CN100414290C - A safety door detection device based on photoionization detector technology - Google Patents
A safety door detection device based on photoionization detector technology Download PDFInfo
- Publication number
- CN100414290C CN100414290C CNB2006100650611A CN200610065061A CN100414290C CN 100414290 C CN100414290 C CN 100414290C CN B2006100650611 A CNB2006100650611 A CN B2006100650611A CN 200610065061 A CN200610065061 A CN 200610065061A CN 100414290 C CN100414290 C CN 100414290C
- Authority
- CN
- China
- Prior art keywords
- photoionization detector
- voltage
- photoionization
- electrode plate
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 33
- 238000005516 engineering process Methods 0.000 title claims abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 239000000428 dust Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000006096 absorbing agent Substances 0.000 claims description 2
- 239000003365 glass fiber Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 239000000741 silica gel Substances 0.000 claims description 2
- 229910002027 silica gel Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims 4
- 238000010438 heat treatment Methods 0.000 claims 2
- 150000002500 ions Chemical class 0.000 abstract description 15
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 238000005070 sampling Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 description 8
- 230000005684 electric field Effects 0.000 description 7
- 230000010287 polarization Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005485 electric heating Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- -1 dimethyl siloxane Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000012491 analyte Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明公开了一种基于光离子化检测器技术的安全门检测装置,该装置包括真空泵、预热气室、电磁阀、光离子化检测器、数字显示器和电源系统。预热气室进气口与真空泵出气口连通,预热气室出气口通过电磁阀与光离子化检测器进气管道连通,电源系统为真空泵、预热气室、电磁阀和光离子化检测器、数字显示器提供电源。本发明检测微弱离子约可达到10-10安培的数量级,待测气体的气相色谱图信噪比好。采用了独特的进样和预热气室技术,提高了对有机挥发物气体检测的灵敏度。电源系统采用一体化设计,干扰小、噪声低、系统稳定性好。
The invention discloses a safety door detection device based on photoionization detector technology, which comprises a vacuum pump, a preheating air chamber, an electromagnetic valve, a photoionization detector, a digital display and a power supply system. The inlet of the preheating chamber is connected with the outlet of the vacuum pump, and the outlet of the preheating chamber is connected with the inlet pipe of the photoionization detector through a solenoid valve. The power supply system is a vacuum pump, a preheating chamber, a solenoid valve and a photoionization detector. , The digital display provides power. The detection of weak ions by the invention can reach the magnitude of 10-10 ampere, and the signal-to-noise ratio of the gas chromatogram of the gas to be measured is good. The unique sampling and preheating gas chamber technology is used to improve the sensitivity of organic volatile gas detection. The power system adopts an integrated design, with little interference, low noise and good system stability.
Description
技术领域 technical field
本发明涉及一种化学分析仪器,具体地说,涉及一种痕量有机物类化学危险品的检测装置。The invention relates to a chemical analysis instrument, in particular to a detection device for trace organic chemical dangerous goods.
背景技术 Background technique
众所周知,危险品的检测在在现实生活中起着越来越重要的作用,它直接关系到人身安全和社会稳定。现有的安全检测装置对有机物类化学危险品的检测精度不够高,难以满足民航、铁道等系统安全检测部门对痕量物质检测的需要。As we all know, the detection of dangerous goods is playing an increasingly important role in real life, and it is directly related to personal safety and social stability. The detection accuracy of the existing safety detection devices for organic chemical dangerous goods is not high enough, and it is difficult to meet the needs of civil aviation, railway and other system safety inspection departments for the detection of trace substances.
便携式光离子化检测器(PID)是在常温常压下工作的一种检测仪器。其原理是:电离室里面放置两个相互平行的电极,极间相互绝缘并分别连接到电源高压的正负端。真空泵把气体抽入检测仪后,在检测室内的检测灯发射紫外光对气体分子进行轰击,使之电离为带正电的离子和带负电的电子,在极化极板的电场作用下,离子和电子分别向两极漂移、撞击,引起收集电极板的感应电荷量发生变化,从而形成可被检测到微弱的离子电流。根据这一原理,可制成如图1所示的自由空气电离室。Portable Photoionization Detector (PID) is a detection instrument that works under normal temperature and pressure. The principle is: two electrodes parallel to each other are placed in the ionization chamber, the electrodes are insulated from each other and connected to the positive and negative terminals of the high voltage power supply respectively. After the vacuum pump pumps the gas into the detector, the detection lamp in the detection chamber emits ultraviolet light to bombard the gas molecules, making them ionized into positively charged ions and negatively charged electrons. Under the action of the electric field of the polarized plate, the ions The electrons and electrons drift and collide to the two poles respectively, causing changes in the amount of induced charge on the collecting electrode plate, thus forming a weak ion current that can be detected. According to this principle, a free-air ionization chamber as shown in Figure 1 can be made.
但是,由于收集极板和电源直接连接,一方面电源容易将放大器烧坏,另一方面电源的各种噪声通过收集电极板加到微电流放大器的输入端,对检测的有效信号影响很大,削弱了检测的灵敏度。However, due to the direct connection between the collector plate and the power supply, on the one hand, the power supply is easy to burn out the amplifier, and on the other hand, various noises from the power supply are added to the input end of the micro-current amplifier through the collector plate, which has a great impact on the effective signal detected. weakened detection sensitivity.
另外,由于危险品包装严密,泄露的浓度极低,常规的进样方式难以满足检测要求,因此寻找合适的进样方式就显得尤为迫切。In addition, due to the tight packaging of dangerous goods and the extremely low concentration of leakage, the conventional sampling method is difficult to meet the detection requirements, so it is particularly urgent to find a suitable sampling method.
发明内容 Contents of the invention
本发明所要解决的技术问题就在于克服现有传统的光离子化检测器中收集极板和电源直接连接、常规的进样方式难以适应检测要求的缺陷,提供一种基于光离子化检测器技术的安全门检测装置。The technical problem to be solved by the present invention is to overcome the shortcomings of the existing traditional photoionization detectors that the collection plate is directly connected to the power supply, and the conventional sample feeding method is difficult to meet the detection requirements, and to provide a technology based on photoionization detectors. safety door detection device.
本发明解决其技术问题所采用的技术方案是:一种基于光离子化检测器技术的安全门检测装置,包括真空泵、预热气室、电磁阀、光离子化检测器、数字显示表和电源系统。预热气室进气口与真空泵出气口连通,预热气室出气口通过电磁阀与光离子化检测器进气管道连通,电源系统为真空泵、预热气室、电磁阀光离子化检测器和数字显示表提供电源。The technical solution adopted by the present invention to solve its technical problems is: a safety door detection device based on photoionization detector technology, including a vacuum pump, a preheating gas chamber, a solenoid valve, a photoionization detector, a digital display meter and a power supply system . The air inlet of the preheating chamber is connected with the outlet of the vacuum pump, and the outlet of the preheating chamber is connected with the inlet pipe of the photoionization detector through the solenoid valve. The power supply system is the vacuum pump, the preheating chamber, and the photoionization detector of the solenoid valve And the digital display meter provides power.
所述预热气室采用多级结构,预热气室外壁为石英玻璃材料,在其外缠有电加热丝。The preheating gas chamber adopts a multi-stage structure, and the outer wall of the preheating gas chamber is made of quartz glass material, and an electric heating wire is wrapped around it.
所述电磁阀为二通阀,由555定时器构成自激多谐振荡器,产生脉宽可调节的开断电压控制电磁阀的开断。The electromagnetic valve is a two-way valve, and a self-excited multivibrator is formed by a 555 timer to generate an adjustable pulse width breaking voltage to control the opening and closing of the electromagnetic valve.
所述光离子化检测器包括真空紫外灯、光离子化室、复合电极结构等;光离子化室分别与进气管道、出气管道相连,出气管道上安装了一个真空泵;光离子化室内部采用复合电极结构,包括零电位电极板、收集电极板和极化电位电极板,三个电极板相互平行,整齐排列呈矩形结构,收集电极板位于零电位电极板和极化电位电极板之间;收集电极板与微电流放大器相连,,微电流放大器将收集的电信号放大后既可输出到数字显示表,也可通过数据采集卡送至计算机分析和处理;零电位电极板与电源地相连,极化电位电极板与负高压电路的负极相连,极化电压小于-300V;真空紫外灯安装在光离子化室的一侧,照射口位于零电位电极板与收集电极板之间。The photoionization detector includes a vacuum ultraviolet lamp, a photoionization chamber, a compound electrode structure, etc.; the photoionization chamber is connected to the air inlet pipeline and the gas outlet pipeline respectively, and a vacuum pump is installed on the gas outlet pipeline; Composite electrode structure, including zero potential electrode plate, collecting electrode plate and polarization potential electrode plate, the three electrode plates are parallel to each other, neatly arranged in a rectangular structure, and the collecting electrode plate is located between the zero potential electrode plate and the polarization potential electrode plate; The collecting electrode plate is connected to the micro-current amplifier, and the micro-current amplifier amplifies the collected electrical signal, which can be output to the digital display meter, or sent to the computer for analysis and processing through the data acquisition card; the zero-potential electrode plate is connected to the power ground, The polarization potential electrode plate is connected to the negative pole of the negative high voltage circuit, and the polarization voltage is less than -300V; the vacuum ultraviolet lamp is installed on one side of the photoionization chamber, and the irradiation port is located between the zero potential electrode plate and the collecting electrode plate.
所述光离子化检测器进气管道上有除湿和过滤装置,分别是吸水剂硅胶、海绵粗过滤层、高精度金属微尘滤网、双层过滤复合纸质尘袋和玻璃纤维空气过滤纸。There are dehumidification and filter devices on the air intake pipe of the photoionization detector, which are water-absorbing agent silica gel, sponge coarse filter layer, high-precision metal dust filter, double-layer filter composite paper dust bag and glass fiber air filter paper .
所述光离子化室内部的零电位电极板长度为5~20mm,宽度为1~5mm,厚度为0.2~2.0mm。收集电极板长度为5~20mm,宽度为1~5mm,厚度为0.2~2.0mm。极化电位电极板长度为5~20mm,宽度为1~5mm,厚度为0.2~2.0mm。零电位电极板与极化电位电极板之间的间距为3~8mm。电极板均采用金、银、镀金、镀银或不锈钢等材料。The zero-potential electrode plate inside the photoionization chamber has a length of 5-20 mm, a width of 1-5 mm, and a thickness of 0.2-2.0 mm. The collecting electrode plate has a length of 5-20 mm, a width of 1-5 mm, and a thickness of 0.2-2.0 mm. The length of the polarization potential electrode plate is 5-20 mm, the width is 1-5 mm, and the thickness is 0.2-2.0 mm. The distance between the zero potential electrode plate and the polarization potential electrode plate is 3-8 mm. Electrode plates are made of gold, silver, gold-plated, silver-plated or stainless steel and other materials.
所述真空紫外灯所产生光子的能量为10.6电子伏特,波长为117纳米的紫外光。The energy of the photons generated by the vacuum ultraviolet lamp is 10.6 electron volts, and the wavelength is ultraviolet light of 117 nanometers.
所述供电系统输入为220V交流电,通过AC-DC模块,输出±15V直流电压对;同时通过直流开关电源,输出+12V直流电压。AC-DC模块输出的±15V直流电压对直接与微电流放大器的电源输入端相连;AC-DC模块输出的+15V直流电压与负高压电源小型模块电源输入端相连并升压至-1500V,该输出电压通过一个1.5MΩ的电阻连接到紫外灯;AC-DC模块输出的+15V直流电压经过LM7805CV芯片,输出+5V直流电压,为数字显示表提供工作电压。直流开关电源输出的+12V直流电压分别为真空泵、石英玻璃外缠的电加热丝、555定时器和电磁阀供电。The input of the power supply system is 220V AC, through the AC-DC module, it outputs ±15V DC voltage pair; at the same time, it outputs +12V DC voltage through the DC switching power supply. The ±15V DC voltage pair output by the AC-DC module is directly connected to the power input terminal of the micro-current amplifier; the +15V DC voltage output by the AC-DC module is connected to the negative high-voltage power supply small module power input terminal and boosted to -1500V. The output voltage is connected to the UV lamp through a 1.5MΩ resistor; the +15V DC voltage output by the AC-DC module passes through the LM7805CV chip to output +5V DC voltage to provide the working voltage for the digital display meter. The +12V DC voltage output by the DC switching power supply supplies power for the vacuum pump, the electric heating wire wrapped around the quartz glass, the 555 timer and the solenoid valve respectively.
本发明的工作原理为:Working principle of the present invention is:
当待测物品通过检测台时,如果里面存在危险物质的话,则其会被强力吸尘器大泵抽至第一级气室并进行初级预热,然后通过第一级电磁阀控制,由真空泵进入第二级气室并进行次级预热。由于在第二级气室进口处采取了吸附、浓缩并添加了二甲基硅氧烷膜,故第二级气室提高了待测气体的浓度,数量可以提高10~100左右。再由第二级电磁阀控制,待测气体进入电离室。When the item to be tested passes through the detection table, if there are dangerous substances inside, it will be pumped to the first-stage air chamber by a powerful vacuum cleaner for primary preheating, and then controlled by the first-stage solenoid valve, and then enter the second-stage air chamber by the vacuum pump. Secondary air chamber and secondary preheating. Since the inlet of the second-stage air chamber adopts adsorption, concentration and adds dimethyl siloxane film, the second-stage air chamber increases the concentration of the gas to be measured, and the number can be increased by about 10 to 100. Controlled by the second-stage solenoid valve, the gas to be measured enters the ionization chamber.
待测气体进入电离室,由VUV发射紫外光对气体分子进行轰击,使其中的有机物分子电离成为离子和电子。在极化极板的电场作用下,离子和电子向极板撞击,形成可被高灵敏度微电流放大器检测到的微弱离子电流。电流信号被高灵敏度微电流放大器放大成电压信号后,在MCU(单片机)的主控下,经数据采集卡采样,既可将电压信号按照拟合曲线折算成对应浓度值送至显示单元,也可通过I/O接口送入计算机,利用色谱工作站对测量结果进行分析和处理。The gas to be measured enters the ionization chamber, and the ultraviolet light emitted by the VUV bombards the gas molecules, so that the organic molecules in it are ionized into ions and electrons. Under the action of the electric field of the polarized plate, ions and electrons collide with the plate, forming a weak ion current that can be detected by a high-sensitivity micro-current amplifier. After the current signal is amplified into a voltage signal by a high-sensitivity micro-current amplifier, under the control of the MCU (single-chip microcomputer), the voltage signal can be converted into a corresponding concentration value according to the fitting curve and sent to the display unit through the sampling of the data acquisition card. It can be sent to the computer through the I/O interface, and the measurement results can be analyzed and processed by the chromatographic workstation.
本发明采用真空紫外灯作为电离源,产生10.6ev的光子,可以电离电离能低于10.6ev的分子,却不能电离N2、O2和水蒸汽等电离能高于10.6ev的分子,大大减少了离子产生的种类,得到非常清晰的待测物谱图,从而增强了检测的灵敏度和工作的稳定度。此外,有机挥发物气体由于在真空紫外灯光电离后,会复合至初始状态,不会破坏原来气体的结构和性质。The present invention uses a vacuum ultraviolet lamp as an ionization source to generate photons of 10.6ev, which can ionize molecules with ionization energy lower than 10.6ev, but cannot ionize molecules with ionization energy higher than 10.6ev, such as N2 , O2 , and water vapor, greatly reducing The type of ions produced is clearly defined, and a very clear spectrum of the analyte is obtained, thereby enhancing the detection sensitivity and working stability. In addition, the organic volatile gas will recombine to the original state after being ionized by the vacuum ultraviolet light, and will not destroy the structure and properties of the original gas.
对电离室的设计要求是:尽量大的测量体积和尽量小的电极间距,还要考虑合适的极间电压。因为电离室中电离有机挥发性化合物产生正、负离子对,正、负离子在电极电场作用下向两极移动,在外电路形成输出电流信号。根据电离理论,电离室的电荷收集效率随电极间距d的减小而增大,而且增大收集电压可提高收集效率(但电压过高会增大电源的开销。)The design requirements for the ionization chamber are: as large a measurement volume as possible and as small an electrode distance as possible, and an appropriate inter-electrode voltage should also be considered. Because the ionization of organic volatile compounds in the ionization chamber produces positive and negative ion pairs, the positive and negative ions move to the two poles under the action of the electrode electric field, and an output current signal is formed in the external circuit. According to the ionization theory, the charge collection efficiency of the ionization chamber increases with the decrease of the electrode distance d, and increasing the collection voltage can improve the collection efficiency (but the high voltage will increase the power consumption.)
一般电离室极间距在3~8mm时,大于200V的极化电压就可使电离室收集效率达99%以上。另外,根据电场中的高斯定律,和介质中的本构关系,可以推导出一个重要的结论,即:收集极板理论上可以做大,这样可以产生更多的电荷q,以便提高电离室的灵敏度。Generally, when the electrode spacing of the ionization chamber is 3-8mm, the polarization voltage greater than 200V can make the collection efficiency of the ionization chamber reach more than 99%. In addition, according to the Gaussian law in the electric field and the constitutive relationship in the medium, an important conclusion can be drawn, that is, the collector plate can be made larger in theory, so that more charges q can be generated, so as to improve the ionization chamber sensitivity.
本发明的有益效果是采用PID电离室设计,具有一体化、微型化和模块化的特点,通用性强、灵敏度高和检测门限低;检测微弱离子可达到10-10安培的数量级,待测气体的气相色谱图信噪比好;采用了独特的预热气室技术,将微量浓度的物质保持温度并加以浓缩,还采用电磁阀闭合来增加预热气室压力、电磁阀接通来向电离室进样,大大提高有机挥发物气体检测的灵敏度。电源系统采用一体化设计,干扰小、噪声低,提高了系统工作的可靠性和稳定性。The beneficial effect of the present invention is that the PID ionization chamber design is adopted, which has the characteristics of integration, miniaturization and modularization, strong versatility, high sensitivity and low detection threshold; the detection of weak ions can reach the order of magnitude of 10-10 amperes, and the gas to be measured The signal-to-noise ratio of the gas chromatogram is good; the unique preheating gas chamber technology is used to maintain the temperature and concentrate the trace concentration of substances, and the solenoid valve is closed to increase the pressure of the preheating gas chamber, and the solenoid valve is connected to ionize Chamber sample injection, greatly improving the sensitivity of organic volatile gas detection. The power supply system adopts an integrated design, with little interference and low noise, which improves the reliability and stability of the system work.
附图说明 Description of drawings
图1为自由空气电离室模型图。Figure 1 is a model diagram of a free air ionization chamber.
图2为光离子化检测器结构示意图。Figure 2 is a schematic diagram of the structure of the photoionization detector.
图3为光离子化检测器电离室横向剖面结构图。Fig. 3 is a cross-sectional structure diagram of the ionization chamber of the photoionization detector.
图4为光离子化检测器电离室纵向剖面结构图。Fig. 4 is a longitudinal sectional structure diagram of the ionization chamber of the photoionization detector.
图5为VUV灯与气路方向垂直的电离室实施例。Fig. 5 is an embodiment of an ionization chamber in which the VUV lamp is perpendicular to the direction of the gas path.
图6为VUV灯与气路方向平行的电离室实施例。Fig. 6 is an example of an ionization chamber in which the VUV lamp is parallel to the direction of the gas path.
图7为本发明的工作原理框图。Fig. 7 is a working principle block diagram of the present invention.
图8为本发明一个实施例的工作流程图。Fig. 8 is a working flowchart of an embodiment of the present invention.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
如图1和图2所示,真空泵14把可检测的气体6抽入,经进气管道12进入光离子化室10,真空紫外灯3发射紫外光对气体分子进行轰击,使之电离为带正电的离子7和带负电的电子8,在极化极板1、2之的电场作用下,离子7和电子8分别向两极漂移,并撞击两极1、2,引起收集极板11的感应电荷量发生变化,从而形成可被检测到微弱的离子电流。电流信号被高灵敏度微电流放大器4放大成电压信号后,进入分析和处理单元5。检测完后的气体复合至初始状态气体9,经出气管道13排出。As shown in Figures 1 and 2, the
本发明采用了如图3所示的光离子化室10,极化电位电极板1和零电位电极板2之间的距离d1为7毫米,收集电极板11和零电位电极板2之间的距离d2为5毫米,极化电位电极板1和零电位电极板2之间的电压差U为300伏,E≈4.286×104伏/米,收集电极板11和零电位电极板2之间电位差约214.3伏。The present invention has adopted the
本发明采用的电离光源采用真空紫外灯3,其产生光子的能量为10.6ev,相应波长为117纳米。零电位电极板2接地,收集电极板11悬空并不与其它极板接触,极化电位电极板1接附属电源提供的负高压-1500伏。收集板电极11与微电流放大器4相连,当真空泵14将外部待测气体连续从进气管道12吸入时,气体首先要经过进气管道口12上附着的金属过滤网以除潮、阻挡灰尘及异物;然后气体进入光离子化室10,在真空紫外灯3的照射下发生电离。正负离子在零电位电极板和收集电极板之间约-300伏的极化电场作用下,沿电场方向运动,向收集板电极11撞击形成微弱的电离电流,该信号的大小表征检测器内待测物质的浓度。信号经高灵敏度微电流放大器4放大后,可以输出到示波器、显示器和万用表观察,或通过数据采集卡送至计算机内部的色谱工作站等平台进行处理。The ionization light source adopted in the present invention is a vacuum
本发明采用的电离室为圆筒形,中间平行放置镍片或纯不锈钢片,如图4所示。电离室45下端有一进气管道12,侧面有一出气管道13,内有电极杆46,电离室45位于电离室外罩47内,真空紫外灯3位于电离室45上端,中间有垫片15和44,真空紫外灯3外有一不锈钢套41,中间隔有一个聚四氟圈42,通过不锈钢套41上的总紧固螺栓43将真空紫外灯3和电离室45固定在不锈钢套41与电离室外罩47构成的腔体内。为提高灵敏度和离子收集效率,圆筒的容积应该适当小一点,直径为20毫米左右。The ionization chamber adopted in the present invention is cylindrical, and nickel sheets or pure stainless steel sheets are placed in parallel in the middle, as shown in FIG. 4 . There is an
由于紫外光柱的光程约为10mm,如果VUV灯与气路方向垂直,如图5所示,会造成紫外光柱光程范围局限在从灯表面到电离室室壁的有限距离里(我们采用的约为3mm),电离的效率不会很高。如果紫外光柱与气路方向平行,如图6所示,这样就会使气体分子能够电离的几率大为增加。Since the optical path of the ultraviolet light column is about 10mm, if the VUV lamp is perpendicular to the direction of the gas path, as shown in Figure 5, the optical path range of the ultraviolet light column will be limited to a limited distance from the surface of the lamp to the wall of the ionization chamber (we use About 3mm), the efficiency of ionization will not be very high. If the ultraviolet beam is parallel to the direction of the gas path, as shown in Figure 6, the probability of ionization of gas molecules will be greatly increased.
图7为本发明的工作原理框图。所述供电系统总输入为220V交流电,通过AC-DC模块U1,输出±15V直流电压对;同时通过直流开关电源U10,输出+12V直流电压。±15V直流电压对直接与微电流放大器U3的电源输入端相连。+15V直流电压对与负高压电源小型模块U2电源输入端相连并升压至-1500V,该输出电压通过一个1.5MΩ的电阻连接到紫外灯U5。+15V直流电压接LM7805CV芯片输入产生+5V直流电压,为数字显示表U9提供工作电压。直流开关电源U10输出的+12V直流电压分别为石英玻璃外缠的电加热丝U7、555定时器、电磁阀U6、真空泵U8和U4供电。Fig. 7 is a working principle block diagram of the present invention. The total input of the power supply system is 220V AC, and the AC-DC module U1 outputs a ±15V DC voltage pair; meanwhile, the DC switching power supply U10 outputs +12V DC voltage. The ±15V DC voltage pair is directly connected to the power input terminal of the micro-current amplifier U3. The +15V DC voltage pair is connected to the input terminal of the negative high-voltage power supply module U2 and boosted to -1500V, and the output voltage is connected to the ultraviolet lamp U5 through a 1.5MΩ resistor. The +15V DC voltage is connected to the input of the LM7805CV chip to generate a +5V DC voltage, which provides the working voltage for the digital display meter U9. The +12V DC voltage output by the DC switching power supply U10 supplies power for the electric heating wire U7 wrapped around the quartz glass, the 555 timer, the solenoid valve U6, the vacuum pump U8 and U4 respectively.
图8为本发明一个实施例的工作流程图。当待测物品通过检测台时,如果里面存在危险物质的话,则其会被强力吸尘器大泵抽至第一级气室并进行初级预热,然后通过第一级电磁阀控制,由真空泵进入第二级气室并进行次级预热。第二级气室进口处采取了吸附、浓缩并添加了二甲基硅氧烷膜,在第二级气室提高待测气体的浓度后,再由第二级电磁阀控制待测气体进入电离室。Fig. 8 is a working flowchart of an embodiment of the present invention. When the item to be tested passes through the detection table, if there are dangerous substances inside, it will be pumped to the first-stage air chamber by a powerful vacuum cleaner for primary preheating, and then controlled by the first-stage solenoid valve, and then enter the second-stage air chamber by the vacuum pump. Secondary air chamber and secondary preheating. The inlet of the second-stage gas chamber adopts adsorption, concentration and adds dimethyl siloxane membrane. After the concentration of the gas to be tested is increased in the second-stage gas chamber, the gas to be tested is controlled by the second-stage solenoid valve to enter the ionization chamber. room.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100650611A CN100414290C (en) | 2006-03-17 | 2006-03-17 | A safety door detection device based on photoionization detector technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100650611A CN100414290C (en) | 2006-03-17 | 2006-03-17 | A safety door detection device based on photoionization detector technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1818632A CN1818632A (en) | 2006-08-16 |
CN100414290C true CN100414290C (en) | 2008-08-27 |
Family
ID=36918732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100650611A Expired - Fee Related CN100414290C (en) | 2006-03-17 | 2006-03-17 | A safety door detection device based on photoionization detector technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100414290C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101592628B (en) * | 2009-06-30 | 2014-10-15 | 上海华质生物技术有限公司 | Device and method for increasing photoionization efficiency |
CN101887042B (en) * | 2009-07-21 | 2012-11-07 | 上海工程技术大学 | Multifunctional environment simulation test chamber for on-line detecting textile material total organic volatile |
CN105140095A (en) * | 2015-07-30 | 2015-12-09 | 安徽中杰信息科技有限公司 | One-dimensional structure diffusion ionization chamber for photoionization detection of volatile gas |
CN109752232B (en) * | 2017-11-06 | 2023-11-07 | 广州禾信仪器股份有限公司 | Gas-solid separation device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5220284A (en) * | 1991-03-13 | 1993-06-15 | Asea Brown Boveri Ltd. | Method and device for measuring the concentration of particles in a gas by ionization of the particles |
US5773833A (en) * | 1996-03-22 | 1998-06-30 | Rae Systems, Inc. | Photo-ionization detector for volatile gas measurement |
EP0995989A1 (en) * | 1998-10-22 | 2000-04-26 | Rae Systems, Inc. | Photo-ionization detector for volatile gases |
JP2003066008A (en) * | 2001-05-29 | 2003-03-05 | Rae Systems Inc | Photoionization detector and method for continuous operation and real time self cleaning |
US20030137306A1 (en) * | 2002-01-24 | 2003-07-24 | Dolgov Boris N. | Plug-in photoionization sensor |
CN1456882A (en) * | 2003-05-19 | 2003-11-19 | 北京清科园环境科技有限公司 | Photoionization gas analyzer (gas chromatograph) |
US20040080321A1 (en) * | 2002-10-24 | 2004-04-29 | Reavell Kingsley St. John | Electrostatic particle measurement |
-
2006
- 2006-03-17 CN CNB2006100650611A patent/CN100414290C/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5220284A (en) * | 1991-03-13 | 1993-06-15 | Asea Brown Boveri Ltd. | Method and device for measuring the concentration of particles in a gas by ionization of the particles |
US5773833A (en) * | 1996-03-22 | 1998-06-30 | Rae Systems, Inc. | Photo-ionization detector for volatile gas measurement |
EP0995989A1 (en) * | 1998-10-22 | 2000-04-26 | Rae Systems, Inc. | Photo-ionization detector for volatile gases |
JP2003066008A (en) * | 2001-05-29 | 2003-03-05 | Rae Systems Inc | Photoionization detector and method for continuous operation and real time self cleaning |
US20030137306A1 (en) * | 2002-01-24 | 2003-07-24 | Dolgov Boris N. | Plug-in photoionization sensor |
US20040080321A1 (en) * | 2002-10-24 | 2004-04-29 | Reavell Kingsley St. John | Electrostatic particle measurement |
CN1456882A (en) * | 2003-05-19 | 2003-11-19 | 北京清科园环境科技有限公司 | Photoionization gas analyzer (gas chromatograph) |
Also Published As
Publication number | Publication date |
---|---|
CN1818632A (en) | 2006-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100414291C (en) | Ionization chamber of a portable photoionization detector | |
CN101504388A (en) | Miniature optical ionization sensor | |
CN103969244B (en) | A kind of Portable element spectrometer for fluid sample on-line checking | |
CN202974961U (en) | Photoionization detector | |
CN201514403U (en) | Helium photoionization gas chromatography detector | |
CN102339720B (en) | Ion source device for injecting sample under atmospheric pressure | |
CN107946165A (en) | A kind of aerosol mass spectrometer for measuring nanoparticles chemical constituent | |
CN100414290C (en) | A safety door detection device based on photoionization detector technology | |
CN104570038B (en) | A kind of method and device of quick measurement radon consistence | |
CN110940722B (en) | A method and device for real-time sampling and online analysis of atmospheric pollution particles | |
CN105717092B (en) | A kind of DBD excitaton sources, DBD-AES systems and its determination method | |
CN103311089A (en) | Photoelectric-effect ion source based on carbon nano-tubes | |
CN203658269U (en) | Plasma exciting spectrum detection system based on glow discharge | |
CN204694637U (en) | Methane gas electric discharge emission spectrum pick-up unit under a kind of room temperature of microminiaturization | |
RU2503083C1 (en) | Differential ion mobility spectrometer | |
CN108269729B (en) | A flat-plate structure high-field asymmetric waveform ion mobility spectrometer | |
CN104934286A (en) | High resolution high field asymmetric waveform ion mobility spectrometer and substance detection method thereof | |
CN105719937A (en) | High-efficiency VUV photo ionization source for ionic migration spectrum | |
CN104934287A (en) | A low-field differential ion mobility spectrometer and its substance detection method | |
CN107843709A (en) | Integrated portable heavy metal quick analytic instrument and its analyzing detecting method | |
CN108088891A (en) | A kind of ion mobility spectrometry and operating method for being disposed vertically VUV radio-frequency lamps | |
CN111983008A (en) | Small photoionization detector and detection method thereof | |
CN105655227B (en) | A Dielectric Barrier Discharge Efficient Ionization Source and Its Application | |
CN101158669A (en) | Bidirectional pulse ionization detector | |
CN1952654A (en) | Gas detection device and method based on field ionization effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080827 |