CN100439892C - Recognization method for object rotary inertia having complex irregularity structure - Google Patents

Recognization method for object rotary inertia having complex irregularity structure Download PDF

Info

Publication number
CN100439892C
CN100439892C CNB2004100034659A CN200410003465A CN100439892C CN 100439892 C CN100439892 C CN 100439892C CN B2004100034659 A CNB2004100034659 A CN B2004100034659A CN 200410003465 A CN200410003465 A CN 200410003465A CN 100439892 C CN100439892 C CN 100439892C
Authority
CN
China
Prior art keywords
moment
inertia
dsp
electromagnet
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100034659A
Other languages
Chinese (zh)
Other versions
CN1563924A (en
Inventor
冯超
周彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB2004100034659A priority Critical patent/CN100439892C/en
Publication of CN1563924A publication Critical patent/CN1563924A/en
Application granted granted Critical
Publication of CN100439892C publication Critical patent/CN100439892C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Of Balance (AREA)

Abstract

The present invention relates to a recognization method for the moment of inertia of an object with complex irregular structure, which belongs to the technical fields of object moment of inertia measurement and automatic identification technique application. The present invention is characterized in that four springs arranged on a rigid girder are symmetrically supported at the bottom surface of an object being measured; four electromagnets symmetric to the object being measured are arranged at the inner sides of the springs; four displacement sensors are fixedly arranged on the object being measured perpendicular to the electromagnets; then, the electromagnets are connected to a voltage-controlled current source and a DSP in sequence. As long as excitation signals are input into the DSP to cause the DSP to output four voltages twice corresponding to X and Y axes respectively, the respective moment of inertia around the X and Y axes of the object being measured and the electromagnets jointly can be estimated with a publicly known automatic identification technique, and the moment of inertia of the object being measured can be obtained by subtracting the moment of inertia of the electromagnets therefrom. The present invention has the advantages of strong adaptability, simple method and high precision of identification.

Description

The discrimination method of irregular structure object rotation inertia
Technical field
The discrimination method of irregular structure object rotation inertia belongs to the object rotation inertia field of measuring technique, especially relates to the application of the measuring method and the identification technique of complicated irregularly shaped object moment of inertia.
Background technology
In the design of some large-scale kinematic systems, the moment of inertia of system is an important technical parameter.With the automobile is example, and (automobile is walked around the yaw moment of inertia J of the vertical axis Z of its barycenter to its three axial rotation inertia zWalk around the pitch rotation inertia J of the horizontal cross shaft Y of its barycenter yInclination moment of inertia J around automobile roll axis m-m m) be the important technology parameter in the running car dynamics.They are to the important influence such as control stability, riding comfort and driving safety of automobile.Grasping these technical parameters is to carry out the basic premise that automobile dynamics is researched and analysed.
In known technology, the universal method that obtains object rotation inertia can be divided into two big classes.A kind of is to calculate moment of inertia by the labor to object materials and structure.Ansys finite element analysis software for example, and and the piecewise linearity computing method mentioned in " calculating piecewise linearity square beam new method of deformation, Shandong Institute of Architecture ﹠ Engineering 's journal, Vol.11, no.3,1996 " of document.The deficiency of these class methods is that it requires the testee material even, and composition is known, and tactical rule, otherwise can can't use because the error of calculation is too big.Another kind of method is object under test to be placed on the special-purpose rotation inerttia instrument measure.As patent CN2493919Y a kind of device that utilizes torsional oscillation method to measure special-shaped object rotation inertia has been proposed, patent US6098025 then utilizes the rotation of driven by motor measured object, by measuring barycenter and the moment of inertia that rotational angular velocity and current of electric calculate measured object, a covering device and method have been proposed thus.Though these class methods can be applied to the irregular contour object rotation inertia, for the volume and the quality of measured object very high restriction is arranged all, can't be applied to some large scale systems.Except the measuring method of these versatilities, also having some known technologies is the moment of inertia that are used to measure special object.Proposed a kind of method of measuring the internal combustion engine moment of inertia as patent US5656768, determined moment of inertia by the rotating speed and the torque of measuring in motor acceleration and the moderating process, obviously, this method range of application is too single.Disclosed automobile power assembly barycenter of patent CN2527992Y and inertia square test board utilize the concrete mechanism of physical pendulum principle and power assembly to design, the deficiency of this method is, this apparatus structure is big and complicated, install and experimental implementation requirement height, volume and weight to measured object still has certain limitation, and is to be exclusively used in automobile component.The moment of inertia test board of mentioning in the document " research of moment of inertia test board magnetic suspension system electromagnetic damping, XI AN JIAOTONG UNIVERSITY Subject Index, vol.35, no.12,2001 " remains and uses the method for rocking to measure.It utilizes electromagnetic bearing that measuring table and measured object are suspended, and dials the driven by motor dial by fork and rotates, and makes workbench around the free torsional movement of its work, by measuring the moment of inertia of corner and torque calculation measured object.The deficiency of this method is to require platform suspension, thereby needs the design of feedback controller, and this is a quite thing of difficulty.
Owing to lack easy measuring method, usually adopt some experimental formula estimation moment of inertia values in the actual engineering.This method lacks versatility, and the error of result of calculation is also bigger.
System Discrimination is a kind of theory and the method for setting up mathematical model of controlled plant and estimating unknown parameter.Its means are to extract the parameter that is studied mathematics model or estimates to require from the experimental data that contains noise.A kind of discrimination method commonly used is a least square method.Be characterized in without any need for statistical information, and can prove theoretically under very weak condition consistent Estimation is provided about measuring error and external disturbance.Simultaneously, this method also has the calculating characteristic of simple.This method is used the input signal of maximum length linear shift register sequence (being called for short the M sequence) signal as system usually.The M sequence signal is a kind of pseudo-random code.It has the character of approximate white noise, can guarantee good identification precision, and is easy on the engineering realize.
Summary of the invention
The objective of the invention is for overcoming the weak point of prior art, propose a kind of method of estimation of the irregular structure object rotation inertia based on the System Discrimination technology.Adopt the present invention, can measure the moment of inertia of any irregular structure object, and for the shape of measured object, volume, structure all without limits, have good versatility and operability, can be used to measure moment of inertia such as large scale systems such as automobiles.
The required hardware facility of the enforcement of this method is by rigid support beam (1), electromagnet (2), spring (3), DSP (digital signal processor, include D/A) (4), displacement transducer (5), voltage-controlled current source formations such as (6), in order to measure the moment of inertia of testee (7).System chart as shown in Figure 1, the diagonal angle sectional view is as shown in Figure 3.
The estimation of object rotation inertia may further comprise the steps among the present invention:
1. testee is supported on the buckstay with 4 springs, the strong point is positioned at A shown in Figure 2 1, A 2, A 3, A 4The place;
2. 4 electromagnet and 4 displacement transducers are installed on testee, and mounting points is positioned at B shown in Figure 2 1, B 2, B 3, B 4The place, sectional view is as shown in Figure 3;
3. connect DSP, voltage-controlled current source and electromagnet;
4. design a M sequence signal U,, utilize known programming technique to make DSP output shown in Figure 1 satisfy u as the identification pumping signal 1=u 2=-u 3=-u 4=U (or u 1=-u 2=-u 3=u 4=U), and the measurement data of record 4 displacement transducers this moment z ^ 1 ( = Δ z 1 ) , z ^ 2 ( = Δ z 2 ) , z ^ 3 ( = Δ z 3 ) , z ^ 4 ( = Δ z 4 ) ;
5. according to the voltage signal u that imports 1Measurement data with displacement transducer
Figure C20041000346500052
Obtain transport function between the input and output with least square method or other discrimination methods on computers;
6. according to the transport function of identification, calculate the moment of inertia of testee around Y-axis (or X-axis).
Identification process
In the analysis of following 1-4 part, the testee of loading onto electromagnet is done as a wholely to treat, be called for short object.Its identification process is as follows:
1. set up the motion model of object, geometric position, size and direction coordinate are as shown in Figure 2.
The input and output equation of voltage-controlled current source:
i n=cu n+j n,n=1~4 (1)
I in the formula nBe electric current in the magnet coil; C is a constant, is determined by the voltage-controlled current source self character; J is the coil current of object when being in initial rest position; u nControl voltage for input.
The electromagnetic attraction equation that electromagnet provides:
F n = K i n 2 z n 2 , n = 1 ~ 4 - - - ( 2 )
F in the formula nThe electromagnetic attraction that provides for electromagnet to object; K nBe constant, determine by the coil self character; z nThe distance on Z-direction for brace summer and electromagnet center.
The elastic force equation that spring provides:
F n′=kz n′,n=1~4 (3)
F in the formula n' the elastic force that provides for spring to object; K is the coefficient of stiffiness of spring; z n' be the deformation length of spring.The equation of motion of object:
M d 2 z dt 2 = F z - - - ( 4 )
T x = I x d 2 α dt 2 - - - ( 5 )
T y = I y d 2 β dt 2 - - - ( 6 )
In the formula, M is the quality of object; Z is the displacement of object mass center on Z-direction; F zBe object suffered make a concerted effort on Z-direction; T xBe the object resultant moment suffered with respect to X-axis; I xBe the moment of inertia of object around X-axis; α is the corner of object around X-axis; T yBe the object resultant moment suffered with respect to Y-axis; I yBe the moment of inertia of object around Y-axis; β is the corner of object around Y-axis.
Geometric relationship:
z ^ 1 z ^ 2 z ^ 3 z ^ 4 = Δ z 1 Δ z 2 Δ z 3 Δ z 4 = z + 1 2 l sin β cos α + 1 2 b sin α cos β z + 1 2 l sin β cos α - 1 2 b sin α cos β z - 1 2 l sin β cos α - 1 2 b sin α cos β z + 1 2 l sin β cos α + 1 2 b sin α cos β - - - ( 7 )
z ^ 1 ′ z ^ 2 ′ z ^ 3 ′ z ^ 4 ′ = Δ z 1 ′ Δ z 2 ′ Δ z 3 ′ Δ z 4 ′ = z + 1 2 L sin β cos α + 1 2 B sin α cos β z + 1 2 L sin β cos α - 1 2 B sin α cos β z - 1 2 L sin β cos α - 1 2 B sin α cos β z + 1 2 L sin β cos α + 1 2 B sin α cos β - - - ( 8 )
In the formula, l, L, b, B as shown in Figure 2, Δ z nBe the displacement with respect to the equilibrium position on the Z axle of magneticaction point, Δ z n' be the displacement with respect to the equilibrium position on the Z axle of spring force application point.
2. set the equilibrium position of object
Set when object is in the equilibrium position, the magnetic gap between brace summer and the magnet is z 0, and this moment, the magnet spool electric current was j=cu 0, u 0Output voltage for DSP this moment.
3. near the linear model the equilibrium position
Systematic parameter when being in the equilibrium position based on above-mentioned motion model and object can be derived the linear model that object moves near the equilibrium position.Particularly,
1) satisfies u when input voltage signal 1=u 2=-u 3=-u 4The time, the transport function between the input and output is
G 1 ( s ) = z ^ 1 ( s ) u 1 ( s ) = l 2 s ( I y s 2 - l 2 2 j 2 K z 0 3 + L 2 k ) 2 jK z 0 2 c - - - ( 9 )
At this moment, the second order resonant frequency point ω of this model 1With the moment of inertia I of object around Y-axis yBetween relation be
I y = ( L 2 k - l 2 2 j 2 K z 0 3 ) / ω 1 2 - - - ( 10 )
2) satisfy u when input voltage signal 1=-u 2=-u 3=u 4The time, the transport function between the input and output is
G 2 ( s ) = z ^ 1 ( s ) u 1 ( s ) = b 2 s ( I x s 2 - b 2 2 j 2 K z 0 3 + B 2 k ) 2 jK z 0 2 c - - - ( 11 )
At this moment, the second order resonant frequency point ω of this model 2With the moment of inertia I of object around X-axis xBetween relation be
I x = ( B 2 k - b 2 2 j 2 K z 0 3 ) / ω 2 2 - - - ( 12 )
4. estimate the moment of inertia of object
Design an identification pumping signal U (as the M sequence), make input signal u 1=u 2=-u 3=-u 4=U obtains output data then by experiment
Figure C20041000346500083
According to data u 1With
Figure C20041000346500084
Utilize least square method or other system discrimination method to obtain transport function G between the input and output 1(s) and the resonant frequency point.Utilize formula (10) can calculate the moment of inertia of object around Y-axis.
Make input signal u again 1=-u 2=-u 3=u 4=U obtains output data then by experiment
Figure C20041000346500085
According to data u 1With
Figure C20041000346500086
Utilize least square method or other system discrimination method to obtain transport function G between the input and output 2(s) and the resonant frequency point.Utilize formula (12) can calculate the moment of inertia of object around X-axis.
5. calculate the moment of inertia of testee
What the 4th step obtained is the moment of inertia sum of testee and electromagnet.Because the quality of electromagnet is easy to record, the quality of establishing each electromagnet is m, then can obtain the moment of inertia I of testee around X-axis XxWith moment of inertia I around Y-axis YyBe respectively
I xx=I x-mb 2,I yy=I y-ml 2 (13)
It is pointed out that the theoretical model that formula (9), (11) provide is a continuous time model.And the model that the measurement data identification that utilizes the output data of DSP and displacement transducer obtains is a discrete time model, is the discretization model of theoretical model.The sampling time interval of discretize depends on the frequency of operation of DSP, the slewing rate of A/D and the bandwidth of displacement transducer.When using this method, should be noted that the mutual conversion of this two class model.
In addition, the condition that formula (9), (11) are set up is that the geometric center and the barycenter of testee overlaps, just the barycenter of testee should with Fig. 2 in 0 overlap.This requires not so difficult satisfied, because general kinematic system always is designed to be symmetry.Even be not like this, also can meet the demands by the method for counterweight, from measurement result, reject the moment of inertia of mass then.
The invention is characterized in that it contains following steps successively:
(1) near testee edge, be supported on the buckstay roof beam structure with 4 identical spring handle measured objects of coefficient of stiffiness k, the strong point will carry out counterweight with the standard weight to testee to the geometric center symmetry of measured object, and its barycenter is overlapped with geometric center;
(2) at the place, inboard that corresponds respectively to above-mentioned 4 springs, below measured object, connection is also installed 4 electromagnet that electromagnetic constant K is identical, the installation site of electromagnet will and will be lower than above-mentioned buckstay roof beam structure to the center of measured object symmetry, above the measured object corresponding to 4 electromagnet, 4 identical displacement transducers of fixed installation on the position longitudinally;
(3) measure distance L and B between each electromagnet respectively, measure between each spring strong point apart from l and b;
(4) be electrically connected DSP, commercially available voltage-controlled current source and electromagnet successively, again above-mentioned each parameter k, K, L, B, l, the quality m of b and electromagnet, voltage-controlled current source amplification coefficient c store in the PC;
(5) setting comprises the initial position of the object of electromagnet, the gap z between record electromagnet this moment and buckstay roof beam structure 0And store in the PC;
(6) the output signal u of adjusting DSP 0, make object be in the initial position that step (5) is set, and measure magnet spool electric current j=cu this moment 0
(7) the identification pumping signal U input DSP that a data length that designs is in advance determined utilizes and the supporting emulator of DSP, dsp program is made 4 output signal u of DSP with known method 1, u 2, u 3, u 4Satisfy u 1=u 2=-u 3=-u 4=U; Set output frequency and sampling period, write down the output of intrinsic displacement sensor during this period of time
Figure C20041000346500091
And it is deposited in PC;
(8) PC is according to the voltage signal u of input 1Measurement data with displacement transducer
Figure C20041000346500092
Transport function G between being imported, export with least square method 1(s), s is the Laplace operator;
G 1 ( s ) = z ^ 1 ( s ) u 1 ( s ) = l 2 s ( I y s 2 - l 2 2 j 2 K z 0 3 + L 2 k ) 2 jK z 0 2 c ,
I wherein yFor the measured object after the counterweight and electromagnet jointly around the moment of inertia of Y-axis, Y-axis is by the measured object center and be parallel to the line of two strong points of B apart, X-axis is by the center and be parallel to the line of two strong points of L apart, measured object coordinate plane of living in is determined jointly that by X-axis and Y-axis the Z axle is by the center and perpendicular to this plane;
The Bode figure that PC draws by the order of the bode in the known Matlab software makes and can find second order resonant frequency ω 1Pairing limit, the conversion by discrete-continuous time model obtains ω again 1
PC calculates I by following formula again y:
I y = ( L 2 k - l 2 2 j 2 K z 0 3 ) / ω 1 2 ;
(9) utilize again and emulator that DSP is supporting to dsp program, make 4 of DSP to export u 1, u 2, u 3, u 4Satisfy u 1=-u 2=-u 3=u 4=U, the output of record displacement transducer this moment Deposit in the PC;
(10) PC is according to the voltage signal u of input 1Measurement data with displacement transducer
Figure C20041000346500103
Transport function G between being imported, export with least square method 2(s):
G 2 ( s ) = z ^ 1 ( s ) u 1 ( s ) = b 2 s ( I x s 2 - b 2 2 j 2 K z 0 3 + B 2 k ) 2 jK z 0 2 c ,
I wherein xFor the measured object after the counterweight and electromagnet jointly around the moment of inertia of X-axis;
PC obtains second order resonant frequency ω with the described method of step (8) 2PC calculates I by following formula again x:
I x = ( B 2 k - b 2 2 j 2 K z 0 3 ) / ω 2 2 ;
(11) PC calculates measured object after the counterweight around the moment of inertia I of X-axis according to following formula again XxAnd around the moment of inertia I of Y-axis Yy:
I xx=I x-mb 2,I yy=I y-ml 2
Again from I XxAnd I YyIn reject the moment of inertia of mass, obtain testee around the moment of inertia of X-axis and around the moment of inertia of Y-axis.
From experimental data as can be seen, the moment of inertia and the design load that obtain with method provided by the present invention differ very little, and relative error is in 5%.By contrast, the adaptability of this method wants much extensive.For not being the object of using Ansys software design structure, calculate with this software with regard to being difficult to, and our rule can be without any the generalized case that is applied to of difficulty.
Complicated irregularly shaped object method for identification of rotational inertia provided by the present invention is realized simple, identified parameters precision height, shape, size, quality to testee all have no requirement, and are applicable to the object of moment of inertia, the especially large scale structure of measuring any complicated irregularly shaped object.
Description of drawings
Fig. 1 is a hardware block diagram of realizing this discrimination method.
Fig. 2 is the motion model synoptic diagram of testee.
Fig. 3 is the sectional view at an angle of the diagonal of testee.
Fig. 4 is the embodiment process flow diagram of the irregular structure object rotation inertia discrimination method that proposes of the present invention.
Embodiment
The method of estimation embodiment process flow diagram of the present invention proposes a kind of irregular structure object rotation inertia based on the System Discrimination technology as shown in Figure 4, it specifically may further comprise the steps:
1. with 4 identical spring (coefficient of stiffiness k=1.109 * 10 4N/m 2) measured object is supported on the buckstay, the strong point requires about object center symmetry, particular location is not limit, but with near the measured object edge for well, in this example as A among Fig. 2 1, A 2, A 3, A 4Shown in;
2. 4 electromagnet (electromagnetic constant K=1.660 * 10 are installed on testee -4Nm 2/ A 2, quality m=1.320kg) and 4 displacement transducers (ST-1 of Beijing Collihigh Sensor Technology Center type current vortex sensor), symmetry also need be satisfied in the installation site, particular location is not limit, but should be in the spring inboard, in this example as B among Fig. 2 1, B 2, B 3, B 4Shown in, sectional view is as shown in Figure 3;
3. the distance between the measurement electromagnet---L and B, L=0.595m wherein, B=0.490m; Distance between the measuring spring strong point---l and b, l=0.397m wherein, b=0.327m;
4. connect DSP (the C32SS plate of floating type DSPTMS320C32), voltage-controlled current source (commercially available) and electromagnet;
5. set the equilibrium position of object, the gap z of record electromagnet this moment and buckstay roof beam structure 0=0.005m;
6. regulate the output signal u of DSP 0, make object be in the equilibrium position of appointment, and measure magnet spool electric current j=cu this moment 0=1.717A;
7. length of idinput function design of utilizing Matlab software is 20000 identification pumping signal U;
8. with the supporting TMS320 emulator of DSP, it is programmed, make its output satisfy u with known method 1=u 2=-u 3=-u 4=U, output frequency is set at 100Hz, and promptly experimental period is 200 seconds, writes down the output of intrinsic displacement sensor during this period of time
Figure C20041000346500111
(sample frequency also is made as 100Hz);
According to data U and
Figure C20041000346500121
Utilize the least square identification function arx of Matlab to obtain one 6 rank transfer function model, order its Bode figure that draws with bode again, finding its resonant frequency to put pairing limit is 0.958 ± j0.246, can obtain ω by discrete-knowledge that continuous time model transforms mutually again 1=25.09rad/s;
The result who obtains according to back and and given data, calculate the moment of inertia I of object by formula (10) around Y-axis y=4.271kgm 2
11., make the output of DSP satisfy u again to dsp program 1=-u 2=-u 3=u 4=U, the output of record displacement transducer this moment
Figure C20041000346500122
Obtain transfer function model 12. use the same method, finding its resonant frequency to put pairing limit is 0.950 ± j0.277, so ω 2=28.38rad/s;
13. the result who obtains according to back and and given data, calculate the moment of inertia I of object by formula (12) around X-axis x=2.265kgm 2
14. utilize formula (13) to calculate the moment of inertia I of testee Xx=2.124kgm 2And I Yy=4.063kgm 2
In the present embodiment, measured object is also customized with the Ansys finite element analysis software design of U.S. Ansys company exploitation as a shape and all very regular experiment porch of structure, and its moment of inertia just is determined at the beginning of design.The contrast of its design load and the estimated value that obtains with this method is as shown in table 1.
Table 1
Estimated value Design load Relative error
Testee is around the moment of inertia I of Y-axis yy(kg·m 2) 4.063 4.203 3.33%
Testee is around the moment of inertia I of X-axis xx(kg·m 2) 2.124 2.194 3.19%

Claims (1)

1, the discrimination method of irregular structure object rotation inertia is characterized in that, it contains following steps successively:
(1) near testee edge, be supported on the buckstay roof beam structure with 4 identical spring handle measured objects of coefficient of stiffiness k, the strong point will carry out counterweight with the standard weight to testee to the geometric center symmetry of measured object, and its barycenter is overlapped with geometric center;
(2) at the place, inboard that corresponds respectively to above-mentioned 4 springs, below measured object, connection is also installed 4 electromagnet that electromagnetic constant K is identical, the installation site of electromagnet will and will be lower than above-mentioned buckstay roof beam structure to the center of measured object symmetry, above the measured object corresponding to 4 electromagnet, 4 identical displacement transducers of fixed installation on the position longitudinally;
(3) measure distance L and B between each electromagnet respectively, measure between each spring strong point apart from l and b;
(4) be electrically connected DSP, commercially available voltage-controlled current source and electromagnet successively, again above-mentioned each parameter k, K, L, B, l, the quality m of b and electromagnet, voltage-controlled current source amplification coefficient c store in the PC;
(5) setting comprises the initial position of the object of electromagnet, the gap z between record electromagnet this moment and buckstay roof beam structure 0And store in the PC;
(6) the output signal u of adjusting DSP 0, make object be in the initial position that step (5) is set, and measure magnet spool electric current j=cu this moment 0
(7) the identification pumping signal U input DSP that a data length that designs is in advance determined utilizes and the supporting emulator of DSP, dsp program is made 4 output signal u of DSP with known method 1, u 2, u 3, u 4Satisfy u 1=u 2=-u 3=-u 4=U; Set output frequency and sampling period, write down the output of intrinsic displacement sensor during this period of time And it is deposited in PC;
(8) PC is according to the voltage signal u of input 1Measurement data with displacement transducer
Figure C2004100034650002C2
Transport function G between being imported, export with least square method 1(s), s is the Laplace operator;
G 1 ( s ) = z ^ 1 ( s ) u 1 ( s ) = l 2 s ( I y s 2 - l 2 2 j 2 K z 0 3 + L 2 k ) 2 jK z 0 2 c ,
I wherein yFor the measured object after the counterweight and electromagnet jointly around the moment of inertia of Y-axis, Y-axis is by the measured object center and be parallel to the line of two strong points of B apart, X-axis is by the center and be parallel to the line of two strong points of L apart, measured object coordinate plane of living in is determined jointly that by X-axis and Y-axis the Z axle is by the center and perpendicular to this plane;
The Bode figure that PC draws by the order of the bode in the known Matlab software makes and can find second order resonant frequency ω 1Pairing limit, the conversion by discrete-continuous time model obtains ω again 1
PC calculates I by following formula again y:
I y = ( L 2 k - l 2 2 j 2 K z 0 3 ) / ω 1 2 ;
(9) utilize again and emulator that DSP is supporting to dsp program, make 4 of DSP to export u 1, u 2, u 3, u 4Satisfy u 1=-u 2=-u 3=u 4=U, the output of record displacement transducer this moment
Figure C2004100034650003C2
Deposit in the PC;
(10) PC is according to the voltage signal u of input 1Measurement data with displacement transducer
Figure C2004100034650003C3
Transport function G between being imported, export with least square method 2(s):
G 2 ( s ) = z ^ 1 ( s ) u 1 ( s ) = b 2 s ( I x s 2 - b 2 2 j 2 K z 0 3 + B 2 k ) 2 jK z 0 2 c ,
I wherein xFor the measured object after the counterweight and electromagnet jointly around the moment of inertia of X-axis;
PC obtains second order resonant frequency ω with the described method of step (8) 2PC calculates I by following formula again x:
I x = ( B 2 k - b 2 2 j 2 K z 0 3 ) / ω 2 2 ;
(11) PC calculates measured object after the counterweight around the moment of inertia I of X-axis according to following formula again XxAnd around the moment of inertia I of Y-axis Yy:
I xx=I x-mb 2,I yy=I y-ml 2
Again from I XxAnd I YyIn reject the moment of inertia of mass, obtain testee around the moment of inertia of X-axis and around the moment of inertia of Y-axis.
CNB2004100034659A 2004-03-26 2004-03-26 Recognization method for object rotary inertia having complex irregularity structure Expired - Fee Related CN100439892C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100034659A CN100439892C (en) 2004-03-26 2004-03-26 Recognization method for object rotary inertia having complex irregularity structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100034659A CN100439892C (en) 2004-03-26 2004-03-26 Recognization method for object rotary inertia having complex irregularity structure

Publications (2)

Publication Number Publication Date
CN1563924A CN1563924A (en) 2005-01-12
CN100439892C true CN100439892C (en) 2008-12-03

Family

ID=34477605

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100034659A Expired - Fee Related CN100439892C (en) 2004-03-26 2004-03-26 Recognization method for object rotary inertia having complex irregularity structure

Country Status (1)

Country Link
CN (1) CN100439892C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449291C (en) * 2006-01-19 2009-01-07 湖南大学 Method and apparatus for measuring running performance parameters of hybrid electric vehicle
CN106840193A (en) * 2015-12-07 2017-06-13 上海新跃仪表厂 A kind of inertia measurement line angle couples suppressing method
CN109974933A (en) * 2019-01-31 2019-07-05 西北工业大学 Consider the rotary inertia recursive least-squares discrimination method of satellite flexibility coupling
CN110285921B (en) * 2019-07-15 2021-03-16 郑州航空工业管理学院 Experimental device and method for measuring rotational inertia

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656768A (en) * 1994-09-30 1997-08-12 Avl Gesellschaft Fur Verbrennungskraftmaschinen Und Messtechnik M.B.H. Prof. Dr.H.C. Hans List Method for determining the moment of inertia
US6098025A (en) * 1998-02-18 2000-08-01 Samsung Electronics Co., Ltd. Apparatus and method for calibrating moment-of-inertia and center-of-gravity
CN2493919Y (en) * 2001-08-31 2002-05-29 韩九阳 Device for measurikng rotary inertia of shaped object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656768A (en) * 1994-09-30 1997-08-12 Avl Gesellschaft Fur Verbrennungskraftmaschinen Und Messtechnik M.B.H. Prof. Dr.H.C. Hans List Method for determining the moment of inertia
US6098025A (en) * 1998-02-18 2000-08-01 Samsung Electronics Co., Ltd. Apparatus and method for calibrating moment-of-inertia and center-of-gravity
CN2493919Y (en) * 2001-08-31 2002-05-29 韩九阳 Device for measurikng rotary inertia of shaped object

Also Published As

Publication number Publication date
CN1563924A (en) 2005-01-12

Similar Documents

Publication Publication Date Title
CN101726295B (en) Unscented Kalman filter-based method for tracking inertial pose according to acceleration compensation
CN103558079B (en) Based on the multiple degrees of freedom loading method of parallel institution driving force closed loop
CN101706284B (en) Method for increasing position precision of optical fiber gyro strap-down inertial navigation system used by ship
CN106125548A (en) Industrial robot kinetic parameters discrimination method
Duchaine et al. Computationally efficient predictive robot control
CN103712622B (en) The gyroscopic drift estimation compensation rotated based on Inertial Measurement Unit and device
CN100540938C (en) Adjust the method for vibration damper
CN109709628B (en) Calibration method for gravity gradiometer of rotating accelerometer
CN103674425A (en) Rotational inertia measuring method and device
Tatsis et al. A substructure approach for fatigue assessment on wind turbine support structures using output-only measurements
CN102141814A (en) Balance control method, balance control device and robot
CN103869834A (en) Intelligent adjustment method for mass center of three-axis air bearing table based on empirical mode method
EP1509757B1 (en) Device for measuring the inertia tensor of a rigid body
CN109434873B (en) Method for measuring torque constant of robot joint servo motor
CN108507572B (en) Attitude positioning error correction method based on MEMS inertial measurement unit
CN100439892C (en) Recognization method for object rotary inertia having complex irregularity structure
CN109398020A (en) A kind of vehicle liquid based on nonlinear model is electrically coupled the forecast Control Algorithm of Formulas I SD suspension
CN206787542U (en) Structure sediment monitoring system based on inclination angle Yu structural joint deformation measurement
Dansberry Physical properties of the benchmark models program supercritical wing
CN104176230B (en) Tapered airfoil vibration control apparatus and method based on Eddy current displacement sensor
CN114184192B (en) Method for acquiring angular velocity measurement channel transfer function of inertial measurement device
CN116147747A (en) Vehicle weight measuring method and system based on mems attitude sensor
Bernstein et al. Shape change actuation for precision attitude control
CN203785618U (en) Detection device for light magnetic axes of metal balls
CN207593831U (en) Modularization robot joint power parameter identification precision improves device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081203

Termination date: 20100326