CN100485974C - Photoelectromotive force element and manufacturing method thereof - Google Patents

Photoelectromotive force element and manufacturing method thereof Download PDF

Info

Publication number
CN100485974C
CN100485974C CN 200610065964 CN200610065964A CN100485974C CN 100485974 C CN100485974 C CN 100485974C CN 200610065964 CN200610065964 CN 200610065964 CN 200610065964 A CN200610065964 A CN 200610065964A CN 100485974 C CN100485974 C CN 100485974C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
semiconductor layer
main surface
type
crystal
side
Prior art date
Application number
CN 200610065964
Other languages
Chinese (zh)
Other versions
CN1841787A (en )
Inventor
寺川朗
浅海利夫
角村泰史
马场俊明
Original Assignee
三洋电机株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

本发明提供一种光电动势元件,其具备第一导电型的晶体类半导体基板和第二导电型的半导体层,第一导电型的晶体类半导体基板具有第一主面和设置在上述第一主面的相反侧的第二主面,第二导电型的半导体层被设置在上述晶体类半导体基板的上述第一主面上;上述晶体类半导体基板被夹持在上述第一主面和上述第二主面之间、并具有由分割加工所形成的分割加工侧面,上述分割加工侧面由通过激光加工所形成的激光加工区域和通过切断加工所形成的切断加工区域构成,上述激光加工区域是未到达上述第二导电型的半导体层、从上述第二主面向上述第一主面侧延伸的区域。 The present invention provides a photovoltaic device which includes a first conductivity-type crystalline based semiconductor substrate and a second conductivity type semiconductor layer, the first conductivity type semiconductor substrate having a crystal based on the first main surface and the first main settings a second main surface opposite to the second conductivity type semiconductor layer side surface is provided on the first main surface of the crystal-based semiconductor substrate; said crystal-based semiconductor substrate is sandwiched in the first main surface and the second between the two main surfaces, and having a processing side divided by the division processing is formed, cutting the side surface region of the parting processing by the laser processing region is formed by laser processing and cutting process was formed by the configuration, the laser processing region is not reaches the second conductivity type semiconductor layer, the second main face from the first main surface side region extending.

Description

光电动势元件和该光电动势元件的制造方法与相关申谏的交叉参照 Photovoltaic element and a method of manufacturing the photovoltaic element with the cross-referenced related application Admonishers

本申请基于2005年3月31日提交的在先日本专利申请第2005-100446号、2005年3月29日提交的在先日本专利申请第 This application is based upon Japanese Patent Application No. 2005-100446, 2005 filed on March 31, 2005 March 29 filed prior Japanese Patent Application

2005- 094640号、和2006年2月14日提交的在先日本专利申请第 2005- No. 094,640, and the prior Japanese Patent February 14, 2006 filed on

2006- 036005号,并要求它们的优先权,对它们的全部内容在此结合以作参照。 No. 2006- 036005, and claims priority to them, the entire contents thereof are hereby incorporated herein by reference.

技术领域 FIELD

本发明涉及光电动势元件和该光电动势元件的制造方法,该光电 The present invention relates to a method of manufacturing a photovoltaic element and the photovoltaic element, the photovoltaic

动势元件具备:具有第一主面和第二主面的第一导电型的晶体类半导体基板、和设置在晶体类半导体基板的第一主面上的第二导电型的半导体层。 Potential movable member includes: a first conductivity type semiconductor substrate having a crystalline-based first main surface and second main surface, and a second conductive type semiconductor layer of the first main surface of a crystal-based semiconductor substrate.

背景技术 Background technique

近年来,为了适应消费者的需求, 一直在寻求各种各样尺寸的光电动势元件。 In recent years, in order to meet consumer demand, we have been seeking a photovoltaic element of a wide variety of sizes. 作为制造各种尺寸的光电动势元件的方法,有使用标准尺寸的基板形成光电动势元件、其后分割为期望的尺寸的方法。 As a method of producing photovoltaic elements of various sizes, the size of the substrate is formed using a standard photovoltaic element, followed by segmentation of a desired size.

作为上述的光电动势元件的分割方法,例如,在特开2001-274441 号公报中记载了下述方法:从金属电极一侧向在玻璃基板上已形成透明电极、非晶硅膜和金属电极的光电动势元件的预定分割位置照射激光,由此,形成已将金属电极、非晶硅膜、和透明电极除去的槽,然后沿着该槽对玻璃基板进行切割,从而分割为期望尺寸的光电动势元件。 As the dividing method of a photovoltaic element, e.g., a method described in Laid-Open Patent Publication No. 2001-274441: From one side of the metal electrode to a transparent electrode formed on a glass substrate, an amorphous silicon film and the metal electrode, dividing the predetermined force member irradiated with a laser light, whereby the metal electrode has been formed, grooves amorphous silicon film, and the transparent electrode is removed, and then the glass substrate is cut along the groove, whereby photoelectromotive force is divided into a desired size element.

另一方面,近年来,作为光电动势元件,使用单晶硅和多晶硅等晶体硅的太阳能电池的研究和实用化已积极进行。 On the other hand, in recent years, a photovoltaic element, such as polysilicon and single crystal silicon solar cell of crystalline silicon and practical research has been actively carried out. 其中,具有将非晶硅与晶体硅组合而构成的异质结的太阳能电池,能够由200'C以下的低温加工形成其接合,并可得到高的转换效率,所以受到注目。 Wherein the heterojunction solar cell having the amorphous silicon formed by combining the crystalline silicon can be formed which is engaged by a low temperature process 200'C or less, and to obtain high conversion efficiency, it has attracted attention.

5图1是用于说明上述的具有将非晶硅与晶体硅组合而构成的异质 FIG 5 is a view for explaining a composition having the above-described amorphous and crystalline silicon hetero constituted

结的太阳能电池的一个例子的示意截面图。 A schematic sectional view of an example of a junction of the solar cell. 太阳能电池50,在n型晶体类半导体基板2的一方的主面上,具有依次形成本征非晶质半导体层3、 p型非晶质半导体层4、 p侧透明导电膜层5和p侧集电极6的结构。 The solar cell 50, on one main surface of the n-type crystalline based semiconductor substrate 2, are sequentially formed having 3, 4, p-side transparent conductive film layer 5 and the p-side p-type amorphous semiconductor layer of intrinsic amorphous semiconductor layer 6 of the collector structure. 而且,在上述n型晶体类半导体基板2的另一方的主面上,依次形成有本征非晶质半导体层7、 n型非晶质半导体层8、 n侧透明导电膜层9和n侧集电极10。 Further, the other main surface of the n-type based semiconductor crystal substrate 2, are formed sequentially 7, 8, n-side transparent conductive film layer 9 and the n-side n-type amorphous semiconductor layer of an intrinsic amorphous semiconductor layer The collector 10.

但是,在具有将非晶硅与晶体硅组合而构成的异质结的、期望尺寸的光电动势元件的制造中,如上述文献中记载的技术那样,通过照射激光而形成已将预定分割位置的集电极、非晶质半导体层和本征非晶质半导体层除去的槽后,沿着该槽对光电动势元件进行分割时,有开路电压Voc和曲线因子FF (fill factor:填充因子)产生下降的情况。 However, in the manufacture of a photovoltaic element having a heterojunction of amorphous silicon and crystalline silicon to form the combination of desired size, as described in the art as described in the literature, have been formed by dividing a predetermined position by laser irradiation collector, the groove amorphous semiconductor layer and the intrinsic amorphous semiconductor layer is removed along the groove when the optical element is divided electromotive force, there is the open voltage Voc and fill factor FF (fill factor: fill factor) generates a falling Case.

发明内容 SUMMARY

本发明的一个特征在于,具有以下要点:在具备具有第一主面和设置在上述第一主面的相反侧的第二主面的第一导电型的晶体类半导体基板、和被设置在上述晶体类半导体基板的上述第一主面上的第二导电型的半导体层的光电动势元件中,上述晶体类半导体基板被夹持在上述第一主面和上述第二主面之间、并具有由分割加工所形成的分割加工侧面,上述分割加工侧面由通过激光加工所形成的激光加工区域和通过切断加工所形成的切断加工区域构成,上述激光加工区域是未达到上述第二导电型的半导体层、从上述第二主面向上述第一主面一侧延伸的区域。 One feature of the present invention, having the following points: a first conductivity-type crystalline semiconductor substrate includes a second type having a main surface opposite to the first main surface and provided on the first main surface of, and is provided in the the second conductivity type semiconductor layer of the photovoltaic element of the first main surface of a crystal-based semiconductor substrate, the above crystal-based semiconductor substrate is sandwiched between the first main surface and the second main surface, and having divided by the division process was processed side surface formed by cutting the side surface region of the parting processing by the laser processing region is formed by laser processing and cutting process was formed by the configuration, the laser processing region is not reached the second conductivity type semiconductor layer from the second main area facing the side of the first main surface extends.

根据该特征,激光加工区域是未达到第二导电型的半导体层、从第二主面向第一主面一侧延伸的区域,由此,能够防止由于激光发出的热而在第二导电型的半导体层内产生微晶体。 According to this feature, the laser processing region is not the second conductivity type semiconductor layer reaches from the second main face region extending first main surface side, thereby, possible to prevent the heat of the laser emitted in the second conductivity type generating microcrystalline semiconductor layer. 其结果,能够防止通 As a result, it is possible to prevent the pass

过微晶体而产生漏电流,从而能够防止开路电压Voc和曲线因子FF Through the micro crystals leakage current is generated, thereby preventing the open voltage Voc and fill factor FF

的下降。 Decline.

本发明的一个特征在于,具有以下要点:在上述的特征中,上述第二导电型的半导体层,具有从上述晶体类半导体基板的上述第一主面依次叠层第二导电型的非晶质半导体层和第二导电型的导电性薄膜的结构。 One feature of the present invention, having the following points: In the above-described features, the second conductive type semiconductor layer, having from the first main surface of the crystal-based semiconductor substrate, the second conductivity type are sequentially laminated amorphous structure of the semiconductor layer and the second conductivity type conductive film.

本发明的一个特征在于,具有以下要点:在上述的特征中,光电动势元件还具有设置在上述晶体类半导体基板的上述第二主面上的第一导电型的半导体层,上述第一导电型的半导体层,具有从上述晶体类半导体基板的上述第二主面依次叠层第一导电型的非晶质半导体层 One feature of the present invention, having the following points: In the above feature, the photovoltaic element further has the first conductivity type semiconductor layer on the second main surface of the crystal-based semiconductor substrate, the first conductivity type is provided a semiconductor layer having a second from the main surface of the crystal-based semiconductor substrate of a first conductivity type are sequentially stacked amorphous semiconductor layer

和第一导电型的导电性薄膜的结构。 A first conductivity type and structure of the conductive film.

本发明的一个特征在于,具有以下要点:在上述的特征中,上述第二导电型的非晶质半导体层和上述第一导电型的非晶质半导体层中的至少一方包含本征的非晶质半导体层。 One feature of the present invention, having the following points: In the above amorphous features, the second conductive type amorphous semiconductor layer of the first conductivity type and the amorphous semiconductor layer comprising at least one of intrinsic semiconductor layers.

本发明的一个特征在于,具有以下要点:在上述的特征中,上述切断加工是弯曲切断加工;在上述激光加工区域和上述切断加工区域的边界线上,上述激光加工区域具有向上述第一主面侧突出的多个凸部;在上述切断加工区域,以上述激光加工区域的上述凸部作为起点, 形成有上述弯曲切断加工时产生的应力集中痕迹。 One feature of the present invention, having the following points: In the above-described characteristics, the above cutting the curved cutting process; the boundary line of the laser processing region and the processing region of the cutting, the laser processing region having the first principal direction a plurality of convex portions projecting side; the region of the cutting process to the convex portion of the laser processing region as a starting point, stress concentration generated when cutting the marks have the above-described curved.

本发明的一个特征在于,具有以下要点:在上述的特征中,上述凸部的平均高度为15pm以上。 One feature of the present invention, having the following points: In the above features, the average height of the protrusions is more than 15pm.

本发明的一个特征在于,具有以下要点:在上述的特征中,上述凸部的平均间隔为上述凸部的平均高度的0.2倍~3.0倍。 One feature of the present invention, having the following points: In the above features, the average interval of the convex portions to the average height of the protrusions of 0.2 to 3.0 times.

本发明的一个特征在于,具有以下要点:在上述的特征中,从上 One feature of the present invention, having the following points: In the above features, from

述第二主面到上述凸部的顶端的平均长度,为从上述第二主面到上述 Said second main surface to the average length of the tip of the convex portion, from the second main surface to the

第一主面的长度的50%以上。 More than 50% of the length of the first main surface.

本发明的一个特征在于,具有以下要点:具备具有第一主面和设置在上述第一主面的相反侧的第二主面的第一导电型的晶体类半导体基板的光电动势元件的制造方法,包含:在上述晶体类半导体基板的上述第一主面上形成第二导电型的半导体层的工序A;从上述晶体类半导体基板的上述第二主面侧照射激光,形成未达到上述第二导电型的半导体层、从上述第二主面向上述第一主面侧延伸的槽的工序B; 和将上述晶体类半导体基板和上述第二导电型的半导体层沿着上述槽切断,从而将上述晶体类半导体基板和上述第二导电型的半导体层分割的工序C。 One feature of the present invention, having the following points: The method of manufacturing a photovoltaic element comprising a first conductivity-type crystalline-based semiconductor substrate having a second major surface and provided on the first main surface opposite to the first main surface of comprising: a step of forming a second conductivity type semiconductor layer a in the first main surface of the crystal-based semiconductor substrate; from the second main surface side of the above-described irradiation of laser-based semiconductor crystal substrate is formed does not reach the second conductivity type semiconductor layer, a step from the second main face B side of the first main surface extending grooves; and the above crystal-based semiconductor substrate and the second conductivity type semiconductor layer is cut along the groove, so that the above-described based semiconductor crystal substrate and the step of the second conductive type semiconductor layer divided C.

本发明的一个特征在于,具有以下要点:在上述的特征中,光电动势元件的制造方法还包含,在上述晶体类半导体基板的上述第二主 One feature of the present invention, having the following points: In the above-described features, a method of manufacturing a photovoltaic device further comprises, above the second main-based semiconductor crystal substrate in

面上形成第一导电型的半导体层的工序D,上述工序B是从上述第一导电型的半导体层一侧照射上述激光的工序。 A step of forming a first conductivity type surface semiconductor layer D, the step B is a step of irradiating the laser beam from the semiconductor layer side of the first conductivity type.

本发明的一个特征在于,具有以下要点:在上述的特征中,上述第一导电型的半导体层具有从上述晶体类半导体基板的上述第二主面,依次叠层第一导电型的非晶质半导体层和第一导电型的导电性薄膜的结构;上述第二导电型的半导体层具有从上述晶体类半导体基板的上述第一主面,依次叠层第二导电型的非晶质半导体层和第二导电型的导电性薄膜的结构。 One feature of the present invention, having the following points: In the above-described features, the first conductivity type having a semiconductor layer from the second main surface of the crystal-based semiconductor substrate, a first conductivity type are sequentially stacked amorphous and the structure of the semiconductor layer of a first conductivity type conductive film; the second conductivity type semiconductor layer having a first main surface of the from the crystal-based semiconductor substrate, the second conductivity type are sequentially stacked amorphous semiconductor layer and structure of the second conductivity type conductive film.

本发明的一个特征在于,具有以下要点:在上述的特征中,上述第二导电型的非晶质半导体层和上述第一导电型的非晶质半导体层中的至少一方包含本征的非晶质半导体层。 One feature of the present invention, having the following points: In the above amorphous features, the second conductive type amorphous semiconductor layer of the first conductivity type and the amorphous semiconductor layer comprising at least one of intrinsic semiconductor layers.

本发明的一个特征在于,具有以下要点:在上述的特征中,上述工序B包含形成具有向上述第一主面侧突出的多个凸部的上述槽的工序,上述工序C包含将上述晶体类半导体基板和上述第二导电型的半导体层沿着上述槽弯曲的工序。 One feature of the present invention, having the following points: In the above-described features, the step B comprises the step of the groove having a plurality of convex portions protruding toward the first main surface side is formed, the step comprising the above crystal type C the semiconductor substrate and the second conductive type semiconductor layer is bent along the groove step.

本发明的一个特征在于,具有以下要点:在上述的特征中,上述工序B包含,控制上述激光的脉冲频率和上述激光的扫描速度,从而形成具有向上述第一主面侧突出的多个凸部的上述槽的工序。 One feature of the present invention, having the following points: In the above-described features, the step B comprises, controlling the scanning speed of the pulse rate of the laser and the laser beam, thereby forming a plurality of projections having a first main surface side to said projecting step of the groove portion.

附图说明 BRIEF DESCRIPTION

图1为用于说明具有将非晶硅与晶体硅组合而构成的异质结的光电动势元件的一个例子的示意截面图。 FIG 1 is a view for explaining an example having the amorphous silicon photovoltaic heterojunction element in combination with the crystalline silicon to form a schematic sectional view.

图2为向具有将非晶硅与晶体硅组合而构成的异质结的光电动势元件照射激光而形成的槽附近的放大的示意截面图。 FIG 2 a schematic enlarged sectional view of the vicinity of the groove is irradiated with laser light force member having the heterojunction amorphous and crystalline silicon formed by combining formed.

图3为用于说明本发明的第一实施方式的结构体的构造的示意截面图。 3 is a schematic cross-sectional view showing the structure of a first embodiment of the structure of the embodiment of the present invention. FIG.

图4为用于说明通过向本发明的第一实施方式的结构体照射激光而在该结构体上形成槽的工序的示意截面图。 4 is a schematic sectional view for explaining a groove formed on the structure by irradiating laser light to a first embodiment of the present invention the step structure.

图5为用于说明本发明的第一实施方式的光电动势元件的构造的示意截面图。 FIG 5 is a sectional view for explaining a schematic configuration of a photovoltaic element of the first embodiment of the present invention.

8图6为用于说明本发明的第二实施方式的结构体的构造的示意截面图。 6 FIG. 8 is a schematic sectional view of a configuration of a second embodiment of the present invention for the structure.

图7为用于说明通过向本发明的第二实施方式的结构体照射激光而在该结构体上形成槽的工序的示意截面图。 7 is a schematic sectional view for explaining a step of the grooves formed on the structure by irradiating laser light to the second embodiment of the present invention, a structure thereof.

图8为用于说明本发明的第二实施方式的光电动势je件的构造的 8 is for explaining a configuration of a photovoltaic element je a second embodiment of the present invention.

示意截面图,用于说明本发明的结构体的构造的示意截面图。 A schematic cross-sectional view, a schematic sectional view of a configuration of a structure of the present invention. FIG.

图9为用于说明通过向比较例1的结构体照射激光而在该结构体 FIG 9 is a view for explaining the structure by irradiating laser of Comparative Example 1 in the structure

上形成槽的工序的示意截面图。 Forming a schematic sectional view of the step groove.

图IO为用于说明比较例1的光电动势元件的构造的示意截面图, FIG IO sectional view for explaining a schematic configuration of a photovoltaic element of Comparative Example 1,

用于说明本发明的结构体的构造的示意截面图。 Cross-sectional view for explaining a schematic configuration of a structure of the present invention.

图11为用于说明通过向比较例2的结构体照射激光而在该结构体 FIG 11 is a view for explaining the structure by irradiating laser light in Comparative Example 2 of the structure

上形成槽的工序的示意截面图。 Forming a schematic sectional view of the step groove.

图12为用于说明比较例2的光电动势元件的构造的示意截面图。 12 is a schematic sectional view of a configuration of a photovoltaic element of Comparative Example 2 for FIG. 图13为表示本发明的第三实施方式的光电动势元件的侧面图。 13 is a side view showing a third embodiment of a photovoltaic element of the present invention, FIG. 图14为表示本发明的第三实施方式的光电动势元件的立体图。 FIG 14 is a perspective view of the photovoltaic element of a third embodiment of the present invention. FIG. 图15为表示对本发明的第三实施方式的光电动势元件进行切断加 15 is a cut added to the photovoltaic element of the third embodiment of the present invention.

工时的状态的图1从箭头A方向看到的侧面图。 1 seen from the direction of arrow A side view showing a state of working hours.

图16为表示对本发明的第三实施方式的光电动势元件的周边部进 FIG 16 is a photoelectromotive force member of the third embodiment of the present invention into the peripheral portion

行切断的位置的平面图。 Plan view of the cutting line position.

图17为表示本发明的第三实施方式中切断加工时的状态的立体图。 FIG 17 is a perspective view showing a state when a third embodiment of the present invention described cutting process.

图18为表示本发明的第三实施方式的光电动势元件的侧面的显微 18 is a micrograph showing a side of the photovoltaic element of a third embodiment of the present invention embodiment

^^^^^i^l" o ^^^^^ i ^ l "o

图19为表示比较例的光电动势元件的侧面的显微镜照片。 FIG 19 is a microscope photograph showing a side of the photovoltaic element of Comparative Example.

图20为与图18的显微镜照片相对应的侧面图。 FIG 20 is a side view corresponding to FIG. 18 of the micrograph.

图21为与图19的显微镜照片相对应的侧面图。 FIG 21 is a side view corresponding to FIG. 19 of the micrograph.

图22为表示激光照射时的脉冲频率/扫描速度对激光加工区域的形状的影响的侧面图。 FIG 22 is a side view showing the influence of laser irradiation pulse frequency / scanning speed of the laser processing region shape.

图23为用于说明激光加工区域的凸部的平均高度的测定方法的侧面图。 FIG 23 is a side view for explaining a method of measuring a laser processing area protrusions of average height.

图24为表示激光加工区域的凸部的平均髙度与标准化曲线因子的关系的图。 FIG 24 is a graph showing the relationship between the average degree of Gao and normalized fill factor of the convex portion of the laser processing area.

图25为表示从另一个主面到凸部顶端部的平均高度/基板的厚度的值与标准化曲线因子的关系的图。 FIG 25 is a front surface to an average height of the projections from the other portion of the top portion / illustrating the relationship between the normalized value of the fill factor of the thickness of the substrate.

图26为用于说明本发明的其它实施方式的平面图。 FIG 26 is a plan view for explaining another embodiment of the present invention. 图27为用于说明本发明的其它实施方式的平面图。 FIG 27 is a plan view of another embodiment of the present invention. FIG.

具体实施方式 Detailed ways

下面,参照附图对本发明人潜心研究的结果进行说明。 Referring to the drawings the results of intensive studies of the present invention will be described. 本发明人发现,从p型非晶质半导体层4一侧向太阳能电池50照射激光时,开路电压Voc和曲线因子FF发生下降,而从n型非晶质半导体层8 —侧照射激光时,开路电压Voc和曲线因子RR不发生下降。 The present inventors have found that, when the laser beam 4 is irradiated to the side of the solar cell 50 p-type amorphous semiconductor layer from the open voltage Voc and a fill factor FF drop occurs from 8 n-type amorphous semiconductor layer - when the laser beam is irradiated, open voltage Voc and curve factor RR drop does not occur. 以下对其理由进行说明。 The reason will be explained below.

图2为表示向太阳能电池50照射激光后,将被激光照射的附近放大的太阳能电池50的截面的示意图。 FIG 2 is a schematic cross section of the solar cell 50 after the laser irradiation, the laser light irradiation is enlarged in the vicinity of a solar cell 50 of FIG. 用图2对上述现象的理由进行说明。 It is explained by the reasons for this phenomenon in Figure 2.

如箭头L所示,从p型非晶质半导体层4 一侧照射激光的情况下, 太阳能电池50的截面成为图2 (a)所示的形状。 As shown by arrow L, from the p-type amorphous semiconductor layer side, irradiated with the laser beam 4, a cross-sectional shape of the solar cell 50 becomes as shown in (a) of FIG. 在图2 (a)中,太阳能电池50 a是被激光照射后的太阳能电池,槽15是通过激光照射而在太阳能电池50 a上形成的槽。 In (a) in FIG. 2, the solar cell is a solar cell 50 a after the laser irradiation, the groove 15 is a groove formed on the solar cell 50 a by laser irradiation.

参照图2 (a),通过激光的照射,在己将p侧集电极6、 p侧透明导电膜层5、 p型非晶质半导体层4、本征非晶质半导体层3、和n型晶体类半导体基板2的一部分除去的位置的太阳能电池50a的端面上, 本征非晶质半导体层3的端部和p型非晶质半导体层4的端部,由于激光照射的热的影响而微结晶化,从而这些部分的电阻下降。 Referring to FIG. 2 (a), by laser irradiation, it has the p-side collector 6, p-side transparent conductive film layer 5, p-type amorphous semiconductor layer 4, an intrinsic amorphous semiconductor layer 3, the n-type and the end face 50a of the position of the solar cell portion based semiconductor crystal substrate 2 is removed, the end portion of the intrinsic amorphous semiconductor layer and the end portion of p-type amorphous semiconductor layer 3 of 4, due to the heat of laser irradiation and microcrystalline, thereby decrease resistance of these portions. 在图2 (a)中,微晶体部3a是本征非晶质半导体层3的微晶体部,微晶体部4a是p型非晶质半导体层4的微晶体部。 In FIG. 2 (a), microcrystalline section portion 3a is intrinsic microcrystalline layer 3 of amorphous semiconductor, micro-crystalline portion 4a portion is microcrystalline p-type amorphous semiconductor layer 4. 如图2 (a)所示,微晶体部3a在与n型晶体类半导体基板2的界面51上,与n型晶体类半导体基板2相接。 As shown in FIG 2 (a), the micro-crystals in the portion 3a and the n-type crystalline interface based semiconductor substrate 512, the n-type semiconductor substrate 2 based crystal phase. 微晶体部4a在与p侧透明导电膜层5的界面52上, 与p侧透明导电膜层5相接。 Microcrystals portion 4a on the p-side transparent conductive film layer interface 525, and in contact with the p-side transparent conductive film layer 5. 由于微晶体部3a和微晶体部4a的电阻小,且p型非晶质半导体层4和n型晶体类半导体基板2具有相反的导电类型,所以,漏电流会通过微晶体部4a、微晶体部3a和界面51,说明书第7/27页 Since the microcrystalline and microcrystalline portion 3a of the small resistors 4a, and p-type amorphous semiconductor layer 4 and n-type semiconductor substrate 2 having a crystal type opposite conductivity type, so that current leakage through the micro-crystal portion 4a , microcrystalline portion 3a and the interface 51, the description on page 7/27

在p型非晶质半导体层4与n型晶体类半导体基板2之间流动。 To flow between the p-type amorphous semiconductor layer 4 and the n-type crystalline semiconductor substrate 2 based. 因此, 在这样的太阳能电池50a中,开路电压Vcx:和曲线因子FF降低。 Thus, in such a solar cell 50a, the open circuit voltage Vcx: fill factor FF and lowered.

与此相对,如箭头L所示,从n型非晶质半导体层8—侧照射激光的情况下,太阳能电池50的截面成为图2 (b)所示的形状。 On the other hand, as shown by arrow L, from the n-type amorphous semiconductor layer is irradiated with a laser beam 8- side, cross-sectional shape of the solar cell 50 becomes as shown in (b) of FIG. 在图2 (b)中,太阳能电池50b是被激光照射后的太阳能电池,槽15是通过激光照射而在太阳能电池50 b上形成的槽。 In FIG. 2 (b), the solar cell 50b is irradiated with laser light after the solar cell, the groove 15 is a groove formed on the solar cell 50 b by laser irradiation.

这种情况下的太阳能电池50 b的截面形状,除了以n型非晶质半导体层8及其微晶体部8a取代p型非晶质半导体层4及其微晶体部4a、 以本征非晶质半导体层7及其微晶体部7a取代本征非晶质半导体层3 及其微晶体部3a之外,与图2 (a)的情况相同。 The solar cell 50 b of the cross-sectional shape in this case, in addition to the n-type amorphous semiconductor layer 8 and the micro-crystalline portion 8a substituted p-type amorphous semiconductor layer 4 and the micro-crystalline portion 4a, to the intrinsic the semiconductor layer 7 and the amorphous portion 7a microcrystalline substituted intrinsic amorphous semiconductor layer 3 and microcrystalline outside portion 3a, as in the case of FIG. 2 (a) of. 如图2 (b)所示, 微晶体部7a在与n型晶体类半导体基板2的界面53上,与n型晶体类半导体基板2相接。 As shown in FIG 2 (b), the micro-crystal portion 7a in the n-type crystalline semiconductor substrate 2 interface type 53, type and n-type crystalline semiconductor substrate 2 in contact. 微晶体部8a在与n侧透明导电膜层9的界面54 上,与n侧透明导电膜层9相接。 Microcrystals portion 8a on the n-side transparent conductive film layer of the interface 549, the n-side transparent conductive film layer 9 in contact. 虽然微晶体部7a和微晶体部8a的电阻小,但由于微晶体部8a (n型非晶质半导体层8)和n型晶体类半导体基板2的导电型相同,所以,漏电流不会通过微晶体部8a、微晶体部7a和界面53而在n型非晶质半导体层8与n型晶体类半导体基板2之间流动。 Although microcrystals microcrystals portions 7a and 8a of the low resistance portion, but the conductivity type and n-type crystalline semiconductor substrate 2 of the same type microcrystalline portion 8a (the n-type amorphous semiconductor layer 8), the drain current will not flow between the n-type amorphous semiconductor layer 8 and the n-type crystalline semiconductor substrate 2 through the micro-based crystal portion 8a, 7a and microcrystalline interface portion 53. 因此,该太阳能电池50b的开路电压Voc和曲线因子FF不会降低。 Thus, the solar cell 50b of the open voltage Voc and fill factor FF does not decrease.

另外,在使用p型晶体类半导体基板取代n型晶体类半导体基板2 的情况下,从n型非晶质半导体层一侧照射激光时,产生漏电流,开路电压Voc和曲线因子RR降低。 Further, in the case of p-type crystalline semiconductor substrate based unsubstituted n-type crystalline based semiconductor substrate 2, when the laser irradiation side n-type amorphous semiconductor layer from a leakage current, open voltage Voc and fill factor decreased RR. 另一方面,从p型非晶质半导体层一侧照射激光时,不产生漏电流,开路电压Voc和曲线因子FF不降低。 On the other hand, when the laser irradiation side of p-type amorphous semiconductor layer from a leakage current is not generated, the open-circuit voltage Voc and fill factor FF does not decrease.

就是说,通过向太阳能电池照射激光,使得在具有与晶体类半导体基板不同导电型的非晶质半导体层中不形成电阻低的微晶体部,能够制造不产生漏电流、开路电压Voc和曲线因子FR的降低受到抑制的太阳能电池。 That is, the solar cell is irradiated by a laser, so that has a different conductivity type layer of amorphous semiconductor based semiconductor crystal substrate without forming a low resistance portion microcrystals, no leakage current can be produced, the open voltage Voc and curve reduction factor FR of the solar cell is suppressed.

艮口,在晶体类半导体基板的主面中,从与形成有上述非晶质半导体层的主面相反侧的主面一侧照射激光,在太阳能电池上形成至少未达到上述非晶质半导体层的槽,由此能够制造不产生漏电流、开路电压Voc和曲线因子RF.的降低被抑制的太阳能电池。 Gen port, based semiconductor crystal on the main surface of the substrate, the opposite main surface side of the laser irradiation is formed of at least the amorphous semiconductor layer does not reach the main surface of the amorphous semiconductor is formed on the solar cell layer reduction groove, whereby a leakage current is not generated can be produced, the open voltage Voc and curve factor of the RF. solar cell is suppressed. 所以,从与晶体类半导体基板相同导电型的非晶质半导体层一侧照射激光,在太阳能电 Therefore, the conductivity type of the amorphous semiconductor layer is irradiated with laser-based semiconductor crystal substrate of the same side, in the solar

ii池上形成至少未达到与晶体类半导体基板不同导电型的非晶质半导体 ii pool is formed with at least does not reach the crystal-based semiconductor substrate of different conductivity type amorphous semiconductor

层的槽,由此能够制造不产生漏电流、开路电压Voc:和曲线因子FF 的降低被抑制的太阳能电池。 Groove layer, thereby producing no leakage current, open circuit voltage Voc: a solar cell and reduce the fill factor FF is suppressed. (第一实施方式) (First Embodiment)

参照图3、图4、和图5,对本发明的第一实施方式的光电动势元件及其制造方法进行说明。 Referring to FIG. 3, 4, and 5, the photovoltaic device and a manufacturing method of the first embodiment of the present invention will be described.

首先,制作具有图3所示的结构的将非晶质半导体和晶体类半导体组合而构成的异质结的结构体1。 First, the structure produced has a heterojunction structure shown in FIG. 3 and the amorphous semiconductor based semiconductor crystal formed by combining body 1.

图3为表示利用第一实施方式的光电动势元件的制造方法制造的结构体的构造的示意截面图。 FIG 3 is a schematic cross-sectional view showing the structure of the structural body manufacturing method of a photovoltaic element according to the first embodiment using the manufacturing. 结构体l形成下述结构:在n型晶体类半导体基板2的第一主面上形成第一叠层体11,在与第一主面相对的第二主面上形成第二叠层体12。 Structure l is formed by the following structure: a first laminated body 11 is formed on the first main surface of the n-type based semiconductor crystal substrate 2, the second laminate 12 is formed on a second main surface opposite to the first main surface . 可以使用具有单晶体或多晶体结构的硅基板或锗基板等作为晶体类半导体基板。 It can be a silicon substrate or a single crystal germanium substrate, or the like having a polycrystalline structure as a crystal-based semiconductor substrate. 上述第一叠层体11具有, 在n型晶体类半导体基板2的第一主面上依次形成本征非晶质半导体层3、具有与n型晶体类半导体基板2不同的导电型的p型非晶质半导体层4、 p侧透明导电膜层5和p侧集电极6的结构。 The first laminate 11 has, sequentially forming an intrinsic amorphous semiconductor layer 3 on the first main surface of the n-type substrate 2 based semiconductor crystal, the crystal having the n-type semiconductor substrate 2 different classes of p-type conductivity type 4, a p-side transparent conductive film layer 5 and the p-side collector electrode 6 of the amorphous semiconductor layer. 上述第二叠层体12,在n型晶体类半导体基板2的第二主面上依次形成本征非晶质半导体层7、具有与n型晶体类半导体基板2相同的导电型的n型非晶质半导体层8、 n侧透明导电膜层9和n侧集电极10。 The second laminate 12, forming an intrinsic amorphous semiconductor layer 7 sequentially on the main surface of the second n-type crystalline based semiconductor substrate 2 having the same conductivity type is n type and the n-type crystalline semiconductor substrate 2 based crystalline semiconductor layer 8, n-side transparent conductive film layer 9 and the n-side collector electrode 10. 可以使用硅或锗等 Silicon or germanium and the like may be used

作为非晶质半导体基板。 As the amorphous semiconductor substrate.

本征非晶质半导体层3、 p型非晶质半导体层4、本征非晶质半导体层7和n型非晶质半导体层8,可以分别使用等离子体CVD法形成。 Intrinsic amorphous semiconductor layer 3, p-type amorphous semiconductor layer 4, an intrinsic amorphous semiconductor layer 7 and the n-type amorphous semiconductor layer 8 can be formed using a plasma CVD method, respectively. 另外,p侧透明导电膜层5和n侧透明导电膜层9,可以使用ITO(Indium Tin Oxide:氧化铟锡)等透光性的导电性膜。 Further, P-side transparent conductive layer 5 and the n-side transparent conductive film layer 9, may be used ITO (Indium Tin Oxide: indium tin oxide) or the like light-transmitting conductive film. p侧集电极6和n侧集电极10可以使用银等金属,可以分别使用丝网印刷法、真空蒸镀法、溅射法等形成图案。 p-side collector electrode 6 and the n-side collector electrode 10 of metal such as silver may be used, each pattern may be formed using a screen printing method, a vacuum deposition method, a sputtering method or the like.

接着,参照图4,对通过向上述结构体l照射激光、以在该结构体1上形成槽的工序进行说明。 Next, referring to FIG. 4, to the step of forming grooves on the structure 1 to be described the above-described structure l by irradiating laser light. 图4为表示通过向图3所示的结构体1 照射激光从而在结构体1上形成了槽的结构体13的示意截面图。 FIG 4 is a schematic cross-sectional view so as to form a groove structure 13 on the structure 1 by irradiating a laser beam to the structure shown in FIG. 如图4所示,从n型晶体类半导体基板2的上述第二主面侧,在第一实施方式的情况下,即从包含具有与n型晶体类半导体基板2相同的导电型的n型非晶质半导体层8的上述第二叠层体12 —侧,如箭头L所示, 向结构体1照射激光,由此,在第二叠层体12和n型晶体类半导体基板2中形成槽15,制作出结构体13。 4, from the second main surface side of the n-type based semiconductor crystal substrate 2, in the case of the first embodiment, i.e., from the group consisting class having n-type crystalline semiconductor substrate of the same conductivity type n type 2 12 amorphous semiconductor layer of the second laminate 8 - the side, as shown by arrow L, the laser structure 1 is irradiated, thereby, and 12 are formed in the n-type crystalline semiconductor substrate of the second laminate class 2 grooves 15, 13 to produce the structure.

在第一实施方式中,如图4所示,槽15在n侧集电极10、 n侧透明导电膜层9、 n型非晶质半导体层8、本征非晶质半导体层7和n型晶体类半导体基板2上形成,但只要未到达具有与n型晶体类半导体基板2不同的导电型的p型非晶质半导体层4即可,槽15的深度可以适当地选择为,在槽15形成后进行的沿槽15的分割能够容易地进行的深度。 In a first embodiment, shown in Figure 4, the groove 15 in the n-side collector electrode 10, n-side transparent conductive film layer. 9, n-type amorphous semiconductor layer 8, an intrinsic amorphous semiconductor layer 7 and the n-type based semiconductor crystal 2 is formed on the substrate, but has not reached as long as the n-type crystalline semiconductor substrate 2 based conductivity type different from the p-type amorphous semiconductor layer 4 to the depth of the groove 15 may be suitably chosen, the groove 15 dividing along the depth of the groove 15 is carried out after forming can be easily performed.

此时,调整激光的照射时间、照射能量等激光照射条件,使得将槽15停止在n型晶体类半导体基板2中、并且使其未达到具有与该n 型晶体类半导体基板2不同的导电型的p型非晶质半导体层4。 In this case, adjustment of the laser irradiation time, the irradiation energy of the laser irradiation conditions, etc., such that the groove 15 stops in the n-type crystalline based semiconductor substrate 2, and it does not reach the n-type crystal having a type different from the second conductivity type and the semiconductor substrate the p-type amorphous semiconductor layer 4. 如果照射激光使槽15达到具有与上述n型晶体类半导体基板2不同的导电型的p型非晶质半导体层4,则该p型非晶质半导体层4在槽15附近形成电阻低的微晶体部,由于漏电流在该微晶体部与n型晶体类半导体基板2之间流动,所以,将导致制造出的光电动势元件的开路电压Voc 和曲线因子FF下降。 If the irradiation laser light having a groove 15 reaches 4, the p-type amorphous semiconductor layer 4 is formed with the n-type crystal-based semiconductor different from the second conductivity type is p-type amorphous semiconductor layer of the substrate 15 in the vicinity of the low resistance micro-grooves crystal portion, the leakage current flows between the microcrystals and the n-type crystalline portion based semiconductor substrate 2, therefore, it will result in the open voltage Voc of the photovoltaic element manufactured factor FF and lowered.

作为用于形成这样的槽15的激光照射条件,例如,可以使用YAG 激光和Ar激光的二次谐波等波长超过400nm的激光、使用1~20W的功率。 Examples of such laser irradiation conditions for forming the grooves 15, for example, an Ar laser and a YAG laser second harmonic laser wavelengths longer than 400nm and the like using a power of 1 ~ 20W. 另外,作为激光的光径,可以使用例如20〜200^im的大小。 Further, as the diameter of the laser light can be used, for example, the size of 20~200 ^ im. 通过照射这样条件的激光,能够形成宽度与上述激光的光径大体相同的槽15。 By such laser irradiation conditions, the laser can be formed with a width substantially the same optical path groove 15.

在图4的结构中,第一叠层体ll和n型晶体类半导体基板2,在槽15附近为图2 (b)所示的结构。 In the configuration of FIG. 4, the first laminated body ll based semiconductor and n-type crystalline substrate 2 in the vicinity of the groove 15 in FIG. 2 (b) structure as shown. 如图2 (b)所示,n型非晶质半导体层8和本征非晶质半导体层7的端部,由于激光的照射产生的热的影响而微结晶化,分别形成微晶体部8a和微晶体部7a。 (B), and the end portion 2 of n-type amorphous semiconductor layer 8 an intrinsic amorphous semiconductor layer 7, due to the heat generated by the laser beam irradiation and slightly crystallized microcrystals are formed portion 8a and microcrystalline portion 7a. 虽然该微晶体部8a和微晶体部7a的电阻小,但由于微晶体部8a和n型晶体类半导体基板2是相同的导电型,所以,在n型非晶质半导体层8和n型晶体类半导体基板2之间不产生漏电流。 7a though small portion of the resistance of the microcrystalline and microcrystalline portions 8a, but the portions 8a and microcrystalline-based n-type crystalline semiconductor substrate 2 is the same conductivity type, so the n-type amorphous semiconductor layer 8 and leakage current is not generated between a crystal-based semiconductor 2 n-type substrate.

接着,如图5所示,将上述结构体13沿槽15进行分割。 Subsequently, as shown in FIG 13 along the slot 15 divides the above-described structure 5. 图5为表示将上述结构体13沿槽15进行分割所得到的、本发明的光电动势元件14的示意截面图。 5 is a groove 13 in the above-described structure 15, photoelectromotive force member according to the present invention obtained by dividing a schematic sectional view 14. 作为分割的方法,例如可以使用以槽15的部分为中心、用保持部件夹住结构体13的周边部并将其折湾的弯曲切断加工法,或者用洗涤器(scrubber)、切割锯(dicing saw)等进行切断的方法等。 As a method of segmentation, for example, may be used as the center portion of the slot 15, sandwiched between the peripheral portion of the structure of the holding member 13 and the curved cutting off its Bay working method, or by the scrubber (Scrubber), dicing saw (dicing saw) a method for cutting and the like. 通过该分割,可以制作出期望尺寸的光电动势元件14。 By this division, it is possible to produce a desired size of the photovoltaic element 14.

通过以上的制作,如图5所示,能够制作出由n型晶体类半导体基板2的第一主面与该第一主面相反侧的第二主面夹住的至少一个侧面由分割加工面18形成的光电动势元件14。 By the above production, shown in Figure 5, it can be fabricated at least one side of a first main surface of the n-type based semiconductor crystal substrate 2 opposite to the first major surface of the second main surface sandwiched by the division processing surface 18 photovoltaic element 14 is formed. 在此,该分割加工面18 由激光加工区域16和切断加工区域17构成,激光加工区域16从上述第二主面侧向上述第一主面延伸、但未到达具有与上述n型晶体类半导体基板2不同的导电型的p型非晶质半导体层4、通过激光加工形成, 切断加工区域17从上述第一主面侧向上述第二主面侧延伸、通过切断形成。 Here, the divided working surface 18 by the laser processing region 16 and region 17 constituting the cutting process, the first main surface 16 extends from the side of the laser processing area of ​​the second main surface, but does not reach the n-type having a crystal-based semiconductor different conductivity type substrate 2 of p-type amorphous semiconductor layer 4, formed by laser processing, cutting processing region of the second main surface side extending from the side 17 is formed by cutting the first main surface.

根据第一实施方式,能够制造具有将非晶质半导体和晶体类半导体组合而构成的异质结、在非晶质半导体和晶体类半导体之间没有漏电流流动、开路电压Voc和曲线因子RF.的下降受到抑制的、期望尺寸的光电动势元件。 According to the first embodiment, it is possible to manufacture a heterojunction amorphous semiconductor having a crystal-based semiconductor and formed by combining, no leakage current flows between the amorphous semiconductor and a crystalline-based semiconductor, the open circuit voltage Voc and curve factor RF. the decrease is suppressed, the size of a desired photovoltaic element. (第二实施方式) (Second Embodiment)

首先,使用图6、图7和图8所示的示意截面图,对使用第二实施方式的制造方法制造的光电动势元件的结构进行说明。 First, FIG. 6, FIG. 7 a schematic cross-sectional view and FIG. 8, the structure of a photovoltaic element manufacturing method of manufacturing the second embodiment will be described.

首先,制作具有图6所示的结构的将非晶质半导体和晶体类半导体组合而构成的异质结的结构体23。 First, an amorphous semiconductor having a crystal-based semiconductor and the structure shown in FIG. 6 of the heterojunction structure formed by combining body 23.

图6为表示利用第二实施方式的光电动势元件的制造方法制造的结构体的构造的示意截面图。 FIG 6 is a schematic cross-sectional view showing the structure of the structural body manufacturing method of a photovoltaic element using the second embodiment of the manufacturing. 结构体23具有下述结构:在p型的晶体类半导体基板20的第一主面上形成第一叠层体21 ,在与第一主面相对的第二主面上形成第二叠层体22。 Structural body 23 has a structure of: forming a first laminate 21, is formed on the second main surface opposite to the first main surface of the second main surface of the first laminate based semiconductor crystalline substrate 20 is p-type twenty two. 可以使用具有单晶体或多晶体结构的硅基板或锗基板等作为晶体类半导体基板。 It can be a silicon substrate or a single crystal germanium substrate, or the like having a polycrystalline structure as a crystal-based semiconductor substrate. 上述第一叠层体21具有, 在p型晶体类半导体基板20的第一主面上依次形成本征非晶质半导体层7、具有与p型晶体类半导体基板20不同的导电型的n型非晶质半导体层8、 n侧透明导电膜层9和n侧集电极10的结构。 The first laminate 21 having, sequentially forming an intrinsic amorphous semiconductor layer 7 on the first main surface of the p-type based semiconductor crystal substrate 20, 20 having a different conductivity type n-type and p-type crystalline semiconductor substrate 8, the structure of amorphous semiconductor layer of the n-side transparent conductive film layer 9 and the n-side collector electrode 10. 上述第二叠层体22,在p型晶体类半导体基板20的第二主面上依次形成本征非晶质半导体层3、具有与p型晶体类半导体基板20相同的导电型的p型 The second laminate 22, forming an intrinsic amorphous semiconductor layer 3. The p-type second main surface based semiconductor crystal substrate 20 having the same crystal-based p-type semiconductor substrate 20 of p-type conductivity type

14非晶质半导体层4、 p侧透明导电膜层5和p侧集电极6。 4, p-side transparent conductive film layer 5 and the p-side amorphous semiconductor layer 14 the collector 6. 可以使用硅或锗等作为非晶质半导体基板。 And the like may be used as amorphous silicon or germanium semiconductor substrate.

结构体23的制造方法,除了n型晶体类半导体基板2替换为p型晶体类半导体基板20、 n型非晶质半导体层8替换为p型非晶质半导体层4、 p型非晶质半导体层4替换为n型非晶质半导体层8、本征非晶质半导体层7替换为本征非晶质半导体层3、本征非晶质半导体层3 替换为本征非晶质半导体层7、 n侧透明导电膜层9替换为p侧透明导电膜层5、 p侧透明导电膜层5替换为n侧透明导电膜层9、 n侧集电极10替换为p侧集电极6、 p侧集电极6替换为n侧集电极10之外, 其它与第一实施方式中的结构体1的制作方法相同。 The method of manufacturing a structural body 23, except replacing 2-based n-type crystalline semiconductor substrate is a p-type semiconductor substrate 20 is crystal based, the n-type amorphous semiconductor layer 8 is replaced with p-type amorphous semiconductor layer 4, p-type amorphous semiconductor layer 4 is replaced with an n-type amorphous semiconductor layer 8, replacing 7 an intrinsic amorphous semiconductor layer is an intrinsic amorphous semiconductor layer 3, replacing 3 intrinsic amorphous semiconductor layer is an intrinsic amorphous semiconductor layer 7 , the n-side transparent conductive film layer 9 is replaced with the p-side transparent conductive film layer 5, p-side transparent conductive layer 5 9 Alternatively, the n-side collector electrode 10 is replaced with the p-side collector electrode of the n-side transparent conductive film layer 6, p-side 6 is replaced with a collector other than the n-side collector electrode 10, otherwise identical to the structure of the first embodiment of the production method 1.

接着,参照图7,对通过向上述结构体23照射激光、以在该结构体中形成槽的工序进行说明。 Next, with reference to FIG. 7, by irradiating laser to the structural body 23, a step to form a groove in the structure will be described. 图7为表示通过向图6所示的结构体23 照射激光从而在结构体23上形成了槽的结构体24的示意截面图。 7 is a schematic sectional view so as to form a groove structure 24 on the body 23 by the structure to the structure shown in FIG irradiated with laser light 623. 如图7所示,从p型晶体类半导体基板20的上述第二主面侧,在第二实施方式的情况下,即从包含具有与p型晶体类半导体基板20相同的导电型的p型非晶质半导体层4的上述第二叠层体22 —侧,如箭头L所示,向结构体23照射激光,由此,在第二叠层体22和p型晶体类半导体基板20中形成槽15,制作出结构体24。 7, from the second main surface side of the p-type semiconductor substrate 20 crystal classes, in the case of the second embodiment, i.e., from the p-type comprising a crystal-based semiconductor substrate having the same conductivity type of p-type 20 amorphous semiconductor layer of the second laminated body 4 of 22 - side, as indicated by an arrow L, 23 irradiating laser light to the structure, thereby, is formed in the second laminate 22 and the p-type semiconductor substrate 20 crystal classes grooves 15, 24 to produce the structure.

作为用于形成这样的槽15的激光照射条件,与第一实施方式的情况相同。 Examples of such laser irradiation conditions for forming the grooves 15, as in the case of the first embodiment.

此时,调整激光的照射时间、照射能量等激光照射条件,使得将槽15停止在p型晶体类半导体基板20中、并且使其未达到具有与该p 型晶体类半导体基板20不同的导电型的n型非晶质半导体层8。 In this case, adjustment of the laser irradiation time, the irradiation energy of the laser irradiation conditions, etc., such that the groove 15 stops in the p-type semiconductor substrate 20 crystal classes, and that it has not reached the 20 different p-type conductivity type based semiconductor crystal substrate the n-type amorphous semiconductor layer 8. 如果照射激光使槽15达到具有与上述p型晶体类半导体基板20不同的导电型的n型非晶质半导体层8,则该n型非晶质半导体层8在槽15附近形成电阻低的微晶体部,由于漏电流在该微晶体部与p型晶体类半导体基板20之间流动,所以,将导致制造出的光电动势元件的开路电压Voc和曲线因子RF.下降。 If the irradiation laser light having a groove 15 reaches 8, the n-type amorphous semiconductor layer 8 and the p-type based semiconductor crystal substrate 20 of different conductivity type n-type amorphous semiconductor layer 15 in the vicinity of the low resistance micro-grooves crystal portion, the leakage current flows between the p-type micro-crystalline portion based semiconductor crystal substrate 20, thus, will result in the open voltage Voc and curve factor RF photovoltaic element manufactured. lowered.

在第二实施方式中,如图7所示,槽15在p侧集电极6、 p侧透明导电膜层5、 p型非晶质半导体层4、本征非晶质半导体层3和p型晶体类半导体基板20上形成,但只要未到达具有与p型晶体类半导体基板20不同的导电型的n型非晶质半导体层8即可,槽15的深度可以适当地选择为,在槽15形成后进行的沿槽15的分割能够容易地进行的深度。 In a second embodiment, shown in Figure 7, the groove 15 in the p-side collector electrode 6, p-side transparent conductive film layer 5, p-type amorphous semiconductor layer 4, an intrinsic amorphous semiconductor layer 3 and the p-type based semiconductor crystal is formed on the substrate 20, but does not reach as long as 20 has a different conductivity type n-type amorphous semiconductor layer, a p-type substrate 8 can be based semiconductor crystal, the depth of the groove 15 may be suitably chosen, the groove 15 dividing along the depth of the groove 15 is carried out after forming can be easily performed.

在图7的结构中,在第二叠层体22和p型晶体类半导体基板20 的槽15附近,是将图2 (a)中的n型晶体类半导体基板2替换为p型晶体类半导体基板20的结构。 In the structure of FIG. 7, in the vicinity of the groove of the second laminate 22 and the p-type substrate 20 based semiconductor crystal 15, is 2 n-type crystal classes FIG. (A) of the semiconductor substrate 2 is replaced with a p-type semiconductor crystal based the substrate structure 20. 在这种情况下,p型非晶质半导体层4 和本征非晶质半导体层3的端部,由于激光照射产生的热的影响而微 In this case, the end portion and the intrinsic amorphous semiconductor layer 3 of p-type amorphous semiconductor layer 4, due to the influence of the heat generated by laser irradiation and slightly

结晶化,分别形成微晶体部4a和微晶体部3a。 Crystallized microcrystals are formed portions 4a and microcrystalline portion 3a. 虽然该微晶体部4a和微晶体部3a的电阻小,但由于微晶体部4a和p型晶体类半导体基板20的导电型相同,所以在p型非晶质半导体层4和p型晶体类半导体基板20之间不会产生漏电流。 Although low resistance portion 4a of the microcrystalline and microcrystalline portions 3a, but since the conductive portion 4a and the type microcrystalline p type semiconductor crystal substrate 20 of the same type, so the p-type amorphous semiconductor layer 4 and the p-type 20 does not generate a leakage current between the crystal-based semiconductor substrate.

接着,如图8所示,沿着槽15分割上述结构体24。 Subsequently, as shown in Figure 8, the body 24 along the grooves 15 dividing the structure. 分割的方法与第一实施方式的情况相同。 The method of division as in the case of the first embodiment. 通过该分割,能够制作出期望尺寸的光电动势元件25。 By this division, it is possible to produce a desired size of the photovoltaic element 25.

根据第二实施方式,能够制造具有将非晶质半导体和晶体类半导体组合而构成的异质结、在非晶质半导体和晶体类半导体之间没有漏电流流动、开路电压Voc和曲线因子FF的下降受到抑制的、期望尺寸的光电动势元件。 According to the second embodiment, it is possible to manufacture a heterojunction amorphous semiconductor having a crystal-based semiconductor and formed by combining, no leakage current flows between the amorphous semiconductor and a crystalline-based semiconductor, the open circuit voltage Voc and fill factor FF of decrease is suppressed, the size of a desired photovoltaic element.

【实施例】 EXAMPLES

(实施例1) (Example 1)

以下,参照图3、图4和图5,对上述第一实施方式的光电动势元件的制造方法的一个例子进行说明。 Hereinafter, with reference to FIG. 3, FIG. 4 and FIG. 5, one example of a method of manufacturing a photovoltaic element according to the first embodiment will be described.

首先,将电阻率约为l&cm、大小为10.4cm见方、厚度约为200拜的n型晶体类半导体基板2洗净后,设置在真空腔室内,加热到170 'C。 Firstly, the resistivity of about & cm l, size 10.4cm square and a thickness of about 200 thanks to the n-type crystalline semiconductor substrate 2 based cleaning, disposed in a vacuum chamber and heated to 170 'C. 接着,向上述腔室内导入氢气,使其进行等离子体放电,由此进行了ii型晶体类半导体基板2的第二主面的界面处理。 Subsequently, hydrogen is introduced into the chamber, so that plasma discharge, thereby performing a process interface type ii second main surface based semiconductor crystal substrate 2.

其后,向腔室内导入SiH4气体和氢气,利用等离子体CVD法, 在上述的n型晶体类半导体基板2的第二主面上形成厚度为10nm的本征非晶质半导体层7。 Thereafter, SiH4 gas introduced into the chamber and hydrogen gas, by a plasma CVD method, a thickness of the second main surface of the n-type crystalline semiconductor substrate 2 is based intrinsic amorphous semiconductor layer is 7 10nm. 接着,向腔室内导入SiH4气体、PH3气体和氢气, 利用等离子体CVD法,在本征非晶质半导体层7上形成厚度为5nm 的n型非晶质半导体层8。 Subsequently, SiH4 gas introduced into the chamber, of PH3 gas and hydrogen gas, by a plasma CVD method, thickness is formed on the intrinsic amorphous semiconductor layer 7 is an n-type amorphous semiconductor layer is 8 5nm.

16接下来,将形成有上述本征非晶质半导体层7和n型非晶质半导体层8的n型晶体类半导体基板2从腔室中取出,再次设置在腔室中后,加热到170。 After 16 Next, the formed with the intrinsic amorphous semiconductor layer 7 and the n-type crystalline-based n-type amorphous semiconductor layer 8 of the semiconductor substrate 2 is removed from the chamber, disposed in the chamber again and heated to 170 . C,对与第二主相对的第一主面进行与上述的第二主面的界面处理相同的处理。 C, on the first main surface and a second major opposite the interface with the same processing as the second main surface of the above-described process.

其后,向腔室内导入SiH4气体和氢气,利用等离子体CVD法, 在上述的n型晶体类半导体基板2的第一主面上形成厚度为10nm的本征非晶质半导体层3。 Thereafter, SiH4 gas introduced into the chamber and hydrogen gas, by a plasma CVD method, a thickness of the intrinsic amorphous semiconductor layer 3 10nm on the first main surface of the n-type substrate 2 based semiconductor crystal. 接着,向腔室内导入SiH4气体、B2H6气体和氢气,利用等离子体CVD法,在该本征非晶质半导体层3上形成厚度为5nm的p型非晶质半导体层4。 Subsequently, SiH4 gas introduced into the chamber, of B2H6 gas and hydrogen gas, by a plasma CVD method, a thickness of p-type amorphous semiconductor layer 4 5nm on the intrinsic amorphous semiconductor layer 3.

将以上的非晶质半导体层的成膜条件示于表1。 The film forming conditions of the above amorphous semiconductor layer are shown in Table 1. 表1中,"i型"表示本征非晶质半导体层3和本征非晶质半导体层7, "p型"表示p型非晶质半导体层4, "n型"表示n型非晶质半导体层8。 In Table 1, "i-type" represents the intrinsic amorphous semiconductor layer 3 and the intrinsic amorphous semiconductor layer 7, "p-type" indicates the p-type amorphous semiconductor layer 4, "n-type" represents an n-type amorphous semiconductor layers 8. 另外,B2H6 和PH3由H2气体分别稀释至2。 Further, B2H6 and PH3 diluted with H2 gas to a 2 respectively. /。 /. 、 1%。 , 1%.

表l Table l

<table>table see original document page 17</column></row> <table> <Table> table see original document page 17 </ column> </ row> <table>

接着,在n型晶体类半导体基板2的两主面上形成的n型非晶质半导体层8和p型非晶质半导体层4上,利用溅射法形成厚度为100nm 的由ITO构成的n侧透明导电膜层9和p侧透明导电膜层5。 Next, an n-type amorphous semiconductor layer 8 and the p-type amorphous semiconductor layer is formed on both main surfaces of the n-type crystalline semiconductor substrate 2 based on the 4, is formed by sputtering n composed of ITO of a thickness of 100nm side transparent conductive film layer 9 and the p-side transparent conductive film layer 5.

接着,在n型晶体类半导体基板2的第二主面侧形成的n侧透明导电膜层9上和在第一主面侧形成的p侧透明导电膜层5上,利用丝网印刷法涂敷由银膏(paste)构成的n侧集电极10和p侧集电极6, 之后在约180'C下烧制约1小时,使银膏硬化。 Next, on the n-side transparent conductive film layer formed on the second main surface side of the n-type based semiconductor crystal substrate 2 and 9 on the p-side transparent conductive film layer 5 is formed on the first main surface side, is coated by a screen printing method deposited the n-side collector electrode 10 and the p-side collector electrode of silver paste (paste) composed of 6, then fired for 1 hour at about 180'C, the silver paste is hardened. 由此,完成第二叠层体12和第一叠层体11。 This completes the first laminate 12 and second laminate 11. 这样,就制作出了结构体l。 Thus, the fabricated structure l.

接着,向上述结构体1照射激光,将结构体被激光照射的部分除去,由此,在结构体l上形成了槽。 Subsequently, the removed portion of the laser structure is irradiated with laser light is irradiated to the above-described structure 1, thereby forming a groove in the structure l.

此时,使用激光光径为50pm、波长为1064nm的YAG激光,使用3〜5W的功率,如图4所示,沿着箭头L的方向,从第二叠层体12 一侧,即从n型晶体类半导体基板2的第二主面侧,向结构体l照射激光。 At this time, the laser beam diameter of 50 pM, a YAG laser wavelength of 1064nm, using 3~5W power, shown in Figure 4, along the direction of the arrow L, from the side of the second laminate 12, i.e., from the n 2 of the second main surface side of the crystal-based semiconductor type substrate, the structure irradiated with laser light l. 通过进行这样的激光照射,如图4所示,将第一叠层体11和n 型晶体类半导体基板2除去,由此在结构体1上形成槽15,制作出结构体13。 By performing such laser irradiation, as shown in FIG 11 and the n-type crystalline semiconductor substrate having a first type laminate 2 4 removed, whereby the grooves 15 are formed on the structure 1, to manufacture a structural member 13. 通过调整激光的照射条件,形成了深度未达到具有与n型晶体类半导体基板2不同的导电型的p型非晶质半导体层4的槽15。 By adjusting the irradiation conditions of the laser 15 is formed having a depth does not reach the n-type crystal-based semiconductor different from the second conductivity type is p-type amorphous semiconductor layer 4 in the substrate groove. 该槽15的深度为60Mm左右,槽15的宽度与上述激光的光径大致相同。 The depth of the groove 15 is about 60mm, the width of the laser light path of the groove 15 is substantially the same.

最后,通过向结构体13施加应力,沿着上述槽15将结构体13机械地分割。 Finally, dividing by applying stress to the structure 13 along mechanically 13 of the groove 15 structure. 通过该分割,制作出了期望尺寸的光电动势元件14 (图5)。 By this division, to produce the desired size of the photoelectromotive force member 14 (FIG. 5).

通过以上的制作,如图5所示,能够制作出由n型晶体类半导体基板2的第一主面与该第一主面相反侧的第二主面夹住的至少一个侧面由分割加工面18形成的光电动势元件14。 By the above production, shown in Figure 5, it can be fabricated at least one side of a first main surface of the n-type based semiconductor crystal substrate 2 opposite to the first major surface of the second main surface sandwiched by the division processing surface 18 photovoltaic element 14 is formed. 在此,该分割加工面18 由激光加工区域16和切断加工区域17构成,激光加工区域16从上述第二主面侧向上述第一主面延伸、但未到达具有与上述n型晶体类半导体基板2不同的导电型的p型非晶质半导体层4、通过激光加工形成, 切断加工区域17从上述第一主面侧向上述第二主面侧延伸、通过切断 Here, the divided working surface 18 by the laser processing region 16 and region 17 constituting the cutting process, the first main surface 16 extends from the side of the laser processing area of ​​the second main surface, but does not reach the n-type having a crystal-based semiconductor different conductivity type substrate 2 of p-type amorphous semiconductor layer 4, formed by laser processing, cutting processing region of the second main surface 17 extends laterally from the side of the first main surface by cutting

形成。 form. (实施例2) (Example 2)

以下,参照图6、图7和图8,对上述的第二实施方式的光电动势元件的制造方法的一个例子进行说明。 Hereinafter, referring to FIGS. 6, 7 and 8, an example of a method of manufacturing a photovoltaic element of the above-described second embodiment will be described.

首先,将电阻率约为1Q'cm、大小为10.4cm见方、厚度约为200拜的p型晶体类半导体基板20洗净后,设置在真空腔室内,加热到170 。 Firstly, the resistivity of about 1Q'cm, size 10.4cm square, a thickness of about 200 p-type crystal-based semiconductor substrate 20 thanks After washing, disposed in a vacuum chamber and heated to 170. C。 C.

接着,向上述腔室内导入氢气,使其进行等离子体放电,由此进行了p型晶体类半导体基板20的第二主面的界面处理。 Subsequently, hydrogen is introduced into the chamber, so that plasma discharge, thereby performing interface processing of the second principal surface of the p-type semiconductor substrate 20 crystal classes.

其后,向腔室内导入SiH4气体和氢气,利用等离子体CVD法, 在上述的p型晶体类半导体基板20的第二主面上形成厚度为10nm的本征非晶质半导体层3。 Thereafter, SiH4 gas introduced into the chamber and hydrogen gas, by a plasma CVD method, a thickness of the intrinsic amorphous semiconductor layer 3 10nm in the second main surface of the p-type semiconductor substrate 20 crystal classes. 接着,向腔室内导入SiH4气体、B2H6气体和氢气,利用等离子体CVD法,在该本征非晶质半导体层3上形成厚度为5nm的p型非晶质半导体层4。 Subsequently, SiH4 gas introduced into the chamber, of B2H6 gas and hydrogen gas, by a plasma CVD method, a thickness of p-type amorphous semiconductor layer 4 5nm on the intrinsic amorphous semiconductor layer 3.

接下来,将形成有上述本征非晶质半导体层3和p型非晶质半导体层4的p型晶体类半导体基板20从腔室中取出,再次设置在腔窒中后,加热到170。 Next, after forming the above-described intrinsic amorphous semiconductor layer 320 and the p-type extraction layer of p-type amorphous semiconductor based semiconductor crystal substrate 4 from the chamber, disposed in the cavity snapped again heated to 170. C,对与第二主相对的第一主面进行与上述的第二主面的界面处理相同的处理。 C, on the first main surface and a second major opposite the interface with the same processing as the second main surface of the above-described process.

其后,向腔室内导入SiH4气体和氢气,利用等离子体CVD法, 在上述的p型晶体类半导体基板20的第一主面上形成厚度为10nm的本征非晶质半导体层7。 Thereafter, SiH4 gas introduced into the chamber and hydrogen gas, by a plasma CVD method, a thickness of the first main surface of the p-type substrate 20 based semiconductor crystal is an intrinsic amorphous semiconductor layer is 7 10nm. 接着,向腔室内导入SiH4气体、PH3气体和氢气,利用等离子体CVD法,在本征非晶质半导体层7上形成厚度为5nm 的n型非晶质半导体层8。 Subsequently, SiH4 gas introduced into the chamber, of PH3 gas and hydrogen gas, by a plasma CVD method, thickness is formed on the intrinsic amorphous semiconductor layer 7 is an n-type amorphous semiconductor layer is 8 5nm.

以上的非晶质半导体层的成膜条件,与实施例1相同,如表1所示的一样。 Film forming conditions of the above amorphous semiconductor layer, the same as in Example 1, the same as shown in Table 1.

接着,在p型晶体类半导体基板20的两主面上形成的p型非晶质半导体层4和n型非晶质半导体层8上,利用溅射法形成厚度为100nm 的由ITO构成的p侧透明导电膜层5和n侧透明导电膜层9。 Subsequently, p-type amorphous semiconductor layer 4 and n-type amorphous semiconductor layer on both main surfaces of a p-type crystalline semiconductor substrate 20 is formed based on the 8, p is formed by sputtering composed of ITO of a thickness of 100nm side transparent conductive film layer 5 and the n-side transparent conductive film layer 9.

接着,在p型晶体类半导体基板20的第二主面侧形成的p侧透明导电膜层5上和在第一主面侧形成的n侧透明导电膜层9上,利用丝网印刷法涂敷由银膏构成的p侧集电极6和n侧集电极10,之后在约18(TC下烧制约1小时,使银膏硬化。由此,完成第二叠层体22和第一叠层体21。这样,就制作出了结构体23。 Next, the upper p-side transparent conductive film layer 5 is formed on the second main surface side of the p-type semiconductor substrate 20 crystal classes, and the n-side transparent conductive film layer formed on the first main surface side 9, a screen printing method using a coating plating the p-side collector electrode 6 and the n-side collector electrode 10 made of silver paste, and then firing at about 18 (1 hour at TC constraints, the silver paste is hardened. thus, completion of the first laminate 22 and second laminate body 21. Thus, the structure 23 produced.

接着,向上述结构体23照射激光,将结构体被激光照射的部分除去,由此,在结构体23上形成了槽。 Next, the structure 23 is irradiated to the laser, the structure is removed by laser irradiation portion, thus forming a groove 23 in the body structure.

此时,与实施例1同样地,使用激光光径为50^m、波长为1064nm 的YAG激光,使用3〜5W的功率,如图7所示,沿着箭头L的方向, 从第二叠层体22 —侧,即从p型晶体类半导体基板20的第二主面侧, 向结构体23照射激光。 At this time, in the same manner as in Example 1, a laser light diameter of 50 ^ m, a YAG laser wavelength of 1064nm, using 3~5W power, shown in Figure 7, the direction of arrow L, from the second stack layer body 22 - side, i.e., from the second principal surface side of the p-type substrate 20 based semiconductor crystal, the structure 23 is irradiated to the laser beam. 通过进行这样的激光照射,如图7所示,将第二叠层体22和p型晶体类半导体基板20除去,由此在结构体23上形成槽15,制作出结构体24。 By performing such laser irradiation, as shown in FIG. 7, the second laminated body 22 is removed and a p-type semiconductor substrate 20 crystal classes, whereby the structure is formed in the body grooves 23 15, 24 to produce the structure. 与实施例l同样地,通过调整激光的照射条件,形成了深度未达到具有与p型晶体类半导体基板20不同的导电型的n型非晶质半导体层8的槽15。 The same manner as in Example l embodiment, by adjusting the irradiation conditions of the laser, does not reach the depth of the groove is formed having a different crystal type and p-type conductivity type semiconductor substrate 20 of n-type amorphous semiconductor layer 8 is 15. 该槽15的深度为60|im左右,槽15的宽度与上述激光的光径大致相同。 The depth of the groove 15 is 60 | about im, the width of the groove 15 and the diameter of the laser light is substantially the same.

最后,通过向结构体23施加应力,沿着上述槽15将结构体24机械地分割。 Finally, by dividing stress is applied to the structure 23 15 24 mechanically along the groove structure. 通过该分割,制作出了期望尺寸的光电动势元件25 (图8)。 By this division, to produce a desired size of the photoelectromotive force member 25 (FIG. 8). 通过以上的制作,如图8所示,能够制作出由p型晶体类半导体基板20的第一主面与该第一主面相反侧的第二主面夹住的至少一个侧面由分割加工面28形成的光电动势元件25。 By the above production, 8, can be fabricated at least one side of a first main surface of the p-type crystal-based semiconductor substrate 20 opposite to the first major surface of the second main surface sandwiched by the division processing surface 28 photovoltaic element 25 is formed. 在此,该分割加工面28 由激光加工区域26和切断加工区域27构成,激光加工区域26从上述第二主面侧向上述第一主面延伸、但未到达具有与上述p型晶体类半导体基板20不同的导电型的n型非晶质半导体层8、通过激光加工形成,切断加工区域27从上述第一主面侧向上述第二主面侧延伸、通过 Here, the divided working surface 28 is constituted by a laser processing region 26, and cutting processing region 27, a laser processing area 26 side to the first principal surface extending from the second main surface, but did not reach the p-type having a crystal-based semiconductor 20 of different conductivity type n-type amorphous semiconductor layer substrate 8 formed by laser processing, cutting processing region of the second main surface 27 extends laterally from the side of the first main surface, by

切断形成。 Cut form. (比较例1) (Comparative Example 1)

以下,参照图3、图9和图10,对比较例l进行说明。 Hereinafter, with reference to FIG. 3, 9, and 10, will be described for Comparative Example l.

在比较例1中,与实施例1同样地制作了与图3所示的实施例1 的情况相同的结构体l。 In Comparative Example 1, in the same manner as in Example 1 was produced in the same case of the embodiment shown in FIG. 3 of the structure 1 l.

接着,如图9所示,从与实施例1的情况的相反侧,即从第一叠层体11一侧,向上述结构体l照射激光,将结构体被激光照射的部分除去,由此在结构体1上形成槽15,制作出了结构体31。 Next, as shown in FIG. 9, the side opposite to the case of Example 1 from the embodiment, i.e. the side 11, the structure is removed from the first laminate to the above-described structure l portion irradiated with laser light of a laser irradiation, thereby grooves 15 are formed on the structure 1, the structure 31 is fabricated.

此时,与实施例1同样地,使用激光光径为50pm、波长为1064nm 的YAG激光,使用3〜5W的功率,如图9所示,沿着箭头L的方向, 从第一叠层体ll一侧,向结构体l照射激光。 At this time, in the same manner as in Example 1, using 50 pM diameter of the laser beam, a YAG laser wavelength of 1064nm, using power 3~5W, 9, along the direction of the arrow L, from the first laminate ll side, l irradiating laser light to the structure. 通过进行这样的激光照射,如图9所示,将第一叠层体ll和n型晶体类半导体基板2除去, 由此在结构体1上形成槽15,制作出结构体31。 By performing such laser irradiation, as shown in FIG. 9, the first laminated body and a n-type crystalline ll based semiconductor substrate 2 is removed, whereby the grooves 15 are formed on the structure 1, structure 31 is fabricated. 与实施例l同样地, 通过调整激光的照射条件,形成了深度未达到具有与n型晶体类半导体基板2相同的导电型的n型非晶质半导体层8的槽15。 The same manner as in Example l embodiment, by adjusting the irradiation conditions of the laser, does not reach the depth of the groove is formed with the same conductivity type of the n-type amorphous semiconductor layer and the n-type semiconductor crystal substrate 28 of the type 15. 该槽15的深度为6(Him左右,槽15的宽度与上述激光的光径大致相同。 The depth of the groove 15 is about 6 (Him, the width of the laser light path of the groove 15 is substantially the same.

最后,通过向结构体31施加应力,沿着上述槽15将结构体31机械地分割。 Finally, dividing by applying stress to the structure 31 along mechanically 31 above the slot structure 15. 通过该分割,制作出了期望尺寸的光电动势元件32。 By this division, to produce a desired size of the photovoltaic element 32.

通过以上的制作,如图10所示,能够制作出由n型晶体类半导体基板2的第一主面与该第一主面相反侧的第二主面夹住的至少一个侧面由分割加工面38形成的光电动势元件32。 By the above production, 10, can be fabricated at least one side of a first main surface of the n-type based semiconductor crystal substrate 2 opposite to the first major surface of the second main surface sandwiched by the division processing surface 38 photovoltaic element 32 is formed. 在此,该分割加工面38 由激光加工区域36和切断加工区域37构成,激光加工区域36从上述第一主面侧向上述第二主面延伸、但未到达具有与上述n型晶体类半导体基板2相同的导电型的n型非晶质半导体层8、通过激光加工形成,切断加工区域37从上述第二主面侧向上述第一主面侧延伸、通过切断形成。 Here, the divided working surface 38 is constituted by a laser processing region 36 and the cutting processing region 37, the laser processing area 36 side to the second main surface extending from said first main surface, but does not reach the n-type having a crystal-based semiconductor the substrate having the same conductivity type of the n-type amorphous semiconductor layer 28, formed by laser processing, 37 from the side of the second main surface side of the first main surface extends, is formed by cutting the cutting region. (比较例2) (Comparative Example 2)

以下,参照图6、图11和图12,对比较例2进行说明。 Hereinafter, referring to FIGS. 6, 11 and 12, Comparative Example 2 will be described.

在比较例2中,与实施例2同样地制作了与图6所示的实施例2 的情况相同的结构体23。 In Comparative Example 2, produced in the same manner as in Example same case of the embodiment shown in FIG. 6 2 23 2 structure.

接着,如图11所示,从与实施例2的情况的相反侧,即从第一叠层体21—侧,向上述结构体23照射激光,将结构体被激光照射的部分除去,由此在结构体23上形成槽15,制作出了结构体41。 Next, as shown in FIG. 11, from the opposite side in the case of Example 2, i.e., the first body from the side of the stack 21, 23 is irradiated with laser light to the structure, the structure is partially removed by laser irradiation, whereby grooves 15 are formed in structure 23 to produce the structure 41.

此时,与实施例2同样地,使用激光光径为5(Him、波长为1064nm 的YAG激光,使用3〜5W的功率,如图11所示,沿着箭头L的方向, 从第一叠层体21—侧,向结构体23照射激光。通过进行这样的激光照射,如图11所示,将第一叠层体21和p型晶体类半导体基板20除去,由此在结构体23上形成槽15,制作出结构体41。与实施例2同样地,通过调整激光的照射条件,形成了深度未达到具有与p型晶体类半导体基板20相同的导电型的p型非晶质半导体层4的槽15。该槽15的深度为6(Him左右,槽15的宽度与上述激光的光径大致相同。 At this time, in the same manner as in Example 2, using a laser light diameter of 5 (Him, a YAG laser wavelength of 1064nm, using power 3~5W, 11, along the direction of the arrow L, from the first stack body side layer 21, 23 is irradiated to the laser structure. by performing such laser irradiation, as shown in FIG. 11, the first stacked body 21 and a p-type crystalline semiconductor substrate 20 is removed based on the structure 23 thereby forming grooves 15, 41. the fabricated structure in the same manner as in Example 2, by adjusting the laser irradiation conditions, the depth does not reach is formed having the same conductivity type of p-type amorphous semiconductor layer of p-type crystalline semiconductor substrate 20 based 15.4 groove depth of the groove 15 is about 6 (Him, the width of the laser light path of the groove 15 is substantially the same.

最后,通过向结构体41施加应力,沿着上述槽15将结构体41机械地分割。 Finally, dividing 41 by applying stress to the body structure 41 along the mechanical structure of the groove 15. 通过该分割,制作出了期望尺寸的光电动势元件42。 By this division, to produce a desired size of the photovoltaic element 42.

通过以上的制作,如图12所示,能够制作出由p型晶体类半导体基板20的第一主面与该第一主面相反侧的第二主面夹住的至少一个侧面由分割加工面48形成的光电动势元件42。 By the above production, 12, can be fabricated at least one side of a first main surface of the p-type crystal-based semiconductor substrate 20 opposite to the first main surface of the second main surface sandwiched by the division processing surface 48 photovoltaic element 42 is formed. 在此,该分割加工面48 由激光加工区域46和切断加工区域47构成,激光加工区域46从上述第一主面侧向上述第二主面延伸、但未到达具有与上述p型晶体类半导体基板20相同的导电型的p型非晶质半导体层4、通过激光加工形成,切断加工区域47从上述第二主面侧向上述第一主面侧延伸、通过切断形成。 Here, the divided working surface 48 is constituted by a laser cutting processing region 46 and processing region 47, the laser processing area 46 side to the second main surface extending from said first main surface, but did not reach the p-type having a crystal-based semiconductor the same conductivity type of p-type amorphous semiconductor layer substrate 204, formed by laser processing, cutting processing region of the first main surface side 47 extends, is formed by cutting from the side of the second main surface. (评价结果) (Evaluation results)

对上述制造的实施例l、实施例2、比较例l、和比较例2的光电动势元件,领啶了输出特性。 Example manufactured above l, 2, Comparative Example l, and the photovoltaic element according to Comparative Example 2, the output characteristic brought piperidine. 将对实施例1和比较例1的光电动势元件的输出特性的测定结果示于表2,将对实施例2和比较例2的光电动 The measurement results in Example 1 and the output characteristics of the photovoltaic element of Comparative Example 1 of the embodiment will be shown in Table 2, Example 2 and Comparative Example 2 will embodiment of an electric light

21势元件的输出特性的测定结果示于袭3。 21 measurement results of output characteristics of the potentials is shown in the passage member 3.

表2<table>table see original document page 22</column></row> <table>由表2可知,实施例1与比较例1相比,开路电压V(x:、短路电流 Table 2 <table> table see original document page 22 </ column> </ row> <table> seen from Table 2, Example 1 and Comparative Example 1 as compared to the open circuit voltage V (x :, Short circuit current

ISC、曲线因子FR、和最大输出功率Pmax都较高,具有优异的特性。 The ISC, the fill factor FR, and have a higher maximum output power Pmax, having excellent characteristics.

实施例1和比较例1的不同点在于:在实施例1中,从n型晶体类半导体基板2的第二主面侧、即从与形成了具有与n型晶体类半导体基板2不同的导电型的p型非晶质半导体层4的主面相反侧的主面一侧, 向结构体l照射激光,而在比较例1中,从n型晶体类半导体基板2 的第一主面侧、即从包含具有与n型晶体类半导体基板2不同的导电型的p型非晶质半导体层4的第一叠层体11 一侧,向结构体31照射 Example 1 and Comparative Example 1 differs in that: In Example 1, 2 from the second main surface side of the n-type crystalline based semiconductor substrate, i.e., formed from two different conductive type having a n-type crystalline semiconductor substrate, type main surface of p-type amorphous semiconductor layer 4 opposite to the side of the main surface, l irradiating laser light to the structure, whereas in Comparative Example 1, from the first main surface of n-type crystalline semiconductor substrate 2 side-based, i.e., from the n-type crystal comprising a substrate based semiconductor different from the second conductivity type is p-type amorphous semiconductor layer of the first laminate 11 side 4, the body structure 31 is irradiated

、'、在比较例1的情况下,激光照射后的结构体31的激光照射部位附近的结构,与图2 (a)的太阳能电池50a相同。 'In the case of Comparative Example 1, the structure of the laser irradiated portion close to the structure after laser irradiation 31 is the same as in FIG. 2 (a) a solar cell 50a. 在激光照射部位附近的结构体31的端面中,本征非晶质半导体层3的端部和p型非晶质半导体层4的端部,由于激光照射时的热的影响而微结晶化,这些部分的电阻降低。 In the vicinity of the end face structure of a laser irradiation portion 31, the end portions and the p-type amorphous semiconductor layer 4 of the intrinsic amorphous semiconductor layer 3 due to the influence of heat during laser irradiation of a microcrystalline, reducing the resistance of these portions. 所以,在具有相反的导电型的p型非晶质半导体层4和n 型晶体类半导体基板2之间有漏电流流动。 Therefore, the leakage current flowing between the two conductivity type having a p-type amorphous semiconductor layer 4 and the n-type crystalline semiconductor substrate opposite class. 因此,这样制作的比较例1 的光电动势元件32的开路电压Vcx:和曲线因子FF降低。 Thus, the photovoltaic element of Comparative Example 1 thus fabricated the open-circuit voltage Vcx 32: FF and the fill factor decreased.

与此相对,在实施例1中,由于从与形成了具有与n型晶体类半导体基板2不同的导电型的p型非晶质半导体层4的主面相反侧的主面一侧向结构体1照射激光,所以,不会像比较例1那样,在具有相反的导电型的p型非晶质半导体层4和n型晶体类半导体基板2之间不会产生漏电流流动。 On the other hand, in Example 1, due to the formation of different p-type amorphous semiconductor layer 4 opposite to the main surface of the main surface of the n-type conductivity type and crystal-based semiconductor substrate 2 from a side of the structure 1 irradiated with laser light, so that, unlike Comparative Example 1, having a conductivity type of p-type amorphous semiconductor layer 4 and the n-type crystalline semiconductor substrate opposite based not leakage current flows between the two.

因此,如上所述,可认为与比较例l相比,具有优异的特性。 Thus, as described above, may be considered in comparison with Comparative Example L, it has superior properties.

由表3可知,实施例2与比较例2相比,开路电压Voc、短路电流 Compared to Table 3, Example 2 and Comparative Example 2 by the open-circuit voltage Voc, short-circuit current

ISC、曲线因子FF、和最大输出功率Pmax都较高,具有优异的特性。 The ISC, the FF fill factor, and have a higher maximum output power Pmax, having excellent characteristics.

实施例2和比较例2的不同点在于:在实施例2中,从p型晶体类半导体基板20的第二主面侧、即从与形成有具有与p型晶体类半导体基板20不同的导电型的n型非晶质半导体层8的主面相反侧的主面侧,向结构体23照射激光,而在比较例2中,从p型晶体类半导体基板20的第一主面侧,即从包含具有与p型晶体类半导体基板20不同的导电型的n型非晶质半导体层8的第一叠层体21 —侧,向结构体41 Differs from Example 2 and Comparative Example 2 in that: in Example 2, from the second main surface side of the p-type semiconductor substrate 20 crystal classes, i.e., there are formed from the p-type semiconductor substrate 20 crystal classes having different conductive type main surface of the n-type amorphous semiconductor layer 8 opposite to the main surface of the side irradiated with laser light 23 to the structure, whereas in Comparative Example 2, from the first main surface of p-type crystalline semiconductor substrate 20 side based, i.e., from comprises a crystal-based semiconductor and a p-type substrate 2120 different conductivity type n-type amorphous semiconductor layer of the first laminate 8 - side of the body 41 to the structure

、在比较例2的情况下,激光照射后的结构体41的激光照射部位附近的结构,与在图2 (b)的太阳能电池50b中、将n型晶体类半导体基板2替换为p型晶体类半导体基板20后的结构相同。 In the case of Comparative Example 2, the structure of the laser irradiated portion close to the structure after laser irradiation 41 as in FIG. 2 (b) a solar cell 50b, the n-type crystalline based semiconductor substrate 2 is replaced with a p-type crystalline 20 after the same structure type semiconductor substrate. 在激光照射部位附近的结构体41的端面中,本征非晶质半导体层7的端部和n型非晶质半导体层8的端部,由于激光照射时的热的影响而微结晶化,这些部分的电阻降低。 In the vicinity of the end face structure of a laser irradiation portion 41, the end portion and the end portion of the n-type amorphous semiconductor layer 8 of the intrinsic amorphous semiconductor layer 7 due to the influence of heat during laser irradiation of a microcrystalline, reducing the resistance of these portions. 所以,在具有相反的导电型的n型非晶质半导体层8和p型晶体类半导体基板20之间有漏电流流动。 Therefore, the conductivity type having an n-type amorphous semiconductor layer 8 and the p-type crystalline semiconductor substrate 20 opposite to the leakage current flows between. 因此,这样制作的比较例2的光电动势元件42的开路电压Vcx:和曲线因子FF降低。 Accordingly, such photovoltaic elements prepared in Comparative Example 2, the open circuit voltage Vcx 42: fill factor FF and lowered.

与此相对,在实施例2中,由于从与形成有具有与p型晶体类半导体基板20不同的导电型的n型非晶质半导体层8的主面相反侧的主面一侧向结构体23照射激光,所以,不会像比较例那样,在具有相反的导电型的n型非晶质半导体层8和p型晶体类半导体基板20之间不会产生漏电流流动。 On the other hand, in Example 2 in the embodiment, since there is formed from 20 having different n-type amorphous semiconductor layer opposite to the main surface 8 of the main surface of the p-type semiconductor crystal substrate side to the side of the conductivity type of structure 23 irradiated with laser light, so that, unlike the comparative example as having 8 and p-type crystalline semiconductor substrate based opposite conductivity type of the n-type amorphous semiconductor layer does not generate a leakage current flows between 20.

因此,如上所述,可认为与比较例2相比,具有优异的特性。 Thus, as described above, may be considered in comparison with Comparative Example 2 has excellent characteristics. 所以,不论晶体类半导体基板是n型还是p型,从形成有具有与晶体类半导体基板相同的导电型的非晶质半导体层的一侧,即从形成有具有与晶体类半导体基板不同的导电型的非晶质半导体层的主面的相反侧的主面一侧照射激光,以至少未达到具有与晶体类半导体基板不同的导电型的非晶质半导体层的方式在结构体上形成槽,由此能够制造输出特性优异的光电动势元件。 Therefore, regardless of the crystal-based semiconductor substrate is an n-type or p-type, is formed from the side of the crystal-based semiconductor having the same conductivity type of the substrate, a semiconductor layer is amorphous, i.e. from a crystal-based semiconductor is formed with a conductive substrate having a different type opposite to main surface side of the main laser beam irradiated surface of the amorphous semiconductor layer, at least it does not reach the embodiment having a crystal-based semiconductor substrate of different conductivity type amorphous semiconductor layer formed on the groove structure, whereby excellent output characteristics can be manufactured photovoltaic element. 此外,晶体类半导体基板可以是单晶硅基板,也可以是多晶硅基板。 Further, the crystal-based semiconductor substrate may be a monocrystalline silicon substrate, polycrystalline silicon substrate may be. 另外,不限于硅基板,也可以是锗基板等半导体基板。 Further, not limited to the silicon substrate, a germanium substrate may be a semiconductor substrate. 在以上的实施例中,非晶质半导体层可以是非晶硅层,也可以是非晶锗层。 In the above embodiment, the amorphous semiconductor layer may be an amorphous silicon layer, an amorphous germanium layer may be.

这样,根据本发明,可以提供能够制造开路电压Voc和曲线因子FF的降低被抑制的、具有将非晶质半导体和晶体类半导体组合而构成的异质结的、期望尺寸的光电动势元件的技术。 Thus, according to the present invention, it is possible to provide the manufacturing open voltage Voc and fill factor FF reduction is suppressed, and the amorphous semiconductor having a crystal-based semiconductor heterojunction formed by combining the desired size of the photoelectromotive force member of the art . (第三实施方式) (Third Embodiment)

以下,参照附图对本发明的第三实施方式进行说明。 Referring to the drawings of a third embodiment of the present invention will be described. 图13为表示本发明的第三实施方式的光电动势元件的侧面图。 13 is a side view showing a third embodiment of a photovoltaic element of the present invention, FIG. 图14为表示图13所示的光电动势元件的立体图。 FIG 14 is a perspective view of the photovoltaic element 13 shown in FIG. 如图16所示,图13 和图14所示的光电动势元件,由切断部分114将光电动势元件的基板的周边部切断而制成。 16, 13 and the photoelectromotive force member shown in FIG. 14, by the cutting portion 114 of the peripheral portion of the substrate of photovoltaic element is made off. 如图13所示,在第三实施方式的光电动势元件中,在具有作为晶体类半导体基板的(100)面的一个主面101a的n 型晶体类半导体基板101的一个主面101a上,形成具有约5nm的厚度的、实质上为本征非晶质层的本征非晶质半导体层102,在其上形成具有约5nm厚度的p型非晶质半导体层103,在其上形成具有约80nm〜 约100nm厚度的p侧透明导电膜层104。 13, the photovoltaic element of the third embodiment, on a main surface 101a based n-type crystalline semiconductor substrate having a main surface 101a as a crystal-based semiconductor substrate (100) surface 101, is formed having a thickness of about 5nm, the amorphous intrinsic layer is substantially intrinsic amorphous semiconductor layer 102, a p-type amorphous semiconductor layer having a thickness of about 5nm on 103 formed thereon having about the p-side transparent conductive film layer 104 80nm~ thickness of about 100nm. 在p侧透明导电膜层104上, 形成有由含有约5质量%的Sn02的In02构成的ITO(铟锡氧化物)膜。 On the p-side transparent conductive film layer 104, formed with ITO (indium tin oxide) film of a In02 it contains about 5% by mass of Sn02. 在p侧透明导电膜层104上,形成有p侧集电极105。 On the p-side transparent conductive film layer 104, a p-side collector electrode 105 is formed. 如图14所示,p 侧集电极105,由隔开规定的间隔、相互平行地延伸而形成的多个指状电极105a、和进一步收集由指状电极105a所收集的电流的汇流电极105b构成。 , P-side collector electrode 105 by a predetermined interval, each extending in parallel to form a plurality of 14 finger electrodes 105a, and is further collected by the finger electrodes 105a currents collected by the bus electrodes 105b composed of .

另外,在n型晶体类半导体基板101的另一个主面(背面)101b 上,形成具有约5nm厚度的、实质上为本征非晶质层的本征非晶质半导体层106,形成具有约5nm厚度的n型非晶质半导体层107,在其上形成有具有约80~约100nm厚度的p侧透明导电膜层108。 Further, the other main surface of the n-type crystalline based semiconductor substrate 101 (back surface) of 101b, having a thickness of about 5nm, a substantially intrinsic amorphous layer of intrinsic amorphous semiconductor layer 106 is formed, is formed having about the n-type amorphous semiconductor layer 107 is 5nm thickness, a p-side transparent conductive film layer having a thickness of about 80 to about 100nm 108 formed thereon. 在p侧透明导电膜层108上,与p侧集电极105同样地形成有由指状电极和汇流电极构成的n侧集电极109。 On the p-side transparent conductive film layer 108, the p-side collector electrode 105 is formed in the same manner with a collector of the n-side finger electrodes and the bus electrodes 109.

如上所述,图13所示的光电动势元件120,通过将图16所示的周围4边的切断部分114切断而形成,通过由切断部分114进行切断, 如图16所示,形成4个分割加工侧面110。 As described above, as shown in FIG. 13 photovoltaic element 120 is formed by cutting around the portion 164 shown in FIG cutting edges 114, cutting by the cutting portion 114, shown in Figure 16, is formed by four divided processing side 110. 如图13所示,分割加工侧面110上形成有从另一个主面101b — 侧向一个主面101a—侧延伸的激光加工区域111、和从一个主面101a 一侧向另一个主面101b —侧延伸的切断加工区域112。 The laser processing region side extending laterally a main surface 101a- 111, 101a and the other main surface 101b side from a main surface - As shown, there is divided from the other main surface 101b is formed on the processing side 11013-- cutting the side regions 112 extend. 其中,图13所示的分割加工侧面110的激光加工区域111和切断加工区域112是放大的图示。 Wherein the divided side processing shown in FIG. 13 of the laser processing region 110, 111 and 112 are cut processed region enlarged illustration.

如图13所示,在激光加工区域111和切断加工区域112的边界线上,形成有向一个主面101a—侧突出的多个凸部llla,由该凸部llla 在边界线上形成凹凸。 13, the boundary line 111 and a laser processing area cutting processing region 112 is formed to have a main surface side 101a- plurality of projecting portions projecting LLLA, irregularities on the boundary line formed by this convex portion llla. 该凸部llla是在形成激光加工区域111时所形成的。 The convex portion llla is formed in the laser region 111 is formed during processing.

图15为用于说明激光加工区域的形成工序的侧面图,是从图13 所示的箭头A方向看到的侧面图。 FIG 15 is a side view for explaining a step of forming a laser processing region, is seen from the direction of an arrow A shown in side view in FIG. 13. 在图15中,以点划线表示的部分是表示经过激光加工和其后的弯曲切断加工而除去的光电动势元件120 的周边部分。 In Figure 15, portions indicated by dotted lines is followed by laser cutting and bending process and the peripheral portion of the photovoltaic element 120 is removed. 如图15所示,从n型晶体类半导体基板101的另一个主面101b—侧照射激光,形成槽113。 15, from the side of the other main surface 101b- irradiating a laser-based n-type crystalline semiconductor substrate 101, grooves 113 are formed. 在形成该槽113时,在槽113内的分割加工侧面110的部分,形成激光加工区域111。 When the groove 113 is formed, a side parting processing section 110 in the groove 113, the laser processing region 111 is formed. 这样形成槽113, 例如,如图17所示,以槽113的部分为中心,通过用保持部件115夹住光电动势元件120的周边部并进行折弯的弯曲切断加工,分割光电动势元件120。 Thus grooves 113 are formed, e.g., 17, to the center portion of the groove 113 is, through the holding member 115 sandwiching a peripheral portion of the photovoltaic element 120 and the curved cutting the bent dividing photovoltaic element 120. 这样,由弯曲切断加工进行切断时所形成的截面,成为图15所示的切断加工区域112。 Thus, when the cross section is cut by the bending of the cutting process is formed, the cutting processing region becomes as shown in FIG. 15112.

在图13所示的切断加工区域112内形成的凸部llla周围的应力集中痕迹112a,是由于在上述弯曲切断加工时应力集中而形成的。 Llla stress concentration around the convex portion is formed in the region of the cutting process shown in FIG. 13 112 trace 112a, is due to the stress concentration at the curved cutting process is formed.

在本发明中,在弯曲切断加工时,如上所述,由于应力集中在激 In the present invention, when the bending processing of cutting, as described above, since the stress is concentrated at the laser

光加工区域lll的凸部llla的顶端部分及其周围,所以,形成以凸部111a为起点的放射状的应力集中痕112a。 And the tip portion of the light around the convex portions llla lll processing region, therefore, the stress to the convex portion 111a is formed starting from a radially centralized marks 112a. 在激光加工区域lll内,形成有多个凸部llla,弯曲切断加工时,由于应力集中在这些凸部llla 的顶端部分及其周围,因此,能够容易地进行弯曲切断加工。 LLL in the laser processing field, a plurality of protrusions formed LLLA, bending cutting process due to stress concentration in and around the tip portion of the convex portions LLLA, therefore, can be easily bent cutting process. 即,能够用更小的应力进行弯曲切断加工。 That is, the cutting processing can be performed bending less stress. 由于在弯曲切断加工时,能够由较小的应力进行切断,所以产生的应变也能够减小,其结果,能够提高曲线因子,从而能够得到高的光电转换效率。 Because during bending the cutting process, the cutting can be performed by a small stress, the strain generated can be reduced, as a result, the fill factor can be improved, it is possible to obtain a high photoelectric conversion efficiency.

图18为表示本发明的第三实施方式的光电动势元件的侧面的显微镜照片。 FIG. 18 is a microscopic photograph showing the side surface of the photovoltaic element of the third embodiment of the present invention. 图19为表示比较例的光电动势元件的侧面的显微镜照片。 FIG 19 is a microscope photograph showing a side of the photovoltaic element of Comparative Example. 另外,图20是与图18相对应的图,表示本发明的第三实施方式的光电动势元件的侧面。 Further, FIG. 20 and is a diagram corresponding to FIG. 18, a side of the photovoltaic element of a third embodiment of the present invention, FIG. 图21是与图19相对应的图,表示比较例的光电动势元件的侧面。 FIG 21 is a corresponding view to Figure 19, a side of the photovoltaic element of Comparative Example a.

如图18和图20所示,在本发明的光电动势元件的侧面,在激光加工区域111的顶端部形成有凸部llla,在凸部llla周围的切断加工区域112内,形成有以凸部llla为起点的放射状的应力集中痕112a。 18 and, on the side of the photovoltaic element of the present invention, the tip portion 111 of the laser processing region is formed with a convex portion 20 shown in FIG. LLLA, in the region of the convex cutting the peripheral portion LLLA 112, formed with a projecting portion llla radial stress concentration as a starting point mark 112a. 可以认为,由于应力集中在凸部llla上,所以,在弯曲切断加工时, 形成以该部分为起点的放射状的应力集中痕112a。 It is believed that due to stress concentration on the convex portion LLLA, therefore, when the bending processing of cutting, a stress to the portion of the starting concentration radial marks 112a.

与此相对,如图19和图21所示,在比较例1的光电动势元件中, 在激光加工区域111内未形成凸部,在这样的状态下进行弯曲切断加工时,切断加工区域112受到较大的应力,以扭曲的方式被切断,所以观察到了在特定方向上延伸的纹路112b。 On the other hand, as shown in FIG. 19, and when, photovoltaic element in Comparative Example 1, the laser processing region 111 in the protrusion 21 is not formed, a cutting process is bent in such a state, the processing region 112 by cutting large stress, is cut in a twisted manner, so that the observed lines 112b extending in a particular direction.

图22为用于说明激光加工时的激光照射条件与激光加工区域的顶端部的形状的关系的侧面图。 FIG 22 is a side view for explaining the relationship between the laser irradiation conditions when the shape of the tip portion of the laser processing and a laser processing region. 作为影响激光加工区域的形状的激光照射条件,可以列举出激光的输出功率、激光的脉冲频率和扫描速度、 激光照射的扫描次数等。 As the laser irradiation conditions affecting the shape of the laser processing region, include the output power of the laser beam, pulse frequency and the scanning speed of the laser, scanning the laser irradiation frequency and the like.

激光加工区域的深度,即由激光加工所形成的槽的深度,与输出功率大致成比例。 Depth, and the depth of the output power of the laser processing area, i.e. formed by the laser processing is approximately proportional to the grooves. 所以,通过增大输出功率,能够加深槽的深度。 Therefore, by increasing the output power, to deepen the depth of the groove.

对激光加工区域的形状影响最大的是脉冲频率和扫描速度。 The shape of the laser processing region is the greatest impact pulse frequency and the scanning speed. 脉冲频率除以扫描速度所得的值(脉冲频率/扫描速度)越大,凸部的间隔越窄,当凸部的间隔窄到一定程度以上时,在显微镜(100倍)无法观察到,加工区域的顶端部成为平坦的形状。 The resulting value is divided by the scan speed of the pulse frequency (pulse frequency / scanning speed), the more narrowly spaced convex portions, the convex portion when the interval narrower to a certain degree or more, the microscope (100-fold) could not be observed, the processing region the tip portion of a flat shape. 图22(a)表示这样的形状。 FIG. 22 (a) refers to a shape.

另外,脉冲频率/扫描速度的值越小,凸部的间隔越大,凸部的高度有减小的趋势。 The value of the pulse frequency / scanning speed is, the greater interval of the convex portions, the height of the convex portion tends to decrease. 图22 (c)表示这样的形状。 FIG. 22 (c) refers to a shape.

所以,为了形成图22 (b)所示的本发明的凸部llla,必须对脉冲频率/扫描速度的值进行控制,使其比表示图22 (a)的形状时的脉冲频率/扫描速度的值小、并且比表示图22 (c)的形状时的脉冲频率/扫描速度的值大。 Therefore, in order to form the convex portions llla present invention shown in FIG. 22 (b), must be controlled value of the pulse frequency / scanning speed, it represents a pulse frequency than the shape of FIG. 22 (a) is / scanning speed value is small, and a large value than the pulse frequency represents the shape of FIG. 22 (c) is / scanning speed.

另外,激光照射的扫描次数对槽的深度也有较大的影响。 Further, the number of scanning of the laser irradiation has a greater influence on the depth of the groove. 虽然每次增加扫描次数时加工深度增加,但其增加量会逐渐减少。 While increasing the number of scanning each machining depth increases, the amount of increase will gradually decrease.

图23为用于说明测定本发明中的凸部的平均高度的方法的侧面 23 is a side view for explaining the determination of the average height of the convex portion of the present invention is a method of

26图。 26 Fig. 激光加工区域111中的凸部llla的高度,使用具有测长功能的显微镜,例如放大至100倍,测定凸部的顶点部分和谷底部分的差。 Llla height of the convex portion of the laser processing area 111, using a microscope having a length measuring function, such as amplification to 100 times, the measurement difference between the convex portion and the apex portion of the bottom portion. 由于凸部的形状参差不齐,所以在凸部llla的顶点部分的中心位置画测长线15、且在谷底部分的中心位置画测长线16,以测长线15与测长线16的差作为凸部llla的平均高度。 Since the uneven shape of the convex portion, so long as measured in a central position Videos apex portions of convex portions llla 15, and the center position of the bottom portion Videos long measured 16 to 15 and the difference between the measured long-term measurement of the convex portion 16 is long llla of average height.

另外,对于凸部llla的间隔,与上述同样地,使用具有测长功能的显微镜,例如放大至200倍,对于肉眼能够观察到的6个凸部,对各凸部之间的距离进行测定,将其平均值作为凸部间的平均间隔。 Further, the interval of the convex portions llla, similarly to the above, using a microscope having a length measuring function, such as amplification to 200 times, for six peaks can be observed visually, and the distance between the convex portions were measured, the average value as the average interval between the convex portions.

根据本发明的第三实施方式,在激光加工区域111内,形成向n 型晶体类半导体基板101的一个主面101a—侧突出的多个凸部llla。 According to a third embodiment of the present invention, in the laser processing area 111, is formed to the side of the one main surface 101a- n-type crystalline semiconductor substrate 101 based protruding portions of the plurality of projections llla. 所以,弯曲切断加工时产生的应力集中在凸部llla上,应变被分散, 所以,分割加工侧面110的应变降低。 Therefore, the bending stress generated when cutting processing on the convex portions LLLA concentrated, the strain is dispersed, therefore, the strain segmentation processing side 110 is lowered. 其结果,光电动势元件120的光电转换效率提高。 As a result, photoelectric conversion efficiency of the photovoltaic element 120 is improved.

【实施例】 EXAMPLES

(实施例3) (Example 3)

以下,对制造本发明的实施例的光电动势元件的实施例进行说明。 Hereinafter, the embodiments of the photovoltaic element manufactured according to the present embodiment of the invention will be described. [实验l] [Experiment L]

<切断加工前的光电动势元件的制作> <Production of the photovoltaic element prior to cutting processing>

参照图13,通过将具有(100)面的n型晶体类半导体基板101 洗净而去除杂质。 Referring to FIG 13, by having the n-type crystalline wash based semiconductor substrate 101 (100) plane to remove impurities. 该n型晶体类半导体基板101具有约l&cm的电阻率、约300pm的厚度。 The n-type crystalline based semiconductor substrate having a resistivity of about 101 l & cm and a thickness of about 300pm.

接着,使用RF等离子体CVD法,在频率为约13.56MHz、形成温度为约10(TC〜约300°C、反应压力为约5Pa〜约100Pa、 RF功率为约1 mW/cm^约500mW/cm2的条件下,在n型晶体类半导体基板101的一个主面10la上,依次形成具有约5nm厚度的本征非晶质半导体层102、和具有约5nm厚度的p型非晶质半导体层103。此外,作为形成p型非晶质半导体层103时的p型搀杂剂,可以列举出作为第3族元素的B、 Al、 Ga、 In等。另外,在形成p型非晶质半导体层103时,通过将含有上述p型搀杂剂中的至少一种的化合物气体与SiH4 (硅烷) 气体等原料气体混合,能够形成p型非晶质半导体层103。 Next, using the RF plasma CVD method at a frequency of 13.56 MHz is about, forming temperature of about 10 (TC~ about 300 ° C, the reaction pressure is from about 5Pa~ about 100 Pa, RF power of about 1 mW / cm ^ to about 500mW / cm2 under a condition of, on one main surface 10la n-type crystal-based semiconductor substrate 101, sequentially forming an intrinsic amorphous semiconductor layer 102 having a thickness of about 5nm, and a p-type amorphous semiconductor layer 103 having a thickness of about 5nm Further, as a p-type dopant 103 of p-type amorphous semiconductor layer may include a group 3 element of B, Al, Ga, in, etc. Further, the formation of p-type amorphous semiconductor layer 103 when, by a gas containing at least one compound of the p-type dopant are mixed with the raw material gas SiH4 (silane) gas, a p-type amorphous semiconductor layer 103 can be formed.

27接着,与上述同样地,在n型晶体类半导体基板101的另一个主面上101b上,依次形成具有约5nm厚度的本征非晶质半导体层106、 和具有约5nm厚度的n型非晶质半导体层107。 27 Next, similarly to the above, on the other main surface of the n-type crystalline 101b based semiconductor substrate 101, sequentially forming an intrinsic amorphous semiconductor layer 106 having a thickness of about 5nm and the n type having a thickness of about 5nm crystalline semiconductor layer 107. 此外,作为形成n型非晶质半导体层107时的n型搀杂剂,可以列举出作为第5族元素的P、 N、 As、 Sb等。 Further, as an n-type dopant 107 of n-type amorphous semiconductor layer may include a Group 5 element P, N, As, Sb and the like. 在形成n型非晶质半导体层107时,通过将含有上述n型搀杂剂中的至少一种的化合物气体与原料气体混合,能够形成n 型非晶质半导体层107。 An n-type amorphous semiconductor layer 107, by a gas containing at least one compound of the raw material gas in the n-type dopant is mixed, it can be formed of n-type amorphous semiconductor layer 107.

接着,使用溅射法,分别在p型非晶质半导体层103和n型非晶质半导体层107上,形成由ITO膜构成的p侧透明导电膜层104和n 侧透明导电膜层108。 Next, using a sputtering method, respectively, on the p-type amorphous semiconductor layer 103 and the n-type amorphous semiconductor layer 107, a p-side transparent conductive film layer composed of an ITO film 104 and the n-side transparent conductive film layer 108. 该p侧透明导电膜层104和n侧透明导电膜层108,可以使用由含有约5重量%的Sn02的111203粉末的烧结体所构成的靶(target),通过溅射法形成。 The p-side transparent conductive layer 104 and the n-side transparent conductive film layer 108, may be used the target (target) by a sintered powder 111203 contains about 5% by weight of Sn02 constituted, is formed by sputtering. 通过改变Sn02粉末的量,能够改变ITO膜中Sn的量。 By varying the amount of Sn02 powder, capable of changing the amount of Sn in ITO film. Sn相对于In的量优选为约1质量%~约10质量%。 In relation to the amount of Sn is preferably from about 1% to about 10% by mass. p侧透明导电膜层104和n侧透明导电膜层108形成为约80nm〜约100nm的厚度。 The p-side transparent conductive film layer 104 and the n-side transparent conductive film layer 108 is formed to a thickness of about 100nm to about 80nm~.

接着,使用丝网印刷法、将环氧类的热固化型的导电性膏(银(Ag) 膏)转印到一个主面101a侧的p侧透明电极膜层104的规定区域上后, 在加热炉内进行加热,由此使导电性膏固化,形成了p侧集电极105。 Next, using a screen printing method, a thermosetting epoxy-based conductive paste (silver (Ag) paste) onto a predetermined region after the p-side transparent electrode layer 104 side of the one main surface 101a, in heating furnace, thereby curing the conductive paste, the p-side collector electrode 105 is formed. 同样地形成了n侧集电极109。 Similarly the n-side collector electrode 109 is formed. <利用激光加工形成槽> <Grooves are formed by laser processing>

利用激光加工在如以上那样制作出的光电动势元件的周边部形成槽。 Laser processing using a photovoltaic element fabricated as above in the peripheral portion are formed as grooves. 如图16所示,在周边部的以点划线(切断部分114)表示的4个位置形成槽。 16, grooves are formed at four positions of dotted lines (cutting portion 114) of the peripheral portion of the representation. 使用YAG激光作为激光,从n型晶体类半导体基板101 的另一个主面101b—侧照射激光。 YAG laser is used as laser light, from the other main surface of the n-type crystalline semiconductor substrate 101 101b- based laser beam is irradiated. 激光的输出功率为3〜10W、波长为1064nm、脉冲频率控制在lkHz〜30kHz的范围,激光的扫描速度以l-30mm/秒的范围内的一定速度进行扫描。 Output power of the laser is 3~10W, a wavelength of 1064 nm, pulse frequency controlled within a range lkHz~30kHz, the scan speed of the laser at a constant speed in the range of l-30mm / sec scan. 扫描次数在1~6次的范围内选择。 Scan number selected in the range of 1 to 6 times.

在上述的激光照射条件下照射激光,使得凸部的平均高度为7pm、 15pm、 25拜、50阿、和75拜。 In the above-described laser irradiation conditions of laser irradiation, so that the average height of the convex portion to 7pm, 15pm, 25 worship, 50 A, and 75 thanks. 另外,进行制作,使得此时的凸部间的平均间隔为凸部的平均高度的0.2倍~3.0倍的范围内。 Further, for production, such that the average spacing in the range of 0.2 times to 3.0 times the average height of the convex portion between the convex portion in this case. 另外,进行制作,使得从晶片的另一个主面到凸部的顶端部的平均高度在150nm~200Mm的范围内。 Further, for production, so that the range of 150nm ~ 200Mm from the other main surface of the wafer to an average height of the tip portion of the projecting portion. <光电动势元件的弯曲切断加工> <Photovoltaic element is bent cutting process>

以形成的槽的部分为中心,分别将如上所述得到的5种光电动势元件的周边部折弯,由此进行弯曲切断加工,制作出各光电动势元件。 The groove portion is formed at the center, five kinds respectively bent peripheral portion of the photovoltaic element obtained as described above, whereby the bending cutting process, to produce each of the photovoltaic element. [光电动势元件的特性评价] [Evaluation of characteristics of the photovoltaic element]

对以上制作的5种光电动势元件,照射太阳模拟器(solar simulator) AM1.5、 lkW/r^的光,测定了IV特性。 Five kinds of the above photovoltaic element fabricated irradiated solar simulator (solar simulator) AM1.5, lkW / r ^ of light, measured IV characteristic. 以凸部的平均高度作为横轴、 以曲线因子(FF)作为纵轴,将测定结果示于图24。 The average height of the convex portion as the abscissa and the fill factor (FF) as the vertical axis, the measurement results are shown in Figure 24. 其中,曲线因子的值表示用比较例的光电动势元件的曲线因子进行标准化后的曲线因子的值。 Wherein the value represents a value of the fill factor of the normalized fill factor of the photovoltaic element with a fill factor of comparative example. 使用未对周边部进行切断加工的光电动势元件作为比较例的光电动势元件。 Photoelectromotive force member using non-cutting machining of the peripheral portion of the photovoltaic element as a comparative example.

由图24可知,凸部的平均高度为15pm以上的光电动势元件,标准化的FF为l以上。 Seen from FIG. 24, the average height of the convex portion of 15pm or more photovoltaic element, standardized FF of l or more. 另外,标准化FF的值增大,直至凸部的平均高度为25Mm以上,其后维持在大致相同的值。 Further, the normalized value of FF increases, until the average height of the protrusions is 25Mm or more and thereafter maintained at substantially the same value. 所以,凸部的平均高度优选为15^im以上。 Therefore, the average height of the protrusions is preferably 15 ^ im above. [实验2] [Experiment 2]

除了在实验1中利用激光加工形成槽按照以下方法进行之外,其余与实验1同样地进行,制作出光电动势元件。 In addition to the groove formed by the following methods by laser processing in Experiment 1, the other in the same manner as in Experiment 1, to produce a photovoltaic element.

制作出8种光电动势元件,使得凸部的平均高度为25〜30拜,使从另一个主面到凸部的顶端部的平均高度变化为60Mm、90Kim、 120^、 150nm、 200nm、 250拜、270^irn、和300nm。 To produce 8 kinds of photovoltaic element, such that the average height of the convex portion is 25~30 thanks to the other main surface to the average height of the tip portion of the variation convex portion is 60Mm, 90Kim, 120 ^, 150nm, 200nm, 250 thanks , 270 ^ irn, and 300nm. 以使凸部的平均间隔为凸部的平均高度的0.2倍~3.0倍的方式进行制作。 0.2 to 3.0 times in a manner that the convex portion of the average interval as the average height of the convex portions is prepared. [光电动势元件的特性评价] [Evaluation of characteristics of the photovoltaic element]

与实验l同样地,对以上制作的8种光电动势元件,测定IV特性,将测定结果示于图25。 Experiment l in the same manner, eight kinds of photovoltaic elements prepared above were measured IV characteristic, the measurement results are shown in FIG. 25. 其中,在图25中,以从另一个主面到凸部顶端部的平均高度/基板的厚度作为横轴。 Wherein, in FIG. 25, the average height of the convex portion to the top portion / thickness of the substrate from the other main surface to the horizontal axis. 由于基板厚度为30(Hmi,所以,从另一个主面到凸部顶端部的平均高度为300pim时,上述值为100%。另外,图24和图25中带有"0"的点是同一装置的测定结果。 Since the thickness of the substrate 30 (Hmi, therefore, from the other main surface to the average height of the convex portion of the tip portion is 300pim, the above-described value of 100%. Further, the point 25 with a "0" in FIG. 24 and FIG same the results of the measurement device.

如图25所示,从另一个主面到凸部顶端部的平均高度达到基板厚度的30%以上时,标准化FF大于1。 As shown, from the other main surface to the average height of the convex portion to the top portion 25 reaches 30% of the substrate thickness, is greater than a normalized FF. 由此直到50%,随着距离的增大, 标准化曲线因子增大;达到50%以上时,标准化曲线因子的值维持在 Whereby up to 50% as the distance increases, the normalized fill factor is increased; more than 50%, the normalized fill factor values ​​maintained in

29大致一定的值。 29 a substantially constant value. 因此可知,从另一个主面到凸部顶端部的平均高度优 Thus understood, from the other main surface to the average height of the convex portion to the top portion preferably

选为基板厚度的50%以上。 Preferably more than 50% of substrate thickness. 另外,达到90%以上时,标准化迪线因子变得小于1。 Further, when more than 90%, Di normalized curve factor becomes smaller than 1. 因此可知,如果从另一个主面到凸部的顶端部的平均高度在基板厚度的30%~90%的范围内,则准化曲线因子为l以上,更优选在50%~90%的范围内。 Thus understood, from the other main surface to the average height of the tip portion of the convex portion is in the range of 30% to 90% of the substrate thickness, the normalized fill factor of l or more, and more preferably in the range of 50% to 90% Inside.

此外,在图25中,100%的情况是凸部的顶端部到达了基板的一个主面的情况,可知,到达了基板的一个主面时,标准化曲线因子大幅度下降。 Further, in FIG. 25, 100% of the cases to the top portion of the convex portion has reached the one main surface of the substrate, it is found to reach a main surface of the substrate, the normalized fill factor significantly. 所以,从另一个主面到凸部的顶端部的平均高度优选小于基板厚度的100%。 Therefore, from the other main surface to the average height of the convex portion to the top portion is preferably less than 100% of the substrate thickness.

此外,在上述实施例中,对将光电动势元件周围的4边进行切断的例子进行了说明,但本发明并不限于此,也可以适用于仅切断l边、 2边、或3边的情况。 Further, in the above embodiment, an example of four sides surrounding the photovoltaic element is cut has been described, but the present invention is not limited thereto, may be applied to only l cutting edge, two sides, three sides, or where .

另外,如图26所示,用点划线(切断部分114)将l片光电动势元件阵列130分割为多片、以制造小面积的光电动势元件120的情况, 也可以适用本发明。 Further, as shown in FIG. 26, a dashed line (cut portion 114) where the sheet l photovoltaic element array 130 is divided into multiple pieces to produce a small area of ​​the photovoltaic element 120, the present invention can also be applied. 而且,切断也不限于直线状的切断,切断为曲线状的情况也可以适用本发明。 Moreover, the cutting is not limited to straight cut, a curved cut is a case where the present invention may be applied.

另外,在上述实施例中,以HIT结构的光电动势元件为例进行了说明,但本发明也可以适用于使用晶体类半导体基板的光电动势元件, 也可以适用于其它的光电动势元件。 Further, in the above embodiments, the photovoltaic element in HIT structure has been described, but the present invention is also applicable to a photovoltaic element based semiconductor crystal substrate, it may be applied to other photovoltaic element. 例如,可以适用于在单晶硅、多晶硅、化合物半导体、晶体类基板上形成的薄膜太阳能电池等。 For example, it can be applied to thin film solar cells formed on a monocrystalline silicon, polycrystalline silicon, a compound semiconductor crystal based substrate.

在上述实施例中,使用环氧类的热固化型导电性膏作为集电极的材料,但本发明并不限于此,作为粘合层、汇流电极、和背面电极的材料,也可以使用含有环氧类以外的树脂材料的导电性材料。 In the above embodiment, a thermosetting epoxy-based conductive paste, the collector electrode material, but the present invention is not limited thereto, as an adhesive layer, the bus electrode, and the material of the back electrode may be a ring containing the conductive material of the resin material other than oxygen species. 另外, 也可以使用含有聚酯类、丙烯酸类、聚乙烯类、和酚类等的树脂材料的导电性膏。 Further, it may also be used a conductive paste containing polyesters, acrylics, polyethylenes, and phenolic resin material and the like.

在上述实施例中,通过加热使导电性膏硬化,从而形成集电极, 但本发明并不限于此,也可以利用上述方法以外的方法形成集电极。 In the embodiment described above, by heating the conductive paste is hardened, thereby forming the collector, but the present invention is not limited thereto, the collector may be formed using a method other than the method described above. 例如,也可以通过蒸镀A1等从而形成集电极,或用粘合层对金属线进行粘合、从而形成集电极。 For example, such may be formed by vapor deposition collector A1 and the like, or a metal wire with an adhesive bonding layer to form a collector.

在上述实施例中,在另一个主面侧的导电膜上形成由汇流电极和指状电极构成的背面电极,但本发明并不限于此,也可以形成覆盖另一个主面侧的透明导电膜整体的背面电极。 In the above embodiment, the back surface electrode is formed consisting of bus electrodes and finger electrodes on the other main surface side of the conductive film, but the present invention is not limited thereto, a transparent conductive film covering the other main surface may be formed overall the back electrode.

在上述实施例中,使用硅(Si)作为半导体材料,但本发明并不限于此,也可以使用SiGe、 SiGeC、 SiC、 SiN、 SiGeN、 SiSn、 SiSnN、 SiSnO、 SiO、 Ge、 GeC、 GeN中的任一种半导体。 In the above embodiment, a silicon (Si) as a semiconductor material, but the present invention is not limited thereto, may be used SiGe, SiGeC, SiC, SiN, SiGeN, SiSn, SiSnN, SiSnO, SiO, Ge, GeC, GeN in any one of a semiconductor. 在这种情况下,这些半导体可以是晶体,或者是含有氢和氟中的任意一种的非晶体或微晶体。 In this case, the semiconductor may be crystalline, or any one containing an amorphous or microcrystalline hydrogen and fluorine.

在上述实施例中,使用搀杂有Sn的氧化铟(ITO)作为形成透明导电膜的材料,但本发明并不限于此,也可以使用由ITO膜以外的材料构成的透明导电膜。 In the above embodiment, a Sn doped with indium oxide (ITO) as a transparent conductive film material, but the present invention is not limited thereto, may be used a transparent conductive film made of a material other than ITO film. 例如,可以形成由混合有Zn、 As、 Ca、 Cu、 F、 Ge、 Mg、 S、 Si、和Te中至少一种的氧化铟构成的透明导电膜。 For example, there may be formed by a mixing Zn, As, Ca, Cu, F, Ge, Mg, S, Si, Te and the transparent conductive film of indium oxide of at least one configuration.

在上述实施例中,使用RF等离子体CVD法形成非晶质半导体层, 但本发明并不限于此,也可以由蒸镀法、溅射法、微波等离子体CVD 法、ECR法、热CVD法、LPCVD (减压CVD)法等其它方法来形成非晶质半导体层。 In the above embodiment, the amorphous semiconductor layer is formed using the RF plasma CVD method, but the present invention is not limited to this, and may be formed of vapor deposition, sputtering, microwave plasma CVD method, the ECR method, a thermal CVD method , LPCVD (reduced pressure CVD) method, other methods to form an amorphous semiconductor layer.

以上,根据实施方式对本发明进行了说明。 Above, according to the embodiment of the present invention has been described. 这些实施方式仅是例示,将这些各构成要素和各处理工艺组合,能够得到各种变形例,并且这些变形例也属于本发明的范围,这一点本领域技术人员应该理解。 These embodiments are merely illustrative embodiment, each of these components and the combination of treatment processes, various modifications can be obtained, and such modifications are also within the scope of the present invention, it should be understood by those skilled in the art.

31 31

Claims (14)

  1. 1. 一种光电动势元件,具备第一导电型的晶体类半导体基板和第二导电型的半导体层,所述第一导电型的晶体类半导体基板具有第一主面和设置在所述第一主面的相反侧的第二主面,所述第二导电型的半导体层被设置在所述晶体类半导体基板的第一主面上,其特征在于:所述晶体类半导体基板被夹持在所述第一主面和所述第二主面之间、并具有由分割加工所形成的分割加工侧面,所述分割加工侧面由从所述第二主面一方通过激光加工所形成的激光加工区域和通过切断加工所形成的切断加工区域构成,所述激光加工区域是未到达所述第二导电型的半导体层、从所述第二主面向所述第一主面侧延伸的区域。 CLAIMS 1. A photovoltaic device, comprising a first conductivity-type crystalline based semiconductor substrate and a second conductive type semiconductor layer, the first conductivity type semiconductor substrate having a first crystal type and provided on the main surface of the first a second main surface opposite to the main surface of the second conductive type semiconductor layer is disposed on a first main surface of the crystal-based semiconductor substrate, wherein: said crystal-based semiconductor substrate is sandwiched between the first main surface and the second main surface, and having a processing side divided by the division process was formed by the dividing processing by the laser from the second side surface of one main surface formed by laser processing and a cutting area formed by machining regions constituting cutting process, the laser processing region is of the second conductivity type semiconductor layer does not reach the second main face from the first main surface side region extending.
  2. 2. 如权利要求1所述的光电动势元件,其特征在于: 所述第二导电型的半导体层,具有从所述晶体类半导体基板的所述第一主面依次叠层第二导电型的非晶质半导体层和第二导电型的导电性薄膜的结构。 2. The photovoltaic element according to claim 1, wherein: said second conductivity type semiconductor layer having a crystal-based semiconductor from the substrate, said first main surface of the second conductivity type are sequentially stacked structure amorphous semiconductor layer and the second conductivity type conductive film.
  3. 3. 如权利要求2所述的光电动势元件,其特征在于-还具有设置在所述晶体类半导体基板的所述第二主面上的第一导电型的半导体层,所述第一导电型的半导体层,具有从所述晶体类半导体基板的所述第二主面依次叠层第一导电型的非晶质半导体层和第一导电型的导电性薄膜的结构。 3. The photovoltaic element according to claim 2, characterized in that - further having a first conductivity type semiconductor layer disposed on the crystal-based semiconductor substrate of the second main surface of said first conductivity type a semiconductor layer having a crystal structure based semiconductor from the substrate, the second main surface sequentially laminated a first conductivity type and the amorphous semiconductor layer of a first conductivity type conductive film.
  4. 4. 如权利要求3所述的光电动势元件,其特征在于: 所述第二导电型的非晶质半导体层和所述第一导电型的非晶质半导体层中的至少一方包含本征的非晶质半导体层。 4. The photovoltaic element according to claim 3, wherein: said second conductive type amorphous semiconductor layer and the first conductive type amorphous semiconductor layer comprises at least one of intrinsic amorphous semiconductor layer.
  5. 5. 如权利要求1所述的光电动势元件,其特征在于: 所述切断加工是弯曲切断加工,在所述激光加工区域和所述切断加工区域的边界线上,所述激光加工区域具有向所述第一主面侧突出的多个凸部,在所述切断加工区域,以所述激光加工区域的所述凸部作为起点, 形成有所述弯曲切断加工时产生的应力集中痕迹。 5. The photovoltaic element according to claim 1, wherein: said curved cutting the cutting process, the cutting laser processing area and the boundary line of the processing region, the laser processing region has the a plurality of projecting portions of said first main surface side of the projection, the stress in the cutting processing region, to the convex portion of the laser processing region as a starting point, is generated when the concentration of bending cutting the formed marks.
  6. 6. 如权利要求5所述的光电动势元件,其特征在于:所述凸部的平均高度为15pm以上。 Photovoltaic element as claimed in claim 5, characterized in that: the average height of the convex portion is 15pm or more.
  7. 7. 如权利要求5所述的光电动势元件,其特征在于-所述凸部的平均间隔为所述凸部的平均高度的0.2倍〜3.0倍。 7. The photovoltaic element according to claim 5, characterized in that - an average interval of the convex portions is 0.2 times the average height of the convex portion ~3.0 times.
  8. 8. 如权利要求5所述的光电动势元件,其特征在于: 从所述第二主面到所述凸部的顶端的平均长度,为从所述第二主面到所述第一主面的长度的50%以上。 From the second main surface to the first main face from the second main surface to the average length of the top of the convex portion,: photovoltaic element as claimed in claim 5, characterized in that more than 50% of the length.
  9. 9. 一种光电动势元件的制造方法,制造具备具有第一主面和设置在所述第一主面的相反侧的第二主面的第一导电型的晶体类半导体基板的光电动势元件,其特征在于,包含:在所述晶体类半导体基板的所述第一主面上形成第二导电型的半导体层的工序A;从所述晶体类半导体基板的所述第二主面侧照射激光,形成未达到所述第二导电型的半导体层、从所述第二主面向所述第一主面侧延伸的槽的工序B;和将所述晶体类半导体基板和所述第二导电型的半导体层沿着所述槽切断,从而将所述晶体类半导体基板和所述第二导电型的半导体层分割的工序C。 9. A method for manufacturing a photovoltaic element, producing a first conductivity type comprising a photovoltaic element based semiconductor crystal substrate having a second main surface and the first main surface provided on an opposite side of said first main surface, and wherein, comprising: a step of forming a second conductivity type semiconductor layer a in the crystal-based semiconductor substrate of the first main surface; based semiconductor crystal from said second main surface side of the substrate irradiated with laser forming a second conductivity type semiconductor layer is not reached, step B side extending from the second main surface facing the first main groove; and the crystal-based semiconductor substrate and the second conductivity type a semiconductor layer along the cutting groove, whereby the crystal-based semiconductor substrate and the second conductive type semiconductor layer dividing step C.
  10. 10. 如权利要求9所述的光电动势元件的制造方法,其特征在于:还包含在所述晶体类半导体基板的所述第二主面上形成第一导电型的半导体层的工序D,所述工序B是从所述第一导电型的半导体层一侧照射所述激光的工序。 10. The method of manufacturing a photovoltaic element according to claim 9, characterized in that: the step D further comprises a first conductivity type formed in said semiconductor layer of the crystal-based semiconductor substrate second major surface, the said step B is the step of irradiating the laser beam from the first conductivity type semiconductor layer side.
  11. 11. 如权利要求10所述的光电动势元件的制造方法,其特征在于: 所述第一导电型的半导体层具有从所述晶体类半导体基板的所述第二主面,依次叠层第一导电型的非晶质半导体层和第一导电型的导电性薄膜的结构;所述第二导电型的半导体层具有从所述晶体类半导体基板的所述第一主面,依次叠层第二导电型的非晶质半导体层和第二导电型的导电性薄膜的结构。 11. The method of manufacturing a photovoltaic element according to claim 10, wherein: said first conductivity type semiconductor layer having a crystal-based semiconductor substrate from the second main surface, the first stacked sequentially a first conductivity type and structure of the conductive thin film conductive type amorphous semiconductor layer; a second conductivity type semiconductor layer having a crystal-based semiconductor from the substrate, said first main surface, a second laminated successively structure of the conductive type amorphous semiconductor layer and the second conductivity type conductive film.
  12. 12. 如权利要求ll所述的光电动势元件的制造方法,其特征在于: 所述第二导电型的非晶质半导体层和所述第一导电型的非晶质半导体层中的至少一方包含本征的非晶质半导体层。 12. The method of manufacturing a photovoltaic element according to claim ll, wherein: said second conductivity type amorphous semiconductor layer and at least one of the first conductive type amorphous semiconductor layer comprises an intrinsic amorphous semiconductor layer is.
  13. 13. 如权利要求9所述的光电动势元件的制造方法,其特征在于:所述工序B包含形成具有向所述第一主面侧突出的多个凸部的所述槽的工序,所述工序c包含将所述晶体类半导体基板和所述第二导电型的半导体层沿着所述槽弯曲的工序。 13. The method of manufacturing a photovoltaic element according to claim 9, wherein: said step B includes the step of forming the groove having the first main surface side of the plurality of protrusions protruding portions, said step (c) comprises the crystalline-based semiconductor substrate and the second conductive type semiconductor layer along the curved slot step.
  14. 14. 如权利要求13所述的光电动势元件的制造方法,其特征在于:所述工序B包含,控制所述激光的脉冲频率和所述激光的扫描速度,从而形成具有向所述第一主面侧突出的多个凸部的所述槽的工序。 14. The method of manufacturing a photovoltaic element according to claim 13, wherein: said step B comprises controlling the pulse frequency of the laser and the scanning speed of the laser, thereby forming a first principal direction a step of projecting side of the groove of the plurality of convex portions.
CN 200610065964 2005-03-29 2006-03-29 Photoelectromotive force element and manufacturing method thereof CN100485974C (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005094640 2005-03-29
JP2005-094640 2005-03-29
JP2005-100446 2005-03-31
JP2006-036005 2006-02-14

Publications (2)

Publication Number Publication Date
CN1841787A true CN1841787A (en) 2006-10-04
CN100485974C true CN100485974C (en) 2009-05-06

Family

ID=37030697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610065964 CN100485974C (en) 2005-03-29 2006-03-29 Photoelectromotive force element and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN100485974C (en)
ES (1) ES2358438T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5185208B2 (en) 2009-02-24 2013-04-17 浜松ホトニクス株式会社 Photodiode and photodiode array
JP5185205B2 (en) * 2009-02-24 2013-04-17 浜松ホトニクス株式会社 Semiconductor photodetector
CN101976657B (en) * 2009-04-15 2013-10-30 朱慧珑 Substrate structure for semiconductor device fabrication and method for fabricating same
CN102522445B (en) * 2011-12-08 2014-08-06 常州天合光能有限公司 Floating junction solar cell back passivation structure based on heterojunction and preparation technology thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197609B1 (en) 1998-09-07 2001-03-06 Rohm Co., Ltd. Method for manufacturing semiconductor light emitting device
US6201264B1 (en) 1999-01-14 2001-03-13 Lumileds Lighting, U.S., Llc Advanced semiconductor devices fabricated with passivated high aluminum content III-V materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197609B1 (en) 1998-09-07 2001-03-06 Rohm Co., Ltd. Method for manufacturing semiconductor light emitting device
US6201264B1 (en) 1999-01-14 2001-03-13 Lumileds Lighting, U.S., Llc Advanced semiconductor devices fabricated with passivated high aluminum content III-V materials

Also Published As

Publication number Publication date Type
ES2358438T3 (en) 2011-05-10 grant
CN1841787A (en) 2006-10-04 application

Similar Documents

Publication Publication Date Title
US6187150B1 (en) Method for manufacturing thin film photovoltaic device
US20070023081A1 (en) Compositionally-graded photovoltaic device and fabrication method, and related articles
US20120171804A1 (en) Patterning of silicon oxide layers using pulsed laser ablation
US20010054436A1 (en) Photovoltaic element, producing method therefor, and solar cell modules
US20070023082A1 (en) Compositionally-graded back contact photovoltaic devices and methods of fabricating such devices
US20080000519A1 (en) Solar Cell Device and Method for Manufacturing the Same
US20100229928A1 (en) Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
US20080290368A1 (en) Photovoltaic cell with shallow emitter
US20100029039A1 (en) Mono-silicon solar cells
US20110132444A1 (en) Solar cell including sputtered reflective layer and method of manufacture thereof
US20110139231A1 (en) Back junction solar cell with selective front surface field
US20080295882A1 (en) Photovoltaic device and method of manufacturing photovoltaic devices
US20110139229A1 (en) Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
US20110139230A1 (en) Ion implanted selective emitter solar cells with in situ surface passivation
US20100240169A1 (en) Method to make electrical contact to a bonded face of a photovoltaic cell
WO2008050889A1 (en) Solar cell element manufacturing method and solar cell element
US20120178203A1 (en) Laser annealing for aluminum doping and formation of back-surface field in solar cell contacts
WO2010123974A1 (en) High-efficiency solar cell structures and methods of manufacture
Metz et al. Industrial high performance crystalline silicon solar cells and modules based on rear surface passivation technology
US20090194153A1 (en) Photovoltaic cell comprising a thin lamina having low base resistivity and method of making
JP2009164544A (en) Passivation layer structure of solar cell, and fabricating method thereof
JP2008519438A (en) Back-contact solar cells
US20120225515A1 (en) Laser doping techniques for high-efficiency crystalline semiconductor solar cells
US20100147368A1 (en) Photovoltaic cell with shallow emitter
JP2006310774A (en) Photovoltaic element and method for manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted