CN100426005C - Spectacle lens design method - Google Patents

Spectacle lens design method Download PDF

Info

Publication number
CN100426005C
CN100426005C CNB2004100280206A CN200410028020A CN100426005C CN 100426005 C CN100426005 C CN 100426005C CN B2004100280206 A CNB2004100280206 A CN B2004100280206A CN 200410028020 A CN200410028020 A CN 200410028020A CN 100426005 C CN100426005 C CN 100426005C
Authority
CN
China
Prior art keywords
lens
design
aspheric surface
spectacle lens
spectacle lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100280206A
Other languages
Chinese (zh)
Other versions
CN1721884A (en
Inventor
孙文信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CNB2004100280206A priority Critical patent/CN100426005C/en
Priority to US11/174,155 priority patent/US20060001830A1/en
Publication of CN1721884A publication Critical patent/CN1721884A/en
Application granted granted Critical
Publication of CN100426005C publication Critical patent/CN100426005C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/028Special mathematical design techniques
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/22Correction of higher order and chromatic aberrations, wave front measurement and calculation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Lenses (AREA)
  • Eyeglasses (AREA)

Abstract

The present invention relates to a design method of a spectacle lens. The design of the spectacle lens comprises the following steps: first of all, according to the design of a spherical spectacle lens, a first surface is used as a plane, and a second surface is determined according to the degree formula of the spectacle lens; then the aberration of the second surface is corrected by the optimization method of aspheric surfaces, the optimization method defines a performance evaluation function which comprises control items considered by the design, and the performance evaluation function is denoted into a function with the parameters of aspheric coefficients and quadric coefficients; subsequently, the result of the performance evaluation function is calculated through the damping least square method. The design method of a spectacle lens of the present invention considers the impact of inflexion points to enable the processing of the designed spectacle lens to be easy, and the designed spectacle lens is light, thin and flat.

Description

Method for designing spectacle lenses
[technical field]
The present invention relates to a kind of method for designing spectacle lenses, especially about a kind of method for designing spectacle lenses that adopts the aspheric surface design.
[background technology]
For modern's live and work, glasses have been the carry-on products that everyone is familiar with, and especially for bathomorphic colony, glasses have been their necessary articles.People wish that generally lens has the flat performance of light weight, thin thickness and minute surface, and have less aberration, and the preferable lens of performance are depended on the method for designing of lens to a great extent the requirement of lens.
Conventional method for designing spectacle lenses adopts the sphere design, because in the sphere design, have only a surface curvature radius recoverable aberration, so for aberration correction, the lens center thickness is thicker, outward appearance is very heavy.In the another kind of sphere design, near the plane, though can design a not only flat but also thin lens, oblique fire astigmatism wherein is very big, makes wearer's eye fatigue easily with first curvature of face.
Another kind of method for designing spectacle lenses is for adopting the aspheric surface design.As be disclosed in No. the 02138569th, the Chinese patent application on April 23rd, 2003, and the design that has disclosed a kind of aspherical eyeglass lens, wherein, this aspheric surface design calculation formula adopts following form:
z = c v r 2 1 + 1 - c v 2 r 2 + a 1 r 4 + a 2 r 6 + a 3 r 8 + a 4 r 10 + a 5 r 12
In this aspheric surface formula, introduce the even item and design aspherical lens, the aspherical lens of designing has the shape of symmetry, make eyeglass processing more or less freely, but system of conics numerical value is 1 in this design, show that this aspheric surface design is a basic engineering with the sphere, though the lens of designing is compared with the sphere lens, the recoverable astigmatism, it is thinner to eyeglass that but the design effect of lens can not satisfy people, more flat, lighter requirement, the design of this aspherical eyeglass lens does not consider that asphericity coefficient brings the influence of the point of inflexion yet in addition, usually under the more situation of asphericity coefficient, aspheric surface is easy to produce the point of inflexion, thereby causes the difficulty in the manufacturing.
In view of above shortcoming, be necessary to provide a kind of method for designing spectacle lenses of designing better performance.
[summary of the invention]
The object of the present invention is to provide a kind of method for designing spectacle lenses of designing better performance.
Method for designing spectacle lenses of the present invention, the step of this design lens is as follows: press the sphere ophthalmic lens design earlier, get first for the plane, determine according to lens number of degrees formula for second; Then second surface is come aberration correction with the aspheric surface optimization method, described optimization method defines a performance function, this performance function comprises five square factors, be respectively 0.5 field angle oblique fire astigmatism, 0.7 field angle oblique fire astigmatism, 1.0 field angle oblique fire astigmatisms, distortion, the point of inflexion, make performance function be illustrated as having the function of asphericity coefficient and quadric surface coefficient parameter; Again this performance function is passed through damped least square method result of calculation.
Compared with prior art, method for designing spectacle lenses of the present invention adopts the sphere method for designing earlier, adopts the aspheric surface method for designing again, not only can make the effective attenuate of thickness of eyeglass, and make the aberration of eyeglass also obtain good correction; Introduce conic constant in the design, come together to adjust lens performance, the lens of design is compared with the sphere lens of same specification, lens performance is preferably arranged by this conic constant and asphericity coefficient; In addition, in the optimizing process, considered the influence of the point of inflexion, made the lens handling ease after the design.
[description of drawings]
Fig. 1 is existing spheric glass synoptic diagram;
Figure 1A is aspheric curve figure in the method for designing spectacle lenses of the present invention;
Fig. 2 B gets differential curve figure one time to aspheric surface in the method for designing spectacle lenses of the present invention;
Fig. 2 C gets the second differential curve map to aspheric surface in the method for designing spectacle lenses of the present invention;
Fig. 3 is the aspherical lens synoptic diagram of method for designing spectacle lenses design of the present invention;
Fig. 4 A is the aberration diagram after method for designing spectacle lenses design of the present invention is finished;
Fig. 4 B is the distortion figure after method for designing spectacle lenses design of the present invention is finished.
[embodiment]
Now in conjunction with specific embodiments method for designing spectacle lenses of the present invention is further described:
Method for designing spectacle lenses of the present invention, at first defining the one side of not being close to eyes is the eyeglass first surface, the one side of being close to eyes is the eyeglass second surface.Getting first curvature of face radius is R 1, second curvature of face radius is R 2, n is an eyeglass material refractive index, t is a center of lens thickness, the index of refraction F of first surface 1=(n-1)/R 1, the index of refraction F of second surface 2=(1-n)/R 2, the number of degrees of lens (diopter) are the back focal length of lens gained reciprocal, its formula promptly:
Fv = F 1 + F 2 - t n F 1 F 2 1 - t n F 1
F V1/ meter of unit, represent with D usually, general 1D=100 degree, our usual said lens number of degrees are exactly F VOn duty with 100 value.From formula, the lens material is certain, and the number of degrees of lens are by first curvature of face radius R so 1, R 2And the t value decides.During design, the t value is fixing, guarantee that by adjusting R1 and R2 value the lens number of degrees are constant.
Designed lens wherein at least one surface is an aspheric surface, and wherein the aspheric surface computing formula of aspheric surface employing is
z = C v r 2 1 + 1 - Pc v 2 r 2 + Br 4 + C r 6 + Dr 8 + Er 10
Wherein, z is the minute surface degree of depth in the formula, C vExpression aspheric surface curvature of centre, r represents that any point is to the vertical height at minute surface center on the minute surface, and P is the conic constant value, and B, C, D, E represent aspheric surface high-order term coefficient.
Method for designing spectacle lenses of the present invention is example with the lens number of degrees for the ophthalmic lens design process of-6D, and its process is as follows:
Existing one-6D sphere lens synoptic diagram sees also Fig. 1, and wherein this sphere lens first curvature of face radius is R 1=122.8781mm, second curvature of face radius is R 2=54.34311mm, minute surface center thickness t=1mm, minute surface edge thickness e=10.1502, minute surface axial height ah=16.01216.
We adopt the aspheric surface method for designing to proofread and correct above conventional design, and at first by the method design of sphere design, do not consider the correction of aberration this moment when designing, and getting the lens material is plastic cement, gets PC (polycarbonate) here, its density p=1.25g/mm 3, refractive index n d=1.586, chromatic dispersion v d=58.6, optic diameter D A=75mm, first we be taken as the plane, and promptly first curvature of face radius is infinitely great, and second curvature of face radius calculates according to number of degrees formula, and its value is R 2=97.6mm, center of lens thickness t=1mm, at this moment, lens is flat and thin, but aberration is bigger.
Then, on the basis of sphere design, optimize second surface, so that proofread and correct aberration with the lens of sphere design with the aspheric surface optimal design.Usually the motionless position of eyeball is that second outgoing inclination angle is 30 positions when spending, so we need control the lens aberration within the 30 degree scopes.
We are optimized with least square method, earlier definition one performance function
Φ = Σ i = 1 m [ Wi ( ei - ti ) ] 2 = Σ i = 1 m f i 2
W wherein iBe weight factor, its value is taken as W i〉=0, usually following the example of of weight factor is that importance according to the place item decides, if the place item is required very strict, then that weight factor can be obtained bigger.M is the integer more than or equal to 1, e iBe the correction term of being considered, the e that is considered iItem number, be the numerical value of m.t iBe desired value, desired value t iValue, according to e iSituation and deciding, t usually iValue be e iExpectation value, and each available f i=W i(e i-t i) represent.
In ophthalmic lens design, the correction term e that we are concerned about at first most iBe aberration, comparatively mild for aberration is controlled on second minute surface, we get the aberration correction of three positions, comprise the oblique fire astigmatism of 0.5 field angle, the oblique fire astigmatism of 0.7 field angle and the oblique fire astigmatism of 1.0 field angle respectively, use e respectively 1, e 2, e 3Represent.The correction factor of another consideration is that second outgoing inclination angle is 30 o'clock distortion, uses e 4Expression.In addition, also to consider second point of inflexion influence, use e 5Represent that the judgement of the point of inflexion can be made the second differential value to minute surface height r by minute surface degree of depth s and judges, promptly in the aspheric surface formula r is got second derivative.If there is the point of inflexion curved surface d to occur 2S/dr 2Value the change of sign is arranged, can judge.Last Ф value can be expressed as function (1):
Ф=W 1 2(e 1-t 1) 2+W 2 2(e 2-t 2) 2+W 3 2(e 3-t 3) 2+W 4 2(e 4-t 4) 2+W 4 2(e 4-t 4) 2
(1)
These five square factors all with asphericity coefficient B, C, D, E is relevant with the quadric surface FACTOR P, can be expressed as (P, B, C, D, E) function of five variable elements.In the aspheric surface formula, we get five Variable Designing Of parameters (P, B, C, D, E), this Ф value representation becomes to contain (P, B, C, D, E) function of five variable elements at last.
We are optimized above-mentioned (1) formula, desirable each weight factor W 1=W 2=W 3=W 4=W 5=1, desired value t 1=t 2=t 3=t 4=t 5=0, Ф value optimum value is controlled at 0 and is optimum range, but generally is difficult to reach, and we can be decided to be the Ф value according to experience is certain limit, and in optimizing process, the Ф value can be more and more littler.
For calculate (P, B, C, D, value E), we adopt damped least square method.Because of designing when initial, each (P, B, C, D E) all has an initial value, and we represent with vector, establish (P, B, C, D, initial value E) they are x 0=(x 10, x 20, x 30, x 40, x 50), each e 1, e 2, e 3, e 4, e 5One initial value is all arranged, and we establish and use f 0=(f 10, f 20, f 30, f 40, f 50) represent.Value after the optimization is with x=(x 1, x 2, x 3, x 4, x 5) expression, aberration f=(f 1, f 2, f 3, f 4, f 5) expression.X represents x-x 0Value, least square method separate the value that can solve variable quantity, the concrete formula of least square solution, promptly
X=(A TA+PI) -1A Tf 0
The A five-element five column matrix in the formula, A ij = ∂ f i ∂ x j , I, the value of j is from 1 to 5, is f 1, f 2, f 3, f 4, f 5Respectively to x 1, x 2, x 3, x 4, x 5Ask the partial derivative gained five-element five column matrix, wherein A TBe the transposed matrix of A, p is a damping factor, and I is a unit matrix, (A TA+PI) -1Expression is to (A TA+PI) finding the inverse matrix by above multiplication of matrices computing, can get the operation values of X, passes through x=x 0+ X can determine the value of x, and then can draw (P, B, C, D, value E) after the correction.
See also Figure 1A to Fig. 4 B, in the optimizing process, Figure 1A to Fig. 2 C is for considering the curve map of point of inflexion influence, after optimization is finished, Fig. 3 is the aspherical eyeglass lens synoptic diagram after optimizing, and Fig. 4 A and Fig. 4 B are for optimizing back figure as a result, and oblique fire this moment astigmatism is 0, the index of refraction error is 0.269D, distorts to be-7.5%.At last, determine R according to the number of degrees 1Value.Its-result after the lens aspheric surface optimal design of 6D, ask for an interview table 1.
Table 1
Figure C20041002802000072
Figure C20041002802000081
Compare with the sphere lens of same specification, its edge thickness reduces 32%, and axial height reduces 59%, and quality alleviates 20%, compares with the sphere lens, has obviously reduced the thickness and the quality of lens, and lens is compared with the sphere lens simultaneously, and is more smooth.
The second embodiment of the present invention number of degrees are-5D, and first is the plane, and second is aspheric surface, and the parameter of this aspheric surface myopia eyeglass is asked for an interview table 2.
Table 2
Figure C20041002802000082
Compare with the sphere lens of same specification, its edge thickness reduces 32%, and axial height reduces 62%, and quality alleviates 20%, compares with the sphere lens, has obviously reduced the thickness and the quality of lens, and lens is compared with the sphere lens simultaneously, and is more smooth.
The third embodiment of the present invention: a kind of aspheric surface myopia eyeglass, the number of degrees be-7D, and first is the plane, and second is aspheric surface, and the parameter list of this aspheric surface myopia eyeglass is asked for an interview table 3.
Table 3
Figure C20041002802000083
Figure C20041002802000091
Compare with the sphere lens of same specification, its edge thickness reduces 30%, and axial height reduces 51%, and quality alleviates 19%, compares with the sphere lens, has obviously reduced the thickness and the quality of lens, and lens is compared with the sphere lens simultaneously, and is more smooth.
The fourth embodiment of the present invention: a kind of aspheric surface myopia eyeglass, the number of degrees be-8D, and first is the plane, and second is aspheric surface, and the parameter of this aspheric surface myopia eyeglass is asked for an interview table 4.
Table 4
Figure C20041002802000092
Compare with the sphere lens of same specification, its edge thickness reduces 29%, and axial height reduces 50%, and quality alleviates 18%, compares with the sphere lens, has obviously reduced the thickness and the quality of lens, and lens is compared with the sphere lens simultaneously, and is more smooth.
Its oblique fire astigmatism of designed aspherical eyeglass lens is 0, and the curvature of field is average index of refraction error, and all in less than 0.25 scope, distortion is less than in 5% scope, so this method for designing spectacle lenses all can meet the demands.

Claims (3)

1. method for designing spectacle lenses is characterized in that: the step of design lens is as follows:
A. press the sphere ophthalmic lens design earlier, get first for the plane, determine according to lens number of degrees formula for second
B. then second surface is come aberration correction with the aspheric surface optimization method, described optimization method defines a performance function, this performance function comprises five square factors, be respectively the point of inflexion of 0.5 field angle oblique fire astigmatism, 0.7 field angle oblique fire astigmatism, 1.0 field angle oblique fire astigmatisms, distortion, non-spherical surface, make performance function be illustrated as having the function of asphericity coefficient and quadric surface coefficient parameter
C. this performance function by damped least square method result of calculation to obtain needed aspheric surface.
2. method for designing spectacle lenses as claimed in claim 1 is characterized in that: the aspheric surface formula that is adopted
z = c v r 2 1 + 1 - P c v 2 r 2 + Br 4 + Cr 6 + Dr 8 + Er 10
Wherein z is the aspherical mirror degree of depth, C vExpression aspheric surface curvature of centre, r represents that any point is to the vertical height at minute surface center on the minute surface, and P is the conic constant value, and B, C, D, E represent aspheric surface high-order term coefficient.
3. method for designing spectacle lenses as claimed in claim 2 is characterized in that: the point of inflexion of described non-spherical surface is for to ask the second derivative gained to the aspheric surface computing formula.
CNB2004100280206A 2004-07-05 2004-07-05 Spectacle lens design method Expired - Fee Related CN100426005C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2004100280206A CN100426005C (en) 2004-07-05 2004-07-05 Spectacle lens design method
US11/174,155 US20060001830A1 (en) 2004-07-05 2005-07-01 Method for designing aspheric spectacle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100280206A CN100426005C (en) 2004-07-05 2004-07-05 Spectacle lens design method

Publications (2)

Publication Number Publication Date
CN1721884A CN1721884A (en) 2006-01-18
CN100426005C true CN100426005C (en) 2008-10-15

Family

ID=35513483

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100280206A Expired - Fee Related CN100426005C (en) 2004-07-05 2004-07-05 Spectacle lens design method

Country Status (2)

Country Link
US (1) US20060001830A1 (en)
CN (1) CN100426005C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101298906B (en) * 2007-11-30 2010-09-08 上海小糸车灯有限公司 Automobile front shining lamp based on double-convex lens
CN102419482B (en) * 2010-09-27 2014-04-02 苏州苏大明世光学股份有限公司 Aspheric myopia eyeglass
US9016859B2 (en) * 2013-03-14 2015-04-28 Johnson & Johnson Vision Care, Inc. Presbyopia lens with pupil size correction based on level of refractive error
CN112505945A (en) * 2020-11-23 2021-03-16 魏炳松 Preparation method of double-sided composite thinning zoom myopia lens
CN114137640B (en) * 2021-11-09 2023-02-03 江西欧迈斯微电子有限公司 Free-form surface lens, fresnel lens and wearable device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738516A (en) * 1984-01-18 1988-04-19 U.S. Philips Corp. Optical element having an aspheric surface
CN1028258C (en) * 1990-07-24 1995-04-19 庄臣及庄臣视力产品有限公司 Lens design method and resulting aspheric
US5815301A (en) * 1995-04-21 1998-09-29 Minolta Co., Ltd. Scanning optical apparatus
US6382789B1 (en) * 1998-09-28 2002-05-07 Essilor International Toric ophthalmic lenses
US20020183994A1 (en) * 1998-03-03 2002-12-05 Keiji Fuse Method for designing a refractive or reflective optical system and method for designing a diffraction optical element
CN1412604A (en) * 2002-11-07 2003-04-23 苏州大学 Asphericity eyeglass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003015034A (en) * 2001-04-26 2003-01-15 Hitachi Ltd Lens device for projection, and backproject type image display device using the same
US6894843B2 (en) * 2003-05-23 2005-05-17 Foxlink Image Technology Co., Ltd. Optical apparatus for a line scanner system with reduced optical total track
US6956682B2 (en) * 2003-06-26 2005-10-18 Johnson & Johnson Vision Care, Inc. Method for designing progressive addition lenses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738516A (en) * 1984-01-18 1988-04-19 U.S. Philips Corp. Optical element having an aspheric surface
CN1028258C (en) * 1990-07-24 1995-04-19 庄臣及庄臣视力产品有限公司 Lens design method and resulting aspheric
US5815301A (en) * 1995-04-21 1998-09-29 Minolta Co., Ltd. Scanning optical apparatus
US20020183994A1 (en) * 1998-03-03 2002-12-05 Keiji Fuse Method for designing a refractive or reflective optical system and method for designing a diffraction optical element
US6382789B1 (en) * 1998-09-28 2002-05-07 Essilor International Toric ophthalmic lenses
CN1412604A (en) * 2002-11-07 2003-04-23 苏州大学 Asphericity eyeglass

Also Published As

Publication number Publication date
CN1721884A (en) 2006-01-18
US20060001830A1 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
AU732021B2 (en) Improved ophthalmic lens
EP0809126A1 (en) Gradient index multifocal lens, spectacle lens, and manufacture of gradient index multifocal lens
EP2780758B1 (en) A method for determining an ophthalmic lens
US9523864B2 (en) Method for determining a progressive ophthalmic lens
KR20050004878A (en) Double-sided aspheric varifocal power lens
US6260967B1 (en) Progressive lens
US9307899B2 (en) Process for determining a pair of progressive ophthalmic lenses
CN106501943A (en) A kind of eyepiece optical system for wearing display device
JP3617004B2 (en) Double-sided aspherical progressive-power lens
CN112526743B (en) Eyepiece optical system
CN100498428C (en) Wide field spherical lenses and protective eyewear
CN100426005C (en) Spectacle lens design method
CN100483186C (en) Farsighted lens designing method
US7111937B2 (en) Spectacle lenses incorporating atoric surfaces
CN107065220B (en) The personalized free form surface gradual change mirror design method of frame matching optimization
US20150331254A1 (en) Multifocal ophthalmic lens
CN100445805C (en) Farsighted lens
CN100445806C (en) Glasses lens
CN112946922A (en) Method for designing free-form surface progressive lens with astigmatism correction function and lens
CN104375281B (en) The method and its ophthalmic len of a kind of ophthalmic len correction aberration
US11789290B2 (en) Method for preparing double-sided composite thinning zoom concave lens
US20230305316A1 (en) A computer-implemented method for providing a finished single vision ophthalmic lens
JP2004126256A (en) Double-side aspherical progressive power lens

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081015

Termination date: 20160705

CF01 Termination of patent right due to non-payment of annual fee