CN100419436C - A four-quadrant power measurement method - Google Patents
A four-quadrant power measurement method Download PDFInfo
- Publication number
- CN100419436C CN100419436C CNB2005100101408A CN200510010140A CN100419436C CN 100419436 C CN100419436 C CN 100419436C CN B2005100101408 A CNB2005100101408 A CN B2005100101408A CN 200510010140 A CN200510010140 A CN 200510010140A CN 100419436 C CN100419436 C CN 100419436C
- Authority
- CN
- China
- Prior art keywords
- power
- quadrant
- value
- voltage
- reactive power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000691 measurement method Methods 0.000 title claims abstract description 9
- 238000005070 sampling Methods 0.000 claims abstract description 39
- 238000005259 measurement Methods 0.000 claims abstract description 22
- 230000001939 inductive effect Effects 0.000 claims description 8
- 238000000034 method Methods 0.000 abstract description 12
- 230000005540 biological transmission Effects 0.000 abstract description 10
- 238000004364 calculation method Methods 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 12
- 230000009466 transformation Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
本发明公开一种测量功率的方法,即一种四象限功率测量方法,它克服了现有方法只适用于用电端口或供电端口这样的功率传输方向确定的电能计量点的功率测量的缺陷,以及功率测量不准确或抗干扰能力差、计算量大等不足。其步骤为:设备启动后设置一个周期内的采样点数N和采样频率fs;经采样得到一个周期内的电压采样值序列u(n)和电流采样值序列i(n);对u(n)和i(n)分别进行离散傅里叶变换,得到(k)和(k);根据(k)和(k)利用公式直接计算有功功率P和无功功率Q;根据有功功率P和无功功率Q计算视在功率S和功率因数λ;根据P、Q的正负号确定功率状态。本方法同时考虑功率数值大小和功率传输方向,适用于功率传输方向确定和变化的电能计量点的功率测量,而且本方法测量准确、抗干扰能力强、计算量小。
The invention discloses a method for measuring power, that is, a four-quadrant power measurement method, which overcomes the defect that the existing method is only applicable to the power measurement of an electric energy metering point whose power transmission direction is determined such as an electric port or a power supply port. And inaccurate power measurement or poor anti-interference ability, large amount of calculation and other shortcomings. The steps are: after the device is started, set the number of sampling points N and the sampling frequency f s in one cycle; get the voltage sampling value sequence u(n) and current sampling value sequence i(n) in one cycle after sampling; for u(n ) and i(n) are respectively subjected to discrete Fourier transform to obtain (k) and (k); according to (k) and (k), the active power P and reactive power Q are directly calculated using the formula; according to the active power Power P and reactive power Q calculate apparent power S and power factor λ; determine the power state according to the sign of P and Q. The method considers the magnitude of the power value and the direction of power transmission at the same time, and is suitable for the power measurement of electric energy metering points where the direction of power transmission is determined and changed, and the method has accurate measurement, strong anti-interference ability, and small calculation amount.
Description
技术领域: Technical field:
本发明涉及一种测量功率的方法。The invention relates to a method of measuring power.
背景技术: Background technique:
目前的功率测量方法大多只用来测量功率数值大小,一般不给出功率传输方向,只适用于用电端口或者只适用于供电端口的功率测量,不适用于功率传输方向变化的电能计量点的功率测量,如公开号是CN1067744A、名称是《测量功率和电能的方法及装置》的发明专利申请,因而不能反映电能计量点的真实功率状态,而某些有时候用电有时候发电的设备,则需要测量其瞬时的真实功率状态,现有的测量方法都完成不了这些功能;另一方面,目前的功率测量方法也存在着测量不准确或抗干扰能力差、计算量大等缺陷。Most of the current power measurement methods are only used to measure the power value, and generally do not give the power transmission direction. They are only applicable to the power measurement of the power consumption port or the power supply port, and are not suitable for the electric energy metering point where the power transmission direction changes. Power measurement, such as the invention patent application with the publication number CN1067744A and the name "Method and Device for Measuring Power and Electric Energy", thus cannot reflect the real power state of the electric energy metering point, and some equipment that sometimes uses electricity and sometimes generates electricity, It needs to measure its instantaneous real power state, and the existing measurement methods cannot complete these functions; on the other hand, the current power measurement methods also have defects such as inaccurate measurement, poor anti-interference ability, and large amount of calculation.
发明内容: Invention content:
本发明的目的是提供一种四象限功率测量方法,以克服现有的功率测量方法只适用于用电端口或供电端口这样的功率传输方向确定的电能计量点的功率测量的缺陷,以及功率测量不准确或抗干扰能力差、计算量大等不足。本发明方法的步骤如下:启动测量设备101;设置一个测量周期内的采样点数N和采样频率fs102;经采样得到一个测量周期内的电压采样值序列u(n)和电流采样值序列i(n)103;对电压采样值序列u(n)和电流采样值序列i(n)分别进行离散傅里叶变换,得到变换后电压序列值和变换后电流序列值
附图说明: Description of drawings:
图1是本发明方法的流程示意图,图2是实施方式二中的四象限功率状态分布图,图3是实施方式一中电压采样电路1、电流采样电路2和模/数转换电路3的电路结构示意图。Fig. 1 is a schematic flow chart of the method of the present invention, Fig. 2 is a four-quadrant power state distribution diagram in
具体实施方式: Detailed ways:
具体实施方式一:下面结合图1具体说明本实施方式。本实施方式由如下步骤组成:启动测量设备101;设置一个测量周期内的采样点数N和采样频率fs,所设定的采样频率fs大于等于被测交流电最高频率的二倍(满足香农采样定理),一个测量周期为被测交流电基波周期的整数倍102;经采样得到一个测量周期内的电压采样值序列u(n)和电流采样值序列i(n)103;对电压采样值序列u(n)和电流采样值序列i(n)分别进行离散傅里叶变换,得到变换后电压序列值和变换后电流序列值
(一)以合适的采样频率对电压和电流进行采样,得到一个周期内的电压采样值序列u(n)和电流采样值序列i(n)(n=0,1,2,...,N-1,N为一个周期内的采样点数)。(1) Sampling the voltage and current with a suitable sampling frequency to obtain a sequence of voltage sampling values u(n) and a sequence of current sampling values i(n) (n=0, 1, 2, ..., N-1, N is the number of sampling points in one cycle).
(二)对电压采样值序列u(n)和电流采样值序列i(n)按照公式(1)进行离散傅里叶变换,得到如公式(2)所示的变换结果:(2) Carry out discrete Fourier transform according to formula (1) to voltage sampling value sequence u (n) and current sampling value sequence i (n), obtain the transformation result shown in formula (2):
式中, 为复数,分别表示电压、电流采样值序列u(n)、i(n)的离散傅里叶变换后的第k次电压、电流分量;URk、UIk分别为第k次电压分量的实部与虚部;IRk、IIk分别为第k次电流分量的实部与虚部;k=0,1,2,,N-1。In the formula, is a complex number, respectively representing the kth voltage and current components after the discrete Fourier transform of the voltage and current sampling value sequences u(n) and i(n); U Rk and U Ik are the real values of the kth voltage components respectively part and imaginary part; I Rk , I Ik are the real part and imaginary part of the kth current component respectively; k=0, 1, 2,, N-1.
(三)根据公式(2)表示的电压采样值序列u(n)和电流采样值序列i(n)的傅里叶变换结果,按照公式(3)计算有功功率P和无功功率Q:(3) According to the Fourier transform results of the voltage sampling value sequence u(n) and the current sampling value sequence i(n) represented by the formula (2), calculate the active power P and the reactive power Q according to the formula (3):
(四)由公式(3)计算出有功功率P和无功功率Q之后,按照公式(4)计算视在功率S和功率因数λ(这里-1≤λ≤1):(4) After the active power P and reactive power Q are calculated by the formula (3), the apparent power S and the power factor λ are calculated according to the formula (4) (where -1≤λ≤1):
(五)根据公式(3)计算的有功功率和无功功率是带正负号的,正号表示吸收功率,负号表示输出功率。(5) The active power and reactive power calculated according to the formula (3) are signed, the positive sign indicates the absorbed power, and the negative sign indicates the output power.
在步骤103中电压和电流是通过电压采样电路1、电流采样电路2和模/数转换电路3来进行采集的。电压采样电路1由电压互感器PT1、一号集成运算放大器A1、二号集成运算放大器A2、一号电阻R81、二号电阻R82、三号电阻R83、四号电阻R84、五号电阻R85和六号电阻R86组成,电压互感器PT1为电压输入、电压输出型电压变换器,其原边的两端连接在被测量的电路端口的两端上,电压互感器PT1副边的一端接地,另一端连接四号电阻R84的一端,四号电阻R84的另一端连接一号集成运算放大器A1的同相输入端和二号电阻R82的一端,一号集成运算放大器A1的反相输入端连接三号电阻R83的一端和一号电阻R81的一端,三号电阻R83的另一端接地,一号电阻R81的另一端连接一号集成运算放大器A1的输出端和五号电阻R85的一端,二号电阻R82的另一端连接二号集成运算放大器A2的输出端、六号电阻R86的一端和二号集成运算放大器A2的反相输入端;电流采样电路2由电流互感器CT1、三号集成运算放大器A3、四号集成运算放大器A4、七号电阻R87、八号电阻R88、九号电阻R89、十号电阻R90、十一号电阻R91和十二号电阻R92组成,电流互感器CT1为电流输入、电压输出型电流变换器,其原边串联在被测量的电路上,电流互感器CT1副边的一端接地,另一端连接十号电阻R90的一端,十号电阻R90的另一端连接三号集成运算放大器A3的同相输入端和八号电阻R88的一端,三号集成运算放大器A3的反相输入端连接七号电阻R87的一端和九号电阻R89的一端,九号电阻R89的另一端接地,七号电阻R87的另一端连接三号集成运算放大器A3的输出端和十一号电阻R91的一端,八号电阻R88的另一端连接四号集成运算放大器A4的输出端、十二号电阻R92的一端和四号集成运算放大器A4的反相输入端;模/数转换电路3由型号是ADS8364Y的模/数转换芯片U15组成,模/数转换芯片U15的脚63连接五号电阻R85的另一端,模/数转换芯片U15的脚64连接六号电阻R86的另一端,模/数转换芯片U15的脚2连接十一号电阻R91的另一端,模/数转换芯片U15的脚1连接十二号电阻R92的另一端,模/数转换芯片U15的脚61连接四号集成运算放大器A4的同相输入端和二号集成运算放大器A2的同相输入端。工作时,模/数转换芯片U15的脚61分别给2号集成运算放大器A2的同相输入端和四号集成运算放大器A4的同相输入端提供一个2.5伏特的参考电压,这样可通过给一号到十二号电阻设定合适的阻值将电压互感器PT1和电流互感器CT1的副边的双极性电压范围变换为模/数转换芯片U15正常工作所需的单极性电压范围0~+5V,以便模/数转换电路3进行处理。In
具体实施方式二:下面结合图2和表1具体说明本实施方式。实施方式一中的步骤107通过本实施方式的如下步骤确定被测设备的功率状态:如果有功功率P为正、无功功率Q为正,则象限分布为第I象限,被测设备为用电状态,对应的复阻抗为感性,吸收有功功率的同时吸收无功功率,阻抗角的范围是功率因数λ的值为正;如果有功功率P为负、无功功率Q为正,则象限分布为第II象限,被测设备为供电状态,对应的复阻抗为容性,输出有功功率的同时吸收无功功率,阻抗角的范围是功率因数λ的值为负;如果有功功率P为负、无功功率Q为负,则象限分布为第III象限,被测设备为供电状态,对应的复阻抗为感性,输出有功功率的同时输出无功功率,阻抗角的范围是功率因数λ的值为负;如果有功功率P为正、无功功率Q为负,则象限分布为第IV象限,被测设备为用电状态,对应的复阻抗为容性,吸收有功功率的同时输出无功功率,阻抗角的范围是功率因数λ的值为正。Specific Embodiment 2: The present embodiment will be specifically described below in conjunction with FIG. 2 and Table 1.
本实施方式表1中的S-I、S-II、S-III、S-IV表示的是功率传输方向变化的电能计量点的四种不同的功率状态,其含义如下:S-I, S-II, S-III, and S-IV in Table 1 of this embodiment represent four different power states of electric energy metering points where the power transmission direction changes, and their meanings are as follows:
S-I——吸收有功功率的同时吸收无功功率(感性,P为正、Q为正);S-I——absorb reactive power while absorbing active power (inductive, P is positive, Q is positive);
S-II——输出有功功率的同时吸收无功功率(容性,P为负、Q为正);S-II——output active power while absorbing reactive power (capacitive, P is negative, Q is positive);
S-III——输出有功功率的同时输出无功功率(感性,P为负、Q为负);S-III——output reactive power while outputting active power (inductive, P is negative, Q is negative);
S-IV——吸收有功功率的同时输出无功功率(容性,P为正、Q为负)。S-IV——to output reactive power while absorbing active power (capacitive, P is positive, Q is negative).
其中,第I、IV象限均表示作为用电端口时的功率状态,即吸收有功功率,区别在于第I象限功率状态对应的复阻抗为感性,吸收无功功率,第IV象限功率状态对应的复阻抗为容性,输出无功功率;第II、III象限均表示作为供电端口时的功率状态,即输出有功功率,区别在于第II象限功率状态对应的复阻抗为容性,吸收无功功率,第III象限功率状态对应的复阻抗为感性,输出无功功率。特别地,阻抗角时,功率状态为只吸收有功功率;阻抗角时,功率状态为只吸收无功功率;阻抗角时,功率状态为只输出有功功率;阻抗角时,功率状态为只输出无功功率。本发明中,首先由实施方式一计算得到有功功率P和无功功率Q,然后根据有功功率P、无功功率Q的正负号并参照实施方式二中的表1确定功率状态。功率状态主要包括供用电方向、象限分布、阻抗角范围、复阻抗性质、有功功率方向、无功功率方向、功率因数方向。这里,对一些参数作如下定义:Among them, both the I and IV quadrants represent the power state when used as a power port, that is, the active power is absorbed. The difference is that the complex impedance corresponding to the power state of the I quadrant is inductive and absorbs reactive power. The impedance is capacitive, outputting reactive power; both the II and III quadrants indicate the power state when used as a power supply port, that is, the output active power, the difference is that the complex impedance corresponding to the power state of the second quadrant is capacitive, absorbing reactive power, The complex impedance corresponding to the power state of the third quadrant is inductive, and the reactive power is output. In particular, the impedance angle , the power state is only absorbing active power; the impedance angle , the power state is only absorbing reactive power; the impedance angle When , the power state is only active power output; the impedance angle , the power state is only outputting reactive power. In the present invention, the active power P and the reactive power Q are first calculated from the first embodiment, and then the power status is determined according to the sign of the active power P and the reactive power Q and referring to Table 1 in the second embodiment. Power state mainly includes power supply direction, quadrant distribution, impedance angle range, complex impedance properties, active power direction, reactive power direction, and power factor direction. Here, some parameters are defined as follows:
供用电方向定义:用电为正向(“+”),供电为反向(“-”);Definition of power supply direction: power consumption is forward (“+”), power supply is reverse (“-”);
功率方向定义:吸收功率为正向(“+”),输出功率为反向(“-”);阻抗角范围定义:阻抗角的范围为 Definition of power direction: absorption power is positive ("+"), output power is reverse ("-"); impedance angle range definition: impedance angle in the range of
功率因数λ方向定义:功率因数λ的范围为-1≤λ≤1,其中,吸收有功功率时为正向(“+”),输出有功功率时为反向(“-”)。Definition of power factor λ direction: the range of power factor λ is -1≤λ≤1, wherein, when absorbing active power, it is forward (“+”), and when outputting active power, it is reverse (“-”).
表1功率状态四象限分布表Table 1 Power state four-quadrant distribution table
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100101408A CN100419436C (en) | 2005-06-30 | 2005-06-30 | A four-quadrant power measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100101408A CN100419436C (en) | 2005-06-30 | 2005-06-30 | A four-quadrant power measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1712974A CN1712974A (en) | 2005-12-28 |
CN100419436C true CN100419436C (en) | 2008-09-17 |
Family
ID=35718674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100101408A Expired - Fee Related CN100419436C (en) | 2005-06-30 | 2005-06-30 | A four-quadrant power measurement method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100419436C (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101968506B (en) * | 2010-09-13 | 2012-11-21 | 深圳市华力特电气股份有限公司 | Alternating current sampling processing method and device |
CN102445595B (en) * | 2011-09-23 | 2013-11-13 | 重庆大学 | A real-time measurement method of time-varying power in power system |
CN102435836B (en) * | 2011-11-01 | 2013-11-06 | 安徽鑫龙电器股份有限公司 | Method for electrometer to realize interchange of homonymous ends of current transformer through by utilizing computer program |
CN102841255B (en) * | 2012-08-23 | 2015-07-01 | 漳州科能电器有限公司 | Method for measuring phase angle of power of metering chip and application of method |
CN103018547B (en) * | 2012-11-30 | 2014-11-26 | 合肥工业大学 | Normalizing multiprocessor electric power metering method |
CN102981045B (en) * | 2012-11-30 | 2015-05-20 | 合肥工业大学 | Normalized self-adaptive electric power measuring method |
CN103018546B (en) * | 2012-11-30 | 2014-11-05 | 合肥工业大学 | Assigned-frequency electric power metering method |
CN102998523A (en) * | 2012-12-25 | 2013-03-27 | 上海贝岭股份有限公司 | Harmonic power calculating method for electric energy measuring |
CN107942135B (en) * | 2017-11-20 | 2019-12-13 | 江门市新会新宝成电气科技有限公司 | power factor direction judgment method and system |
CN109782057B (en) * | 2019-02-28 | 2021-04-30 | 海信(广东)空调有限公司 | Circuit and method for measuring input active power of single-phase power supply of variable-frequency household appliance |
CN113030540B (en) * | 2021-03-01 | 2022-07-26 | 湖南大学 | A two-way metering method of fundamental wave and harmonic energy for grid-connected distributed new energy |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4096436A (en) * | 1977-05-23 | 1978-06-20 | The Valeron Corporation | Power monitor |
US4531089A (en) * | 1981-02-20 | 1985-07-23 | Hitachi, Ltd. | Electric power detecting circuit and gain control circuit using the same |
CN2197674Y (en) * | 1994-03-10 | 1995-05-17 | 周承书 | Energy saving watt-hour meter |
CN2302523Y (en) * | 1996-02-29 | 1998-12-30 | 周维寰 | Light pillar digital double-display mounting electricity meter |
US5861740A (en) * | 1996-03-26 | 1999-01-19 | National Research Council Of Canada | Load loss standard for calibrating power loss measurement systems |
-
2005
- 2005-06-30 CN CNB2005100101408A patent/CN100419436C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4096436A (en) * | 1977-05-23 | 1978-06-20 | The Valeron Corporation | Power monitor |
US4531089A (en) * | 1981-02-20 | 1985-07-23 | Hitachi, Ltd. | Electric power detecting circuit and gain control circuit using the same |
CN2197674Y (en) * | 1994-03-10 | 1995-05-17 | 周承书 | Energy saving watt-hour meter |
CN2302523Y (en) * | 1996-02-29 | 1998-12-30 | 周维寰 | Light pillar digital double-display mounting electricity meter |
US5861740A (en) * | 1996-03-26 | 1999-01-19 | National Research Council Of Canada | Load loss standard for calibrating power loss measurement systems |
Also Published As
Publication number | Publication date |
---|---|
CN1712974A (en) | 2005-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100419436C (en) | A four-quadrant power measurement method | |
CN105319447B (en) | A kind of dielectric loss angle tangent method of testing and tester | |
CN201352236Y (en) | Harmonic power meter based on Kaiser window double-spectrum-line interpolation FFT | |
CN101135723A (en) | Universal Power Transformer Calibration Device | |
CN108318852B (en) | A test method for square wave influence of smart electric energy meter | |
CN101509945A (en) | Real-time detection method for positive and negative sequence electricity quantity | |
CN105548697A (en) | Power system harmonic detection device and method | |
CN102749505B (en) | Method and device for voltage proportion measurement | |
CN203287435U (en) | A micro electrical network harmonic wave and inter-harmonic wave test apparatus based on an STM32F107VCT6 | |
CN108982949B (en) | A method for obtaining the phasor based on the magnitude of line voltage and phase voltage | |
CN103454490A (en) | Intelligent metering system and intelligent metering method on basis of Blackman-harris window spectrum correction | |
CN105067948A (en) | Small-current grounding line selection device and single-phase grounding detection method | |
CN204269808U (en) | A kind of three-phase electric energy meter on-site calibrator with virtual current source | |
CN101701985B (en) | Constant-frequency variable dot power grid harmonic wave detection method and admeasuring apparatus thereof | |
CN103529294A (en) | HHT (Hilbert-Huang Transform)-based harmonic detection system and method for grid-connected inverter of photovoltaic system | |
CN103760469B (en) | Based on voltage-phase characteristic circuit method for locating single-phase ground fault before and after fault | |
CN104237837A (en) | Current transformer ratio error and angle error detection system and method | |
CN201876499U (en) | Tower impact grounding resistance measuring instrument | |
CN207366731U (en) | A kind of intelligent electric energy meter detection device | |
CN202631630U (en) | Novel intelligent electric energy meter based on spectrum correction of Blackman-Harris window | |
CN101359007A (en) | Measurement Method of Positive Sequence Parameters of High Voltage Transmission Line | |
CN101196541A (en) | A voltage flicker detection method | |
CN103217585A (en) | T-type electric transmission line positive sequence capacitance measuring method | |
CN212514778U (en) | A distributed photovoltaic and wind power grid-connected harmonic measurement system | |
CN113447717B (en) | Method for acquiring power frequency coupling impedance and admittance model of converter equipment and test platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080917 Termination date: 20150630 |
|
EXPY | Termination of patent right or utility model |