CN100495074C - 核磁共振与瞬变电磁联用仪及其方法 - Google Patents

核磁共振与瞬变电磁联用仪及其方法 Download PDF

Info

Publication number
CN100495074C
CN100495074C CNB2006100172268A CN200610017226A CN100495074C CN 100495074 C CN100495074 C CN 100495074C CN B2006100172268 A CNB2006100172268 A CN B2006100172268A CN 200610017226 A CN200610017226 A CN 200610017226A CN 100495074 C CN100495074 C CN 100495074C
Authority
CN
China
Prior art keywords
transient electromagnetic
magnetic resonance
nuclear magnetic
mode
transmitting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100172268A
Other languages
English (en)
Other versions
CN1936621A (zh
Inventor
林君
段清明
王应吉
王中兴
孙淑琴
荣亮亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CNB2006100172268A priority Critical patent/CN100495074C/zh
Publication of CN1936621A publication Critical patent/CN1936621A/zh
Application granted granted Critical
Publication of CN100495074C publication Critical patent/CN100495074C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开一种地球物理勘探设备及方法,是将核磁共振与瞬变电磁组合成一体的核磁共振与瞬变电磁联用仪及其方法。首先将联用仪选择在瞬变电磁工作模式下,在测线上铺设发射线圈和接收线圈,对测区内每一个测点进行测量,测量完毕后,对瞬变电磁数据进行初步的处理,找出低电阻率点,并对低电阻率异常测点标定;再将联用仪切换到核磁共振工作模式下,并以已标定的异常测点为中心铺设发射线圈进行核磁共振测量工作,以测得数据或图形与瞬变电磁所测的电阻率异常进行比较,用以判断瞬变电磁所测的电阻率异常目的层的真伪。用一套设备实现两种仪器的功能,减少了设备投资,发挥了两种仪器各自优点,提高了探测效率和精度。

Description

核磁共振与瞬变电磁联用仪及其方法
技术领域
本发明涉及一种地球物理勘探设备及方法,尤其是将核磁共振与瞬变电磁组合成一体的地球物理勘探设备及方法。
背景技术
核磁共振方法(Surface Nuclear Magnetic Resonance Method,简称SNMR方法),瞬变电磁方法(Transient Electromagnetic Method,简称TEM)。
US6177794公开了一种了利用宏观表现出的核磁共振现象来寻找存在核磁共振现象的地下液体矿产的新技术,运用一组相位可控的接收天线阵列以及井中的接收天线来比较精确地测定地下存在核磁共振现象的液体,该方法利用地面上和地下的线圈组合同时接收信号,用来对核磁共振信号进行良好接收,可以实现对地下石油,水等矿产资源的探测。CN01278229公布了一种核磁共振地下水层探测仪,包括信号检测器,其特征在于,该信号检测器的一输入端连接一第一开关,该第一开关的号端串接一变速电阻器,该变速电阻器的另端串接第二和第三两开关,第二开关的另端串接一限流电阻,并依序串接有整流器和发电机,该发电机的另端与信号检测器的另一端连接,其中该第二和第三两开关之间接有一第一电容器,该第一电容器的另端与信号检测器的另一端连接,该第一开关与变速电阻器之间接有一线圈,该线圈的另端与信号检测器的另一端连接,该信号检测器的两端之间有一电容器。该发明将核磁共振的方法应用与地下水层的探测中,设计了适用于找水的核磁共振探测仪器。上述发明的核磁共振仪及其方法具有较高的测量精度,单点测量精确,但都有一个共同的不足,那就是测量每一个点的时间较长,耗费较多,难以实现线上测量或面上测量。
US7053622公布了一种用来测量地下信息并成像的瞬变电磁探测装置,该方法通过发射激发场,在地面用一系列分布的记录器记录电磁信号的衰减情况,从而对地下信息进行探测,多点同时测量,可以对各个点的记录数据产生的漂移进行校正,提高探测的精度和灵敏度,可以用于地下水的探测。CN88221167公布了一种微机电法勘探装置,由曲线模拟电路,浮点放大电路,主放大器逻辑控制电路,模数转换器和微机组成。该方法精度高,自动进行数据采集和处理,且速度快。适用于激发极化法、瞬变电磁法,各种直流电阻率法、自然电场法以及其它接地供电与线圈供电的电法勘探方法。CN01257200公开了一种野外大功率电源的产生方法,该方法将直流低压电源经振荡器逆变成低压高频的交流电流,该低压高频电流经升压后形成高压高频交流电流,高压高频交流电流经整流后形成高压直流电源作为存贮电容电源,存贮电容电源经电子开关控制向供电回路供电。该实用新型的优点是可以获得很大的瞬时电流,而电源的平均功率消耗却不大,通过多个充放电电容的组合,达到多个波形的叠加的效果,从而达到增大勘探深度,应用于找水实际中,可以提高仪器的探测灵敏度。上述发明的瞬变电磁仪及其方法,能够方便快捷地直接获得地下某一定层位的电阻率值,测试成本较低,但目的层的精确程度没有核磁共振方法好,往往发生低电阻率值的地方不一定是目的层。比如在找水工作中,经常发生低电阻率区不一定是蓄水最佳地段,甚至没有水,这就需要采用其他补助手段和方法进一步确定。如果首先采用瞬变电磁进行面上测量,找出低电阻率异常区,再用核磁共振进行准确定位,将大大提高寻找目的层的准确度。但用两台设备投资太大,测量时要做许多重复工作,既浪费资金,也浪费人力和时间。
发明内容
本发明的目的就是针对上述现有技术的不足,提供一种融合核磁共振和瞬变电磁两种仪器,且能够发挥各自优点的核磁共振与瞬变电磁联用仪及其方法。
本发明的目的是通过以下方式实现的:
计算机1通过串口或USB口与主控单元2连接,发射控制单元3通过数据总线与大功率电源4连接,通过交互信号线与H桥路5连接、通过控制线与切换开关6连接,大功率电源4经H桥路5与切换开关6连接,主控单元2通过SPI串行接口与发射控制单元3、接收控制单元15连接;
——瞬变电磁工作模式:H桥路5输出端直接与发射线圈8两端连接产生瞬变电磁信号,接收线圈12将瞬变电磁信号送入宽带放大单元13进行信号调理后再送给信号采集单元14和接收控制单元15;
——核磁共振工作模式:H桥路5的两个桥臂输出端与配谐电容7和发射线圈8连接,选频放大单元11通过继电器10与发射线圈8连接,并将信号送入信号采集单元14和接收控制单元15,两个二极管9自身反向连接,并与谐振电容7连接。
核磁共振与瞬变电磁联用仪及其方法,按以下方法步骤工作:
a.将核磁共振与瞬变电磁联用仪选择在瞬变电磁工作模式下,采用大回线的方式,围绕每一个测点铺设发射线圈8和放置接收线圈12,利用瞬变电磁法探测快速的特点,对测区内每一个测点进行测量,测量完毕后,对瞬变电磁数据进行初步的处理,找出测区内电阻率偏低点,并对电阻率偏低的异常测点标定;
b.将核磁共振与瞬变电磁联用仪切换到核磁共振工作模式下,并以已标定的异常测点为中心铺设发射线圈8进行核磁共振测量工作,以测得数据或图形与瞬变电磁所测的电阻率异常进行比较,用以判断瞬变电磁所测的电阻率异常是否是目的层的真伪;
c.保持发射线圈8和其它测量条件不变,再将仪器切换到瞬变电磁的工作模式,对该点进行测量,获取其衰减曲线;
d.对每一个出现低阻异常的测点均重复步骤b和步骤c的过程,直到所有异常测点都用两种物探方法测量完毕。
有益效果:
用一套设备实现两种仪器的功能,减少了设备投资,发挥了两种仪器各自的优点,同时克服了瞬变电磁仪器发射电流小、信噪比低、抗干扰能力差的缺点,改善了仪器信噪比,提高了探测效率和精度。
附图及附图说明
图1是核磁共振与瞬变电磁联用仪结构框图
图2是大功率电源4结构框图
图3是附图1中6、7、8、9、10、连接关系图
图4是选频放大单元11结构框图
图5是宽带放大单元13结构框图
图6是信号采集单元14结构框图
1计算机,2主控单元,3发射控制单元,4大功率电源,5H桥路,6工作模式切换开关,7配谐电容,8发射线圈,9二极管,10继电器,11选频放大单元,12接收线圈,13宽带放大单元,14信号采集单元,15接收控制单元,
具体实施方式
下面结合附图和实施例作进一步详细说明:
计算机1通过串口或USB口与主控单元2连接,发射控制单元3通过数据总线与大功率电源4连接,通过交互信号线与H桥路5连接、通过控制线与切换开关6连接,大功率电源4经H桥路5与切换开关6连接,主控单元2通过SPI串行接口与发射控制单元3、接收控制单元15连接;
瞬变电磁工作模式:H桥路5输出端直接与发射线圈8两端连接产生瞬变电磁信号,接收线圈12将瞬变电磁信号送入宽带放大单元13进行信号调理后再送给信号采集单元14和接收控制单元15;
核磁共振工作模式:H桥路5的两个桥臂输出端与配谐电容7和发射线圈8连接,选频放大单元11通过继电器10与发射线圈8连接,并将信号送入信号采集单元14和接收控制单元15,两个二极管9自身反向连接,并与谐振电容7连接。
核磁共振与瞬变电磁联用仪及其方法,按以下方法步骤工作:
a.将核磁共振与瞬变电磁联用仪选择在瞬变电磁工作模式下,采用大回线的方式,围绕每一个测点铺设发射线圈8和放置接收线圈12,利用瞬变电磁法探测快速的特点,对测区内每一个测点进行测量,测量完毕后,对瞬变电磁数据进行初步的处理,找出测区内电阻率偏低点,并对电阻率偏低的异常测点标定;
b.将核磁共振与瞬变电磁联用仪切换到核磁共振工作模式下,并以已标定的异常测点为中心铺设发射线圈8进行核磁共振测量工作,以测得数据或图形与瞬变电磁所测的电阻率异常进行比较,用以判断瞬变电磁所测的电阻率异常是否是目的层的真伪;
c.保持发射线圈8和其它测量条件不变,再将仪器切换到瞬变电磁的工作模式,对该点进行测量,获取其衰减曲线;
d.对每一个出现低阻异常的测点均重复步骤b和步骤c的过程,直到所有异常测点都用两种物探方法测量完毕。
计算机1与主控单元2通过串口或者USB接口进行连接,用来进行控制指令和探测数据的传输,仪器系统由主控单元2协调发射控制单元3和接收控制单元15的工作并控制工作模式的切换。主控单元2与发射控制单元3及接收控制单元15通过SPI串行接口进行通讯,速率为500kbit/s.
信号发射部分由发射控制单元3、大功率电源4、H桥路5、切换开关6、配谐电容7和发射线圈8构成;发射控制单元3由具有PWM输出能力的单片机和相关逻辑电路组成,主要完成大功率电源4的充电控制、H桥路5驱动信号产生、发射机状态监测和工作模式切换。发射控制单元3通过对大功率电源4的电压进行检测,控制大功率电源4中电容的充电,为发射机提供大功率瞬时电源。
5VDC-DC变换器给发射控制单元3提供工作电源,发射控制单元3通过ADC实时监测大容量电容的电压情况,当电容电压不满足要求时,发射控制单元3通过DAC产生控制信号,调整升压DC-DC变换器的输出电压,给大容量电容充电,使大容量电容两端电压保持在一个稳定的值,为发射机提供大功率发射电源。
发射控制单元3给驱动电路提供两路逻辑相反并具有一定死区时间的TTL电平的控制信号;驱动电路将该控制信号经过转换,驱动H桥路5;H桥路5由两个桥臂构成,每个桥臂分别有两个大功率IGBT开关管,H桥路5工作在1KHz—3KHz的开关频率下,工作电流为200A左右,用来将大功率电源4提供的直流电源逆变成交流电。
工作模式切换开关6由发射控制单元3控制,用来对发射模式进行切换。其信号通路为7→9→8→10→11,硬件上,H桥路5的两个桥臂输出端接到由配谐电容7和发射线圈8组成的谐振回路两端,接收端选频放大单元11通过继电器10与发射线圈8连接。
瞬变电磁法信号流向:6→8→12→13,H桥路5输出端直接接至发射线圈8的两端,产生瞬变电磁信号,接收线圈12通过耦合接收瞬变电磁信号,接收线圈感应出的信号为微伏量级,该信号接到宽带放大单元13进行信号调理。
附图3中,C1,C2为配谐电容7,L1为发射线圈8,D1为反向对接的二极管9,用来泄放发射线圈中的剩余能量,k1,k2为切换发射模式的切换开关6,k3为接收信号切换开关10。
具体的工作模式切换过程如下:当系统工作在核磁共振的模式下时,发射控制单元3控制开关k1切换至两端,开关k2闭合,接收控制单元15控制k3打开,配谐电容7C1,C2和二极管9D1,发射线圈8L1组成谐振回路,发射大功率正弦信号。当系统停止发射后,经过40—70ms的延时,待发射线圈8中的剩余能量泄放完毕后,接收控制单元15控制开关k3闭合,将发射线圈8作为接收线圈和选频放大单元11连接起来,完成对核磁信号的接收。而当系统需要切换为瞬变电磁法工作模式时,开关k1切换至一端,开关k2打开,开关k3打开。此时,发射线圈8作为H桥路的负载直接接到H桥路5的两端,谐振电容7C1,C2和二极管9D1未接入发射主电路中,发射机利用发射线圈8发射大功率瞬变电磁信号。接收端采用大回线的方式,不动发射线圈8,利用瞬变电磁接收线圈12实现对瞬变电磁接收信号的接收,并经过宽带浮点放大单元13对信号进行预处理,完成对瞬变电磁信号的采集。
选频放大单元11由核磁共振阻抗匹配网络、核磁共振前置放大器、LC选频放大器、工频陷波器和后级放大器组成。选频放大单元11的中心频率可以在1kHz—3kHz范围内调整,中心频率处放大倍数为40万倍。对核磁共振前置放大器和阻抗匹配网络的电源与后级放大电路的电源间加入一个高性能的电源滤波器,减少不同级放大电路产生的传扰。
宽带放大单元13由瞬变电磁阻抗匹配网络、瞬变电磁前置放大器、宽带滤波器、工频陷波器和后级放大器构成。宽带放大单元13的电源分配方式和选频放大单元11分配方式相同。瞬变电磁阻抗匹配网络可以保证在数十赫兹到数十千赫兹范围内为放大电路和接收线圈提供良好的阻抗匹配。瞬变电磁前置放大器采用输入阻抗高,低噪声,低失调电压的仪用放大器芯片,降低仪器系统的噪声。
信号采集单元14,基于核磁共振信号和瞬变电磁信号对采样率和采样精度的要求,信号采集单元14采样率为1MHz,采样精度为16bit。
前端放大器采集回来的信号为单端交流信号,而系统采用的AD只能采集直流双端差分信号,单端转双端模块完成信号转换功能,转换后信号送入AD采集模块中,由于采样率较高,信号采集单元14采用CPLD+FIFO的方法对高速采集来数据进行缓冲存储,然后由接收控制单元15将FIFO中数据读取并送入存储器中。
核磁共振与瞬变电磁联用仪野外具体工作方法:
在一个地下条件未知的测区,在进行探测前,首先按照一定距离将测区平面划分为多条测线,并根据需要将每条测线划分若干个测点。
步骤1:让联用仪器工作在瞬变电磁的模式下,采用大回线的方式,围绕每一个测点铺设发射线圈8,放置接收线圈12。利用瞬变电磁法探测快速的特点,对测区内每一个测点进行测量,测量完毕后,对瞬变电磁数据进行初步的处理,找出测区内电阻率偏低,并对电阻率偏低的异常测点标定;
步骤2,将联用仪器切换到核磁共振工作模式,并以已标定的测点为中心铺设发射线圈8,进行定点的核磁共振测量工作,以测得数据或图形与瞬变电磁所测的电阻率异常进行比较,用以判断瞬变电磁所测得电阻率异常是否是目的层的真伪。
步骤3,保持发射线圈和其它测量条件不变,再将仪器切换到瞬变电磁的工作模式,对该点进行测量,获取其衰减曲线。
步骤4:对每一个出现低阻异常的测点均重复步骤2和步骤3的过程,直到所有测点都已经用两种物探方法测量完毕。
将测得的数据进行数据处理,可以用于对核磁共振数据的校正,并可以用于减弱低频天然场对探测结果的影响,提高探测的效率和结果准确度。

Claims (2)

1、一种核磁共振与瞬变电磁联用仪,其特征在于,计算机(1)通过串口或USB口与主控单元(2)连接,主控单元(2)通过SPI串行接口与发射控制单元(3)、接收控制单元(15)连接,发射控制单元(3)通过数据总线与大功率电源(4)连接,通过交互信号线与H桥路(5)连接、通过控制线与工作模式切换开关(6)连接,大功率电源(4)经H桥路(5)与工作模式切换开关(6)连接,H桥路(5)输出端直接与发射线圈(8)两端连接,接收线圈(12)经宽带放大单元(13)、信号采集单元(14)与接收控制单元(15)连接,H桥路(5)输出端经工作模式切换开关(6)、配谐电容(7)、二极管(9)与发射线圈(8)连接,两个二极管(9)自身反向连接,并与谐振电容(7)连接,发射线圈(8)经继电器(10)、选频放大单元(11)、信号采集单元(14)与接收控制单元(15)连接,继电器(10)通过控制线与接收控制单元(15)连接。
2、按照权利要求1所述的核磁共振与瞬变电磁联用仪的使用方法,其特征在于,按以下方法步骤工作:
a、将核磁共振与瞬变电磁联用仪选择在瞬变电磁工作模式下,采用大回线的方式,围绕每一个测点铺设发射线圈(8)和放置接收线圈(12),利用瞬变电磁法探测快速的特点,对测区内每一个测点进行测量,测量完毕后,对瞬变电磁数据进行初步的处理,找出测区内电阻率偏低点,并对电阻率偏低的异常测点标定;
b、将核磁共振与瞬变电磁联用仪切换到核磁共振工作模式下,并以已标定的异常测点为中心铺设发射线圈(8)进行核磁共振测量工作,以测得数据或图形与瞬变电磁所测的电阻率异常进行比较,用以判断瞬变电磁所测的电阻率异常是否是目的层的真伪;
c、保持发射线圈(8)和其它测量条件不变,再将仪器切换到瞬变电磁的工作模式,对该点进行测量,获取其衰减曲线;
d、对每一个出现低阻异常的测点均重复步骤b和步骤c的过程,直到所有异常测点都用两种物探方法测量完毕。
CNB2006100172268A 2006-10-08 2006-10-08 核磁共振与瞬变电磁联用仪及其方法 Expired - Fee Related CN100495074C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100172268A CN100495074C (zh) 2006-10-08 2006-10-08 核磁共振与瞬变电磁联用仪及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100172268A CN100495074C (zh) 2006-10-08 2006-10-08 核磁共振与瞬变电磁联用仪及其方法

Publications (2)

Publication Number Publication Date
CN1936621A CN1936621A (zh) 2007-03-28
CN100495074C true CN100495074C (zh) 2009-06-03

Family

ID=37954230

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100172268A Expired - Fee Related CN100495074C (zh) 2006-10-08 2006-10-08 核磁共振与瞬变电磁联用仪及其方法

Country Status (1)

Country Link
CN (1) CN100495074C (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102096111B (zh) * 2010-12-07 2012-10-10 吉林大学 收发天线分离式核磁共振找水装置及找水方法
CN102183341B (zh) * 2011-02-18 2013-08-07 吉林大学 核磁共振堤坝渗漏隐患探测仪及探测方法
CN102681018B (zh) * 2011-03-10 2015-04-22 福州勘达源电子科技有限公司 矿用瞬变电磁仪及瞬变电磁信号处理方法
CN102323621A (zh) * 2011-05-23 2012-01-18 杨光 瞬变电磁仪智能控制器
CN102323622B (zh) * 2011-06-15 2013-08-07 朱德兵 一种线阵列多路同步瞬变电磁定向探测方法及其装置
CN102707659A (zh) * 2012-06-05 2012-10-03 北京工业大学 瞬变电磁检测仪主控系统及其使用方法
CN102684713B (zh) * 2012-06-05 2014-12-10 北京工业大学 电磁探测仪的发射机及其发射方法
CN103018781B (zh) * 2012-12-15 2016-03-09 吉林大学 2d/3d核磁共振与瞬变电磁联用仪及野外工作方法
CN103809206B (zh) * 2014-03-11 2017-08-25 吉林大学 核磁共振与瞬变电磁联用地下水探测装置及探测方法
CN104407391B (zh) * 2014-12-05 2017-02-22 吉林大学 磁性源非调制式发射机及控制方法
CN106154341B (zh) * 2016-06-21 2018-10-12 山东大学 一种核磁共振与瞬变电磁一体化探测仪器及工作方法
CN107843936B (zh) * 2016-09-19 2019-12-13 中国石油化工股份有限公司 一种核磁共振信号发射方法及系统
CN106772642B (zh) 2017-01-03 2018-01-16 吉林大学 一种地电场激发的核磁共振探水系统及野外工作方法
CN109491296B (zh) * 2018-12-08 2022-03-22 湖南省机宜医疗设备有限公司 现场设备切换平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2047792U (zh) * 1988-12-13 1989-11-15 西安地球物理地球化学勘探技术研究所 一种微机电法勘探装置
AU7299894A (en) * 1993-09-15 1995-03-30 Broken Hill Proprietary Company Limited, The SQUID detector for TEM prospecting
US5903150A (en) * 1996-06-03 1999-05-11 Roznitsky; Samuel Antenna system for NMR and MRI apparatus
US6177794B1 (en) * 1997-05-13 2001-01-23 The Regents Of The University Of California Use of earth field spin echo NMR to search for liquid minerals
CN2595079Y (zh) * 2001-10-22 2003-12-24 中南大学 一种用于瞬变电磁法的组合闪光式场源
US7053622B2 (en) * 2003-02-13 2006-05-30 Soerensen Kurt I Measuring equipment and method for mapping the geology in an underground formation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2047792U (zh) * 1988-12-13 1989-11-15 西安地球物理地球化学勘探技术研究所 一种微机电法勘探装置
AU7299894A (en) * 1993-09-15 1995-03-30 Broken Hill Proprietary Company Limited, The SQUID detector for TEM prospecting
US5903150A (en) * 1996-06-03 1999-05-11 Roznitsky; Samuel Antenna system for NMR and MRI apparatus
US6177794B1 (en) * 1997-05-13 2001-01-23 The Regents Of The University Of California Use of earth field spin echo NMR to search for liquid minerals
CN2595079Y (zh) * 2001-10-22 2003-12-24 中南大学 一种用于瞬变电磁法的组合闪光式场源
US7053622B2 (en) * 2003-02-13 2006-05-30 Soerensen Kurt I Measuring equipment and method for mapping the geology in an underground formation

Also Published As

Publication number Publication date
CN1936621A (zh) 2007-03-28

Similar Documents

Publication Publication Date Title
CN100495074C (zh) 核磁共振与瞬变电磁联用仪及其方法
CN102096111B (zh) 收发天线分离式核磁共振找水装置及找水方法
CN103884920B (zh) 自动扫频式电感测量仪及测量方法
CN102062877B (zh) 对前方水体超前探测的核磁共振探测装置及探测方法
CN102012525B (zh) 分布式多参数深部电磁断面成像系统及测量方法
CN101359058B (zh) 远距离进行目标管线全特征分析的检测方法及其装置
CN201673231U (zh) 一种电缆或管道的故障测试装置
CN103018781B (zh) 2d/3d核磁共振与瞬变电磁联用仪及野外工作方法
CN103344996B (zh) 串联谐振式核磁共振探测装置及探测方法
CN104280780A (zh) 核磁共振与瞬变电磁联用仪及工作方法
CN103064120A (zh) 煤矿井下磁电综合探测仪及磁电综合探测方法
CN201247324Y (zh) 一种远距离进行待测电缆全特征分析的检测装置
CN109765628B (zh) 车载式预极化场磁共振水源探测装置及探测方法
CN104216021B (zh) 一种基于分步式发射的地下核磁共振探测方法
CN105717366A (zh) 接地电阻在线监测报警仪及远程监控系统
CN104407392A (zh) 一发三收式对充水采空区的探测装置及探测方法
CN202583390U (zh) 一种查找电缆或管道故障点的装置
CN105422087A (zh) 一种多频电磁波电阻率测量系统
CN102096112A (zh) 基于阵列线圈的核磁共振地下水探测仪及野外探测方法
CN106772642B (zh) 一种地电场激发的核磁共振探水系统及野外工作方法
WO2015043320A1 (zh) 多功能双向高密度电缆及其应用
CN105548846A (zh) 便携智能型四通道局放检测仪信号频率转换前置模块
CN203951250U (zh) 核磁共振找水仪的快速充放电电源装置
CN207074234U (zh) 一种变频强抗干扰的高压输电线路工频参数测量系统
CN206209126U (zh) 一种近间距油气集输管线定位探测系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090603

Termination date: 20141008

EXPY Termination of patent right or utility model