CN100480302C - Controllable synthesis method for polyaniline nano structure and use thereof - Google Patents

Controllable synthesis method for polyaniline nano structure and use thereof Download PDF

Info

Publication number
CN100480302C
CN100480302C CN 200510038536 CN200510038536A CN100480302C CN 100480302 C CN100480302 C CN 100480302C CN 200510038536 CN200510038536 CN 200510038536 CN 200510038536 A CN200510038536 A CN 200510038536A CN 100480302 C CN100480302 C CN 100480302C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
polyaniline
acid
concentration
nanostructures
sheet
Prior art date
Application number
CN 200510038536
Other languages
Chinese (zh)
Other versions
CN1667021A (en )
Inventor
毅 施
潘力佳
林 濮
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明涉及一种新型聚苯胺自组装纳米结构的可控合成方法,本发明方法是将聚合反应在高压釜中以100-250℃的温度、采用质子酸作为掺杂剂进行氧化聚合反应,得到聚苯胺的薄片结构,薄片表面同时具有整齐排列的聚苯胺纳米棒(纤维)阵列。 The present invention relates to a novel method of synthesizing controllably polyaniline a self-assembling nanostructures, the method of the present invention is a polymerization reaction in an autoclave at a temperature of 100-250 deg.] C, the proton acid as a dopant for the oxidation polymerization reaction, to give polyaniline sheet structure, while the sheet surface having nanorod alignment polyaniline (fiber) array. 聚苯胺的薄片结构具有很强的发光性质。 Polyaniline sheet structure having strong light-emitting property. 该聚苯胺纳米阵列自组装结构可望用于电磁波屏蔽材料,抗静电材料,电极材料,高容量电容器材料,三极管、传感器材料,气体分离材料和高效发光材料。 Polyaniline The array self-assembled structure could be used for electromagnetic wave shielding materials, antistatic materials, electrode materials, high-capacity capacitor material transistor, sensor material, highly efficient gas separation materials and luminescent materials.

Description

聚苯胺纳米结构„成方法^^用途 Polyaniline nanostructures, "as a method uses ^^

一、 技术领域: First, the technical field:

本发明涉及一种新型聚苯胺自组装纳米结构的可控合成方法和和用途。 The present invention relates to a novel method of synthesizing controllably polyaniline nanostructures and self-assembly and use.

二、 背景技术s II BACKGROUND s

聚苯胺是一种重要的导电高分子(塑料),它具有稳定的化学性质、导电率高等优点[l] AG MacDiar依id, Synthetic metals: A Novel role for organic polymers, Angew. Chem. Int. Ed. 2001, 40, 2581-2590。 Polyaniline is an important conductive polymer (plastic) which has stable chemical properties, high electrical conductivity, etc. [l] AG MacDiar by id, Synthetic metals:.. A Novel role for organic polymers, Angew Chem Int Ed. 2001, 40, 2581-2590. 通过不同的掺杂程度控制,聚苯胺的导电率可实现由绝缘体一半导体一金属导体的转变。 By controlling different doping level, the conductivity of polyaniline can be realized a semiconductor-insulator transition from a metallic conductor. 近年来, 聚苯胺以及纳米结构的聚苯胺在太阳能电池、电磁波屏蔽材料[2]万梅香,李军朝,李素珍, 一种导电高聚物微波吸收剂及其制法,中国专利公开号1110786, 公告号1040043、抗静电材料[3] E,罗德里桂兹J,W,林德塞,降静电纤维及其制备方法,中国专利,公告号1145720、电极材料[4]王万喜,固态聚合物高能电池,中国专利,公开号1156911、高容量电容器材料[5]梁逵,碳纳米管复合电极超大容量电容器及其制造方法,中国专利,公开号1388540、热电材料[6]张祖训,张盛唐,郝纪祥,能将环境中的热能直接转变为电能的聚苯胺组合物和使用它的金属夹层件,中国专利,[公开号】1254728、三极管[7] N, J, Pinto, AT Johnson, AG MacDiarmid, CH Mueller, ". a/., Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor, Appl. Phys. Lett., 2003, 83,4244-4246、传感器材料和气体分离 In recent years, polyaniline and polyaniline nanostructures solar cells, electromagnetic wave shielding material [2] WAN Meixiang, toward Jun, Li Suzhen, an electrically conductive microwave absorbing polymer preparation method, Chinese Patent Publication No. 1110786, Publication No. 1,040,043, antistatic materials [3] E, Rodriguez Gui hereby J, W, Lindsay, electrostatic fiber and its preparation method for reducing, Chinese Patent, Publication No. 1,145,720, an electrode material [4] Wangwan Xi, solid polymer high-energy batteries, China Patent Publication No. 1156911, high-capacity capacitor material [5] Liang Kui, the carbon nanotube super capacitor and a manufacturing method of the composite electrode, Chinese Patent Publication No. 1388540, the thermoelectric material [6] Zhang Zuxun, Zhang Tang, Haoji Xiang, can environmental heat directly into electrical energy using polyaniline composition and its metal interlayer member, Chinese patent, [] Publication No. 1254728, the transistor [7] N, J, Pinto, AT Johnson, AG MacDiarmid, CH Mueller, " . a /., Electrospun polyaniline / polyethylene oxide nanofiber field-effect transistor, Appl. Phys. Lett., 2003, 83,4244-4246, and a gas sensor material separation 料等方面获得了广泛的应用。纳米结构的聚苯胺具有大的比表面积,可以大大提高化学传感器的响应速率和灵敏度。人们尝试用软模板和硬模板方法制备聚苯胺纳米管和纳米线等一维纳米材料,使用的硬模板如多孔氣化铝[8] HJ Qiu, J. Zhai, SH Li, L Jiang, MX Wan, Oriented growth of self—assembled polyaniline nanowire arrays using a novel method, Adv. Funct. Mater., 2003, 13, 925-928、粒子束刻蚀的髙分子模板[9] M. Kanungo, A. Kumar and AQ Contractor, j/w/. CAew., 2003, 75, 5673-5679等,软模板如表面活性剂[10] JC Michaelson and A丄McEvoy, Oww. Co/mrnm" 1994, 1,79-80和液晶分子[ll] LM Huang, ZB Wang, HT Wang, X丄.Cheng, A. Mitra and YX Yan, •/ Mi/e;: CZieOT., 2002, 12, 388-391等可以合成出聚苯胺纳米纤维。 Materials and other aspects gained wide applications. Polyaniline nanostructures having a large specific surface area, can greatly improve the response speed and sensitivity of the chemical sensor. Attempts soft and hard template template preparing polyaniline nanotubes and nanowires a dimensional materials, such as porous hard template using vaporized aluminum [8] HJ Qiu, J. Zhai, SH Li, L Jiang, MX Wan, Oriented growth of self-assembled polyaniline nanowire arrays using a novel method, Adv. Funct. Mater., 2003, 13, 925-928, Gao beam etching template molecules [9] M. Kanungo, A. Kumar and AQ Contractor, j / w /. CAew., 2003, 75, 5673-5679 and the like, surfactants such as soft template [10] JC Michaelson and A Shang McEvoy, Oww. Co / mrnm "1994, 1,79-80 and the liquid crystal molecules [ll] LM Huang, ZB Wang, HT Wang, X Shang .Cheng, A . Mitra and YX Yan, • / Mi / e ;: CZieOT., 2002, 12, 388-391 and the like can be synthesized polyaniline nanofibers. 然而整齐排列的聚苯胺纳米纤维阵列却难以用除硬模板以外的方法制备,并且多孔氧化铝等硬模板成本较髙, 产率低下。 However, polyaniline nanofibers has aligned array production method other than the hard template difficult, and the cost of the hard porous alumina template other than Gao, the yield is low. 因此很有必要发展能够制备聚苯胺纳米纤维阵列的纯化学方法以及可以通过简单的组分控制能达到有效控制产物形貌的方法。 Therefore it is necessary to develop a method capable of producing polyaniline nanofibers purely chemical array, and can achieve a simple method of effectively controlling the components to control the product morphology.

涉及聚苯胺合成的方法还可参见中国专利公开1415645,可溶性导电聚苯胺的制备方法,公开了一种可溶性导电聚苯胺的制备方法,其主要步骤是将本征态聚苯胺和质子酸在水和助溶剂组成混合溶剂中进行热掺杂。 The method involves synthesis of polyaniline See also 1,415,645, a soluble conducting polyaniline prepared Chinese Patent Publication, discloses a method for preparing a soluble conducting polyaniline, which is the main steps of polyaniline and a protonic acid and water cosolvent heat doped mixed solvent. 中国专利公开 Chinese Patent Publication

1446839用二氧化锰为氣化剂化学氧化法合成导电聚苯胺,将苯胺单体加入与含有二氣化锰的酸水悬浮液进行氣化反应,其发明合成导电聚苯胺简单易行,产物中二氧化锰的残留量很低,未涉及聚苯胺纳米管和纳米线等一维纳米材料的合成。 1,446,839 conducting PANI with manganese dioxide chemical oxidation gasification agent, the monomer is added to the gasification reaction of aniline with acid water suspension containing the two gasification manganese is that simple conducting PANI invention, the product low residual amount of manganese dioxide, synthetic material is polyaniline one-dimensional nanowires and nanotubes are not covered.

三、 发明内容: III SUMMARY OF THE INVENTION:

本发明的目的是:提供一种新型聚苯胺自组装纳米结构的可控合成方法和用途。 Object of the present invention are: to provide a novel self-assembled nanostructures polyaniline controllable synthesis methods and uses. 而且是成本低、且工艺控制简单的可控合成方法。 And low cost, and simple process control controlled synthesis.

本发明提供一种利用苯胺单体直接合成聚苯胺悬浮溶液的方法:0. 01M-1M 的氧化型引发剂如三氣化铁、过硫酸铵等),浓度O. 1M-5M质子酸摻杂剂如盐酸、 硫酸、硝酸、磷酸、磷酸、高氣酸等无机'酸或有机酸掺杂剂如草酸等),苯胺单体浓度0.01M-1M。 The present invention provides an aniline monomer using a direct method of synthesizing polyaniline suspension solution: 0 01M-1M oxidized initiators such as tris vaporized iron, ammonium persulfate, etc.), the concentration of O. 1M-5M protonic acid dopant such as inorganic acid, sulfuric acid, nitric acid, phosphoric acid, a high acid gas' or organic acids such as oxalic acid dopants, etc.), aniline monomer concentration of 0.01M-1M. 溶液混合均匀后,在防腐内衬如聚四氟乙烯内衬的高压釜中, 控制反应温度100-250*C,时间1-30小时。 After thorough mixing, the anti-corrosion lining, such as Teflon-lined autoclave, controlling the reaction temperature 100-250 * C, time 30 hours.

用本发明所述方法合成的聚苯胺产物是纳米纤维、纳米片层、球状上有纳米片层褶皱结构,产物结构可控,且合成方法简便,聚苯胺纳米结构产物在光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽和隐身技术上有着广泛的应用前景。 Polyaniline product was synthesized by the method of the present invention are nanofibers, sheets, with a sheet on a spherical nano-pleated structure, the product structure control, and convenient synthesis method, polyaniline nanostructures optoelectronic device product information, the sensor , molecular wires and molecular devices, as well as electromagnetic shielding and stealth technology has a wide application prospect.

将聚合反应在高压釜中以100-250'C的温度、采用质子酸作为掺杂剂进行氣化聚合反应,通过控制质子酸的浓度,可以分别得到如下产物:1.聚苯胺纳米纤维;2.聚苯胺的薄片结构,薄片表面同时具有整齐排列的聚苯胺纳米棒(纤维)阵列;3.球状聚苯胺颗粒,表面有大量薄片状纳米结构。 The polymerization reaction in an autoclave at a temperature of 100-250'C, the proton acid as a dopant gasification polymerization reaction, by controlling the concentration of the protic acid product can be obtained, respectively: 1 polyaniline nanofibers; 2. polyaniline sheet structure, while the sheet surface having nanorod alignment polyaniline (fiber) array; 3 polyaniline particles spherical, the surface of a large sheet-like nanostructures. 该聚苯胺纳米阵列自组装结构可望用于电磁波屏蔽材料,抗静电材料,电极材料,高容量电容器材料,三极管,传感器材料和气体分离材料。 Polyaniline The array self-assembled structure could be used for electromagnetic wave shielding materials, antistatic materials, electrode materials, high-capacity capacitor materials, transistors, and a gas sensor material separation material.

本发明的这种可控制备方法合成出的聚苯胺片状结构在发光器件方面将会有广泛的用途。 This controlled production method of the present invention synthesized polyaniline sheet structure in the light emitting device will have a wide range of uses. 对合成出的聚苯胺的光致发光性能的表征发现,产物在蓝光区域有很强的光致发光,并且发光强度与片状结构中的三苯胺官能团有很强的直接联系,合成中所用的HC1浓度越高,三苯胺官能团越多,片状结构越多,发光强度越高。 Characterizing the luminescence properties of the synthesized polyaniline found that the product has a strong photoluminescence in the blue region, and the light emission intensity triphenylamine functional group and the sheet-like structure has a strong direct link, used in the synthesis of HC1 higher the concentration, the more functional triphenylamine, more sheet-like structures, the higher the light emission intensity.

本发明的特点是提供了聚苯胺纳米管和纳米线等一维纳米材料的可控合成方法。 Feature of the present invention is to provide a method of synthesizing controllably nanomaterials polyaniline nanotubes and nanowires.

四、 附图说明 IV BRIEF DESCRIPTION

图1.本发明所得聚苯胺纳米纤维透射电镜照片 1. FIG resulting polyaniline nanofibers present invention is a transmission electron micrograph

图2.本发明所得聚苯胺纳米片层结构的SEM观察1 The resultant SEM in FIG invention Polyaniline lamellar structure 2. This observation 1

图3.本发明所得聚苯胺球状上有纳米片层褶皱结构的SEM观察 SEM observation of the pleated structure has nano-sheet layer 3. FIG resultant spherical present invention polyaniline

图4.本发明所得纤维透射电镜照片图5.本发明所得聚苯胺纳米片层结构的SEM观察图6.本发明所得聚苯胺纳米片层结构的SEM观察2 (内含部分交织状结构) 图7.本发明所得产物全部为聚苯胺纳米片层结构的SEM观察图8.本发明所得聚苯胺纳米片层结构的TEM观察(整齐排列的聚苯胺纳米棒(纤维)阵列) The resulting fiber of the present invention FIG. 4. Transmission electron micrograph of FIG. 5. FIG SEM observation of the present invention the resulting sheet structure Polyaniline 6. SEM observation of the present invention, the lamellar structure of Polyaniline 2 (containing part of the interleaved structure) FIG. 7. the product of the present invention, all of the resulting SEM observation of the structure of FIG polyaniline TEM observation sheet 8. the sheet of the present invention, the resulting structure is polyaniline (polyaniline nanorods aligned in (fiber) array)

图9.本发明所得聚苯胺纳米片层结构的TEM观察(交织纳米棒纤维结构图IO.本发明所得聚苯胺光致发光谱五、具体实施方式 9. FIG TEM observation of the present invention, the resulting sheet structure Polyaniline (FIG fibrous structure interleaved nanorod IO. The resulting polyaniline present invention photoluminescence V. DETAILED DESCRIPTION

反应洛液的配制:0.01M-1M的三氣化铁(或过硫酸铵、氣金酸等氣化型引发剂),盐酸、硫酸、硝酸、磷酸、离氣酸均可,浓度0.1M-5M,苯胺单体浓度0.01M-1M。 The reaction solution prepared Luo: three gasification iron 0.01M-1M (or ammonium persulfate, acid gas gold vaporization type initiator), hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid from the air can, concentration 0.1M- 5M, aniline monomer concentration of 0.01M-1M. 溶液混合均匀后,将反应洛液转移到聚四氟乙烯内衬的高压釜中,放入烘箱控制反应温度100~250*C,也可以用高温导热油或直接电加热来控制反应温度。 After thorough mixing, the reaction was transferred to a Teflon-lined Los autoclave, placed in an oven to control the reaction temperature of 100 ~ 250 * C, with a heat conducting oil may be heated electrically directly or to control the reaction temperature. 时间1-30小时。 Time of 30 hours. 反应温度在100-250"C的多个温度控制点(100、 150、 180、 200、 250。C),反应时间l-30小时之间的多个点(1、 4、 5、 8、 10、 30小 The reaction temperature is 100-250 "a plurality of temperature control points (100, 150, 180, 200, 250.C) C, the reaction time is between a plurality of points l-30 hours (1, 4, 5, 8, 10 30 small

时)进行控制,结果没有显著的差别,包括不同的反应溶液体系,其差别主要在于产物的产率上。 When the) control, no significant differences in the results, the reaction solution comprising a different system, the difference mainly lies in the yield of product.

本发明的反应溶液体系较简单,其配制容易。 The reaction solution system of the present invention is relatively simple, easily formulated.

反应完成后,得到墨绿色的悬浮液,过滤水洗后在透射电镜(TEM)或扫描电镜下观察。 After completion of the reaction, the resulting dark green suspension was observed in scanning electron microscopy or transmission electron microscopy (TEM) was filtered washed with water. 当酸的浓度低于1M(尤其是0. 5-0.8M)时,产物主要是直径40-80nm 的纳米纤维。 When the concentration of the acid is less than 1M (especially 0. 5-0.8M), the main product is the diameter of the nanofibers 40-80nm. 当酸的浓度为1M左右(尤其是0.9-1.0M)时,产物主要是纳米纤维和尺寸2-4微米的纳米薄片,纳米片的表面具有整齐排列的聚苯胺纳米棒(纤维)阵列。 When the concentration of the acid is about 1M (especially 0.9-1.0M), the main product is the size of 2-4 microns nanofibers and nano-sheet, the surface of the nanosheet having nanorod alignment polyaniline (fiber) array. 酸的浓度为1M以上时,随酸的浓度提高,产物逐渐变成以纳米片为主,表面具有整齐排列的聚苯胺纳米棒(纤维)阵列,产物的形貌如上图所示。 When the acid concentration is above 1M, with the concentration of the acid increases, the product becomes progressively nanosheet to the main surface having the aligned nanorods polyaniline (fiber) array, morphology of the products shown above. 酸的浓度为0.2M左右(尤其是O. 15-0.3M)时时,产物中出现聚苯胺球状颗粒, 上有纳米片层褶皱结构。 Concentration of the acid is approximately 0.2M (especially O. 15-0.3M) from time to time, the product appears polyaniline spherical particles, the nano-pleated sheet structure. 红外光谱、紫外光谱、元素分析、固体核磁共振的分析结果表明,产物为摻杂态的聚苯胺。 Infrared spectra, ultraviolet spectra, elemental analysis, nuclear magnetic resonance analysis of the solid indicated that the product of the doped polyaniline. 測定样品的导电率大致为0.001S.cm—'左右。 Conductivity measurement sample substantially 0.001S.cm- 'around.

尤其是将反应温度控制在100-200"C,时间1-10小时。 In particular, the reaction temperature is controlled at 100-200 "C, 1-10 hours.

Claims (5)

  1. 1、聚苯胺纳米结构的可控合成方法,利用苯胺单体直接合成聚苯胺悬浮溶液,其特征是以0.01M-1M的氧化型引发剂,浓度0.1M-5M质子酸掺杂剂,苯胺单体浓度0.01M-1M的溶液混合均匀后,在防腐高压釜中,控制反应温度100-250℃,时间1-30小时进行合成;氧化型引发剂为三氯化铁、过硫酸铵或氯金酸,质子酸为盐酸、硫酸、硝酸、磷酸、草酸或高氯酸。 1, controlled synthesis of polyaniline nanostructures, direct synthesis using aniline monomer polyaniline suspension solution, characterized in 0.01M-1M is oxidized initiator, the concentration of 0.1M-5M protonic acid dopant, aniline single after concentration of the mixture a solution of 0.01M-1M uniform corrosion in an autoclave, 100-250 deg.] C reaction temperature, 30 hours synthesis time; oxidizing agent is ferric chloride-type initiator, ammonium persulfate or chloroauric acid, protic acid is hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, oxalic acid or perchloric acid.
  2. 2、 由权利要求1所述聚苯胺纳米结构的可控合成方法,其特征是采用质子酸作为掺杂剂,并通过质子酸的浓度控制纳米结构产物成聚苯胺纳米纤维;微米薄片结构,薄片表面同时具有整齐排列的聚苯胺纳米棒阵列;微米球状聚苯胺颗粒, 表面有大意薄片状纳米结构。 2, controlled by the synthesis method claimed in the polyaniline nanostructures in claim 1, wherein the proton acid as a dopant, and by controlling the concentration of nanostructures protonic acid product into polyaniline nanofibers; microflakes structure, sheet polyaniline surface while having the aligned nanorods; polyaniline micron spherical particles, the effect that the surface of the sheet-like nanostructures.
  3. 3、 由权利要求1所述聚苯胺纳米结构的可控合成方法,其特征是质子酸的浓度0.5-0.8M时,产物主要是直径40-80mn的纳米纤维;当酸的浓度为0.9-1.0M 时,产物主要是纳米纤维和尺寸2-4微米的纳米薄片,纳米片的表面具有整齐排列的聚苯胺纳米棒纤维阵列;酸的浓度为1M以上时,随酸的浓度提高,产物逐渐变成以纳米片为主,表面具有整齐排列的聚苯胺纳米棒纤维阵列;酸的浓度为0.15-0.3M时,产物中出现聚苯胺球状颗粒,上有纳米片层褶皱结构。 3, controlled by the synthesis method claimed in the polyaniline nanostructures in claim 1, characterized in that the concentration of the protonic acid 0.5-0.8m, the main product is the diameter of the nanofibers 40-80mn; when the concentration of acid is 0.9 - 1.0 M, the product mainly nanosheet nanofibers and size of 2-4 microns, a surface sheet having a nano polyaniline nanorod alignment of the fiber array; when the acid concentration is above 1M, with increasing concentration of the acid, the product gradually becomes in nanosheet to the main surface of the polyaniline having nanorod alignment of the fiber array; when 0.15-0.3M, polyaniline products appear spherical particles, the nano-pleated sheet structure of the acid concentration.
  4. 4、 由权利要求1所述聚苯胺纳米结构的可控合成方法,其特征是控制反应温度150-200'C 4, controlled by the synthesis method claimed in the polyaniline nanostructures in claim 1, wherein the reaction temperature is controlled 150-200'C
  5. 5、 聚苯胺纳米的应用,其特征是采用权利要求3所述可控合成方法合成出的聚苯胺片状纳米结构,用于在蓝光区域的光致发光器件制备和生产。 5, application of Polyaniline, which is characterized by the use as claimed in claim 3 controlled synthesis method of a sheet-like synthesized polyaniline nanostructures, for the preparation and production of the light emitting device Photoluminescence region.
CN 200510038536 2005-03-23 2005-03-23 Controllable synthesis method for polyaniline nano structure and use thereof CN100480302C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510038536 CN100480302C (en) 2005-03-23 2005-03-23 Controllable synthesis method for polyaniline nano structure and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510038536 CN100480302C (en) 2005-03-23 2005-03-23 Controllable synthesis method for polyaniline nano structure and use thereof

Publications (2)

Publication Number Publication Date
CN1667021A true CN1667021A (en) 2005-09-14
CN100480302C true CN100480302C (en) 2009-04-22

Family

ID=35038318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510038536 CN100480302C (en) 2005-03-23 2005-03-23 Controllable synthesis method for polyaniline nano structure and use thereof

Country Status (1)

Country Link
CN (1) CN100480302C (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323199C (en) * 2005-12-05 2007-06-27 西安交通大学 preparing method of conductive polymer polyanilinc nano fiber
CN1332997C (en) * 2006-03-02 2007-08-22 扬州大学 Chemical synthesization of poly-o-toluidine
CN100402583C (en) 2006-03-03 2008-07-16 扬州大学 Method for synthesizing polyaniline nano particles
CN100586987C (en) 2006-11-28 2010-02-03 华中科技大学 Preparation process of one-dimensional nanometer polyaniline material
CN100480443C (en) 2007-03-07 2009-04-22 中南大学 Method of preparing super capacitor electrode material polyaniline nano fiber
CN100540588C (en) 2007-10-17 2009-09-16 天津大学 Method for preparing high-purity nano-sheet polyaniline
CN101270186B (en) 2008-05-19 2012-06-20 攀钢集团攀枝花钢铁研究院有限公司 Polyaniline watersoluble dispersion and preparation method thereof
CN102070783B (en) * 2010-11-23 2013-04-17 陕西师范大学 Controllable self-assembly low temperature hydrothermal preparation method of micron-nano polyaniline
CN102206342B (en) * 2011-03-31 2012-10-17 南京大学 Electric conduction polymer and synthesis method thereof and electroactive electrode with surface covered with electric conduction polymer
CN102585497B (en) * 2012-01-09 2014-01-15 南昌航空大学 Perchloric-acid-doped polyaniline/carbonyl iron powder composite wave-absorbing material
CN103145982B (en) * 2013-03-25 2015-04-08 北京科技大学 Controllable synthesis method of level structure of polyaniline
CN104122244A (en) * 2013-04-25 2014-10-29 天津大学 Application of Au-polyaniline nano-composite particle in surface enhanced Raman spectrum
CN104119527A (en) * 2013-04-25 2014-10-29 天津大学 Au-polyaniline nano-composite particle and preparation method thereof
CN103834265B (en) * 2014-03-24 2015-12-09 中国科学院长春应用化学研究所 Polyaniline anti-corrosion coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672377A (en) 1992-12-17 1997-09-30 Nec Corporation Method of forming a solid electrolytic capacitor
US6277952B1 (en) 1999-11-15 2001-08-21 General Electric Company Direct method for preparing doped polyaniline, product prepared thereby and resinous articles containing said product
JP2001288264A (en) 2000-03-31 2001-10-16 Kanpoly Technology Co Ltd Method for producing polyaniline-containing solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672377A (en) 1992-12-17 1997-09-30 Nec Corporation Method of forming a solid electrolytic capacitor
US6277952B1 (en) 1999-11-15 2001-08-21 General Electric Company Direct method for preparing doped polyaniline, product prepared thereby and resinous articles containing said product
JP2001288264A (en) 2000-03-31 2001-10-16 Kanpoly Technology Co Ltd Method for producing polyaniline-containing solution

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
导电聚苯胺的合成及其性能研究. 任斌.光实验室,第22卷第1期. 2005
纳米管结构聚苯胺的电阻率和磁化率. 龙云泽.物理学报,第52卷第1期. 2003
聚苯胺的化学合成 结构及导电性能. 周震涛等.华南理工大学学报,第24卷第7期. 1999

Also Published As

Publication number Publication date Type
CN1667021A (en) 2005-09-14 application

Similar Documents

Publication Publication Date Title
Zhou et al. Synthesis and electromagnetic, microwave absorbing properties of core–shell Fe3O4–poly (3, 4-ethylenedioxythiophene) microspheres
Wei et al. Formation mechanism of self-assembled polyaniline micro/nanotubes
Reddy et al. Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization
Hou et al. Large-scale synthesis of single-crystalline quasi-aligned submicrometer CuO ribbons
Zhou et al. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source
Xu et al. A hybrid material of graphene and poly (3, 4-ethyldioxythiophene) with high conductivity, flexibility, and transparency
Wan A template‐free method towards conducting polymer nanostructures
Han et al. Facile Synthesis of Poly (3, 4‐ethylenedioxythiophene) Nanofibers from an Aqueous Surfactant Solution
Zhu et al. Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity
Qiu et al. Conducting polyaniline nanotubes by template-free polymerization
Zou et al. ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties
Zhao et al. Tunable emission from binary organic one‐dimensional nanomaterials: an alternative approach to white‐light emission
Du et al. Facile synthesis of highly conductive polyaniline/graphite nanocomposites
Reddy et al. In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity
Zhu et al. Electrical and dielectric properties of polyaniline–Al2O3 nanocomposites derived from various Al2O3 nanostructures
Yu et al. Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion
Reddy et al. Coating of multiwalled carbon nanotubes with polymer nanospheres through microemulsion polymerization
Chua et al. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene
Liu et al. Facile fabrication of three-dimensional highly ordered structural polyaniline–graphene bulk hybrid materials for high performance supercapacitor electrodes
Zheng et al. Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties
Li et al. Hydrothermal synthesis and characterization of YVO4 and YVO4: Eu3+ nanobelts and polyhedral micron crystals
Goswami et al. Preparation of graphene–polyaniline composites by simple chemical procedure and its improved field emission properties
Zhang et al. Magnetoresistive conductive polyaniline–barium titanate nanocomposites with negative permittivity
Yu et al. Synthesis and characterization of carbon nanotube/polypyrrole core–shell nanocomposites via in situ inverse microemulsion
CN101993065A (en) Method for preparing graphene powder

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right