CN100421438C - Bit loading method in selecting frequency single carrier wave blocking transmission system - Google Patents

Bit loading method in selecting frequency single carrier wave blocking transmission system Download PDF

Info

Publication number
CN100421438C
CN100421438C CN 200510042056 CN200510042056A CN100421438C CN 100421438 C CN100421438 C CN 100421438C CN 200510042056 CN200510042056 CN 200510042056 CN 200510042056 A CN200510042056 A CN 200510042056A CN 100421438 C CN100421438 C CN 100421438C
Authority
CN
China
Prior art keywords
system
modulation
channel
snr
signal
Prior art date
Application number
CN 200510042056
Other languages
Chinese (zh)
Other versions
CN1649333A (en
Inventor
良 宫
李剑飞
岩 杜
静 袁
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to CN 200510042056 priority Critical patent/CN100421438C/en
Publication of CN1649333A publication Critical patent/CN1649333A/en
Application granted granted Critical
Publication of CN100421438C publication Critical patent/CN100421438C/en

Links

Abstract

本发明提供了一种选频单载波分块传输系统中的比特加载方法,包括以下步骤:(1)收发双方建立通信后,接收端根据选取的可用子信道数M及这些子信道的幅度增益,得到均衡后噪声功率,根据接收信噪比和均衡方式得到系统的均衡后信噪比;(2)根据系统的均衡后信噪比及信道估计误差和同步误差引起的信噪比损失确定系统采取的不同线性调制方式,描述不同线性调制方式的数据称为调制方式信息,通过反馈信道将调制方式信息传给发送端;(3)发送端根据接收到的调制方式信息进行符号映射发送信号;(4)接收端根据调制方式信息解调信号,并判决。 The present invention provides a single-carrier frequency-selective transmission block bit-loading system, comprising the steps of: (1) establishing a communication after the sending and receiving sides, the receiver amplitude gain selected number M of available sub-channels and subchannels according after equalized noise power, resulting post-equalization received SNR according to the system SNR and balanced manner; (2) estimation error and SNR loss due to synchronization error determination system according to the SNR after equalization and channel system different modulation system taken, describe various data modulation system is referred to as modulation scheme information, through a feedback channel modulation scheme information to the transmitting end; (3) the transmission side symbol mapping according to the received transmission signal modulation scheme information; (4) receiving the demodulated signal according to modulation scheme information terminal, and judgment. 本发明在保证系统性能一定的情况下,频谱效率、功率效率都优于现有SC-FDE和OFDM系统。 In the case where the present invention is to ensure that certain system performance, spectral efficiency, power efficiency is superior to the conventional OFDM and SC-FDE system.

Description

选频单载波分块传输系统中的比特加载方法(一)技术领域本发明涉及宽带数字通信传输方法。 The method of crossover bitloading (a) Technical Field The present invention relates to a transmission method for broadband digital communications block transmission of single-carrier points. 属于宽带无线通信技术领域。 Belonging to the broadband wireless communication technical field. (二)背景技术通信技术在最近几十年,特别是二十世纪九十年代以来得到了长足发展,对人们日常生活和国民经济的发展产生了深远的影响。 (B) A communication technologies in recent decades, especially since the 1990s has made considerable progress on the development of the national economy and people's daily life had a profound impact. 而未来通信技术正朝着宽带高速的方向发展,因此许多宽带数字传输技术受到广泛的关注,正交频分复用(以下简称0F面:Orthogonal Frequency Division Multiplexing)和频域均衡的单载波(以下简称SC-FDE: Single Carrier with Frequency Domain Equalization)就是两种被人们重视的宽带数字传输技术, 它们都属于分块传输技术,而目前OFDM受关注的程度要远远超过SC-FDE,并且在多种标准中成为支撑技术,例如:无线局域网(WLAN: Wireless Local Area Network)中的IEEE802.11a;无线城域网(碰N: Wireless Metropolitan Area Network)中的IEEE802.16; 有线数据传输中的各种高速数字用户线(xDSL: Digital Subscriber Line)都是基于OFDM 技术的标准。 Moving towards the future broadband high-speed communication technology direction, so many broadband digital transmission technologies receive widespread attention, orthogonal frequency-division multiplexing (hereinafter referred to as surface 0F: Orthogonal Frequency Division Multiplexing) and frequency domain equalization single carrier (hereinafter referred to as SC-FDE: Single Carrier with Frequency Domain Equalization) is two kinds of people being taken seriously broadband digital transmission technology, they all belong to block transmission technology, and the current level of OFDM is much concern over SC-FDE, and more than species become standard technology support, for example: a wireless local area network (WLAN: wireless Local Area Network) in the IEEE802.11a; wireless Metropolitan Area Network (touch N: wireless Metropolitan Area Network) of IEEE 802.16; each wired data transmission kinds of high-speed digital subscriber line (xDSL: digital Subscriber line) standard is based on OFDM technology. SC-FDE并没有被这些标准采用,只是在IEEE802. 16中与OFDM共同建议为物理层传输技术。 SC-FDE was not adopted these standards, only the IEEE802. 16 is common to the OFDM recommended physical layer transmission techniques. OFDM系统是一种多载波传输技术,它用A个子载波把整个宽带信道分割成A个并行的相互正交的窄带子信道。 OFDM system is a multicarrier transmission technique, which is divided by the subcarrier A entire wideband channel into narrowband sub-channels A parallel mutually orthogonal. 0FDM系统有许多引人注目的优点:l.非常高的频谱效率;2.实现比较简单;3.抗多径干扰能力和抗衰落能力强;4.可以利用信道状态信息(即自适应0F認技术) 进一步提高频谱效率等等<=自适应OFDM技术可以根据给定输入信号功率和信道状况,调节不同频域点(也就是不同的子信道)上分配的比特数,控制各子信道上的误码率基本相同,使其满足系统性能要求, 尽可能的提高系统传码率,从而实现OFDM系统的比特加载(bit-loading)。 0FDM system has many notable advantages: l very high spectral efficiency; 2 is relatively simple; 3 anti-multipath interference and fading capacity ability; 4 may utilize channel state information (i.e., Adaptive recognition 0F.... technology) and the like to further improve spectral efficiency <= adaptive OFDM technique according to a given input signal power and channel conditions, adjusting the frequency domain different points (i.e. different sub-channels) allocated on the number of bits on each subchannel control the bit error rate is substantially the same, to meet the performance requirements of the system, the system transfer rate increase as much as possible, thereby realizing bit loading OFDM system (bit-loading). 这种自适应OFDM 技术可以充分利用信道状态信息,提高系统的频谱效率。 The adaptive OFDM technology can make full use of the channel state information, to improve the spectral efficiency of the system. 正是这些优点使得OFDM成为近十年来的研究热点,以致被认为是未来通信,特别是宽带无线通信的支撑技术。 It is these advantages make OFDM has become a hot research over the past decade, such that communication is considered to be the future, especially the support of a broadband wireless communication technology. 但OFDM系统自身的许多缺点,特别是它的峰值平均功率比(简称PAPR: Peak to Average Power Ratio)过大,限制着它的实用步伐,而现有SC-FDE具有OFDM 上述除第四点以外的所有优点,并且不存在OFDM的PAPR问题,性能和效率跟OFDM基本相当。 However, many OFDM systems own disadvantages, in particular its average power ratio (abbreviated PAPR: Peak to Average Power Ratio) is too large, it is practical to limit the pace, while the existing OFDM SC-FDE having the above-described fourth point other than All the advantages of OFDM and there is no PAPR issue, the performance and efficiency of OFDM with substantially equivalent. 它是人们在研究OFDM的基础上发展而来,这种SC-FDE系统跟OFDM—样采取分块传输, 并且采用循环前缀(Cyclic Prefix,简称CP)方式,这样就可以把信号与信道脉冲响应的线性巻积转化为循环巻积,并且消除了多径引起的帧间干扰。 It is evolved people on the basis of study of OFDM, SC-FDE system with such sampling for OFDM- block transmission, and cyclic prefix (Cyclic Prefix, referred to as CP) mode, so that the signal can be a channel impulse response linear convolving convolving into circulation, and elimination of the inter-interference due to multipath. 这样在接收端采用简单的频域均衡技术就可以消除符号间干扰,例如:迫零均衡和最小均方误差均衡。 Thus at the receiving end using a simple frequency domain equalization technology can eliminate inter-symbol interference, for example: zero forcing equalizer and a minimum mean square error equalization. SC-FDE系统跟OFDM相比,不存在PAPR问题。 SC-FDE system compared with OFDM, PAPR is not a problem. 而PAPR问题是OFDM系统本身难以用低代价(频谱效率和功率效率)方式解决的问题。 The PAPR OFDM system itself is the problem difficult to lower the cost (spectral efficiency and power efficiency) way to solve the problem. 因此SC-FDE技术目前受到越来越多的重视。 Therefore, SC-FDE technology is receiving more and more attention. 下面简单介绍一下传统SC-FDE系统的数学模型。 The following outlines the mathematical model of the traditional SC-FDE system. SC-FDE系统在发送端发送的一帧时域信号为s("),("-0,l,…,iV-1),通过多径信道,其中信道的脉冲响应为/?("),(" = 0,1,.£-1),信号传输过程中受到加性白高斯噪声(AWGN: Additive White Gaussian Noise)的干扰,设噪声为w(w),(" = 0,l,'..,iV —1),去掉CP之后, 接收到的时域信号K")为:<formula>formula see original document page 4</formula> (l)其中,"®"表示循环巻积运算。 SC-FDE system is a time domain signal sent by a transmitter is s ( "), (" - 0, l, ..., iV-1), a multi-path channel, wherein the impulse response of the channel is / ( ")? , ( "= 0,1 ,. £ -1), during signal transmission by the additive white Gaussian noise: interference (AWGN additive white Gaussian noise) and set noise w (w), (" = 0, l, '.., iV -1), after removing the CP, the received time-domain signal K ") is: <formula> formula see original document page 4 </ formula> (l) where," ® "represents the operation cycle convolving . 在接收端对信号做离散傅立叶变换(以下简称DFT: Discrete Fourier Transform)变换到频域,根据DFT的时域巻积定理,所得到的频域信号为-単)=雖).歸)+哮),(A = 0,1,…,W -1) (2) 其中,及(A:),S(A:),/f(A:),『(A:)分别是K"),W"),W"),w(")做y^点DFT的频域符号,并且, //(",(A = 0,1,…,iV -1)是信道的频域响应。经过迫零均衡以后频域信号为:<formula>formula see original document page 5</formula>(3) 碌)最后,将信号做离散傅里叶逆变换(以下简称IDFT: Inverse Discrete Fourier Transform)变回时域进行判决,得到发送端传输的数据。从(3)式可以看出,最终得到的信号跟发送的真实信号存在误差,这种误差是由噪声引起的,尤其在信道存在深衰点的情况下会过分放大噪声,另外用最小均方误差均衡时会使信号产生畸变。如果在SC-FDE系统中利用了信道状态信息,这些问题就可以得到缓解 At the receiving end the signals discrete Fourier transform (hereinafter referred to as DFT: Discrete Fourier Transform). Into the frequency domain, time-domain convolving theorem of the DFT frequency domain signal obtained as a - radiolabeling) = although) normalized) + wheezing ), (A = 0,1, ..., W -1) (2) where, and (A :), S (A:), / f (A :), "(A :), respectively K"), W "), W"), w ( ") y ^ do-point DFT frequency-domain symbols, and, // (", (a = 0,1, ..., iV -1) is the frequency domain response of the channel. after after the zero-forcing equalization of the frequency domain signal: <formula> formula see original document page 5 </ formula> (3) Lu) Finally, the signals do inverse discrete Fourier transform (hereinafter referred to as IDFT: inverse discrete Fourier transform) back decision time domain to obtain transmission data sender can be seen from (3), there is an error resulting signal with real transmitted signal, this error is caused by noise, especially deep channel exists in the failure point case of excessively amplifying the noise, with causes further distortion signal minimum mean square error equalization. If the channel state information using the SC-FDE systems, these problems can be alleviated 。因此,申请人提出了一种选频方式的单载波分块传输方法(已申请国家发明专利,专利申请号: 200410036439. 6),克服了传统SC-FDE系统不能利用信道状态信息的缺点,这种新的SC-FDE 系统具有更高的系统性能和效率。这种选频方式的单载波分块传输方法的实现步骤分为:第一步,找出可用子信道,并将信道是否可用作标记,然后将子信道标记信息通过反向信道发送给发送端。接收端根据估计出的信道状态信息//(",(^ = 0,1,〜,^-1),从w个子信道中,按照幅度增益从大到小选出i/(MSA0个可用子信道,设这#个可用子信道的标号为A(/ = 0,1,一,M-1),而将剩下的子信道禁用,用1比特信息,即"0"或"1"标记每个子信道是可用子信道还是禁用子信道,这就是发送端所需要的子信道标记信息,如果接收端作W 点的DFT,即共有yV个子信道,反馈给发送端的子信道标记 Therefore, the applicant has proposed a single-carrier block transmission frequency selection method of embodiment (national patent, patent application number: 200410036439.6), to overcome the traditional SC-FDE system can not use the channel state information disadvantage, the new SC-FDE system has higher system performance and efficiency of such frequency selective manner a single carrier block transmission method implemented steps are divided into: a first step, to find the available subchannels, and whether the channel is available used as a marker, marker information is then transmitted to the transmission sub-channel via the reverse channel receiver side terminal based on the estimated channel state information // ( "(^ = 0, 1, ~, ^ - 1), from the sub-w channel, the descending amplitude gain is selected according to i / (MSA0 available subchannels, which provided # available subchannels designated a (/ = 0,1, a, M-1), while the remaining subchannel disabled, with 1-bit information, i.e., "0" or "1" flag for each subchannel is a subchannel available subchannels or disabled, which is flag information transmitting end sub needed, if the receiving end point for W the DFT, i.e. a total of yV subchannels, subchannel tag back to the transmitting end 息共有W比特,然后将这^比特信息通过反向信道发回发送端。第二步,根据子信道标记信息改变信号频谱在发送端收到接收端发送回来的子信道标记信息后,就可以用#个可用子信道来传输信号,这样对一帧W个SC-FDE符号《("),("=0,1,…,Ml),作^点DFT变换到频域:<formula>formula see original document page 5</formula> After a total of W bit rate, then these bits ^ reverse channel information back to the sender side. The second step, sub-information change flag signal spectrum according to the received sub-channel information sent by the receiver back marker on the transmitting side, can be # subchannels available with the transmission signal, so that the W on an SC-FDE symbol "("), ( "= 0,1, ..., Ml), for ^ point DFT into the frequency domain: <formula> formula see original document page 5 </ formula>

(4)就得到#点的频域信号,用选出来的第&, (/ = 0,1,...,M-1)个可用子信道(,、0,1,…,Mi)传输第f个频域信号s(a(!、o,i,…,Mi),即在可用子信道对应的信号频谱点上放置要传输的频域信号,而将禁用子信道对应的信号频谱点置零,也可以填充一些非信息数据,这样就得到一帧新的频域信号S'(A),O:-0,l,…,JV-1),点数为M<formula>formula see original document page 6</formula>变成时域信号,过抽样时IDFT点数要大于M高频部分置零,对该时域信号作D/A (数模变换)后,再进行调制发送出去。 (4) to obtain a frequency domain signal # point, with the first elected &, (/ = 0,1, ..., M-1) available subchannels (,, 0,1, ..., Mi) transmission the first frequency-domain signal f s (a (!, o, i, ..., Mi), that is placed in the frequency domain signal to be transmitted over available sub-channels in the spectrum corresponding to the signal point corresponding to the disabled sub-point signal spectrum zero, may be filled with non-information data, thus obtaining a new frequency domain signal S '(a), O: -0, l, ..., JV-1), points to M <formula> formula see original after the document page 6 </ formula> into a time domain signal, when the over sampling frequency M IDFT points is greater than zero portion, the time domain signal for D / A (digital to analog conversion), and then sent modulated. 第三步,选出可用子信道上传输的信号,然后对选出来的信号进行均衡,并变换回时域进行判决,最终得到传输的数据。 A third step, the selected signal can be transmitted on a subchannel, then chosen to equalize signals, and converted back to decision domain, data transfer finally obtained. 接收端接收到信号,去掉CP后的时域离散信号为:,(")=V (") ® + w( w), (w = O,l,... , iV -1) 对其作W点的DFT:(7)(8)i?'(Jt) = J^'(„)e " ,(yt = 0,l,-",iV —1) 并且-(" = S'("罪)+ ,), (/t = O,l,…,yV -1) (9) 这样就可以根据子信道标记信息选出i/个可用子信道上的信号及(A:,), (;-0,l,…,Ml),然后用估计出来的信道状态信息中可用子信道参数//"),(/ = 0,1,一,^-1),对选出来的信号进行均衡;可以选择下述三种均衡方式之一:1、 迫零均衡,2、 最小均方误差均衡,3、 混合均衡,即一部分子信道用迫零均衡,而另一部分子信道用最小均方误差均衡; 以迫零均衡为例作介绍:S(jt,)-^Sl,(,、o丄…,Ml) (10)令细-O,l,..-,Ml) (11) 对其作^点的IDFT:?(")=丄S》(;>f ,(" = O,l,...,Af -1) (12)对这组数据进行判决就可以恢复出原始数据。选频方式的单载波分块传输方法利用信 Receiver receives signals, the discrete time-domain signal after removing the CP is:, ( ") = V (") ® + w (w), (w = O, l, ..., iV -1) as its ? DFT W points: (7) (8) i '(Jt) = J ^' ( ") e", (yt = 0, l, - ", iV -1) and - (" = S '( " sin) +,), (/ t = O, l, ..., yV -1) (9) can be selected so that i / and the signals (a :, subchannel available subchannels on flag information), ( ; -0, l, ..., Ml), then the channel state information using the estimated parameters available subchannels // "), (/ = 0,1, a, ^ --1), chosen to equalize signals ; equilibrium can select one of three following ways: a zero-forcing equalization, 2, minimum mean square error equalization, 3, equilibrium mixture, i.e., with a zero-forcing equalization part subchannels, subchannel and another portion with a minimum mean square error equalization; zero forcing equalization to be introduced as an example: S (jt,) - ^ Sl, (,, o Shang ..., Ml) (10) to make fine -O, l, ..-, Ml) (11) thereof ? ^ for point IDFT: ( ") = Shang S" (;> f, ( "= O, l, ..., Af -1) (12) for this set of decision data can recover the original data. single-carrier transmission method using a block mode selected frequency channel 道状态信息,对频率选择性衰落信道可以避开深衰点,从而显著改善了系统的误码性能。通信系统普遍有一定的性能要求,而系统性能是由均衡后信噪比及信道估计误差和同步误差引起的信噪比损失决定的,均衡后信噪比是指均衡后信号功率和噪声功率的比值。并且均衡后信噪比及信道估计误差和同步误差引起的信噪比损失还决定系统的信道容量,所以根据系统的均衡后信噪比及信道估计误差和同步误差引起的信噪比损失和系统性能要求,自适应的调节系统的调制方式,可进一步提高频谱效率。 (三)发明内容针对上述选频方式的单载波分块传输方法,本发明提供一种基于该传输方法的可以充分利用发送功率、提高系统频谱利用率的比特加载方法。 该比特加载方法包括以下步骤:(1) 收发双方建立通信后,接收端根据选取的可用子信道数#及这些子 Channel state information, frequency selective fading channel may avoid deep fades point, to significantly improve the BER performance of the system. Communication systems generally have certain performance requirements, and the system performance by a post-equalization SNR estimation error and channel and determined SNR loss due to synchronization errors, equalized signal to noise ratio is the ratio of the equalized signal power and noise power. equalized and channel estimation error and SNR and the SNR loss due to synchronization errors also determines the channel capacity of the system, the system according to the SNR after equalization and channel estimation error and SNR loss due to synchronization error and system performance requirements, the adaptive modulation scheme conditioning system, spectral efficiency can be further improved. (c) SUMMARY block transmission method for a single carrier frequency is selected from the above-described embodiment, the present invention provides a transmission-based method can make full use of the transmission power, bit-loading method to improve the spectrum utilization system. the method comprises the steps of bit-loading :( 1) the sender and receiver to establish communication, the receiving side in accordance with the selected number of available sub-channels and the sub # 道的幅度增益l/f(、)l,(!、0,l,…,A/-1),得到均衡后噪声功率,记为<72,根据接收信噪比和均衡方式得到系统的均衡后信噪比记为SA7?w ;(2) 根据系统的均衡后信噪比及信道估计误差和同步误差引起的信噪比损失确定系统采取的不同线性调制方式,描述不同线性调制方式的数据称为调制方式信息,通过反馈信道将调制方式信息传给发送端;(3) 发送端根据接收到的调制方式信息进行符号映射发送信号;(4) 接收端根据调制方式信息解调信号,并判决。 Amplitude channel gain l / f (,) l, (!, 0, l, ..., A / -1), to obtain the noise power equalization, referred to as <72 to obtain equalization system based on the received SNR and balanced manner after referred to as SNR SA7 w;? (2) and a channel SNR estimation error and SNR loss of synchronization determination error due to different linear modulation system taken description data according to a different modulation system after equalization system referred to as the modulation scheme information through a feedback channel modulation scheme information to the transmitting end; (3) the transmission side symbol mapping according to the received transmission signal modulation scheme information; and (4) receiving a demodulated signal end information based on the modulation mode, and judgment. 下面对以上步骤作详细说明:第(1)步,接收端根据子信道标记信息及接收信噪比和均衡方式计算均衡后信噪比。 The following detailed description of the above steps: (1) step, the receiving end calculates the equalized signal to noise ratio in accordance with the flag information, and subchannel received SNR and in a balanced manner. 其中,接收信噪比的测量和计算方法可以参照相关文献,在此不作介绍。 Wherein the received SNR measurement and calculation methods may refer to the literature, it is not described herein. 均衡方式不同, 均衡后的信号功率和噪声功率就不同,系统的均衡后信噪比也不同,当采用迫零均衡时,计算均衡后信噪比的方法如下:设接收端根据信道状态信息选取#个可用子信道,这些子信道的幅度增益为= O,l,…,M -1),且白高斯噪声双边功率谱密度以W/Hz为单位为,,则均衡后噪声功率为,以W单位:<formula>formula see original document page 7</formula>(13)罪,)是序号为)t,子信道上的均衡前的噪声,ifc,是第/个可用子信道的序号, 设均衡后信号功率为&,,则系统的均衡后信噪比为-<formula>formula see original document page 7</formula> (14)第(2)步,根据系统的均衡后信噪比及信道估计误差和同步误差引起的信噪比损失确定系统采用的不同线性调制方式。 Different equalization, the signal power and noise power is different after equalization, the equalized signal to noise ratio of different systems, when the zero forcing equalization method of equalizing the signal to noise ratio is calculated as follows: Let the receiving terminal according to channel state information of selected # of available sub-channels, the amplitude gain of subchannels = O, l, ..., M -1), and the white Gaussian noise power spectral density at bilateral W / Hz ,, units of the equalized noise power to W unit: <formula> formula see original document page 7 </ formula> (13) sin) is a serial number) T, the noise on the subchannel before equalization, IFC, the first / available subchannel number, provided after equalization the signal power of the system ,, & equalization SNR - <formula> formula see original document page 7 </ formula> (14) (2) step, according to the SNR after equalization system and a channel SNR estimation error and loss of synchronization error determination due to the different linear modulation system employed. 经分析,当信道估计误差和同步误差可以忽略时,多径环境下的选频单载波分块传输系统均衡后可以等价为通过理想高斯信道的通信系统,均衡后信噪比等价为在理想高斯信道下的信噪比,所以系统的误码率由均衡后信噪比决定,则SW/f-5Wi^,当考虑信道估计误差和同步误差时,通过测量实际的接收信噪比下的误比特率性能,和计算出的没有信道估计误差和同步误差的系统达到同样的误比特率所需要的信噪比,就能够估计出信噪比损失,记为SA^,。 After analysis, when channel estimation error and the synchronization error is negligible, under multipath environment selected single-carrier frequency equalization block transmission system may be equivalent to the communication system over the Gaussian channel, equivalent to the post-equalization SNR SNR over the Gaussian channel, the bit error rate after equalization system signal to noise ratio determined, the SW / f-5Wi ^, when considering a channel estimation error and the synchronization error, by measuring the actual received SNR the bit error rate performance, and the calculated channel estimation error and there is no synchronization error signal to noise ratio of the system to achieve the same bit error rate is required, it is possible to estimate the SNR loss, referred to as SA ^ ,. m,信噪比损失的计算方法可以参考有关文献,这时决定系统误码性能的是均衡后信噪比和信噪比损失的比值,记为SiV/?-腹i^/57W^,其中信噪比损失SiVi?^的计算方法可以参照相关文献;如果采取一种调制方式,要达到系统要求的误比特率5£及^,所需的信噪比一般高于或者低于SVR,为了充分利用功率,提高传码率,可以采用两种或两种以上不同进制的调制方式。 Calculated m, SNR loss can refer to the literature, then the BER of the decision is the ratio of post-equalization SNR and SNR loss, referred to as SiV / -? Abdominal i ^ / 57W ^, wherein ? ^ calculated SNR loss SiVi may refer to the literature; if adopting a modulation scheme, to achieve the required bit error rate of the system and £ ^. 5, the desired signal to noise ratio is generally higher than or lower than the SVR, for efficient use of power, to improve the transmission rate, may be used two or more different ary modulation. 因为系统的每个时域点只能携带整数比特的信息,所以所采用的调制方式的进制数普遍为2^(A: = 1,2,-),在选频单载波分块传输系统中,普遍采取线性调制方式,如QAM或者MPSK,下面以采取两种调制方式为例介绍-设理想高斯信道情况下,采用两种进制线性调制方式时,达到相同的系统误码要求,即误比特率5£及,〜,所需要的信噪比分别为5/W^,(A::1,2,…),而选取的两种不同进制的线性调制方式所携带的信息比特数分别为&和、,且、=、+1。 Because each point in the system can time-domain information bits carrying the integer, the decimal number of the modulation scheme employed is generally 2 ^ (A: = 1,2, -), single-carrier frequency selection in the transmission system block , it is common to take a linear modulation scheme, such as of MPSK or QAM, to take two modulation scheme below describes an example - is provided over the Gaussian channel conditions, when using two-ary modulation system, to achieve the same BER requirement, i.e., and bit error rate. 5 £, ~, required SNR, respectively 5 / W ^, (a :: 1,2, ...), and a linear modulation scheme selected two different binary bits of information carried ,, respectively, and the number and &, =, + 1. 若满足碼S纖S纖w,(A:-l,2,…) (15)贝U: 6 " (16〉 平均映射功率是指采用不同调制方式映射时对应所有星座点的平均功率。设所选取的两种线性调制方式的平均映射功率分别为&和^ ,则每帧中携带、比特信息的点数为-<formula>formula see original document page 8</formula> If yes code S S fiber web w, (A: -l, 2, ...) (15) Tony U: 6 "(16> The average power is the average power map all constellation points corresponding to different modulation scheme when mapping is used. mapping the selected average power of two kinds of modulation schemes are linear and & ^, each frame carries the number of points is the bit information - <formula> formula see original document page 8 </ formula>

L」表示下取整。 L "represents rounding. 则每帧中携带it,比特信息的点数为:M'-A/-M2 (18)这样,每帧有M,个时域点采用2 4'进制调制,似2个时域点采用2"进制调制,在实际情况中,系统所提供的功率要留有一定的余量,使系统能够达到所要求的相对稳定的性能。将每帧M个时域点中采用2 、进制调制方式的点数M,和每点携带的信息比特数Jk,,形成调制方式信息,将其同子信道标记信息一起传回发送端。第(3)步,发送端根据接收到的调制方式信息进行符号映射,根据子信道标记信息进行信号变换,发送信号;发送端根据反馈的调制方式信息it,,A/,以及可用子信道数私其中#可以根据子信道标记信息得到,和系统给出的发送信号功率,就可以进行调制映射,任意选取A^个时域点, 令每个点携带^比特信息进行2 进制调制,剩余的il^个时域点,每个点携带^比特信息进行2、进制调制,具体哪些点采用2 4' Each frame carries the IT, point information bits as: M'-A / -M2 (18) Thus, each frame has M, using time-domain points 24 'ary modulation, like the two time-domain using the 2 points "ary modulation, in practice, the power provided by the system to leave a margin, enabling the system to achieve a relatively stable performance required. each frame is time-domain points M using 2-ary modulation points M mode, and information carried in each point Jk ,, the number of bits forming the modulation scheme information, which tag information along with a subchannel transmitted back to the sender. (3) step, the transmit end proceeds according to the received modulation scheme information symbol mapping, according to sub-channel signal conversion flag information, transmission signal; transmitting end according to the feedback modulation method information it ,, a /, as well as the number of available subchannels # which can be private, and the system is given subchannel according to the flag information obtained transmission signal power, modulation mapping can be performed, a ^ arbitrarily selected time-domain points, so that each point information carrying bit 2 ^ ary modulation, IL ^ remaining time-domain points, each point information bits carrying ^ 2, binary modulation, which specific points using 24 ' 制调制,哪些采用2"进制调制由通信双方采用的约定或通信协议规定,例如,可以选定一帧数据的前i^个时域点采用2 "进制调制, 后M,个时域点采取2"进制调制;将每帧发送端的发送总功率按照不同调制方式的平均映射功率比值分配到#个时域点上,然后发送信号,例如,前M,个时域点采用2、进制调制, 后M,个时域点采用2"进制调制,前M,个时域点平均每个点分配的功率跟后M,个时域点分配的平均功率比值为t,并且每帧中采用相同调制方式的时域点分配的功率相同。完成符号映射后,根据子信道标记信息按背景技术中提到的选频单载波分块传输方法进行信号变换,发送信号。第(4)步,接收端根据调制方式信息解调信号。接收端根据子信道标记信息选出可用子信道上的信号,经过均衡之后变回时域,再根据不同时域点采用的调制方式对信号进行解调和 Modulation system, which uses 2 "agreement or ary modulation communication protocols employed by the predetermined communication parties, for example, before the selected i a ^ time-domain data points using the 2" binary modulation, the M, time-domain point to take two "binary modulation; transmitting a total power of each frame of the transmission side ratio assigned to the # time-domain point according to the average of the mapped power different modulation methods, and then transmits a signal, e.g., prior to M, time-domain points a 2, ary modulation, the M, using time-domain points 2 "binary modulation M before, the average time-domain points with each point of the M power distribution, average power ratio assigned time domain points is t, and each frame modulation scheme using the same time-domain points of the same power distribution. after completion of the symbol mapping according to the selected subchannel in accordance with the flag information mentioned background art single-carrier frequency division signal conversion block transmission method, a transmission signal. (4 ) step, the receiving end according to a modulation scheme information demodulation signal receiving end according to the selected sub-channel signal on the flag information available sub-channels, back to equilibrium after a time domain, then in accordance with the signal modulation scheme employed time domains point and demodulation 决,得到正确的传输数据,解调方法跟发送端进行信号映射类似,是信号映射的逆过程,如果按照第(3)步的例子,解调时前M,个时域点进行2 4'进制解调判决,而后似2个时域点进行2、进制解调判决。本发明基于选频方式的单载波分块传输方法,在时域自适应地加载信息比特,可以更加充分的利用信号发射功率。在保证误码率稳定的情况下,根据接收信噪比和均衡方式及信道估计误差和同步误差造成的信噪比损失,可以自适应调节传码率。本发明提出的自适应方法在整体性能上比传统的自适应OFDM稍差,但在实现复杂度方面,该自适应方法远远低于传统的自适应0FDM系统。本发明在保证系统性能一定的情况下,频谱效率、功率效率都优于现有SC-FDE和OFDM 系统,整个系统增加的复杂度小。 Must obtain the correct data transmission, the transmitting end with a demodulation method similar to signal mapping, the mapped signal is the reverse process, according to the example (3) step, before M, time domain for demodulation point 24 ' ary demodulation decision, then the time-domain 2 like the 2 points, the demodulated binary decision. single-carrier block transmission based on frequency selective embodiment of the present invention, in the time domain adaptive bit loading information, can be more fully using the signal transmit power. in the case where the error rate to ensure stability, and SNR estimation error caused by loss of synchronization error based on the received SNR and schemes and channel equalization, adaptive transmission rate can be proposed according to the invention from adaptation of the conventional adaptive OFDM somewhat less than the overall performance, in terms of implementation complexity, adaptive method is far lower than the conventional adaptive 0FDM system according to the present invention is to ensure the system performance in certain situations, the spectral efficiency , low power efficiency superior to conventional OFDM and SC-FDE systems, increasing the overall complexity of the system. (四) 附图说明附图是实现本发明所提出方法的系统框图。 (Iv) Brief Description of the Drawings The present invention is a system block diagram of the proposed method implementation. 图中:l.信源模块,2.符号映射模块,3.FFT模块(W点),4.信号频谱变换模块, 5.IFFT模块(/V点),6,加循环前缀(CP)模块,7.D/A模块,8.中频及射频调制模块,9. 信道,IO.射频及中频解调模块,11.A/D模块,12.去CP模块,13.FFT模块(/V点), 14.信号频谱反变换模块,15.均衡模块,16. IFFT模块(I点),17.判决模块,18. 同步模块,19.信道估计模块,20.调制方式确定模块,21.反向信道(五) 具体实施方式实施例-附图给出了实现本发明所提出方法的系统框图,各模块作用如下: 信源模块l:产生要传输的数据。 FIG.:... L source module 2 symbol mapping module, 3.FFT module (W point), the signal spectrum transform module 4, 5.IFFT module (/ V point), 6, add cyclic prefix (CP) module , 7.D / A module 8. IF and RF modulation module, 9. channel, the IO. RF and IF demodulator module, 11.A / D module 12 to the CP module, 13.FFT module (/ V point ), 14. The signal spectrum inverse transform module 15. equalization module, 16. IFFT module (I points), 17 The decision module 18 synchronization module 19. channel estimation module 20 modulation mode determining module, 21. trans embodiment to channel (e) DETAILED DESCRIPTION Example embodiments - the accompanying drawings shows the block diagram of the present invention is to realize the proposed method, each of the modules operates as follows: the source module L: generating data to be transmitted. 符号映射模块2:根据反向信道21传回的调制方式信息选择不同进制的调制方式(QAM 或者MPSK),将信源产生的数据映射到星座图对应点上。 Symbol mapping module 2: The modulation scheme 21 returned back channel information to select a different band of the modulation scheme (QAM or MPSK), mapping data produced by the source to a constellation point corresponding to FIG. ^点FFT模块3:将每帧#个已映射信号变换到频域,得到信号的#点频域信号。 ^ 3-point FFT module: each signal frame # has been mapped into the frequency domain to obtain frequency domain signal point # signal. 信号频谱变换模块4:根据接收端通过反向信道21发送回来的子信道标记信息,将模块3输出的i/点频域信号放置到/l/个可用子信道对应频谱点上,而禁用子信道对应频谱点置零, 或填充非信息数据,就得到一帧^点新的SC-FDE频域信号。 Signal spectrum transform module 4: The receiver sends back the flag information subchannel through a reverse channel 21, the i / 3-point frequency domain signals output from the module to be placed / l / available subchannel corresponds to a point on the spectrum, and disabling the sub- information corresponding to the data channel spectrum zero point, or non-filling, to obtain a new point ^ SC-FDE frequency domain signal. 此模块需要按照背景技术中提到的发明专利(专利申请号:200410036439.6)介绍的方法编程,由通用数字信号处理芯片实现。 This requires the module mentioned in the background art patent (patent application number: 200410036439.6) describes a method of programming implemented by a general purpose digital signal processing chip. yV点IFFT模块5:将新得到的频域信号再变换到时域。 yV-point IFFT module 5: to obtain the new frequency domain signal again to the time domain. 加CP模块6:将得到的每帧数据加上循环前缀。 CP module 6 plus: each frame data obtained by adding a cyclic prefix. D/A模块7:将数字信号变换为模拟信号。 D / A module 7: digital signal into an analog signal. 中频及射频调制模块8:如果在无线环境下使用该系统,需要对信号作射频调制才能送天线发射。 IF and RF modulation module 8: If the system is used in a wireless environment, the need for a signal to be sent to the RF modulator antenna. 有的时候需要先把信号调制到中频上进行中频放大,再作射频调制,最后将己调信号送天线发射。 Sometimes the need to first intermediate frequency signal is modulated intermediate frequency amplification, and then as a radio frequency modulation, modulated signal has sent the last antenna. 如果在有线环境(例如:xDSL)下使用该系统,则不需要作射频调制,也不需要天线发射信号,但也要把信号频谱搬移到语音信道频带以外,保证在传输数据的同时不影响话音传输。 If (eg: xDSL) system using the wired environment, there is no need for the RF modulator, the antenna does not need to transmit signals, but it should move to the outside of the voice signal spectrum channel band, at the same time without changing the voice data transmission transmission. 信道9:传输信号的有线信道或无线信道。 Channel 9: a wired channel or a radio channel transmission signals. 同步模块18:通过参数估计(例如:盲估计和基于辅助数据的估计)的方法得到系统需要的各种同步数据。 Synchronization module 18: Data obtained various synchronization systems required: (blind estimation based on the estimated and the auxiliary data, for example) of the parameter estimation method. 同步模块将频率同步数据送给射频及中频解调模块10;将抽样率同步数据送给模数转换模块ll;将定时同步数据送给去CP模块12。 Synchronizing frequency synchronization module data to the RF module 10 and an IF demodulator; synchronize the sampling rate to the analog to digital conversion module data LL; to the timing synchronization data to the CP module 12. 射频及中频解调模块10:在无线环境中,将接收天线接收下来信号的频谱从射频或者中频搬移到低频。 RF and IF demodulation module 10: in a wireless environment, the receiving antenna from the radio frequency spectrum of the signal down or moved to a lower frequency IF. 在解调之前需要用频率同步数据纠正信号传输过程中引起的频偏。 Required prior to demodulation frequency correction signal synchronous data transmission due to frequency offset. A/D模块ll:将解调后模拟信号变换为数字信号。 A / D module ll: converting the demodulated analog signals to digital signals. A/D需要对模拟信号进行抽样,提供时钟信号的晶振需要跟发射机D/A模块的晶振频率相同,否则就会导致抽样率误差。 A / D sampling the analog signal needs to provide a clock signal is required to the same crystal oscillator frequency with the transmitter D / A module, the sampling rate would otherwise cause errors. 因此在A/D之前要进行抽样率同步。 Therefore, before A / D sampling rate to be synchronized. 去CP模块12:将循环前缀去掉。 CP removal module 12: a cyclic prefix removed. 这时就存在判断一帧数据何时开始的问题,因此去CP之前需要作定时同步。 At this time when there is an issue start judgment data, it is necessary to make the timing before synchronization CP. W点FFT模块13:将去掉CP的信号变换到频域。 W point FFT module 13: the signal CP is removed into the frequency domain. 信道估计模块19:跟同步类似,也需要通过参数估计来得到CSI,常用的一般是盲信道估计和基于辅助数据的信道估计。 Channel estimation module 19: synchronization with similar, but also needs to be obtained by the CSI parameter estimation, is generally used blind channel estimation and channel estimation based on the auxiliary data. 估计出CSI后选出可用子信道,将这些可用子信道参数送给均衡模块15;同时根据信道是否可用,用1比特信息("0"或"1")标记,形成子信道标记信息,将子信道标记信息同时送给信号频谱反变换模块14和反向信道21,通过反向信道发回发送端的信号频谱变换模块4;并将可用子信道状态信息传给调制方式确定模块20。 After selecting the estimated CSI available sub-channels, available subchannels these parameters to the equalizer module 15; the same according to a channel is available, (or "1", "0") mark is formed with a bit flag information sub-channel information, while the flag information to the subchannel signal spectrum inverse transform module 14 and reverse channels 21, over a reverse channel signal sent back to the sender of the spectral conversion block 4; available sub-channels and the modulation scheme determined information to the status module 20. 此模块需要按照背景技术中提到的发明专利(专利申请号:200410036439.6)介绍的方法编程,由通用数字信号处理芯片实现。 This requires the module mentioned in the background art patent (patent application number: 200410036439.6) describes a method of programming implemented by a general purpose digital signal processing chip. 信号频谱反变换模块14:根据信道估计模块19送来的子信道标记信息,找出接收信号中由可用子信道携带的#点频域信号。 Signal spectrum inverse transform module 14: module 19 estimates subchannel flag information sent according to the channel, to find the reception signal point # carried by the frequency domain signal available subchannels. 此模块需要按照背景技术中提到的发明专利(专利申请号:200410036439.6)介绍的方法编程,由通用数字信号处理芯片实现。 This requires the module mentioned in the background art patent (patent application number: 200410036439.6) describes a method of programming implemented by a general purpose digital signal processing chip. 均衡模块15:用信道估计模块19送来的可用子信道参数,对信号频谱反变换模块14 选出来的信号进行均衡。 Equalizing module 15: estimation module 19 fed available subchannels channel parameters, the signal 14 is selected out of the signal spectrum inverse transform module performs equalization. 均衡方式可以选择下述三种均衡方式之一:迫零均衡、最小均方误差均衡、混合均衡(S卩: 一部分子信道用迫零均衡,而另一部分子信道用最小均方误差均衡)。 Balanced manner can choose one of three ways equilibrium: zero forcing equalizer, a minimum mean square error equalization, equalization mixing (S Jie: subchannel part with zero-forcing equalization, and another portion with a sub minimum mean square error equalization). J/点IFFT模块16:将均衡后信号的#个频域信号变换到时域。 J / 16-point IFFT module: # the frequency-domain signal equalized signal to the time domain. 判决模块17:根据星座图和调制方式确定模块20传来的调制方式信息,完成时域信号的判决。 Decision module 17: a modulation method information transmitted from module 20 is determined according to a modulation constellation and manner, the time domain signal of the decision. 调制方式确定模块20:根据信道估计模块19传来的可用子信道的状态信息和发送端提供的发送信号功率计算系统的均衡后信噪比,根据均衡后信噪比及信道估计误差和同步误差损失的信噪比确定每帧采取的调制方式,将调制方式信息传给判决模块17,并通过反向信道21传给发送端的映射模块2。 Modulation mode determining module 20: the equalized channel estimation SNR of the transmission signal power calculation system status information and transmission module 19 side coming available subchannels provided, in accordance with the signal to noise ratio and channel equalization and synchronization error estimation error loss of SNR, the modulation mode adopted for each frame, the modulation scheme information to the decision block 17, and passed through a reverse channel transmitting end 21 of the mapping module 2. 此模块需要按照本发明介绍的方法编程,由通用数字信号处理芯片实现。 This module requires programming method according to the present invention is described, the process implemented by a general purpose digital signal chip. 反向信道21:将子信道标记信息和调制方式信息传回发送端。 Reverse channel 21: the subchannel modulation scheme information and the flag information transmitted back to the sender. 该实施例仿真参数-仿真环境:Matlab7.0 子信道总数:^=256可用子信道数,即每帧SC-FDE数据符号数:,208。 The simulation parameters for the embodiment - Simulation Environment: Total number of subchannels Matlab7.0: ^ = 256 the number of available sub-channels, i.e., per frame number of data symbols SC-FDE: 208. 调制方式:QAM CP长度:32控制的误码率为:5五及叫-10一4仿真所选的收信噪比范围:= 9:30^5)信噪比损失:SA72te=0(^^)(即忽略信道估计误差和同步误差造成的信噪比损失)本实施例采用的信道模型是SUI-5信道(IEEE 802.16标准中建议的测试信道之一)的一个样本。 Modulation: QAM CP length: 32 controls the error rate: 5 and five received SNR range -10 called a selected emulation 4: = 9:30 ^ 5) SNR Loss: SA72te = 0 (^ ^) (i.e., ignoring the channel estimation error and SNR loss due to synchronization error) channel model according to the present embodiment is used in one embodiment SUI-5 channel proposed (IEEE 802.16 standard test channel) of a sample. 下面附表第一列给出了系统提供的接收信噪比(单位:dB);第二列和第三列为采用比特加载方法时不同接收信噪比对应的每帧信号传输的比特数和相应误码率;第四列和第五列为未采用比特加载方法时不同接收信噪比对应的每帧信号传输的比特数和相应误码率。 And the number of bits of the second and third columns of each frame signal transmitted as a different received SNR corresponding bit loading when using the method;: (dB unit) The first column gives the following schedule system provides the received SNR the corresponding bit error rate; fourth and fifth columns are not as different received SNR corresponding to the bit loading method and a corresponding number of bits of the bit error rate of signal transmission of each frame. 从该表中可以看出,在接收信噪比相同的情况下,未采用比特加载方法系统的误码率比要求的误码率10"低很多,但传码率却远远比不上误码率相对稳定的采用比特加载方法的系统。这说明比特加载方法在控制误码率相对稳定的情况下,可以很大程度上提高频谱效率。附表:<table>table see original document page 11</column></row> <table>其中,"——"表示误码率低于10一7。为避免混淆,本说明书中所提到的一些名词做以下解释:1. 均衡后信噪比:均衡之后信号功率跟噪声功率的比值。2. 平均映射功率:不同调制方式映射时对应所有不同星座点的平均功率。3. 符号:是指信息比特经过调制映射(也称符号映射)后的数据。 一般是一个实部和虚部均为整数的复数。4. 一帧信号:对于0FDM, 一帧信号在发送端是指作IFFT变换的V个符号,在接收端是指在去掉CP以后作FFT变换的W As can be seen from the table, at the same reception SNR, bit error rate is not employed method of loading system 10 'is much lower than the required bit error rate, but the rate is far less than the erroneous transmission relatively stable rate system employing this method described bit loading method for loading a bit error rate in the case where the control is relatively stable, can greatly improve the spectrum efficiency Schedule:.. <table> table see original document page 11 < / column> </ row> <table> where "-" indicates a bit error rate of less than 10 7. to avoid confusion, some of the terms mentioned in this specification make the following explanation: 1 SNR after equalization. : .2 after equalizing the ratio of signal power to noise power with the average power map: corresponding to the average power of all the different points of the constellation when the modulation scheme mapping a different symbol .3: refers to mapping the modulated information bits (also referred to as symbol maps) the the data is typically a complex real and imaginary parts are integers .4 a signal: for 0FDM, a signal at the transmitting end for the symbol V refers to the IFFT, the means at the receiving end after removing the CP for W FFT transform 个符号。对于SC-FDE, 一帧信号在发送端是指相邻两个CP 之间的W个信息符号,在接收端是指在去掉CP以后作FFT变换的V个符号。对于按本发明提出的方法实现的SC-FDE系统, 一帧信号在发送端是指作FFT变换的i/个符号,在接收端是指在均衡以后作IFFT变换的#个符号。5. 子信道:对于0FDM, SC-FDE基带信号, 一个子信道是指在接收端FFT后一个频率点。对于射频信道, 一个子信道是指射频信道的一段频谱。6. 信噪比:信号功率和噪声功率的比值,其中发明内容里面提到的信噪比是未取对数的, 没有单位;实施例中提到的信噪比是对数信噪比,单位是dB。 Symbol for SC-FDE, a signal at the transmitting end refers to information symbols W between two adjacent CP, the receiving end refers to the symbol V for FFT transformation after removing the CP. According to the present invention for SC-FDE system of the proposed method implementation, a signal at the transmitting end refers to i / symbols for FFT transformation, at the receiving end after the equalizer means for converting the IFFT symbols .5 subchannels #: for 0FDM , SC-FDE baseband signal, after a sub-channel refers to a point at the receiving end for the FFT frequency radio frequency channel, a sub-section refers to a spectrum of radio frequency channels .6 noise ratio: the ratio of signal power and noise power, Summary of the invention wherein the signal to noise ratio which is unsubstituted mentioned logarithmic, no units; SNR mentioned in the embodiment the SNR is logarithmic, the unit is dB.

Claims (3)

1. 一种选频单载波分块传输系统中的比特加载方法,其特征在于: 该方法包括以下步骤: (1)收发双方建立通信后,接收端根据选取的可用子信道数M及这些子信道的幅度增益|H(ki)|,i=0,1,…,M-1,得到均衡后噪声功率,记为σ2,根据接收信噪比和均衡方式得到系统的均衡后信噪比记为SNReq; (2)根据系统的均衡后信噪比及信道估计误差和同步误差引起的信噪比损失确定系统采取的不同线性调制方式,描述不同线性调制方式的数据称为调制方式信息,通过反馈信道将调制方式信息传给发送端; (3)发送端根据接收到的调制方式信息进行符号映射发送信号; (4)接收端根据调制方式信息解调信号,并判决。 CLAIMS 1. A method for loading a block of bits selected frequency in single carrier transmission systems points, characterized in that: the method comprising the steps of: both (1) after establishing communications transceiver, selected according to the number M of available sub-channels and the sub-receiving end amplitude channel gain | H (ki) | post, i = 0,1, ..., M-1, the equalized noise power, referred to as sigma] 2, to obtain the equalization system based on the received SNR and SNR in mind balanced manner It is SNReq; (2) the estimated SNR after equalization system and channel errors and loss of synchronization error due to noise ratio to determine the different linear modulation systems take a different modulation system description data is referred to as modulation scheme information, by feedback channel modulation scheme information to the transmitting end; (3) the transmission side according to the received modulation symbol mapping information transmission signal; (4) the reception side demodulates the modulation method information signal, and judgment.
2.根据权利要求l所述的选頻单载波分块传输系统中的比特加载方法,»#征在于:第(l) 步采用下述方法实现:当采用迫零均衡时,计算均衡后信噪比的方法如下:设接收翊根«#堪状态信息选取# 个可用子信道,这些子信道的幅度增益为|好")(,"0,1,...^-1,且白,噪声双边功率谱密度以W/Hz为单位为&,则均衡后噪声功率以W为单位为:<formula>formula see original document page 2</formula>是序号为先,子信道上的均衡前的噪声,t,是第,'个可用子信堪的序号,设均每后信号功率为Sw,则系统的均衡后信噪比为:纖w = 5 ° The bit-loading method is selected from a single carrier block transmission frequency-l system as claimed in claim »# characterized in that: the first (l) implemented by the following method step: when the zero forcing equalization, the equalization channel is calculated method noise ratio as follows: Let receiving «# # worthy status information available subchannels selected root Yi, the amplitude gain of subchannels | good") ( "0, 1, ..., ^ - 1, and white, before <formula> formula see original document page 2 </ formula> is the serial number for the first, the subchannel equalization: bilateral noise power spectral density W / Hz as a unit of &, after the equalized noise power in W is noise, t, is the first, 'worthy of available sub-channels number, are provided for each of the signal Sw power, the signal to noise ratio of the system is balanced: size w = 5 °
3.根据权利要求l所述的选频单载波分块传输系统中的比特加载方法,其特征在于:第(2) 步采用下述方法实现:当信道估计误差和同步误差能够忽略时,多径环境下的选频单载波分块传输系统均衡后等价为通过理想商斯信道的通信系统,均衡后信噪比等价为在理想商斯信道下的信噪比,所以系统的误码率由均衡后信噪比决定,则SM?-SW/^;当考虑信道估计误差和同步误差时,通过测量实际的接收信噪比下的误比特率性能,和计算出的没有信堪估计误差和同步误差的系统达到同样的误比特率所需要的信噪比,就能够估计出信噪比损失'记为SiW?^,这时决定系统误码性能的是均衡后信噪比和信噪比损失的比值,记为S7W?-SWi^/SiVi?^;为充分利用功率,提高传码率,采用两种或两种以上不同进制的调制方式'因为系统的每个子信道只能携带整数比特的信息,所以所采 The selected single-carrier frequency of the l-bit loading method block transmission system, as claimed in claim wherein: the second step (2) using the following ways: when the channel estimation error and a synchronization error can be ignored, the multi by setting the diameter of a single carrier frequency transmission system block is equalized by an equivalent Si channel provider over a communication system, the equivalent SNR is at equilibrium over the commercially Si channel SNR, the BER of the system SNR after equalization rate determined, the SM -SW / ^;? when considering channel estimation error and the synchronization error, by a bit error rate performance under actual received SNR measurements, and not the calculated channel estimation worthy error and synchronization error signal to noise ratio the same system to achieve the required bit error rate, it is possible to estimate the SNR loss' referred to as SiW? ^, this time the system determines the error performance and signal to noise ratio after equalization channel noise ratio loss ratio, referred to as S7W -SWi ^ / SiVi ^;?? is the efficient use of power, to improve the transmission rate, using two or more different modulation hexadecimal 'only because each subchannel system bit integer carries information, so that the collected 的调制方式的进制数为2k,k=l,2,…,在选频单载波分块传输系统中,采取线性调制方式,当采用两种调制方式时:设理想高斯信道情况下,采用两种进制线性调制方式时,达到相同的系统误码要求,即误比特率B五及w,所需要的信噪比分别为sv及t,;ti,2,…,而选取的两种不同进制的线性调制方式所携带的信息比特数分别为it,和ifc,,且^-it,+l;若满足,t《■ S雄*+1, & = 1,2,…则:"平均映射功率是指采用不同调制方式映射时对应所有星座点的平均功率,设所选取的两种线性调制方式的平均映射功率分别为&和^,则每楨中携带^比特信息的子信道数为:VM.-l) 表示下取整;则每帧中携带ifc,比特信息的子倍道数为-这样,每幀有M,个子信道采用2 "进制调制,A^个子信道采用2^进制调制,在实际情况中,系统所提供的功率要留有一定的余量,使系统能够达到所 Ary modulation number is 2k, k = l, 2, ..., in a single carrier frequency selection block transmission system, modulation system adopted, when using two types of modulation: provided over the Gaussian channel conditions, using when two kinds of binary modulation system, required to achieve the same BER, bit error rate B that is five and w, respectively, the required SNR and sv t,; ti, 2, ..., and select two number of information bits of binary modulation system different are carried IT, and ifc ,, and ^ -it, + l; if yes, t "■ S * male + 1, & = 1,2, ..., then: "mapping the average power is the average power of all constellation points corresponding to when different modulation mapping, mapping the average power provided two selected linear modulation scheme and are & ^ is ^ subchannel per frame carries information bits number: VM.-l) represents rounding; each frame carries the IFC, the sub-channel bits times the number of information - so, per frame M, 2 subchannels using "binary modulation, a ^ subchannels using 2 ^ ary modulation, in practice, the power provided by the system to leave a margin, enables the system to achieve the 求的相对糖定的性能: 将每械M个子信道中采用2 进制调制方式的子信道数M,和每个子侑堪携带的信息比特数it,,形成调制方式信息,将其同子信道标记信息一起传回发送端。 Versus sugar given performance requirements of: mechanical M subchannels per 2 using M-ary modulation number of subchannels, and each sub-worthy Yuri number of information bits carried in it ,, modulation level information is formed, which is the same subchannels together with the tag information transmitted back to the sender.
CN 200510042056 2005-01-28 2005-01-28 Bit loading method in selecting frequency single carrier wave blocking transmission system CN100421438C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510042056 CN100421438C (en) 2005-01-28 2005-01-28 Bit loading method in selecting frequency single carrier wave blocking transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510042056 CN100421438C (en) 2005-01-28 2005-01-28 Bit loading method in selecting frequency single carrier wave blocking transmission system

Publications (2)

Publication Number Publication Date
CN1649333A CN1649333A (en) 2005-08-03
CN100421438C true CN100421438C (en) 2008-09-24

Family

ID=34876312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510042056 CN100421438C (en) 2005-01-28 2005-01-28 Bit loading method in selecting frequency single carrier wave blocking transmission system

Country Status (1)

Country Link
CN (1) CN100421438C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805421B (en) * 2005-12-31 2010-05-05 清华大学 Multi sub-channel parallel bit loading method for optimal power distribution in DMT system
US7933344B2 (en) 2006-04-25 2011-04-26 Mircosoft Corporation OFDMA based on cognitive radio
CN100493058C (en) * 2006-07-07 2009-05-27 清华大学;大连海事大学 Discrete multi-audio frequency modulating system optimal power distributing comprehensive bit position loading method
JP2008053906A (en) 2006-08-23 2008-03-06 Fujitsu Ltd Communication equipment and sir estimation method therefor
CN101166080B (en) * 2006-10-20 2010-11-24 北京新岸线无线技术有限公司 Method and system for realizing high data rate ODFM WLAN
CN101399798B (en) * 2007-09-27 2011-07-06 北京信威通信技术股份有限公司 Steady signal transmission method and device for OFDMA radio communication system
CN104467944B (en) * 2013-09-16 2018-08-28 中国人民解放军总参谋部第六十一研究所 The double star diversity single carrier transmission method of adaptive cyclic prefix

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402926A (en) 1999-12-02 2003-03-12 印芬龙科技股份有限公司 Method for transmitting data to be transmitted using subscriber modem
CN1466297A (en) 2002-06-13 2004-01-07 华为技术有限公司 Self-adaptive modulating and coding method
CN1497917A (en) 2002-10-08 2004-05-19 三星电子株式会社 Single carrier transmission system able to adapting change of dynamic environment and its method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402926A (en) 1999-12-02 2003-03-12 印芬龙科技股份有限公司 Method for transmitting data to be transmitted using subscriber modem
CN1466297A (en) 2002-06-13 2004-01-07 华为技术有限公司 Self-adaptive modulating and coding method
CN1497917A (en) 2002-10-08 2004-05-19 三星电子株式会社 Single carrier transmission system able to adapting change of dynamic environment and its method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SC-CP的迫零均衡和最小均方误差均衡性能比较. 杨繁,王光阳,胡忠良,王敏杰,李祥明.电声技术,第10期. 2004
未来无线通信中的单载波频域均衡技术. 吴江,吴伟陵.数据通信,第5期. 2004

Also Published As

Publication number Publication date
CN1649333A (en) 2005-08-03

Similar Documents

Publication Publication Date Title
AU2004229029B2 (en) Apparatus and method for sub-carrier allocation in a multiple-input and multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system
JP4319665B2 (en) Method and apparatus for multiplexing data and control information in a radio communication system based on frequency division multiple access
KR100434473B1 (en) Apparatus for decoding channel and method thereof in orthogonal frequency division multiplexing system
CN101116301B (en) For sending and receiving data to provide the device and method of high-speed data communication
AU2005257641B2 (en) Apparatus and method for transmitting/receiving pilot signals in a communication system using an orthogonal frequency division multiplexing scheme
CN105356987B (en) Use the method and system of the relaying with aggregated spectrum
US7929407B2 (en) Method and system for combining OFDM and transformed OFDM
KR100539947B1 (en) Apparatus and method for transmitting/receiving pilot pattern for distinguish base station in communication using orthogonal frequency division multiplexing scheme
Dinis et al. A multiple access scheme for the uplink of broadband wireless systems
Myung Introduction to single carrier FDMA
US8571000B2 (en) Peak-to-average power ratio (PAPR) reduction scheme for wireless communication
US20130343491A1 (en) Multi-mode orthogonal frequency division multiplexing receiver for highly-spectrally-efficient communications
CN101072068B (en) Radio transmission method, radio reception method, radio transmission apparatus and radio reception apparatus
CN1849761B (en) Apparatus and method for reducing peak average power ratio in OFDM communication system
KR100968665B1 (en) Adaptive radio/modulation apparatus, receiver apparatus, wireless communication system and wireless communication method
US8149969B2 (en) Apparatus and method for reduced peak-to-average-power ratio in a wireless network
KR100635534B1 (en) Hybrid type chnnel estimation method and system for mobile environment
CN101232484B (en) Signal transmission method, apparatus and communication system
DE602005006423T2 (en) Blind Selective Mapping (SLM) using pilot signals
CN102396198A (en) Method and system for mapping pilot signals in multi-stream transmissions
CN102355720A (en) Radio transmitting apparatus and radio transmission method
CN101421956A (en) Single carrier transmission system, communication device, and single carrier transmission method used for them
CN103402248B9 (en) Method and apparatus for downlink PDSCH power setting
CN1528065A (en) Method and device for transmitting data in a multi-carrier system comprising parallel concatenated coding and modulation
CN101056132B (en) Method and device for processing the base band of the space-time/space frequency/space diversity transmitter

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right