅反映该复数信道品质指数中持续约100毫秒的变化。
13.一种蜂巢式通讯系统基地台装置,用以传送高速数据至复数使用者,其特征在于,上述装置至少包含:
(a)复数封包数据信道传送设备,用以在复数使用者收发器之间分享一封包数据信道,此乃通过由在一共同封包传送周期内,于该封包数据信道中传送不同的封包数据至每一不同的该复数使用者收发器;
(b)不同的复数封包控制信道信号处理路径,其具有一第一封包控制通道及一第二封包控制通道;
(c)一使用者收发器接收评估区块,用以替共享该封包数据信道的每一该复数使用者收发器估计其接收信号能力,并且根据此估计的接收能力,分类该复数使用者收发器至复数接收能力类别;
(d)复数处理设备,用以替该封包数据信道准备一第一信息及一第二信息,其同时间分别被传送在该第一封包控制通道及该第二封包控制通道上,且传送至相对应的该复数使用者收发器,其中该复数使用者收发器乃部分根据该复数使用者收发器的该复数接收能力类别选择而来;以及
(e)复数稳健度控制设备,用以控制该第二封包控制通道的信息传送稳健度,使其不同于同时传送的该第一封包控制通道的信息传送稳健度。
14.如权利要求13所述的基地台装置,其特征在于,所述复数稳健度控制设备具有一通道功率控制区块,用以控制该第二封包控制通道的传送功率,使其不同于该第一封包控制通道的传送功率。
15.如权利要求14所述的基地台装置,其特征在于,所述使用者收发器接收评估区块是根据一特定行动台的信号传递延迟估计值,用以估计该特定行动台的接收信号能力。
16.如权利要求14所述的基地台装置,其特征在于,所述使用者收发器接收评估区块是根据该特定行动台传送的信号品质报告,用以估计该特定行动台的接收信号能力。
17.如权利要求14所述的基地台装置,其特征在于,所述使用者收发器接收评估区块是根据该特定行动台的速度估计值,用以估计该特定行动台的接收信号能力。
18.如权利要求13所述的基地台装置,其特征在于,所述复数稳健度控制设备具有一数据密度控制区块,用以控制传送在该第二封包控制信道上的信息的数据密度,使其不同于同时传送在该第一封包控制信道上的信息的数据密度。
19.如权利要求18所述的基地台装置,其特征在于,所述复数稳健度控制设备更具有一通道功率控制区块,用以控制该第二封包控制通道的传送功率,使其不同于该第一封包控制通道的传送功率。
20.一种蜂巢式通讯系统行动台装置,用以由一基地台接收高速数据,其特征在于,所述装置至少包含:
(a)复数封包数据信道接收设备,用以接收已经接收到一封包数据信道中可供选择部分的数据;
(b)复数接收处理设备,用以处理在不同的复数封包控制信道上的信号,其中该复数封包控制通道具有一第一封包控制通道及一第二封包控制通道,用以取得控制该封包数据信道处理的信息;以及
(c)一调变及/或编码方案选择区块,用以选择性地控制用于该第二封包控制通道的调变及/或编码方案,使其不同于用于该第一封包控制通道的调变及/或编码方案。
21.如权利要求20所述的行动台装置,其特征在于,所述调变及/或编码方案选择区块用以选择一第一调变及/或编码方案,来盲目地译码在该第二封包控制通道上接收到的一特定信息,若根据该第一调变及/或编码方案译码失败而无法产生有效的信息,则选择不同的一第二调变及/或编码方案来盲目地译码该特定信息。
22.如权利要求20所述的行动台装置,其特征在于,更包括一区块,用以对先前译码的封包控制信道信息作语法分析,来取得信息,此信息有关于目前尚未被译码的封包控制信道信息所需要的适合的调变及/或编码方案。
23.一种控制功率的方法,适用于一蜂巢式通讯系统,其特征在于,所述蜂巢式通讯系统由一服务基地台提供高速封包数据至复数行动台,上述方法包括以下步骤:
(a)评估由该服务基地台服务的该复数行动台的预期接收品质,所评估的预期接收品质包括由该复数行动台传送至该服务基地台的复数信道品质指数;
(b)分类该复数行动台,此乃根据上述接收品质评估步骤的结果来完成;
(c)指派复数封包数据控制通道给该复数行动台,此乃根据一接收类别来完成;
(d)传送具有不同的稳健度的该复数封包数据控制信道上的信息,此乃依据一目标行动台接收类别来完成;以及
(e)对稳健度较低的复数封包数据控制信道,分配高的传送功率。
CNB038111322A 2002-06-06 2003-06-06 复数个封包数据控制通道的功率控制 Expired - Lifetime CN100514880C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38697902P 2002-06-06 2002-06-06
US60/386,979 2002-06-06

Publications (2)

Publication Number Publication Date
CN1653835A CN1653835A (zh) 2005-08-10
CN100514880C true CN100514880C (zh) 2009-07-15

Family

ID=29736240

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038111322A Expired - Lifetime CN100514880C (zh) 2002-06-06 2003-06-06 复数个封包数据控制通道的功率控制

Country Status (7)

Country Link
US (1) US7353039B2 (zh)
EP (1) EP1510084B1 (zh)
KR (1) KR100961106B1 (zh)
CN (1) CN100514880C (zh)
AU (1) AU2003245419A1 (zh)
TW (1) TWI225339B (zh)
WO (1) WO2003104934A2 (zh)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405694A1 (en) 2001-06-13 2012-01-11 IPR Licensing Inc. Base station and system for coordination of wireless maintenance channel power control
US7391779B2 (en) * 2002-06-26 2008-06-24 Nortel Networks Limited Scheduling method and apparatus for combined code division multiplexing and time division multiplexing
TWI237459B (en) 2002-10-17 2005-08-01 Interdigital Tech Corp Power control for communications systems utilizing high speed shared channels
US8213390B2 (en) * 2002-10-24 2012-07-03 Qualcomm Incorporated Reverse link automatic repeat request
US7564818B2 (en) * 2002-11-26 2009-07-21 Qualcomm Incorporated Reverse link automatic repeat request
US7346018B2 (en) * 2003-01-16 2008-03-18 Qualcomm, Incorporated Margin control in a data communication system
US20040252670A1 (en) * 2003-06-12 2004-12-16 Nokia Corporation Adaptive power margin adjustment for a 1xEV-DV system
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US9826537B2 (en) * 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10187133B2 (en) * 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US7633994B2 (en) * 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
US10886979B2 (en) * 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US8170081B2 (en) 2004-04-02 2012-05-01 Rearden, LLC. System and method for adjusting DIDO interference cancellation based on signal strength measurements
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10200094B2 (en) * 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US9819403B2 (en) * 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US8571086B2 (en) * 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US7792134B2 (en) * 2004-04-30 2010-09-07 Alcatel-Lucent Usa Inc. Method and apparatus for detecting an uplink packet data channel in a CDMA wireless communications system
US8000377B2 (en) * 2004-05-24 2011-08-16 General Dynamics C4 Systems, Inc. System and method for variable rate multiple access short message communications
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US8965440B2 (en) * 2005-05-31 2015-02-24 Alcatel Lucent Method of estimating a current channel condition in a wireless communications network
KR100653174B1 (ko) * 2005-08-19 2006-12-05 한국전자통신연구원 환경 적응형 하향링크 폐루프 전력제어 장치 및 그 방법
US20100272028A1 (en) * 2006-01-18 2010-10-28 Panasonic Corporation Wireless transmitter and wireless transmitting method
JP4399672B2 (ja) * 2006-08-30 2010-01-20 京セラ株式会社 通信装置及び制御方法
KR101468490B1 (ko) 2007-05-02 2014-12-10 삼성전자주식회사 무선 통신 시스템에서 제어 채널들의 집합을 한정하여 송수신하는 방법 및 장치
US8989155B2 (en) 2007-08-20 2015-03-24 Rearden, Llc Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems
KR101475819B1 (ko) * 2007-11-15 2014-12-23 삼성전자주식회사 이동통신 시스템에서 채널 제어 요소 정렬 방법 및 장치
US9173212B2 (en) 2008-03-27 2015-10-27 Koninklijke Philips N.V. Method for communicating in a mobile network
US8005039B2 (en) * 2008-12-30 2011-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for robust transmission of control information in wireless communication network
KR101655788B1 (ko) * 2010-01-22 2016-09-08 삼성전자 주식회사 무선 통신 시스템에서 단말기 피드백 기반의 제어 채널 관리 방법 및 장치
KR101676013B1 (ko) * 2010-05-03 2016-11-14 삼성전자주식회사 무선 통신 시스템에서 제어 채널을 재설정하는 방법 및 장치
CN102316481B (zh) * 2010-07-02 2014-08-13 中兴通讯股份有限公司 邻区路损映射的方法及装置
US9843430B2 (en) 2011-11-01 2017-12-12 Lg Electronics Inc. Method and apparatus for receiving ACK/NACK in wireless communication system
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US9936518B2 (en) 2013-01-18 2018-04-03 Mediatek Singapore Pte. Ltd. Method for transport block transmission and blind reception
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US10602402B1 (en) * 2019-08-28 2020-03-24 Ambit Microsystems (Shanghai) Ltd. Method and system for adjusting packet length and mobile device using the method
CN115428346B (zh) * 2020-03-17 2023-08-25 哲库科技(上海)有限公司 基带芯片、用于无线通信的装置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058107A (en) 1998-04-08 2000-05-02 Motorola, Inc. Method for updating forward power control in a communication system
JP3657195B2 (ja) 1998-07-28 2005-06-08 サムスン エレクトロニクス カンパニー リミテッド Cdma通信システムの制御維持状態における断続的な送信装置及び方法
KR100288358B1 (ko) 1998-07-30 2001-06-01 윤종용 셀룰러시스템에서순방향전력제어방법
US6463296B1 (en) 1999-02-16 2002-10-08 Telefonaktiebolaget L M Ericsson (Publ) Power control in a CDMA mobile communications system
SE517030C2 (sv) * 2000-06-06 2002-04-02 Ericsson Telefon Ab L M Metod och anordning för val av modulerings- och kodningsregler i ett radiokommunikationssystem
US9173175B2 (en) * 2000-11-16 2015-10-27 Sony Corporation Information processing apparatus and communication apparatus
CN1176563C (zh) 2001-01-18 2004-11-17 华为技术有限公司 动态信道分配方法
US7023824B2 (en) * 2001-02-27 2006-04-04 Telefonaktiebolaget L M Ericsson (Publ) Method, apparatus, and system for optimizing transmission power and bit rate in multi-transmission scheme communication systems
KR100487221B1 (ko) * 2001-11-23 2005-05-03 삼성전자주식회사 이동 통신시스템에서 제어정보의 송신 전력 제어 방법 및장치
US6754169B2 (en) * 2001-12-13 2004-06-22 Motorola, Inc. Method and system of operation for a variable transmission mode multi-carrier communication system
US6717924B2 (en) * 2002-01-08 2004-04-06 Qualcomm Incorporated Control-hold mode
US7031742B2 (en) * 2002-02-07 2006-04-18 Qualcomm Incorporation Forward and reverse link power control of serving and non-serving base stations in a wireless communication system
US6839336B2 (en) * 2002-04-29 2005-01-04 Qualcomm, Incorporated Acknowledging broadcast transmissions
US7170876B2 (en) * 2002-04-30 2007-01-30 Qualcomm, Inc. Outer-loop scheduling design for communication systems with channel quality feedback mechanisms
AU2003249605A1 (en) * 2002-05-06 2003-11-11 Via Telecom, Inc. Method and apparatus for reducing power of a cdma mobile station by controlled transition from control hold to active state
US7480270B2 (en) * 2002-05-10 2009-01-20 Qualcomm, Incorporated Method and apparatus for a reverse link supplemental channel scheduling

Also Published As

Publication number Publication date
US7353039B2 (en) 2008-04-01
CN1653835A (zh) 2005-08-10
TWI225339B (en) 2004-12-11
EP1510084A4 (en) 2010-07-07
EP1510084A2 (en) 2005-03-02
AU2003245419A8 (en) 2003-12-22
AU2003245419A1 (en) 2003-12-22
WO2003104934A2 (en) 2003-12-18
TW200427249A (en) 2004-12-01
US20040043784A1 (en) 2004-03-04
KR100961106B1 (ko) 2010-06-07
WO2003104934A3 (en) 2004-04-01
KR20050016525A (ko) 2005-02-21
EP1510084B1 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
CN100514880C (zh) 复数个封包数据控制通道的功率控制
CN101030933B (zh) 在前向链路上调度数据传输的方法和通信系统
CN101233692B (zh) 通信系统的信道编码方法
AU699534B2 (en) Method and apparatus for providing variable rate data in a communications system using statistical multiplexing
RU2387078C2 (ru) Разделение пользователей при множественном доступе с пространственным разделением для системы связи с множеством несущих
CN101075859B (zh) 用于分组传输的混合自动重发请求方法和装置及传输系统
Oh et al. Dynamic spreading gain control in multiservice CDMA networks
CN1806400B (zh) 移动通信系统中发送反向分组数据的设备和方法
RU2328091C2 (ru) Способ и устройство планирования дополнительного канала обратной линии связи
CN100550710C (zh) 为到远程站的传输选择发送格式的方法和装置
CN100593354C (zh) 用于通信系统中数据传输的方法和装置
CN100521582C (zh) 分时双工中随机存取信道的次信道
US7174128B2 (en) Radio communication system and radio communication method
CN1130964A (zh) 用于确定多用户通信系统中传输数据率的方法和设备
JP2004297809A (ja) 多重送受信アンテナシステムを利用した無線通信装置及び方法
US20050002357A1 (en) Allocation of power and channelization codes for data transfers
CN103139922B (zh) 发送、接收控制信道信息的方法、设备和系统
CN101594219A (zh) 用于多输入多输出系统的混合自动重传请求方法及系统
US20040092289A1 (en) Mobile communication system, radio network controller, base station and communication method
CN102791029B (zh) 资源调度与指示方法及装置
JP2006054617A (ja) 通信装置、基地局装置及びシグナリング方法
KR100438438B1 (ko) 이동 통신시스템에서 멀티미디어 데이터 전송 방법
CN106165361B (zh) 数据发送和接收装置、方法及终端设备
CN100411359C (zh) 一种流媒体数据发送方法和装置
WO2007108073A1 (ja) 制御情報シグナリング方法および基地局

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: KY WIRE ELECTRIC CO., LTD.

Free format text: FORMER OWNER: MEISHANG WEIRUI ELECTRIC COMPANY

Effective date: 20131015

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20131015

Address after: The Cayman Islands, British West Indies

Patentee after: VIA Telecom Co.,Ltd.

Address before: California, USA

Patentee before: VIA TELECOM, Inc.

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160725

Address after: California, USA

Patentee after: INTEL Corp.

Address before: The Cayman Islands, British West Indies

Patentee before: VIA Telecom Co.,Ltd.

TR01 Transfer of patent right

Effective date of registration: 20200407

Address after: California, USA

Patentee after: Apple Inc.

Address before: California, USA

Patentee before: INTEL Corp.

TR01 Transfer of patent right
CX01 Expiry of patent term

Granted publication date: 20090715

CX01 Expiry of patent term