CN100416920C - 预载抛物柱面反射器天线及其制造方法 - Google Patents

预载抛物柱面反射器天线及其制造方法 Download PDF

Info

Publication number
CN100416920C
CN100416920C CNB018135110A CN01813511A CN100416920C CN 100416920 C CN100416920 C CN 100416920C CN B018135110 A CNB018135110 A CN B018135110A CN 01813511 A CN01813511 A CN 01813511A CN 100416920 C CN100416920 C CN 100416920C
Authority
CN
China
Prior art keywords
parts
radial
parabolic
hub
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018135110A
Other languages
English (en)
Other versions
CN1444781A (zh
Inventor
戈文德·斯瓦鲁普
苏雷什·钱德拉·塔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tata Institute of Fundamental Research
Original Assignee
Tata Institute of Fundamental Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IN721MU2000 external-priority patent/IN2000MU00721A/en
Application filed by Tata Institute of Fundamental Research filed Critical Tata Institute of Fundamental Research
Publication of CN1444781A publication Critical patent/CN1444781A/zh
Application granted granted Critical
Publication of CN100416920C publication Critical patent/CN100416920C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/005Damping of vibrations; Means for reducing wind-induced forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/147Reflecting surfaces; Equivalent structures provided with means for controlling or monitoring the shape of the reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/168Mesh reflectors mounted on a non-collapsible frame

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aerials With Secondary Devices (AREA)
  • Support Of Aerials (AREA)

Abstract

抛物柱面反射器天线,通过预载其放射状圆周形放置的直的支持构件支撑其反射表面,使其重量明显减轻,还在其安装中起作用。预载抛物柱面反射器天线的支持构件由中央集线器、适当数量的弹性弯曲放射状结构部件的组件、在抛物面天线的外部轮缘与放射状部件的尖端连接的相同数量的直结构部件以及圆周状位于中间位置的直拉条部件构成,它们在没有风负载时都拉紧到指定预应力值。位于抛物面天线的外围的最外面的轮缘部件形成抛物面天线的开口。以适当的倾斜角和集线器处的位置固定放射状部件,在其尖端加具有法向分量的力以弹性弯曲放射状部件,其曲率与集线器和外围轮缘点之间的抛物线曲率大致相同,使支持构件有抛物面形状。

Description

预载抛物柱面反射器天线及其制造方法
技术领域
本发明涉及一种微波通信中使用的抛物柱面反射器天线,还涉及这种抛物柱面反射器天线的制造方法。本发明尤其涉及直径范围在约5m到100m的抛物柱面反射器天线。
背景技术
抛物柱面反射器还用于UHF和微波通信、卫星通信、对流层散射通信、雷达以及用于接收和/或发射无线电信号的类似应用领域。
抛物柱面反射器天线由金属或金属化的抛物面反射表面构成,它由支持构件来支撑。来自远处的无线电源或无线电发射器的无线电波被抛物面反射器表面反射并会聚在抛物面天线的焦点上,这里,用主要的天线馈电和放大器单元来接收无线电波。与发射天线类似,来自发射器的无线电波加到天线馈电上,并由抛物柱面反射器反射到远距离处。
抛物柱面反射器天线的反射器表面由大量平板或弯曲面板构成,它们金属或金属化薄片或金属丝网制成,由支持构件支撑。用于天线馈电的反射表面、支持构件和支撑结构形成了抛物柱面反射器天线的主要元件。抛物面天线放在固定或机械驱动的固定件上,允许指向天空中不同的方向。
传统上,抛物柱面反射器天线的支持构件由结构部件制成的大量弯曲放射状桁架构成,它们用对角拉条和圆周形结构部件互连,目的是实现3向抛物面形支持构件(见下文引用的参考)。有时,3向空间构架构形用于放射状圆周形的支持构件的拉条部件,由诸如钢或铝及其合金或者碳-纤维管的材料制成。这些结构部件被适当地焊接、铆接或接合在一起,目的是提供刚性。附图的图1中显示了使用现有技术的一些抛物柱面反射器天线的支持构件的典型实例。
挑选抛物柱面反射器天线的结构部件的材料的尺寸和强度用于抵抗重力和风力。尤其是,要求抛物面天线的结构部件中的张应力和压缩应力在限度之内,按照用于指定的生存风速的国家或国际结构设计规范。传统的抛物柱面反射器天线或反射器天线在诸如以下文献中进行了描述:
参考文献:
i)Baars,J.W.M.,Brugge,J.F.van der,Casse,J.L.,Hamaker,J.P.,Sondar,L.H.,Visser,J.J.and Willington,K.J.The Synthesis Radio Telescope at Westerbork,Proc.IEEE,Vol.61,1258-1266,1973.
ii)Goldsmith,P.F.,(eds.),“Instrumentation and Techniques for Radio Astronomy:Part-I:Filled Aperture Antennas”,pp.17-89,IEEE Press,New York,1988.
iii)Hoerner,van,S.,Design of Large steerable Antennas,Astron.J.,vol.72,pp.35-47,1967.
iv)Hooghoudt,B.G.,The Benelux Cross Antenna,Ann. N.Y.Acad.Sci.,vol 116(1),p.13-24,1964.
v)Love,A.W.,Some Highlights in Reflector Antenna Development in“ReflectorAntennas”,Love,A.W.,ed.,IEEE Press,New York,1978.
vi)Mar J.W.& Libowitz,H(eds.)“Structure Teclnology for Large Rsdio and RadarTelescope Systems”MIT Press,Cambridge 1969.
vii)McAlister,K.R,and Labrum,N.R.,The Cuigoora Radio Heliograph-The Aerials,Proc.Inst.Radio & Electronics Engrs.Australia,vol.28,pp.291-297,1967.
viii)Schneider,K.,and Schonbach,W.,25m Communication Antenna at Raisting,“Design & Construction of Large Steerable Aerials”,pp.242-246,IEE Conf.Pub.No.21,Inst.Electronic Engineering,UK.
ix)Swarup,G.,Ananthakrishnan,S.,Kapahi V.K.,Rao,A.P.,Subrahmanya,C.R.,and Kulkarni,V.K.,The Giant Metrewave Radio Telescope,Current Science,vol.60,pp.95-105,1991.
US 3,762,207(Weiser)教导了一种制造弯曲表面的方法。
US 4,001,836(Archer)教导了一种抛物柱面反射器及其构成方法。
US 4,378,561还涉及一种抛物面反射器天线。
US 4,568,945(Winegard)教导了一种卫星抛物面天线设备。
US 4,710,777(Halverson)讨论了抛物面天线结构。
US 4,713,617(Gray)涉及用于制造抛物面表面的设备和方法。
US 4,860,023(Halm)教导了抛物面反射器天线及其制造方法。
US 5,466,474(Wade)讨论了可重新部署的可折叠起来的肋的反射器。
法国专利9,203,506(相应于美国专利US 08/035,315)(Rits)涉及用于VLBI应用的可折叠肋张力表面(CRTS)。
从图1可见,在文献中描述的抛物柱面反射器天线的支持构件的传统设计对于大直径的抛物柱面反射器就变得很复杂了。传统设计导致结构部件重量增加,还要求大量焊接或栓钉连接。而且,所要求的放射状圆周形件的曲率都是通过在适当的机器中卷动或弯曲来制成的,这很耗工。
发明内容
本发明的主要目的是提供一种用于抛物柱面反射器天线的改善后的支持构件,重量轻,整体成本更低。
本发明的另一目的是提供一种通过预载其结构部件来制造抛物柱面反射器天线的支持构件的方法,以便减轻组件的重量。
本发明的又一目的是提供一种用于直径范围在约5m到100m的抛物柱面反射器天线的改善后的支持构件,抛物柱面反射器天线有高的初始弹性应变能,导致抵抗重力以及静态和动态风力的能力更强。
本发明的还一目的是提供一种支撑在改善后支持构件上的抛物柱面反射器天线,这允许以范围约100MHz到22GHz的频率来操作,尤其适于射电天文观测。
这样,本发明涉及一种用于抛物柱面反射器天线的改善后的支持构件,所述支持构件包括:
中央集线器,
多个弹性弯曲的放射状结构部件的组件,在一端与中央集线器连接,以伞状构形从集线器放射状张开,并在远离集线器的一端伸展到轮缘附近;
多个直结构的轮缘部件,朝向其轮缘端刚性连接到放射状部件上;
多个拉条部件,设在集线器和轮缘末端之间的放射状结构部件上的中间位置,所述拉条部件大致平行于结构轮缘部件;
每个所述部件在不受风力时张紧到指定预应力值。
本发明还涉及一种制造上面最后一段所述的支持构件的方法,该方法包括:
提供一种中央集线器;
通过将结构部件弯曲到预定曲率来提供预定放射状结构部件;
将放射状结构部件连接到中央集线器,以便形成用于抛物柱面反射器天线的反射表面的支撑结构;所述放射状结构部件从集线器端伸向轮缘端;
沿放射状部件的轮缘端在其尖端连接与放射状部件数量相同的直结构轮缘部件;
在集线器和轮缘端之间的放射状结构部件上的中间位置连接结构拉条部件,所述拉条部件与所述结构轮缘部件平行放置;
已经对每个所述结构部件进行了以下级别的初始预应力施加:应力值是在按照国家结构规范允许的应力值内的张力或压力,是在该结构的预计寿命期间最大预期风速以及要组装的抛物柱面反射器的条件下。
根据本发明的另一方案,提供一种预载抛物柱面反射器天线,包括:(a)上述支持构件,(b)反射表面,所述反射表面附着到所述放射状结构部件上,设有指定容限的金属或金属化反射器面板,和(c)用于在焦点支撑电子单元的结构,(d)所述抛物柱面反射器有足够的刚性,使得多种振动模式的最低频率超过大约1.5或2Hz,目的是在有动态风力,诸如阵风时提供安全性。
根据本发明的又一方案,提供一种制造上述最后一段所述的预载抛物柱面反射器天线的方法,包括:(a)提供上述支持构件,(b)提供反射器面板,反射器面板有反射元件并将所述面板附着到所述放射状结构部件,目的是从而获得反射表面,所述反射器表面有预定容限,(c)提供适于在焦点支撑电子单元的结构,从而获得抛物柱面反射器天线,(d)对所述抛物柱面反射器进行适当的处理,以便引入足够的刚性,使得多种振动模式的最低频率超过约1.5到2Hz,目的是在有动态风力,诸如阵风时提供安全性。
在所述方法中,适当选择中间圆周形环的放射状结构部件、轮缘部件和拉条部件的尺寸,中间圆周形环包括适当数量的中间环的连接和/或使用对角放置的结构拉条部件,如果还要求在抛物面天线拉过诸如凯夫拉尔(kevlar)的材料制成的附加非导体索,以便获得预载抛物柱面反射器的足够刚性,以使因抛物面天线的多种振动模式造成的负面效应最小。此外,根据抛物柱面反射器工作的最短波长,通过固定具有适当的网格大小且用适当直径的不锈钢金属丝制成的焊接金属丝网或者用反射纤维制成的编织网,且将金属丝网附着到刚性架构上,制造所述重量轻和低风负载的反射器面板。
本发明中所使用的反射器面板由附着到具有足够高刚性和容限的结构构架上的金属丝网制成,以允许以直到约10GHz来操作抛物柱面反射器天线。
用于将电子单元支撑在焦点处的结构最好是四足鼎结构。
本发明通过将抛物柱面反射器的结构部件弹性弯曲,给它们的初始是直的或稍微弯曲的放射状结构部件提供适当的曲率。通过选择适当的几何结构,每个弹性弯曲的放射状结构部件的曲率制成与其位置处所要求的抛物柱面反射器天线的曲率近似相同。放射状部件在一端与中央集线器连接,然后通过在它们的尖端施加法向力将它们弹性弯曲。然后,弹性弯曲的放射状部件刚性连接到位于截抛物面反射器周缘附近和中间位置处的直结构部件。所有的部件适当地连接在一起,目的是确保在其中存储足够初始弹性应变能,目的是抵抗抛物柱面反射器天线上的重力以及静态和动态风力。最好使用用于结构部件的管,由于管对于得到的风力的阻力系数有更低的值。与传统实际相比,本发明显著减轻了抛物柱面反射器天线的结构部件的重量,还使抛物面天线的支持构件的焊接、栓钉连接和组装的工作最少。这样,抛物柱面反射器的支持构件显著地简化了,这也使因施加在安装塔、抛物柱面反射器天线的旋转轴及其齿轮驱动系统上的上的重力风力所致的负载、力矩和转矩最小。
上述构形得到一种“预载抛物柱面反射器”(PPD)天线。预载的概念基于以下原理:如果一个结构有初始存储的应变能,那么,在确定条件下,它能给附加的外部负载提供大的刚性。本发明中,这一概念已经用于抛物面天线的支持支撑结构的设计,目的是减轻其重量,同时保持初始要求的刚性属性。在预载抛物柱面反射器中,几个直放射状部件支撑在中央集线器上并在它们的尖端以法向力来弯曲,在每个部件中产生弯曲应变能。弯曲大量的这种部件,然后通过刚性部件在尖端相互连接,这防止所弯曲的部件弹回。这样,获得用弯曲尖端负载预加应力的弯曲的放射状部件的骨架,这与抛物柱面反射器的构形类似。弯曲(或预载应力)的量大于或等于在生存风条件下放射状部件所带的预期最大应力。由于存储了内部应变能,所以,这种结构构形对外部负载显示出提高的不敏感性。为了获得对风和重力以及振动不稳定性的附加刚性,放射状部件还在中间位置与一组或多组拉条结构部件连接。
附图说明
现在结合包含在附图中的说明,更详细地展示本发明,其中,说明了本发明的具体而非限制性的实施例。
图1显示了基于现有技术的两个抛物柱面反射器天线的支持构件;
图1(A)Raisting(参考viii)的25m天线。
图1(B)Westerbork(参考i和iv)的25m天线;
图2说明了去除其预载之后,当弹性弯曲结构部件与锚连接时的行为。
图3是展示本发明实施例的预载抛物柱面反射器的支持构件4的平面和正视图。该抛物面天线的组成有:中央集线器5;弹性弯曲放射状部件6;互连直轮缘部件7;直拉条部件8;四足鼎11;和反射表面10。所使用的放射状部件6的数量取决于天线的直径。本发明详细描述的12m直径的预载抛物柱面反射器天线有24个放射状部件6。
图4是示意图,其中,点线(A’,B’,C’,D’)显示了图3的一个直放射状结构部件(管)6在它弯曲之前的位置和操作,虚线显示了它弹性弯曲之后的取向。实曲线显示了真正的抛物线。图4中给出的尺寸是12m直径预载抛物柱面反射器天线的具体情况。
图5显示了集线器5的平面正视图和截面图。
图6给出了在集线器之外的放射状管状部件6和集线器33之内的放射状管状部件6的典型细节。
图7给出了外围环12(轮缘)的轮缘部件7的典型细节。对于12m的抛物面天线,称为7B的每第6个轮缘部件设有长度调节螺栓16;其它轮缘部件如7A所示。
图8给出了用于中间圆周形环13的拉条部件8的结构部件的典型细节。对于12m抛物面天线,称为8B的每第6个拉条部件设有长度调节螺栓17;其它拉条部件如8A所示。
图9给出了四足鼎管11的典型细节。
图10给出了集线器安装垫片34的典型细节,它用于在集线器5以相对于抛物线的X轴的要求的倾斜角来夹持放射状部件(管)。所示的尺寸是12m抛物面天线的情况。
图11是显示轮缘接合19的典型细节的图,轮缘接合19用于将放射状结构部件6连接到如图3所示外围/圆周形环12的轮缘部件17上;图11(a)和11(b)显示了两个替换配置。
图12显示了拉条接合18和26的典型细节,它们用于将放射状结构部件6连接到图3所示中间圆周形环13的拉条部件8上。
图13显示了四足鼎接合20的细节,它用于将四足鼎11的4个腿连接到拉条部件8上。
图14是给出一个反射器面板10的细节的图,反射器面板10由12m预载抛物柱面反射器的金属丝网21、构架22和安装平板23组成。
图15显示了重量轻的刚性面板的细节,它由附着到刚性架构上的张紧的金属丝网21组成,用细的结构部件35,36,37,38,39,40,41拉紧刚性架构,这些结构部件用隔板42背对背地连接在一起。
图16显示了安装机件29,30,32的典型细节,它们用于将12m抛物面天线的反射器面板用可调节螺栓31连接到放射状部件上。
图17显示了拉紧单元26的示意图,拉紧单元26由用于预载(预加应力)放射状部件7的临时直立塔27、钢索21和紧线器25构成。
图18显示了附着到轮缘接合21的紧线器25的细节,轮缘接合21与放射状部件6连接。
具体实施方式
可以用许多方式使要求弹性弯曲的放射状部件的曲率与抛物面天线的抛物面曲率近似相同,例如,(a)其方式是,在中央集线器处的适当位置以及相对于中央集线器的倾斜角固定直放射状部件,然后用法向的分量在它们的尖端施加力以实现预期曲率,然后将它们刚性连接到形成近似圆形(规则多边形)的圆周形环的轮缘部件;(b)首先,预先将放射状部件轻轻弯曲到相对大半径的曲率,然后将它们固定在适当的倾斜角和中央集线器的位置上,然后在它们的尖端用法向的分量施加力,用于实现预期曲率;(c)先用适当的拉紧装置将放射状部件从集线器弹性弯向拉条部件制成的中间环,然后再从中间环弯向形成外围圆周形环的轮缘部件。
在结构部件中存储足够的内部应变能,通过选择集线器的适当直径、放射状部件的数量、放射状,轮缘和拉条结构部件的尺寸,材料和抗张强度,并适当地挑选放射状部件的倾斜角和弹性弯曲之前它们在集线器上的位置,使得在生存风速条件下,将结构部件的应力保持在按照用于结构的国家规范的指定限度内。用下述方法之一在放射状结构部件中产生所要求的初始预应力:
(a)通过利用钢索和紧线器、用适当的附件连接到临时直立的环形板和/或中央塔上的拉紧装置;
(b)用诸如布置在每个放射状部件尖端附近的插孔的多个拉紧装置,或在棚或大楼中组装抛物面天线的情况下附着到棚顶上的牵引装置。
通过在去除所述拉紧装置之前,用适当的夹具和接头,刚性螺钉连接或铆接或焊接所有结构部件,产生圆周形放置的轮缘和拉条部件中所要求的预应力,这样,以预载条件固定放射状部件。
通过选择中间圆周形环中的放射状结构部件、轮缘结构部件和拉条结构部件的尺寸和/或使用对角放置的拉条部件来获得足够的刚性,以这种方式使由抛物面天线的多种振动模式所致的负面效应最小,中间圆周形环包括适当数量的这种环的连接。
为了使结构部件上的风负载最小,最好使用管或管道用于结构部件,它们有低的曳力系数。
用细管或管道来制造加有预应力的构架,然后依照预载抛物柱面反射器的操作的最高频率,固定适当网格大小且由适当直径的不锈钢线支撑的焊接金属丝网,以这种方式来制造反射器面板,它重量轻且风负载低。
或者,使用传统的由实心或穿孔金属或金属化薄片制成的反射器面板。
典型地描述12m直径抛物柱面反射器作为实例,有最佳数量的集线器、放射状部件、轮缘部件、拉条部件、四足鼎、倾斜角和放射状部件的位置以及反射表面的细节。
图2(a)显示了用预载Ps弯曲的单个结构部件1。弯曲之后,结构部件的尖端在另一弹性部件2的帮助下锚定到定点‘S’上。这时去除预载,这导致结构部件3的松弛形状但是导致锚部件2的抗张应变。然而,由于锚部件在轴向上是很硬的,所以,预载没有显著减少,组合的系统获得了内部弹性平衡(见图2(b))。在预载抛物柱面反射器中,在轴向上很硬的圆周形轮缘部件提供了上述锚定,这是在零风条件下抛物柱面反射器天线的支持构件的实际构形。
现在可见,当风力从抛物面天线的前(凹陷)侧作用时,将保持其形状,这是因为很硬的轮缘和拉条部件将接受所有的风负载,放射状部件将起用起形状的边缘变形的简单支撑梁的作用。在风从背(凸起)侧来的事件中,只要风力的动能小于所存储的内部应变能,抛物面天线就保持其原始形状。实际上,这用于决定预载应变能的量,目的是确保总是满足该条件。然而,万一风超过了预载,轮缘和拉条部件就出现支撑差,就接受了大量的压缩负载并防止抛物面天线任何显著的变形。最后,要注意,预载的主要目的是提供初始应变能,弯曲放射状部件的过程导致弯曲近似于抛物线。其另外的优点是消除了分开形成抛物线的过程,这样,就减少了天线的整个制造成本。
图3到18中显示了具有例如12m圆直径的预载抛物柱面反射器天线的细节。预载天线的组成有集线器5、弯曲的放射状部件6、外圆周形环12的直轮缘部件7、中间圆周形环13的直拉条部件8、四足鼎11、内环9和反射器面板10。放射状部件6、轮缘部件7和拉条部件8用图6到13所示的夹具、接头和其它机件刚性接合在一起。在集线器5内,天线有在中央9(图3)连接到环上的弯曲放射状部件33(图6)。
抛物柱面反射器的支持构件4包括集线器5和塔,集线器5用于连接到装在轭上的驱动系统,塔用于支撑抛物面天线。实际上,集线器5的直径从抛物面天线直径的1/4到1/2。本实例中,集线器5为抛物面天线直径的1/3。其定点和集线器5之间内抛物柱面反射器的设计相对直的向前,基于传统实践。
在12m抛物柱面反射器的本实例中,先通过用18mm密合螺栓夹持4个平板14,先组装集线器5的4个象限,然后通过夹在集线器(图5)的4个腿15上将集线器5安装在4个临时支柱上。要注意,集线器由焊接软钢板制成,用车床加工并切割成4片以易于运输,但是也可以作为一个单个单元来运输。
下面,将24个集线器安装垫片19(图10)以等圆周距离拧在集线器5上。然后,所有24个放射状部件6刚性连接到安装垫片19上。用放在抛物柱面反射器的中央的经纬仪,确保所有24个放射状部件6的尖端位于等角距离并在一个水平面上。然后,通过用钢索28和紧线器25以法向分量施加力来弹性弯曲放射状部件6,紧线器25附着在支撑在垂直塔27上的环形板24上,垂直塔27连接在集线器5(见图17和18)上,集线器5临时直立以沿着12m抛物柱面反射器的中轴。每个放射状部件6都以‘y’方向从抛物线的‘x’轴弹性弯曲到指定高度,(图4)用的是位于抛物面天线的中央的经纬仪,这样,放射状部件使预应力或预载成为计算的值。
然后,用拉条接合18和26(图12)使放射状部件6与中间圆周形环13的直拉条部件8互连。调节拉条部件(图8)的调节螺栓17,如果要求确保中间环13刚性连接到放射状部件6上。下面,放射状部件6用轮缘接合19A或19B(图11)在抛物面天线的外围连接到轮缘部件7上。下面,松开钢索28和紧线器25,用调节螺栓16(图7)进行调节,用来确保圆周形放置的轮缘部件7与放射状部件刚性连接。下面,去除中央拉紧塔27,用四足鼎凸缘20(图3和13)将四足鼎11(图9)安装在中间环13的拉条部件8处的放射状部件6上。下面,用于安装反射器面板10(图14和15)的面板安装机件29,30,31,32(图16)附着到放射状部件6上。用位于中央的经纬仪调节调节螺栓31(图16)的长度L,以确保用于拧上反射器面板的安装平板32的高度在容限±0.5mm内的预期抛物线。然后,将反射器面板安装在安装平板上,然后,用经纬仪测量表面精度。进行适当调节,目的是确保反射表面位于指定容限内。
要注意,由于所有部件都是直的结构部件,沿内圆周形环在抛物面天线和拉条部件的外围连接的轮缘部件形成了多边形。
对于本实施例中描述的所述12m直径抛物柱面反射器,选择金属丝网用于反射表面,用于使风负载最小,这就很经济了。金属丝网尺寸为6mm×6mm并由0.55mm直径的不锈钢丝构成,这允许以直到约8GHz来操作抛物面天线。更细的金属丝网或有孔金属片或金属板可用于以更高的频率来操作。可以使用金属片或用于抛物面天线的中央部分的压制抛物柱面反射器和用于外周部分的金属丝网制成面板,目的是降低风负载,还允许以直到约22GHz来操作。
根据对抛物柱面反射器的几何结构的选择和计算加在反射器表面和支持构件上的风力,有可能确定集线器5处放射状部件6的要求的倾斜角的值,以及计算用于所要求的预载的放射状部件6的尖端处所施加的力。对于放射状部件6的适当的尺寸和材料强度,最初用由d=PtLs 3/(3EsIs)给出的基本光束理论,这里,d是弹性尖端变形,Pt是法线方向的尖端预载,Ls是放射状部件6的长度,Es是放射状部件6的材料的弹性模数,Is是放射状部件6的惯性力矩。该关系可以用于直的和适度弯曲的放射状部件6,精度是足够的。
一旦放射状部件6预先弯曲到接近抛物线的小的程度,这有可能限定所要求的放射状部件6的尖端弹性形变,de,放射状部件6有有限曲率,如
d e = ( Y h - Y t ) / cos θ h - { R - [ R 2 - ( x t 2 - x h 2 ) ] }
这里,Yh在集线器5是y坐标,Yt在尖端是y坐标,xh在集线器5是x坐标,xt在尖端是x坐标,R是预弯放射状部件6的半径,θh在集线器5(图4)是放射状部件6的装置角。
提到了在集线器5的放射状部件6的初始装置角θh是一个重要的参数,它影响(1)预载的幅度,(2)弯曲的放射状部件6的形状和精确的抛物面之间的偏差。而且,这里提到了,如果要减小放射状部件6的预载,就可以使用预弯的放射状部件6,这降低了弹性形变的程度和预载或预应力。然而,在某种程度上丧失了存储的内部应变能的优势,有必要知道二者之间的权衡,用于决定使用直或预弯的放射状部件6。最后,放射状部件6的设计满足条件:变形的形状必须总是在精确的抛物线以下,这是因为偏差可以用调节螺栓31来补偿,以便与具有精确抛物状表面的反射器表面近似匹配。在相应于抛物面天线相对水平线以及来自前和后的最大风的最大负载条件下,对12m抛物面天线执行包括放射状部件6的整个支持构件4的详细有限元应力分析,决定使用40mm直径和8mm壁厚的高张力(60kg/mm2)放射状管状部件。或者,可以使用45mm直径和6mm壁厚的管。在执行分析时,阶梯状添加风负载和固定负载,可见,风负载所造成的有效应力是生存风速的允许应力的73%。允许应力占屈服强度的85%。这里,可以回想起,预应力允许应力的95%,它指示150kmph的最大风动能仅是以预应力形式的放射状部件的存储的内部应变能的约75%。这样,在轮缘部件7下垂或压缩之前,有约20%的边缘用于应力。因为放射状部件6有效地锚定在轮缘部件7和拉条部件8中,所以,放射状部件6的应力没有显著增加。
圆周状放置的直轮缘部件7有连接所有24个抛物面放射状部件6的相邻尖端的重要功能。这些轮缘部件7除了向抛物面天线结构提供环箍模式强度之外,也防止预加应力的放射状部件弹回。然而,由于放射状部件6是大的部件,所以可以在其两端点(即,尖端处的一端和集线器处的另一端)之间显著弯曲,此外要求在放射状部件6上支撑四足鼎,这可以导致额外的变形。所有这些对在操作条件下将抛物面天线变形提高到不可接受的水平都很重要,提供中间拉条部件8用于12m抛物面天线(图3)。
中间拉条部件8与集线器5和轮缘部件7一起将整个外周抛物面天线分为放射状的两个等部分。可见,当放射状部件试图向内弯曲(抛物面天线全面关闭模式)时,轮缘部件7和拉条部件8压缩,当放射状部件6试图向外弯曲(抛物面天线全面打开模式)时,这些部件拉紧,以便整个抛物面天线变形最小。这里提到,抛物面天线整个完全扭转模式时轮缘部件7和拉条部件8不起任何作用,这是由于它们以弹性形变的模式来进行面内刚体旋转,这种情况下,只有放射状部件6向抛物面天线提供总的扭转刚性。对于12m抛物面天线,虽然轮缘部件7和拉条部件8有比放射状部件6更小的负载,但是也为这些部件选择40mm的管径和8mm的壁厚。这也认为是完全为了在抛物面天线关闭模式中抵抗压缩负载。
在上文中提到,弹性弯曲放射状部件6和精确抛物线形状的差异可以用调节螺栓31来适当地补偿,因而,在预载抛物柱面反射器的设计中不考虑它,也不看作是误差,而仅作为所要调节的偏差。要求用金属丝网面板10来组装抛物面反射器表面,金属丝网面板10由通过电阻电弧焊点焊到金属构架22上的不锈钢金属丝网21制成,金属构架22附着到安装平板23上。这些面板10尺寸很大,可以在径向和圆周方向上都是平的,使得一旦金属构架22由直的结构部件(图14)制成,小面就近似于精确的抛物面表面。通过增大径向上面板10的数量和减小圆周方向上面板10的尺寸,可以降低反射器表面的不准确度。这里要重复的是,圆周方向上面板10的尺寸由最初固定的放射状部件6的数量来决定,因而只有其它可选开口用来增加径向上面板的数量。在12m抛物面天线的径向上用8个网状面板10,发现峰值误差是3.5mm,均方根(rms)误差是2.4mm。这种情况下,最大网状面板的尺寸在抛物面天线的尖端附近是1567mm×544mm,最小网状面板在抛物面天线的集线器附近是574mm×900mm。
关于圆周方向上的误差,众所周知,平的金属丝网面板在其自身重量下象描述另一抛物线的悬链线表面那样下垂。另外,可见,为了正确地表示圆周方向上的抛物面表面,有必要在指定的径向位置有指定的下垂。而且,金属丝网需要保持在很紧张的条件下,以避免表面褶皱以及抛物面天线处于45°时的反下垂,要求在金属丝网中预加张力,这使得它在圆周方向上实际上是平的。所有这些效果在圆周方向上产生了近似抛物面表面,通过在连接关于网状面板中心线对称的两点的两条细电缆的帮助下,向下拉金属丝网,可以在某种程度上克服复杂的工作和从实际平的网状面板要求下垂的问题。这有两个好处,存在网的的面内张力时提供了所要求的下垂,同时由于非线性地预下拉关联而张紧,提高了网的面内张力。这进一步帮助金属丝网不皱褶,且即使在抛物面天线对着水平线时也保持其形状。
图15中显示了反射面板10,其中,支撑金属丝网的构架的钢部件35到41设有曲率,用于减小反射表面的rms误差,这是通过以图15中点线所示的矩形形式焊接或螺钉连接或铆接由不锈钢制成的细管道或管来进行的。然后,用铆钉和隔板42对它们预加应力,如图15所示,然后,将它们组装在一起以提供反射器面板10,反射器面板10由附着到刚性桁架上的张紧的网21构成(俗称SMART设计)。
所述12m直径预载抛物柱面反射器天线由24个放射状管状部件6构成,焦距4.8m(图3)。所述12m抛物面天线已经设计用于150kmph的生存风速。放射状部件6与由10mm厚的焊接软钢板制成的4m直径的集线器5连接,其截面宽w1=200mm,高H=200mm(图5)。内环9、集线器5、中间圆周形拉条环13和外圆周形环(rim)12的半径分别是600mm、2000mm、4000mm和6000mm(图4)。在图4中,点线示意性显示了弹性弯曲之前放射状部件的位置和倾斜;虚线是弹性弯曲放射状管6,实线是所要求的抛物线。发现弯曲的放射状部件6从抛物线的偏差在±40mm之内,这可以用调节螺栓31来补偿,如图16所示。放射状轮缘和拉条部件由40mm直径和8mm壁厚的高张力无缝管构成,屈服强度是60kg/mm2。或者,也可以使用50mm直径和8mm壁厚的管。四足鼎由50mm直径和8mm壁厚的无缝管构成。反射面板由不锈钢焊接金属丝网制成,尺寸是6mm×6mm(相邻金属线之间是6mm的距离),金属线直径是0.55mm(图14和15)。
包括集线器、多个结构部件、夹具和接头以及反射面板的12m直径预载抛物柱面反射器的总重量是约2.5吨。对于150kmph的风速,抛物面天线在面对水平面时受到2.7吨的风力,关于仰角轴的风转矩是3.5吨-米。在用反重量平衡抛物面天线之前,关于仰角轴的固有负载转矩是4.7吨-米。最低振动模式的频率是1.5Hz。
已经对生存风速140kmph时25m直径预载抛物柱面反射器天线进行了计算。25m抛物面天线总重量14吨,风力(水平)13吨,关于仰角轴的风转矩是19吨-米,固有负载转矩(平衡之前)是42吨-米。这些重量和转矩比传统抛物面天线要低得多。
这样,已经显示了,对结构部件的预载以及选择最佳构形的的应用导致抛物柱面反射器的驱动系统上的重量和风转矩显著减小,与传统的支持构件相比,使包括焊接和螺钉连接多个结构部件的组装所要求的劳力最少,这样就很经济了。这些概念很有用,不仅可用于设计抛物柱面反射器的支持构件,还可用于多种类似3维结构,例如,放在地上的固定外围反射器天线。
已经用12m直径的预载抛物柱面反射器天线为实例,说明和描述了本发明的最佳实施例,要知道,可以有变化和修改,因而,不准确地限于上述细节,而是帮助使这种改变和变化落在下面的权利要求书中。

Claims (24)

1. 一种用于抛物柱面反射器天线的支持结构,所述支持结构包括:
中央集线器;
多个放射状结构部件的组件,其为管状的,在一端与中央集线器连接,以伞状构形从集线器放射状张开,并在远离集线器的一端伸展到圆形轮缘,每个所述放射状结构部件是高抗张强度的材料,作为一个结构单元弹性弯曲并成为弯曲状,以限定抛物面形预加应力的结构;
多个结构轮缘部件,其为管状的,朝向放射状部件的轮缘端而刚性连接到放射状部件上;
多个拉条部件,其为管状的,设在集线器和轮缘末端之间的放射状结构部件上的中间位置,所述拉条部件平行于结构轮缘部件;
所述放射状部件、轮缘部件和拉条部件被拉紧到指定选择的应力值,从而存储预期的内部弹性应变能,以抵抗重力以及静态和动态风力。
2. 一种制造根据权利要求1所述的支持结构的方法,包括:
提供中央集线器;
将多个放射状结构部件的一端连接到中央集线器;
通过施加选择性的预载,将每个放射状结构部件沿其自由端弹性弯曲并使其成为弯曲状,以限定抛物面形预加应力的结构;
连接预加应力的放射状部件,用的是其自由端处的直结构轮缘部件以及集线器和轮缘端之间的放射状结构部件上的中间位置处的中间拉条部件,所述拉条部件与所述结构轮缘部件平行放置;
所述放射状部件、轮缘部件和拉条部件拉紧到选择性应力值,以便存储预期的内部弹性应变能,以抵抗重力以及静态和动态风力。
3. 根据权利要求2所述的方法,其中,通过在中央集线器的选定位置并相对于中央集线器的平面以选定的倾斜角固定直放射状部件,然后在它们的尖端施加具有法向分量的力以获得预期曲率,形成放射状结构部件。
4. 根据权利要求2所述的方法,其中,在以中央集线器的选定倾斜角固定弯曲放射状部件,然后在它们的尖端施加法向力以获得预期曲率之前,通过以相对大半径的曲率将放射状部件稍微预弯,形成放射状部件的所要求的曲率。
5. 根据权利要求2所述的方法,其中,通过利用拉紧装置先将放射状部件从集线器向中间部分弹性弯曲,而后从中间部分向外部轮缘弯曲,形成径向的曲率。
6. 根据权利要求2所述的方法,其中,通过用钢索和紧线器拉紧的拉紧装置,引入放射状结构部件中所要求的初始预应力。
7. 根据权利要求2所述的方法,其中,通过选择为每个放射状部件的尖端附近的插孔的拉紧装置,或在棚或大楼中组装抛物面天线的情况下,通过附着到棚顶上的牵引装置,引入放射状结构部件中所要求的初始预应力。
8. 根据权利要求2所述的方法,其中,在去除所述拉紧装置之前,通过利用夹具和接头,刚性螺钉连接或铆接或焊接所有的结构部件,获得圆周状放置的轮缘和拉条部件中的初始预应力。
9. 根据权利要求2所述的方法,其中,选择集线器的直径、放射状部件的数量、放射状,轮缘和拉条结构部件的尺寸,抗张强度和材料,挑选放射状部件的倾斜角和在弹性弯曲之前它们在集线器处的位置,以便在结构部件中存储足够的应变能,使得在生存风速时它们的应力保持在要求的限度内。
10. 根据权利要求2所述的方法,其中,选择中间圆周形环的放射状结构部件、轮缘部件和拉条部件的尺寸,中间圆周形环包括选定数量的中间环的连接和/或使用对角放置的结构拉条部件,以便获得预载抛物柱面反射器的足够刚性,以使因抛物面天线的多种振动模式造成的负面效应最小。
11. 根据权利要求2所述的方法,其中,抛物柱面反射器天线直径在5m到100m的范围内,应用要求选定的焦距,用于接收和/或发射无线电波。
12. 一种预载抛物柱面反射器天线,包括:
(a)根据权利要求1所述的支持结构,
(b)反射表面,所述反射表面附着到所述放射状结构部件上,设有指定容限的金属或金属化反射器面板,和
(c)用于在焦点支撑电子单元的结构,
所述抛物柱面反射器有足够的刚性,使得多种振动模式的最低频率超过1.5Hz,目的是在有动态风力,包括阵风时提供安全性。
13. 一种制造权利要求12所述的预载抛物柱面反射器天线的方法,包括:
(a)用权利要求2所述的方法提供支持结构,
(b)提供反射器面板,反射器面板有反射元件并将所述面板附着到所述放射状结构部件,目的是从而获得反射表面,所述反射器表面有预定容限,
(c)提供用于在焦点支撑电子单元的结构,从而获得抛物柱面反射器天线,
(d)对所述抛物柱面反射器进行处理以引入足够的刚性,使得多种振动模式的最低频率超过1.5Hz,目的是在有动态风力,包括阵风时提供安全性。
14. 根据权利要求13所述的方法,其中,通过在中央集线器的选定位置并相对于中央集线器的平面以选定的倾斜角固定直放射状部件,然后在它们的尖端施加具有法向分量的力以获得预期曲率,形成放射状结构部件。
15. 根据权利要求13所述的方法,其中,在以中央集线器的选定倾斜角固定弯曲放射状部件,然后在它们的尖端施加法向力以获得预期曲率之前,通过以相对大半径的曲率将放射状部件稍微预弯,形成放射状部件的所要求的曲率。
16. 根据权利要求13所述的方法,其中,通过利用拉紧装置先将放射状部件从集线器向中间部分弹性弯曲,而后从中间部分向外部轮缘弯曲,形成径向的曲率。
17. 根据权利要求13所述的方法,其中,通过用钢索和紧线器拉紧的拉紧装置,引入放射状结构部件中所要求的初始预应力。
18. 根据权利要求13所述的方法,其中,通过选择为每个放射状部件的尖端附近的插孔的拉紧装置,或在棚或大楼中组装抛物面天线的情况下,通过附着到棚顶上的牵引装置,引入放射状结构部件中所要求的初始预应力。
19. 根据权利要求13所述的方法,其中,在去除所述拉紧装置之前,通过利用夹具和接头,刚性螺钉连接或铆接或焊接所有的结构部件,获得圆周状放置的轮缘和拉条部件中的初始预应力。
20. 根据权利要求13所述的方法,其中,选择集线器的直径、放射状部件的数量、放射状,轮缘和拉条结构部件的尺寸,抗张强度和材料,挑选放射状部件的倾斜角和在弹性弯曲之前它们在集线器处的位置,以便在结构部件中存储足够的应变能,使得在生存风速时它们的应力保持在要求的限度内。
21. 根据权利要求13所述的方法,其中,选择中间圆周形环的放射状结构部件、轮缘部件和拉条部件的尺寸,中间圆周形环包括选定数量的中间环的连接和/或使用对角放置的结构拉条部件,以便获得预载抛物柱面反射器的足够刚性,以使因抛物面天线的多种振动模式造成的负面效应最小。
22. 根据权利要求13所述的方法,其中,根据抛物柱面反射器工作的最短波长,通过固定具有选定的网格大小且用具有选定直径的不锈钢金属丝制成的焊接金属丝网,且将金属丝网附着到刚性架构上,制造所述重量轻和低风负载的反射器面板。
23. 根据权利要求22所述的方法,其中,反射器面板由用传统设计的实心或有孔金属或金属化塑料片制成。
24. 根据权利要求13所述的方法,其中,抛物柱面反射器天线直径在5m到100m的范围内,应用要求选定的焦距,用于接收和/或发射无线电波。
CNB018135110A 2000-08-01 2001-07-30 预载抛物柱面反射器天线及其制造方法 Expired - Fee Related CN100416920C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN721/MUM/2000 2000-08-01
IN721MU2000 IN2000MU00721A (zh) 1998-06-29 2000-08-01

Publications (2)

Publication Number Publication Date
CN1444781A CN1444781A (zh) 2003-09-24
CN100416920C true CN100416920C (zh) 2008-09-03

Family

ID=11097272

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018135110A Expired - Fee Related CN100416920C (zh) 2000-08-01 2001-07-30 预载抛物柱面反射器天线及其制造方法

Country Status (4)

Country Link
US (1) US6911958B2 (zh)
CN (1) CN100416920C (zh)
AU (2) AU7867201A (zh)
WO (1) WO2002013314A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668242A (zh) * 2009-11-20 2012-09-12 卡瓦尼利亚斯工程有限公司 用于抛物面反射器的可调节结构
CN110416741A (zh) * 2019-07-19 2019-11-05 同济大学 一种环向张拉弹性肋可展天线结构
US20210376920A1 (en) * 2020-01-06 2021-12-02 Comtech Systems Inc. Portable troposcatter communication terminal

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294045B1 (en) 2005-12-21 2007-11-13 Corning Incorporated Apparatus and method for edge processing of a glass sheet
US20100201600A1 (en) * 2007-07-30 2010-08-12 Stephen Kaneff Support frame for the dish of a large dish antenna
BRPI0914944B1 (pt) 2008-06-06 2019-10-01 Sunrise Csp Pty Limited Aperfeiçoamentos em coletores térmicos solares
US8174461B1 (en) 2008-12-04 2012-05-08 L-3 Communications, Corp. Antenna mounting system and method
CN101630776B (zh) * 2009-07-29 2013-03-20 中国科学院国家天文台南京天文光学技术研究所 容易调节的反射面板背架结构和反射面板支撑结构
US8416147B2 (en) 2009-12-16 2013-04-09 EchoStar Technologies, L.L.C. Systems, methods and apparatus for mounting an object to a structure
CN102243310B (zh) * 2011-04-14 2013-04-24 西北工业大学 一种卫星导航空域抗干扰接收机笼型活动测试支架
BR202014013528Y1 (pt) * 2014-06-04 2018-11-06 João Alexandre De Abreu antena parabólica com refletor autoestruturado
US9912079B2 (en) * 2014-07-03 2018-03-06 Xirrus, Inc. Distributed omni-dual-band antenna system for a Wi-Fi access point
CN104925563B (zh) * 2015-05-20 2016-10-19 西安电子科技大学 一种螺旋式展开天线反射面的切割方法及其展开装置
CN107546465A (zh) * 2016-06-29 2018-01-05 中兴通讯股份有限公司 一种便携天线和机顶盒系统
CN106654593B (zh) * 2016-12-20 2018-03-16 盐城市星地通信设备有限公司 一种卫星通信地球站天线主反射面互换结构及其工艺
RU2646947C1 (ru) * 2017-02-22 2018-03-12 Публичное акционерное общество "Радиофизика" Зеркальная антенна (варианты)
CN108281750B (zh) * 2018-02-06 2024-02-13 浙江百凯通讯科技有限公司 高稳定性插接式卫星天线
CN109586045B (zh) * 2019-01-22 2024-04-09 中国电子科技集团公司第五十四研究所 一种轻量化Ka频段反射面天线及其制造方法
CN110401040B (zh) * 2019-07-26 2020-05-26 中国电子科技集团公司第五十四研究所 一种基于等化面积和混合形状的反射面天线曲面分块方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985881A (en) * 1958-12-05 1961-05-23 Holland Herman A reflector utilizing pre-stressed elements
US3762207A (en) * 1971-12-03 1973-10-02 Weiser Robodyne Corp Method of fabricating curved surfaces
US4201991A (en) * 1978-03-16 1980-05-06 Paraframe, Inc. Antenna structure assembled from separable parts
US4528569A (en) * 1982-12-13 1985-07-09 Felter John V Earth station antenna assembled on site

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845511A (en) * 1987-01-27 1989-07-04 Harris Corp. Space deployable domed solar concentrator with foldable panels and hinge therefor
US5104211A (en) * 1987-04-09 1992-04-14 Harris Corp. Splined radial panel solar concentrator
US5247312A (en) * 1992-01-22 1993-09-21 Universal Antenna Manufacturing, Inc. Wire carrier clip for dish antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985881A (en) * 1958-12-05 1961-05-23 Holland Herman A reflector utilizing pre-stressed elements
US3762207A (en) * 1971-12-03 1973-10-02 Weiser Robodyne Corp Method of fabricating curved surfaces
US4201991A (en) * 1978-03-16 1980-05-06 Paraframe, Inc. Antenna structure assembled from separable parts
US4528569A (en) * 1982-12-13 1985-07-09 Felter John V Earth station antenna assembled on site

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668242A (zh) * 2009-11-20 2012-09-12 卡瓦尼利亚斯工程有限公司 用于抛物面反射器的可调节结构
CN110416741A (zh) * 2019-07-19 2019-11-05 同济大学 一种环向张拉弹性肋可展天线结构
CN110416741B (zh) * 2019-07-19 2021-05-11 同济大学 一种环向张拉弹性肋可展天线结构
US20210376920A1 (en) * 2020-01-06 2021-12-02 Comtech Systems Inc. Portable troposcatter communication terminal
US11923964B2 (en) * 2020-01-06 2024-03-05 Comtech Systems Inc. Portable troposcatter communication terminal

Also Published As

Publication number Publication date
AU2001278672B2 (en) 2004-07-15
AU7867201A (en) 2002-02-18
CN1444781A (zh) 2003-09-24
WO2002013314B1 (en) 2002-11-21
WO2002013314A3 (en) 2002-08-01
WO2002013314A2 (en) 2002-02-14
US6911958B2 (en) 2005-06-28
US20040027309A1 (en) 2004-02-12

Similar Documents

Publication Publication Date Title
CN100416920C (zh) 预载抛物柱面反射器天线及其制造方法
AU2001278672A1 (en) Preloaded parabolic dish antenna and the method of making it
US6111553A (en) Adjustable antenna bracket
EP2941796B1 (en) Configurable backing structure for a reflector antenna and corrective synthesis for mechanical adjustment thereof
US20040020158A1 (en) Tower apparatus
US20130141807A1 (en) Structure for cylindrical solar collector
US5857712A (en) Cable damping device
CN107069176B (zh) 一种基于拉索调节形面精度的可展开柱状抛物面天线
US20040139665A1 (en) Method and arrangement for utility pole reinforcement
US3550142A (en) Horn reflector antenna
CN105717625B (zh) 一种轻量化的望远镜系统
CN101621151A (zh) 预应力轻型天线反射面背架结构及其制备方法
CN106164395B (zh) 具有开放式框架结构的格状塔以及用于提高塔的稳定性的方法
US7330160B1 (en) Support apparatus for a reflector
Swarup et al. Preloaded parabolic dish antennas for the square kilometer array
US20210285252A1 (en) Wind turbine
RU2673447C9 (ru) Космический аппарат
CN111927143A (zh) 一种铁塔加固结构及其施工方法
US20200263378A1 (en) Transition piece for connecting an upper tower section to a lower tower section by means of connection profiles
JP6121584B1 (ja) 支持柱補強部材
CN210141976U (zh) 载人航天器振动试验夹具
Shankar et al. Design and Development of a 12m Preloaded Parabolic Dish Antenna
CN113548200B (zh) 一种轻量化绷弦式太阳翼半刚性基板
JP2004245042A (ja) 回動支承
JP2003027768A (ja) 塔構築物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080903

Termination date: 20150730

EXPY Termination of patent right or utility model