CN100438195C - A Li-ion secondary battery - Google Patents

A Li-ion secondary battery Download PDF

Info

Publication number
CN100438195C
CN100438195C CN 200410027351 CN200410027351A CN100438195C CN 100438195 C CN100438195 C CN 100438195C CN 200410027351 CN200410027351 CN 200410027351 CN 200410027351 A CN200410027351 A CN 200410027351A CN 100438195 C CN100438195 C CN 100438195C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
lithium
spinel
layered
secondary battery
manganate
Prior art date
Application number
CN 200410027351
Other languages
Chinese (zh)
Other versions
CN1700498A (en )
Inventor
姜占峰
王传福
董俊卿
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy

Abstract

一种锂离子二次电池,包括正极、负极、电解液及隔膜,所述正极的活性材料由尖晶石型锰酸锂与层状镍酸锂按1~9∶9~1(重量份)的比例混合而成,且尖晶石型锰酸锂与层状镍酸锂的平均粒径比为1.5~8。 A lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator and an electrolyte, the positive electrode active material of the spinel type lithium manganate and layered lithium nickelate according 9:9 ~ ~ 1 1 (parts by weight) mixed ratio, and average particle diameter than the spinel-type lithium manganate and layered lithium nickel oxide is 1.5 to 8. 本发明将尖晶石型锰酸锂和层状镍酸锂混合使用,通过对混合比例及两种物质平均粒径的控制,从而实现尖晶石型锰酸锂对层状镍酸锂的取向控制和层状镍酸锂对尖晶石型锰酸锂Jahn-Teller效应的抑制,从而得到成本低廉、容量高、热稳定性好、大电流放电性能好、高温下容量衰减小的非水锂二次电池。 The present invention is a spinel type lithium manganate and layered lithium nickelate mixed use, and by controlling the mixing ratio of the average particle size of the two substances, thereby realizing the spinel-type lithium manganate orientation of the layered lithium nickelate control and inhibition of layered lithium nickel spinel-type lithium manganate Jahn-Teller effect, resulting in low cost, high capacity, good thermal stability, good large-current discharge performance at high temperatures attenuation capacity nonaqueous lithium secondary battery.

Description

一种锂离子二次电池 A lithium ion secondary battery

技术领域 FIELD

本发明涉及电器产品用的电池,特别是涉及一种锂离子二次电池。 The present invention relates to a battery used in electrical products, particularly to a lithium ion secondary battery. 背景技术 Background technique

随着电子工业、信息产业的迅速发展,人们对各类电产品电源的要求越来越高,其中锂离子二次电池以其诸多的优越性能被广泛使用。 With the rapid development of the electronics industry, information industry, people on all kinds of electrical power source products have become increasingly demanding, in which the lithium ion secondary batteries for its many advantages can be widely used. 锂电池使用的正极材料主要是嵌入式化合物,目前可以使用的主要有层状钴酸锂 Lithium battery cathode materials are mainly embedded compound, there are layered lithium cobaltate currently in use

(LiCo02)、层状镍酸锂(LiNi02)和尖晶石型锰酸锂(LiMn204)。 (LiCo02), lithium nickel oxide layer (LiNi02) and spinel type lithium manganate (LiMn204). 已经广泛应用的正极材料是层状钴酸锂LiCo02材料。 The positive electrode material has been widely used lithium cobalt oxide has a layered material LiCo02.

层状钴酸锂和层状镍酸锂及其各种衍生产物(通过阴阳离子的掺杂或者其他物质的包覆等方式)虽然具有较高的放电比容量,但它们在充电状态下的热稳定性较差,且作为原料的钴和镍价格昂贵,并存在资源短缺的问题。 Layered lithium cobalt oxide and layered lithium nickelate, and various products derived (by doping or coating materials of other anions and cations manner), while having a high discharge capacity, they are heated at a state of charge poor stability, and the price of nickel and cobalt as a raw material is expensive, and there is a shortage of resources.

尖晶石型锰酸锂虽然其原料锰资源含量丰富、价格便宜,且充电状态下的热稳定性高,从而提高了电池的安全性能等优点,但其存在放电比容量低,高温下容量衰减剧烈等严重问题,限制了其工业化应用。 Spinel-type lithium manganate While rich in manganese content of raw material resources, inexpensive, and high thermal stability in a charged state, thereby improving safety performance of the battery and other advantages, but its presence is lower than the discharge capacity and capacity fade at high temperatures violent and other serious problems, limits its industrial application.

为此,在日本专利特开平9-293538和中国专利CN1262532A中提出尝试通过在尖晶石型锰酸锂中添加层状钴酸锂和镍酸锂来改善尖晶石型锰酸锂的部分性能。 For this reason, attempts made by the addition of part of the performance lithium cobalt oxide and layered lithium nickelate in the spinel-type lithium manganese oxide to improve the spinel-type lithium manganate in Japanese Laid-Open Patent No. 9-293538 and in Chinese Patent No. CN1262532A . 但上述专利中公开的方法并不充分,主要是在提高电池高温贮存性能和安全性能的同时,降低了电池的容量,或者提高了电池制作的工艺难度(要求将极片做薄)等等,而没有充分挖掘尖晶石型锰酸锂对层状钴酸锂和层状镍酸锂的改善作用。 However, the method disclosed in the above patent is not sufficient, primarily in high-temperature storage while improving battery performance and safety performance, reducing the capacity of the battery, the battery or increase the difficulty of the production process (claim pole pieces made thin) and the like, but not fully tapped improvement spinel-type lithium manganate layered layered lithium cobaltate and lithium nickelate. 另外,由于层状镍酸锂放电平台(3.7V)低于层状钴酸锂(3.8V),使得层状镍酸锂对尖晶石型锰酸锂的过放电保护作用要强于层状钴酸锂,因此本发明中不使用层状钴酸锂。 Further, since the layered lithium nickelate discharge platform (3.7V) below the layered lithium cobaltate (3.8V), so that the protective effect of layered lithium nickel oxide of spinel-type lithium manganate layer is stronger than the overdischarge cobalt lithium, lithium is not used in the present invention laminar cobalt oxide.

还由于尖晶石型锰酸锂材料在充电时晶胞体积收缩,而在放电时体积 Also since the spinel-type lithium manganese oxide material unit cell volume contraction during charging and discharging volume

效应,生成电化学性能较差的立方晶系,而这一变化在高温下尤其剧烈, 成为造成尖晶石型锰酸锂高温下容量衰减剧烈的主要原因。 Effect, generating a cubic inferior electrochemical properties, and this change, especially at high temperatures vigorously, becoming the main cause of severe lower temperature the spinel-type lithium manganate capacity fading. 而另一方面,层状钴酸锂在充电时晶胞膨胀,在放电时晶胞收缩,并且由于钴酸锂为层状结构,取向性高,易于相对于集电体发生平行取向,从而基于电解液的浸透性降低,在以较大电流放电时,可迁移的锂离子数量降低,造成容量的降低。 On the other hand, the layered lithium cobalt oxide cell expansion during charging, the cell contraction during discharge, since the lithium cobalt oxide and layered structure, highly oriented, with respect to the current collector easy to occur in parallel alignment, whereby based penetration of the electrolyte decreases during discharge at a large current, reducing the number of lithium ions can be migrated, resulting in lower capacity.

本发明旨在有效克服尖晶石型锰酸锂和层状钴酸锂及层状镍酸锂作为电源正极材料的各自的局限性,而提供一种综合性能优异,成本低廉,容量高,热稳定性好,大电流放电性能好,高温下容量衰减小的锂离子二次电池。 The present invention aims to overcome the spinel-type lithium manganate and layered lithium cobaltate and lithium nickelate as a layer of each of the power limitations of the positive electrode material, to provide a comprehensive performance is excellent, low cost, high capacity, thermal good stability, good large-current discharge performance, low attenuation at high temperature capacity lithium ion secondary battery.

为实现上述目的,本发明提供一种锂离子二次电池,该电池包括正冲及、 负极、电解液及隔膜,其特征在于,所述正极的活性材料由尖晶石型锰酸锂与层状镍酸锂混合而成,其主要目的在于,二者能够在充放电时产生体积变化上互补,从而降低活性物质粒子间的解离,保持较高的集电效率外, 层状镍酸锂可以有效的抑制锰酸锂粒子上的过放电(由于层状镍酸锂电子传导率比尖晶石型锰酸锂要高,因此过放电首先发生在层状镍酸锂颗粒 To achieve the above object, the present invention provides a lithium ion secondary battery which comprises a positive and a punch, a negative electrode, a separator and an electrolyte, wherein the positive electrode active material is a lithium manganese oxide having spinel layer and like lithium nickel oxide are mixed, the main object of the invention is capable of producing both the complementary volume change during charge and discharge, thereby reducing the solution between the active material from the particles, keeping the high current collecting efficiency, the layered lithium nickelate overdischarge can effectively inhibit the lithium manganate particles (due to the layered lithium nickel oxide is higher than electron conductivity spinel-type lithium manganate, and therefore over-discharge occurs first layered lithium nickel oxide particles

上),从而抑制尖晶石型锰酸锂的Jahn-Teller效应的发生;尖晶石型锰酸锂可以对层状镍酸锂的取向趋势起到抑制作用。 A), thereby suppressing the occurrence of Jahn-Teller effect of the spinel-type lithium manganate; spinel-type lithium manganate may play an inhibitory tendency alignment layered lithium nickelate.

为了实现上面提到的作用,将尖晶石型锰酸锂与层状镍酸锂按1 ~ 9: 9 ~ 1 (重量份)的比例混合,其优选混合比例为3 ~ 7: 7 ~ 3 。 In order to achieve the above-mentioned action of the spinel-type lithium manganate and layered lithium nickelate by 1 to 9: 9 to 1 ratio (parts by weight) is mixed, the mixing ratio thereof is preferably 3 to 7: 3 ~ 7 .

在使用中,由于尖晶石型锰酸锂放电比容量较低,且振实密度稍小, 从而造成尖晶石型锰酸锂体系比容量很低。 In use, since the spinel-type lithium manganese lower than the discharge capacity, smaller and a tap density, resulting spinel-type lithium manganate system low specific capacity. 为了满足电池的容量要求,在使用混合正极活性物质时,必须增加正极敷料量,从而需要较高的正极敷料密度,正极片制片时需要更大的压力来压片。 In order to meet the capacity requirements of the battery, when a mixture of positive electrode active material, the dressing is necessary to increase the amount of the positive electrode, the positive electrode applicator requiring higher density, greater pressure is required when the positive electrode sheet production to tableting. 如果尖晶石型锰酸锂平均粒径小于层状镍酸锂平均粒径,就无法对高压力下层状镍酸锂的取向趋势加以抑制,层状镍酸锂相对于集电体发生平行取向,锂离子迁移的通道平行于集电体,且电解液浸透性不高,造成锂离子迁移的困难,在大电流方丈电时该问题尤其突出。 If a spinel-type lithium manganate is smaller than the average particle diameter of the layered lithium nickelate average particle diameter, the alignment can not be suppressed tendency layered lithium nickel oxide at a high pressure, the layered lithium nickel oxide takes place in parallel with respect to the current collector orientation, the lithium ion transport passage in parallel to the current collector, and the electrolyte permeability is not high, resulting in difficulties in transport of lithium ions, which is particularly a problem when a large electric current abbot.

如果尖晶石型锰酸锂的平均粒径大于层状镍酸锂的平均粒径。 If the average particle diameter of the spinel-type lithium manganate layer is greater than the average particle diameter of the lithium nickelate. 尖晶石型锰酸锂能够抑制层状镍酸锂的取向,即在施加较大压力时,尖晶石型锰酸锂和层状镍酸锂之间的压力就会被适当分散。 Spinel-type lithium manganate is possible to suppress the orientation of layered lithium nickel oxide, that is, when greater pressure is applied, the pressure between the spinel-type lithium manganate and layered lithium nickelate will be properly dispersed.

发明内容本发明要求尖晶石型锰酸锂与层状镍酸锂的平均粒径比为1. 5~8,其 The present invention claims the average particle size ratio of the spinel-type lithium manganate and layered lithium nickel oxide is 1.5 to 8,

优选平均粒径比为2~6。 The average particle diameter ratio is preferably from 2 to 6.

在满足上述粒径比的前提下,如果尖晶石型锰酸锂的平均粒径太小, 则层状镍酸锂的颗粒会更小,为了得到符合要求的敷料密度的正极片,需要使用更大的压力,从而层状镍酸锂的取向性增加,而且会导致电解液的浸润困难。 Under the premise of satisfying the above particle diameter ratio, if the average particle diameter of the spinel-type lithium manganate is too small, the layered lithium nickel oxide particles will be smaller, in order to meet the requirements of the dressing to obtain a density of the positive electrode sheet, it is necessary to use greater pressure, whereby the orientation of the layered lithium nickelate increased and may result in infiltration of the electrolytic solution is difficult. 如果尖晶石型锰酸锂的平均粒径过大,层状镍酸锂的颗粒也需要相应增大,就会导致材料的比表面积降低,与电解液的接触面积减小, 不利于电池性能。 If the average particle diameter of the spinel-type lithium manganate is too large, the layered lithium nickel oxide particles are also requires a corresponding increase in the specific surface area material will lead to reduced contact area with the electrolyte is decreased, it is not conducive to battery performance . 因此要求本发明的正极材料中颗粒在一般正极材料所公 Accordingly the present invention requires a cathode material particles in the positive electrode material is generally well

知的粒径范围内,通常为5〜40,之间。 Known within the particle size range, usually 5 ~ 40, between.

本发明中提到的尖晶石型锰酸锂的结构式为Li1+xMn2-yMy04,其中,M是元素Mg、 Ca、 Sr、 Ba、 Ti、 Cr、 Fe、 Co、 Ni、 Cu、 Al中的至少一种,X值为-O. 15~0. 15, y值为0~0. 5。 In the present invention, the structure of the spinel-type lithium manganate as mentioned Li1 + xMn2-yMy04, wherein, M is an element of Mg, Ca, Sr, Ba, Ti, Cr, Fe, Co, Ni, Cu, Al in at least one, X is -O. 15 ~ 0. 15, y is 0 to 0.5. 这表明,尖晶石型锰酸锂的结构不局限于LiMnA结构,上述结构式所涵盖的材料均可使用,从而提高该正极材沣牛的某一方面电化学性能(例如放电比容量、常温、高温循环性能、储存性能、安全性能等等)。 This indicates that the structure of the lithium manganese oxide having spinel structure is not limited LiMnA material covered by the above formula can be used to improve the electrochemical properties of a particular aspect of the positive electrode material Feng bovine (e.g., discharge capacity at room temperature, high temperature cycle performance and storage performance, safety, etc.).

本发明中提到的层状镍酸锂的结构式为LiNi hMA,其中,M是元素Mg 、 Ca、 Sr、 Ba、 Ti、 Cr、 Mn、 Fe、 Co、 Cu、 Al中的至少一种,X值为0~0. 5。 In the present invention a layered structure of lithium nickelate is mentioned LiNi hMA, wherein, M is an element of Mg, at least one of Ca, Sr, Ba, Ti, Cr, Mn, Fe, Co, Cu, Al is, X 0 ~ 0.5. 这同样表明,层状镍酸锂的结构不局限于LiNi02结构,上述结构式所涵盖的材料均可使用,从而提高该正极材料的某一方面电化学性能(例如放电比容量、常温、高温循环性能、储存性能、安全性能等等)。 This also shows that the layered structure of lithium nickelate is not limited LiNi02 acid structure, material covered by the above formula can be used to improve the electrochemical properties of a particular aspect of the positive electrode material (e.g., discharge capacity at room temperature, a high temperature cycle performance , storage performance, safety, etc.). 本发明中优选使用LiNi,8Co。 The present invention is preferably used LiNi, 8Co. ,A材料。 , A material.

本发明的正极的活性材料是由尖晶石型锰酸锂和层状镍酸锂混合,并添加粘合剂、导电剂和溶剂后经搅拌混合、涂敷、烘干、压片制得。 The positive electrode active material of the present invention is composed of spinel lithium manganate and layered lithium nickelate mixing, and adding a binder, a conductive agent, and stirred after mixing the solvent, coating, drying, tabletting prepared.

粘合剂为含氟树脂及以及聚乙烯、聚乙烯醇;导电剂为碳黑、石墨类碳材料;溶剂为N-曱基吡咯烷酮、二曱基曱酰胺、无水乙醇。 And the binder is a fluorine-containing resin and a polyethylene, a polyvinyl alcohol; a conductive agent is carbon black, graphite-based carbon material; Yue pyrrolidone solvent is N-, di Yue Yue amide group, absolute ethanol.

本发明的贡献在于,它有效克服了尖晶石型锰酸锂和层状钴酸锂及层状镍酸锂作为电源正极材料的各自的局限性。 The contribution of the present invention is that it effectively overcomes the spinel lithium manganate and layered lithium cobaltate and lithium nickelate as a layer of each of the power limitations of a positive electrode material. 将充电时收縮放电时膨胀的尖晶石型锰酸锂和充电时膨胀放电时收缩的层状镍酸锂混合使用后,除了能够在充放电时产生体积变化上互补,从而降低活性物质粒子间的解离, 保持较高的集电效率外,层状镍酸锂可以有效的抑制锰酸锂粒子上的过放电(由于层状镍酸锂电子传导率比尖晶石型锰酸锂要高,因此过放电首先发生在层状镍酸锂颗粒上),从而抑制尖晶石型锰酸锂的Jahn-Teller效应的发生;尖晶石型锰酸锂可以对层状镍酸锂的取向趋势起到抑制作用。 After the shrink layered lithium nickel oxide mixture discharged upon expansion spinel-type lithium manganese oxide and rechargeable expansion contraction during charging and discharging, can be generated in addition to the volume change during charge and discharge on the complementary, thereby lowering between the active material particles dissociation, keeping a high current collecting efficiency, the layered lithium nickelate can effectively suppress overdischarge on lithium manganate particles (due to the layered electronic conductivity than lithium nickel oxide spinel-type lithium manganate higher Therefore overdischarge occurs first on the layered lithium nickelate particles), thereby suppressing the occurrence of Jahn-Teller effect of the spinel-type lithium manganate; spinel-type lithium manganate may be oriented trends layered lithium nickelate play an inhibitory effect. This

样就可以得到成本低廉、容量高、热稳定性好、大电流放电性能好、高温下容量衰减小的非水锂电池正极材料。 Sample can be obtained low-cost, high capacity, good thermal stability, good large-current discharge performance, high temperature attenuation capacity non-aqueous lithium battery cathode materials.

具体实施方式 Detailed ways

下列实施例是对本发明的进一步解释和说明,对本发明不构成任4可限制。 The following examples further explain and illustrate the present invention, the present invention does not constitute any limit 4.

本发明的锂离子二次电池包括正极、负极、电解液及隔膜,其中所述负极由负极活性材料和相应的粘合剂、分散剂、溶剂涂敷在集电体上并烘干、压片制得。 The lithium ion secondary battery of the present invention comprises a cathode, an anode, an electrolyte and a separator, wherein the negative electrode active material, a negative electrode and the corresponding binder, a dispersant, a solvent is coated on a current collector and drying, tabletting be made of. 所述负极活性材料可以使用金属锂、锂合金或能掺杂/去摻杂锂离子的材料等。 The negative electrode active material, metal lithium, a lithium alloy or a material capable of doping / dedoping lithium ion and the like. 作为能掺杂/去掺杂锂离子的材料,实例是含碳材料, 如天然石墨、人造石墨、焦炭、碳黑、热解碳、碳纤维和有机聚合物的焙 As can be doped / undoped with lithium ions, examples being the carbonaceous material, such as baking natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers and organic polymer

烧产物;和硫族化合物,如可以在比正极中更低的电位下掺杂/去掺杂锂离子的氧化物和硫化物。 Burn products; and chalcogen compounds, such as may be doped at a lower potential than the positive electrode / undoped with lithium ions oxides and sulfides. 作为含碳材料,主要由石墨材料(如天然石墨和人造石墨)组成的含碳材料是合适的。 As the carbonaceous material, the carbonaceous material mainly composed of a graphite material (such as natural graphite and artificial graphite) are suitable composition. 所述的粘合剂可以是聚四氟乙烯、聚偏氟乙烯等含氟树脂以及聚乙烯、聚乙烯醇;分散剂可以是纤维素;溶剂可以是N-曱基吡咯烷酮、二甲基曱酰胺、无水乙醇、去离子水。 The binder may be polytetrafluoroethylene, polyvinylidene fluoride and other fluorine-containing resins, and polyethylene, a polyvinyl alcohol; dispersing agent may be cellulose; N- Yue solvent may be pyrrolidone, dimethyl amides Yue , ethanol, deionized water. 作为用于负极的集电体,可以是铜箔、不锈钢箔、镍箔,形状可以是筛网状、箔状„ 所述的电解液是非水系电解液。对其中的电解质,可使用通常的非水电解液使用的电解质盐,例如LiPFe、 LiBF4、 LiAsF" LiCl(V LiSbF" UC1、 LiBr、 LiCF2S03等锂盐,从氧化稳定性角度考虑,最好选用UC瓜、LiPFH、 LiBFV LiAsFfi。所用溶剂为有机溶剂,可以是乙烯碳酸酯、丙烯碳酸酯、 碳酸亚乙酯、碳酸亚丙酯、碳酸二曱酯、碳酸二乙酯、1, 1-或1,2-二曱氧乙烷、1,2-二乙氧乙烷、四氢呋喃、2-曱基四氢呋喃、笨甲醚、乙醚、N-曱基吡咯烷酮、二曱基曱酰胺、乙腈、丙腈、氯腈、乙酸乙酯中的一种或几种。所述的隔膜可以是无纺布、合成树脂微孔膜,优先使用合成树脂微孔膜,其中又以聚烯烃类微孔膜为优,具体有聚乙烯微孔膜、聚丙烯微孔膜、聚乙烯聚丙烯复合微孔膜。 As for the negative electrode current collector may be a copper foil, stainless steel foil, a nickel foil, the shape may be mesh-like, foil-like "non-aqueous electrolyte solution of the electrolyte. The electrolyte of which may be used are usually non- aqueous electrolyte used in the electrolyte salt, e.g. LiPFe, LiBF4, LiAsF "LiCl (V LiSbF" UC1, LiBr, LiCF2S03, lithium salt, from the perspective of the oxidation stability considerations, the best choice UC melon, LiPFH, LiBFV LiAsFfi. the solvent used The organic solvent may be ethylene carbonate, propylene carbonate, ethylene carbonate, propylene carbonate, carbonic acid Yue carbonate, diethyl carbonate, 1, 1- or 1,2-Yue of ethylene oxide, 1, 2-diethoxyethane, tetrahydrofuran, 2-Yue group tetrahydrofuran, benzene ether, diethyl ether, N- Yue pyrrolidone, di Yue Yue amide group, acetonitrile, propionitrile, nitrile chloride, ethyl acetate or a several the membrane can be a nonwoven fabric, a synthetic resin microporous film, a microporous synthetic resin film preferably used, among which polyolefin microporous film was excellent, particularly microporous polyethylene film, a polypropylene micro porous film, a polyethylene polypropylene composite microporous membrane.

本发明的要点在于,所述正极的活性材料由尖晶石型锰酸锂与层状镍酸锂按1〜9: 9~ 1 (重量份)的比例混合而成,且尖晶石型锰酸锂与层状镍酸锂的平均粒径比为1. 5 ~ 8。 Gist of the present invention, the positive electrode active material of the spinel type lithium manganate and layered lithium nickelate by 1~9: 9 to 1 mixing ratio (parts by weight) is formed, and a spinel type manganese the average particle diameter ratio of layered lithium nickel oxide to lithium is 1.5 to 8.

制备本发明锂离子二次电池,所述的正极是将按照公知方法制备得到的尖晶石型锰酸锂和层状镍酸锂按上述比例混合并添加粘合剂、导电剂和溶剂,进行搅拌混合、涂敷、烘干、压片制得。 Preparation of the lithium ion secondary battery of the present invention, the positive electrode is a spinel type lithium manganate and layered lithium nickelate obtained in accordance with the known method for preparing the above-described mixing ratio and adding a binder, a conductive agent and a solvent, stirring and mixing, coating, drying, tabletting prepared. 其中搅拌速度控制为300 ~ Wherein the stirring speed of from 300 to control

6OOOrpm,搅拌时间控制为0. 2 ~ 10小时。 6OOOrpm, stirring time is controlled to 0.2 to 10 hours. 所述的粘合剂可以是聚四氟乙烯、 聚偏氟乙烯等含氟树脂以及聚乙烯、聚乙烯醇;导电剂可以是碳黑、石墨类碳材料;溶剂可以是N-曱基吡咯烷酮、二曱基曱酰胺、无水乙醇等。 The binder may be polytetrafluoroethylene, polyvinylidene fluoride and other fluorine-containing resins, and polyethylene, a polyvinyl alcohol; a conductive agent may be carbon black, graphite-based carbon material; N- Yue solvent may be pyrrolidone, Yue Yue two amide groups, ethanol and the like.

下列实施例会更有助于说明本发明。 The following embodiments will be described more conducive to the present invention.

实施例1 Example 1

首先用公知方法制备结构式为LiMnA的尖晶石型锰酸锂和掺杂的Co 的结构式为LiNi。 First, by a known method for preparing the formula LiMnA spinel-type lithium manganate and doped formula Co is LiNi. ,8Co。 , 8Co. .A的层状镍酸锂,以下实施例和对比例中所述层状镍酸锂均指该种物质。 .A layered lithium nickelate, the following Examples and Comparative Examples of the layered lithium nickelate are by the substance. 控制尖晶石型锰酸锂的平均粒径为20,,层状镍酸锂平均粒径为4^irn, 二者粒径比例为5。 Control spinel-type lithium manganate average particle diameter of the layered lithium nickelate 20 ,, an average particle diameter of 4 ^ irn, both the particle diameter ratio of 5.

取8份(重量)的尖晶石型锰酸锂与1份(重量)的层状镍酸锂相混合作为正极活性材料。 8 taken parts (by weight) of spinel-type lithium manganate with 1 part (by weight) of mixed layered lithium nickelate as a positive electrode active material. 采用2% (重量)的聚偏二氟乙烯PVDF为粘合剂, 3 % (重量)的乙炔黑为导电剂,余量的N-曱基-2-吡咯烷酮NMP为溶剂, 在300 ~ 6000rpm的速度下搅拌0. 2 ~ 10小时,使之混合均匀,然后涂lt、 烘干、压片,其中混合、涂敷、烘干三个过程均需要在真空环境下进行, 压片裁成指定尺寸后制得电池正极片。 With 2% (by weight) of polyvinylidene fluoride (PVDF) as a binder, 3% (by weight) of acetylene black as a conductive agent, the remainder Yue-2-N- (NMP) as a solvent, in the 300 ~ 6000rpm stirring at a speed of 0.2 to 10 hours, so that a uniform mixture, then coated lt, drying, tabletting, wherein the mixing, coating, drying three processes are required in a vacuum environment, cut to a predetermined size tabletting after the battery positive electrode sheet was prepared.

将95% (重量)的天然石墨、5% (重量)的粘合剂聚偏二氟乙烯PVI)F 及余量的溶剂N-曱基-2-吡咯烷酮NMP搅拌混合均匀、涂敷、烘千、压片, 裁成指定尺寸后制得电池负极片。 The 95% (by weight) natural graphite, 5% (by weight) of the binder polyvinylidene fluoride PVI) F and the balance solvent N- Yue-2-pyrrolidinone NMP homogeneous mixing, coating, drying one thousand , tableting, cut after the specified size to obtain a negative electrode plate of the battery. 另外,作为负极片的活性物质,除了使用天然石墨之外,还可以使用其他公知的材料,例如碳黑、焦炭、玻璃炭、 炭纤维等或者其混合物,或者锂、锂合金等。 Further, as the negative electrode active material sheet, except that natural graphite, it may be used other known materials, such as carbon black, coke, glassy carbon, carbon fibers and the like, or mixtures thereof, or a lithium, a lithium alloy or the like.

采用上述正极片,负极片,电解质为六氟磷酸锂LiPFe,溶剂为乙烯碳 With the above positive electrode sheet, negative electrode sheet, the electrolyte is lithium hexafluorophosphate LiPFe, the solvent is ethylene carbon

酸酯、碳酸亚乙酯、碳酸二乙酯的混合有机溶剂,浓度为l摩尔/升,隔膜纸为聚乙烯、聚丙烯复合隔膜纸,通过常规工艺即制成本发明的锂离子二次电池。 Esters mixed organic solvent, ethylene carbonate, diethyl carbonate at a concentration of l mol / liter, the separator paper as polyethylene, polypropylene composite separator paper, i.e. lithium ions by a conventional process of the invention the secondary battery manufactured cost .

将上述的正极与负极、电解液及隔膜装配成的锂离子二次电池,具有成本低廉、容量高、热稳定性好、大电流放电性能好、高温下容量衰减小等优点。 The above-described positive electrode and the negative electrode, a separator and an electrolyte assembled into lithium ion secondary battery having a low cost, high capacity, good thermal stability, good large-current discharge performance, capacity fading at high temperatures is small.

实施例2 ~实施例7给出了尖晶石型锰酸锂与层状镍酸锂的不同的混合比例的实例,其技术指标测试结构果见表l 。 Example 2 to Example 7 shows examples of different mixing ratio of the spinel-type lithium manganate and layered lithium nickelate The technical specifications of the test structure results in Table l. 实施例2本例中尖晶石型锰酸锂与层状镍酸锂的混合比例(重量份)为7: 3, 其它过程同实施例1。 EXAMPLE 2 This embodiment mixing ratio of the spinel-type lithium manganate in the layered lithium nickel oxide (parts by weight) of 7: 3, the same procedure as in Example 1 other.

实施例3 Example 3

本例中尖晶石型锰酸锂与层状镍酸锂的混合比例(重量份)为5: 5, 其它过程同实施例1。 The mixing ratio of the present embodiment spinel type lithium manganate and layered lithium nickelate (parts by weight) 5: 5, the same procedure as in Example 1 other. 实施例4 Example 4

本例中尖晶石型锰酸锂与层状镍酸锂的混合比例(重量份)为3: 7, 其它过程同实施例1。 The mixing ratio of the present embodiment spinel type lithium manganate and layered lithium nickelate (parts by weight) of 3: 7, the same procedure as in Example 1 other. 实施例5 Example 5

本例中尖晶石型锰酸锂与层状镍酸锂的混合比例(重量份)为1: 8, 其它过程同实施例1。 The mixing ratio of the present embodiment spinel type lithium manganate and layered lithium nickelate (parts by weight) was 1: 8, the same procedure as in Example 1 other.

对比例1 ~4给出了正极材料分别为尖晶石型锰酸锂和层状镍酸锂的实验对比结果,其结果见表1 。 Comparative Examples 1 to 4 shows the comparison of the experimental results of the positive electrode materials are spinel-type lithium manganate and layered lithium nickelate, the results shown in Table 1.

对比例1 Comparative Example 1

本例中正极材料使用尖晶石型锰酸锂,其它过程同实施例1 。 In the present embodiment the positive electrode material lithium manganese oxide having spinel, other procedures described in Example 1. ,十比例2 Ten ratio of 2

本例中正极材料使用层状镍酸锂,其它过程同实施例1。 In this embodiment the layered positive electrode material a lithium nickel oxide, the same procedure as in Example 1 other. 对比例3 Comparative Example 3

本例中尖晶石型锰酸锂与层状镍酸锂的混合比例(重量份)为15: 1, 其它过程同实施例1。 The mixing ratio of the present embodiment spinel type lithium manganate and layered lithium nickelate (parts by weight) of 15: 1, the same procedure as in Example 1 other. 只十比例4 Only ten proportion of 4

本例中尖晶石型锰酸锂与层状镍酸锂的混合比例(重量份)为1: 15, 其它过程同实施例1。 The mixing ratio of the present embodiment spinel type lithium manganate and layered lithium nickelate (parts by weight) of 1:15, the same procedure as in Example 1 other. 电池特性测试 Battery characteristic test

对实施例及比较例的电池进行性能测试,如下: Batteries of Examples and Comparative Examples performance testing as follows:

放电比容量:电池充电后,以0. 5C的电流从4. 2V首次放电至3. 0V的放电容量/正极活性材料质量,单位为mAh/g; Discharge capacity: After charging the battery, a current from the first discharge 0. 5C 4. 2V to the discharge capacity of 3. 0V / positive electrode active material mass, in units of mAh / g;

循环:以1C电流充电至4. 2V然后在以1C的电流放电至3. 0V称为一次循环,获得的放电容量为本次循环的容量,单位为mAh; Cycle: current charging at 1C and then discharged to 4. 2V 3. 0V referred to in the current cycle to the 1C discharge capacity was the capacity of the present cycle, in units of mAh;

高温循环:在60。 Temperature cycle: 60. C下,以1C电流充电至4. 2V然后在以1C的电流放电至3. OV称为一次循环,获得的放电容量为本次循环的容量,单位为mAh; Under C, a charging current of 1C to 4. 2V and at a current of 1C until the discharge cycle 3. OV referred to in the capacity of the discharge capacity obtained in the present cycle, in units of mAh;

100次循环容量保持率:(第100循环放电比容量/首次循环放电比容量)x 100%,单位为%; 100 :( cycle capacity retention rate at the 100th cycle discharge capacity / first cycle discharge capacity) x 100%, in%;

IOO次高温循环容量保持率(第100高温循环放电比容量/首次高溫循 IOO times high-temperature cycle capacity retention ratio (the 100th cycle discharge capacity of the high-temperature / high-temperature first cycle

环放电比容量)><100%,单位为%; The discharge capacity of the ring)> <100%, in%;

大电流性能:分别以1C、 3C电流对电池进行放电,比较其放电容量的大小,标记为3C/1C,单位为%; Large-current performance: respectively 1C, 3C discharge current to the battery, compare the size of the discharge capacity, labeled 3C / 1C, in%;

热稳定性:将充电至4.2V的电池解剖,取出正极片,千燥后将正极料取下,在空气氛围下进行热重实验,得到该材料的分解温度,单位为。 Thermal stability: The anatomy of 4.2V until the battery, remove the positive electrode sheet, positive electrode material was dry after removing, thermogravimetric experiment in an air atmosphere, to obtain the decomposition temperature of the material units. C。 C.

测试结果见表1。 The test results are shown in Table 1.

表1 Table 1

<table>table see original document page 9</column></row> <table> <Table> table see original document page 9 </ column> </ row> <table>

由表1可以看出,本发明中尖晶石型锰酸锂和层状镍酸锂按镍酸锂质 As can be seen from Table 1, the present invention is a spinel type lithium manganate and layered lithium nickelate by mass lithium nickelate

量比X在0. 10~ 0. 90之间,优选为0. 3 ~ 0. 70之间时,电池具有优越的综合电性能,其放电比容量相对于尖晶石锰酸锂材料有较大提高;高温下(60°C )容量衰减较小;且大电流放电性能好;正极活性材料充电后分解温度相对于镍酸锂有很大提高,安全性能较好。 X ratio between 0.10 ~ 0.90, preferably is between 0.3 ~ 0.70, the battery having a favorable combination of electrical properties, the discharge capacity with respect to the spinel lithium manganate more materials large increase; at elevated temperature (60 ° C) less attenuation capacity; and high-current discharge performance; charging after the positive electrode active material with respect to the decomposition temperature of the lithium nickel oxide has greatly improved, better safety performance.

实施例8 ~ 1 5给出了尖晶石型锰酸锂与层状镍酸锂平均粒径比(DMn/DNi)的实验。 Examples 8 to 15 shows the spinel type lithium manganate and layered lithium nickelate experiment average particle diameter ratio (DMn / DNi) a. 实施例8 Example 8

本例中将混合比例为3: 6,平均粒径为20,的尖晶石型锰酸锂和平均粒径为40戶的层状4臬酸锂混合(DMn/DNi = 0. 5 )使用作为正极活性物质,其它过程同实施例1。 In the present embodiment is a mixing ratio of 3: 4 Nie layered lithium mixed 6, an average particle diameter of 20, the spinel-type lithium manganese oxide and the average particle size of 40 (DMn / DNi = 0. 5) using as the positive electrode active material, the same procedure as in Example 1 other.

实施例9 Example 9

本例中将混合比例为3 : 6 ,平均粒径为20^n的尖晶石型#_酸锂和平均粒径为20,的层状镍酸锂混合(DMn/DNi = 1 )使用作为正极活性物质, 其它过程同实施例1。 In the present embodiment is a mixing ratio of 3: mixing lithium nickelate layer 6, an average particle diameter of 20 ^ spinel-type lithium #_ n and an average particle size of 20, the (DMn / DNi = 1) is used as The positive electrode active material, the same procedure as in Example 1 other.

实施例10 Example 10

本例中将混合比例为3: 6,平均粒径为20(im的尖晶石型锰酸锂和平均粒径为13,的层状镍酸锂混合(DMn/DNi = 1. 54 )使用作为正极活性物质,其它过程同实施例1。 In the present embodiment is a mixing ratio of 3: 6 Layered lithium nickel oxide mixed, the average particle diameter of 20 (im spinel-type lithium manganese oxide and average particle diameter of 13, a (DMn / DNi = 1. 54) using as the positive electrode active material, the same procedure as in Example 1 other.

实施例11 Example 11

本例中将混合比例为3: 6,平均粒径为20(im的尖晶石型^l孟酸锂和平均粒径为10^m的层状镍酸锂混合(DMn/DNi = 2 )使用作为正极活性物质, 其它过程同实施例1。 In the present embodiment the mixing ratio of 3: 6, average particle size 20 (im spinel-type lithium Meng ^ l and average particle diameter of 10 ^ m mixed layered lithium nickelate (DMn / DNi = 2) used as a positive electrode active material, the same procedure as in Example 1 other.

实施例12 Example 12

本例中将混合比例为3: 6,平均粒径为20,的尖晶石型锰酸锂和平均粒径为5拜的层状镍酸锂混合(DMn/DNi = 4)使用作为正极活性物质, 其它过程同实施例1。 A mixing ratio of the present Example 3: mixing a layered lithium nickelate 6, an average particle diameter of 20, the spinel-type lithium manganese oxide and an average particle diameter of 5 to worship (DMn / DNi = 4) used as a positive electrode active material, the same procedure as in Example 1 other.

实施例13 Example 13

本例中将混合比例为3: 6,平均粒径为20,的尖晶石型锰酸锂和平均粒径为3. 3,的层状镍酸锂混合(DjDw = 6 )使用作为正极活性物质, 其它过程同实施例1。 A mixing ratio of the present Example 3: mixing a layered lithium nickelate 6, an average particle diameter of 20, the spinel-type lithium manganese oxide and average particle diameter of 3.3, the (DjDw = 6) used as a positive electrode active material, the same procedure as in Example 1 other.

实施例14 Example 14

本例中将混合比例为3: 6,平均粒径为20,的尖晶石型锰酸锂和平均粒径为2. 5,的层状镍酸锂混合(DMn/DNi = 8 )使用作为正极活性物质, 其它过程同实施例1。 A mixing ratio of the present Example 3: Layered lithium nickel mixed (DMn / DNi = 8) 6, an average particle diameter of 20, the spinel-type lithium manganese oxide and average particle diameter of 2.5, used as a The positive electrode active material, the same procedure as in Example 1 other.

实施例15 Example 15

本例中将混合比例为3: 6,平均粒径为20,的尖晶石型锰酸锂和平均粒径为2,的层状镍酸锂混合(DMn/DNi = 10)使用作为正极活性物质, 其它过程同实施例1。 In the present embodiment is a mixing ratio of 3: mixing lithium nickelate layer 6, an average particle diameter of 20, the spinel-type lithium manganese oxide and average particle diameter of 2, a (DMn / DNi = 10) is used as a positive electrode active material, the same procedure as in Example 1 other. 电池特性测试,同第一部分。 Battery characteristic test, with the first portion. 测试结果见表2。 The test results are shown in Table 2.

表2 Table 2

序号 平均粒径比 放电比容量/mAh/g 100循环容量保持率/% 100高温循环容量保持率/% 大电流力文电性能(3C/1C) /% 热稳定性/'C Number average particle diameter than the discharge capacity / mAh / g 100 cycle capacity retention rate / 100% high-temperature cycle capacity retention ratio /% high current strength properties telegrams (3C / 1C) /% Thermal stability / 'C

实施例8 0. 5 135 87 78 56 231 Example 8 of 0. The 5135877856231

实施例9 1 142 90 82 62 231 Example 91142908262231 embodiment

实施例10 1. 5 141 9】 85 73 230 Example 10 1. 51419] 8,573,230

实施例U 2 140 92 88 79 230 Example U 2 140 92 88 79 230 Embodiment

实施例12 4 141 91 88 79 229 Example 124,141,918,879,229 embodiment

实施例13 6 139 91 84 75 229 Example 136,139,918,475,229 embodiment

实施例14 8 140 92 85 70 226 Example 148,140,928,570,226

实施例15 10 136 89 84 63 220 Example 1,510,136,898,463,220 embodiment

由表2中数据可以看出,尖晶石型锰酸锂与层状镍酸锂平均粒径比控制在1. 5《DM„/DNi《8,优选在2《DJK6之间时,可以保证正极材料的大电流放电性能。 As can be seen from the data in Table 2, spinel-type lithium manganate and layered lithium nickelate average particle diameter ratio is controlled to 1. 5 "DM" / DNi "8, preferably in the 2" between DJK6, ensure large current discharge performance of the positive electrode material.

Claims (7)

1、一种锂离子二次电池,包括正极、负极、电解液及隔膜,其特征在于,所述正极的活性材料由尖晶石型锰酸锂与层状镍酸锂按1~9∶9~1(重量份)的比例混合而成,且尖晶石型锰酸锂与层状镍酸锂的平均粒径比为1.5~8。 1, a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator and an electrolyte, wherein the positive electrode active material of the spinel type lithium manganate and layered lithium nickelate by 1 ~ 9:9 to 1 (parts by weight) mixed ratio of the average particle diameter and the ratio of the spinel-type lithium manganate and layered lithium nickel oxide is 1.5 to 8.
2、 如权利要求1所述的锂离子二次电池,其特征在于,所述尖晶石型锰酸锂的结构式为Li1+xMn2—yMy04,其中,M是元素Mg、 Ca、 Sr、 Ba、 Ti、 Cr、 Fe、 Co、 Ni、 Cu、 Al中的至少一种,X值为-0. 15-0.15, y值为0-0.5。 2. The lithium ion secondary battery as claimed in claim 1, characterized in that the structure of the spinel-type lithium manganese oxide is Li1 + xMn2-yMy04, wherein, M is an element of Mg, Ca, Sr, Ba, ti, Cr, Fe, Co, Ni, Cu, Al of at least one, X is -0. 15-0.15, y is 0 to 0.5.
3、 如权利要求1所述的锂离子二次电池,其特征在于,所述层状镍酸锂的结构式为LiNi卜J^04,其中,M是元素Mg、 Ca、 Sr、 Ba、 Ti、 Cr、 Mn、 Fe、 Co、 Cu、 Al中的至少一种,X值为0〜0. 5。 3, lithium ion secondary battery as claimed in claim 1, characterized in that the formula of the layered lithium nickelate LiNi acids Bu J ^ 04, where, M is an element of Mg, Ca, Sr, Ba, Ti, at least one, X is cr, Mn, Fe, Co, Cu, Al in 0~0. 5.
4、 如权利要求1所述的锂离子二次电池,其特征在于,尖晶石型锰酸锂与层状镍酸锂的混合比例为3~ 7: 7 ~ 3 。 4. The lithium ion secondary battery as claimed in claim 1, wherein the mixing ratio of the spinel-type lithium manganate and layered lithium nickelate having 3 to 7: 3 ~ 7.
5、 如权利要求1所述的锂离子二次电池,其特征在于,尖晶石型锰酸锂与层状镍酸锂的平均粒径比为2 ~ 6。 5, lithium ion secondary battery as claimed in claim 1, wherein the average particle diameter than the spinel-type lithium manganate and layered lithium nickel oxide is from 2 to 6.
6、 如权利要求1所述的锂离子二次电池,其特征在于,所述正极的活性材料是由尖晶石型锰酸锂和层状镍酸锂混合,并添加粘合剂、导电剂和溶剂后经搅拌混合、涂敷、烘干、压片制得。 6. The lithium ion secondary battery as claimed in claim 1, wherein the active material of the positive electrode is composed of spinel lithium manganate and layered lithium nickelate mixing, and adding a binder, a conductive agent after mixing the solvent and stirred, coating, drying, tabletting prepared.
7、 如权利要求6所述的锂离子二次电池,其特征在于,所述粘合剂为含氟树脂及以及聚乙烯、聚乙烯醇;导电剂为碳黑、石墨类碳材料;溶剂为N-曱基吡咯烷酮、二甲基甲酰胺、无水乙醇。 7. The lithium ion secondary battery as claimed in claim 6, characterized in that the binder is a fluorine-containing resin and polyethylene and polyvinyl alcohol; a conductive agent is carbon black, graphite-based carbon material; solvent N- Yue pyrrolidone, dimethyl formamide, ethanol.
CN 200410027351 2004-05-22 2004-05-22 A Li-ion secondary battery CN100438195C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410027351 CN100438195C (en) 2004-05-22 2004-05-22 A Li-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410027351 CN100438195C (en) 2004-05-22 2004-05-22 A Li-ion secondary battery

Publications (2)

Publication Number Publication Date
CN1700498A true CN1700498A (en) 2005-11-23
CN100438195C true CN100438195C (en) 2008-11-26

Family

ID=35476426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410027351 CN100438195C (en) 2004-05-22 2004-05-22 A Li-ion secondary battery

Country Status (1)

Country Link
CN (1) CN100438195C (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325930B1 (en) * 2004-12-28 2012-10-10 Boston-Power, Inc. Lithium-ion secondary battery
US20080008933A1 (en) 2005-12-23 2008-01-10 Boston-Power, Inc. Lithium-ion secondary battery
US7811707B2 (en) 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
US9666862B2 (en) 2005-02-23 2017-05-30 Lg Chem, Ltd. Secondary battery of improved lithium ion mobility and cell capacity
WO2007011661A9 (en) 2005-07-14 2007-08-23 Boston Power Inc Control electronics for li-ion batteries
JP5110556B2 (en) 2006-03-27 2012-12-26 日立マクセルエナジー株式会社 Nonaqueous secondary battery and methods of use thereof
JP2013504145A (en) 2009-09-01 2013-02-04 ボストン−パワー,インコーポレイテッド Large-scale battery system and method of assembly
US20120305835A1 (en) * 2010-02-12 2012-12-06 Hiroyuki Yamaguchi Positive electrode active material for lithium secondary battery
WO2012105404A1 (en) * 2011-01-31 2012-08-09 三菱化学株式会社 Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
CN102315481A (en) * 2011-08-29 2012-01-11 上海空间电源研究所 High specific energy lithium-rich multi-element lithium ion battery and preparation method thereof
CN103165897B (en) * 2011-12-14 2016-04-27 比亚迪股份有限公司 A lithium ion battery positive electrode material, lithium ion batteries and lithium ion batteries
CN102751482B (en) * 2012-07-03 2014-12-03 四川大学 High-performance lithium manganate anode material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429890A (en) 1994-02-09 1995-07-04 Valence Technology, Inc. Cathode-active material blends of Lix Mn2 O4
CN1262532A (en) 1999-01-25 2000-08-09 三洋电机株式会社 Anode for nonaqueous electrolyte, its making method, battery with anode and its making method
CN1287390A (en) 1999-09-08 2001-03-14 索尼株式会社 Non-hydro-electrolyte battery anode active material and non-hydroelectrlyte battery
CN1300267A (en) 1999-04-08 2001-06-20 三井金属矿业株式会社 Method for preparing lithium manganate having spinel structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429890A (en) 1994-02-09 1995-07-04 Valence Technology, Inc. Cathode-active material blends of Lix Mn2 O4
CN1262532A (en) 1999-01-25 2000-08-09 三洋电机株式会社 Anode for nonaqueous electrolyte, its making method, battery with anode and its making method
CN1300267A (en) 1999-04-08 2001-06-20 三井金属矿业株式会社 Method for preparing lithium manganate having spinel structure
CN1287390A (en) 1999-09-08 2001-03-14 索尼株式会社 Non-hydro-electrolyte battery anode active material and non-hydroelectrlyte battery

Also Published As

Publication number Publication date Type
CN1700498A (en) 2005-11-23 application

Similar Documents

Publication Publication Date Title
Guyomard et al. The carbon/Li1+ xMn2O4 system
US20040253518A1 (en) Positive active material and nonaqueous electrolyte secondary battery produced using the same
US20080081258A1 (en) Carbon-coated composite material, manufacturing method thereof, positive electrode active material, and lithium secondary battery comprising the same
JP2008147068A (en) Non-aqueous electrolyte lithium composite oxide for a secondary battery
JP2008210618A (en) Nonaqueous electrolyte secondary battery
US20040234856A1 (en) Lithium ion secondary battery
JP2007053083A (en) Nonaqueous electrolyte secondary battery and method of manufacturing same
CN101373829A (en) Titanium-series cathode active material and preparation method thereof, titanium-series lithium ion power battery
JP2008293875A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
CN101562261A (en) Lithium-sulfur battery and preparation method thereof
CN1947288A (en) Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery and manufacturing method thereof, lithium secondary battery positive e
CN101587950A (en) Micron single crystal granular anode material of lithium ion battery
JPH09237631A (en) Positive electrode active substance for lithium secondary battery, manufacture thereof and lithium secondary battery
JP2011192539A (en) Electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
CN101128949A (en) Secondary battery of improved lithium ion mobility and cell capacity
JP2005228706A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JPH09147862A (en) Organic electrolyte secondary battery
CN102623694A (en) High-voltage lithium ion battery and cathode material thereof
CN101478041A (en) Positive pole active substance, positive pole and battery
WO2012023501A1 (en) Non-aqueous electrolyte secondary battery
KR20080031616A (en) Cathode active material and lithium battery using the same
CN1700498A (en) A Li-ion secondary battery
KR20080109298A (en) Cathode comprising active material composite and lithium battery using the same
CN101496200A (en) Cathode active material and lithium secondary battery containing them
CN101689629A (en) Anode material of excellent conductivity and high power secondary battery employed with the same

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model