CN100382869C - Molecular blotting solid phase microextraction coating preparation method - Google Patents

Molecular blotting solid phase microextraction coating preparation method Download PDF

Info

Publication number
CN100382869C
CN100382869C CNB2006100342201A CN200610034220A CN100382869C CN 100382869 C CN100382869 C CN 100382869C CN B2006100342201 A CNB2006100342201 A CN B2006100342201A CN 200610034220 A CN200610034220 A CN 200610034220A CN 100382869 C CN100382869 C CN 100382869C
Authority
CN
China
Prior art keywords
coating
quartz fibre
phase microextraction
solid phase
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100342201A
Other languages
Chinese (zh)
Other versions
CN1843551A (en
Inventor
李攻科
胡小刚
胡玉玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CNB2006100342201A priority Critical patent/CN100382869C/en
Publication of CN1843551A publication Critical patent/CN1843551A/en
Application granted granted Critical
Publication of CN100382869C publication Critical patent/CN100382869C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention discloses a method for preparing a molecularly imprinted solid-phase microextraction coating layer. The method has the following steps that the processes of alkali washing, acid washing, activation and silylation processing are carried out on quartz fiber; template molecules and function monomers are loaded in solvent to be automatically assembled; a cross linking agent and an initiator are added, and the silanized quartz fiber is inserted to carry out thermal-initiated polymerization; the fiber is taken out and aged; the coating steps are repeated until the thickness of the coating layer achieves the requirement; the template molecules are eluted and removed. Compared with the commercialized coating layer, the prometryne molecularly imprinted solid-phase microextraction coating layer prepared by the method has good molecular recognition performance on triazine herbicides. The coating layer is uniform and compact, is in a loosening porous structure, and has no rupture or shedding phenomenon after being used for a long time. The thickness can be controlled through the coating frequency, and the repetitiveness is good. An extraction head and a liquid phase chromatography can be used together, and are suitable to separate and enrich triazine herbicides of complex base bodies of environmental samples, foods and the like.

Description

A kind of preparation method of molecular blotting solid phase microextraction coating
Technical field
The invention belongs to the chemical analysis test instrument field, relate to the preparation method of molecular blotting solid phase microextraction coating.Be applicable to microsphere in the complicated substrates such as biology, medicine, environmental sample and food and the separating and enrichment an of compounds of structural similarity with it.
Background technology
Complicated substrate will rely on the sample pre-treatments technology of efficient and high selectivity as trace, ultra trace species analysis in biological, medicine, environmental sample and the food.In the chromatography process, sample pretreatment is normally the most consuming time and be difficult for the step of automation, also is the most key step of generally acknowledging at present.But with respect to the development of instrument analysis technology, the sample pre-treatments Progress in technique is slower always.
Belardi in 1989 and Pawliszyn have proposed SPME (Solid-Phase Microextraction, SPME) technology, SPME is based on analyte flowing mutually and being fixed on the principle that two-phase is distributed between the macromolecular solid phasing of fused silica fiber surface, realizes the organic molecule in the sample is extracted and enrichment.Directly desorb in the coupling instrument, sample introduction and analysis then greatly simplified the sample pretreatment process, improved analysis speed and sensitivity.Extract with traditional sample pre-treatments technology such as liquid-liquid extraction, Soxhlet, SPE compares, overcome need to use a large amount of solvents and sample, the processing time is long, operating procedure is many, easily produce secondary pollution, be difficult for shortcoming such as on-line coupling, has obtained extensive use aspect the sample pre-treatments such as environment, food, biology and medicine comprising.In the SPME process, except the character of sampling condition and analyte itself, the material of fiber coat is a most critical.But present commercial SPME extracting head is mainly produced by Suplco company, and coating only has dimethyl silicone polymer (PDMS), dimethyl silicone polymer/vinyl benzene (PDMS/DVB), polypropylene acid esters (PA), polyethylene glycol/dimethyl silicone polymer (CAR/PDMS), carbon molecular sieve/vinyl benzene (CW/DVB) to wait a few.The preparation of these coatings all is that high polymer is fixed on the surface of quartz fibre by physical methods such as high temperature heating, and machinery and heat endurance are all poor, and under the situation of directly extraction, coating very easily comes off or ruptures.And coating act as the master with non-specific adsorption, and selectivity is not high, still has the close base matter of a large amount of chemistry, physical property simultaneously by enrichment when sample pre-treatments.Bibliographical information is constantly arranged in recent years, and commercialization SPME coating can run into bigger difficulty (Wu, J.and J.Pawliszyn.2001.J.Chromatogr.A 909:37-52 when handling polarity or alkaline drug; Eisert, R.and J.Pawliszyn.1997.Anal.Chem.69:3140-3147).Though some bibliographical informations the development work of new SPME coating, as polysiloxanes-fullerene (Xiao, C.H., S.Q.Han, Z.Y.Wang, J.Xing, and C.Y.Wu.2001.J.Chromatogr.A 927:121-130), crown ether (Zeng, Z.R., W.L.Qiu, and Z.F.Huang.2001.Anal.Chem.73:2429-2436), calixarenes (Li, X.J., Z.R.Zeng, S.Z.Gao, and H.B.Li.2004.J.Chromatogr.A 1023:15-25) etc., selectivity improves with respect to the commercialization coating, but mainly be the organic environment pollutant that is used to measure volatilization or half volatile, selectivity is still strong inadequately.Coating method is except that traditional physics coating process, and what be widely adopted at present also has sol-gel process, and the coating of this method preparation has better chemical stability, but exists the relatively poor problem of repeatability in being coated with the stain process.The coating material that the exploitation selectivity is higher, stability is better, be used to extract polarity and non-VOC will be an important directions of a period of time SPME technical development from now on.
(Molecular Imprinting, MI) technology is that the target molecule and the function monomer that will separate assembled in advance by covalently or non-covalently acting on to molecular engram, obtains polymer with the crosslinking agent copolymerization.After removing target molecule, form with the target molecule spatial complementary in the polymer and have " hole " in predetermined multiple action site, the space structure of target molecule is had " memory " effect, can high selectivity discern the microsphere in the complex sample.Molecularly imprinted polymer (Molecularly ImprintedPolymer, MIP) preparation is simple, can use repeatedly, mechanical strength is higher, good stability all shows good prospects for application in fields such as chromatographic stationary phase, SPE material, mimetic enzyme catalysis, chemical sensor, membrane separation techniques.The characteristics that the MIP selectivity is high make it to be suitable as very much the coating material of SPME, and Koster has been tentative research work (Koster, E.H.M on the one hand at this, C.Crescenzi, W.D.Hoedt, K.Ensing, and G.J.de.Jong.2001.Anal.Chem.73:3140-3145).Prepared Clenbuterol MIP solid-phase micro-extraction coating is to β 2-excitant has higher selectivity.But coating layer thickness is uncontrollable, coating method repeatability relatively poor (RSD ≈ 15%), and with the SPME extracting head of this method preparation can't with the liquid chromatogram coupling, practicality is not strong.
Summary of the invention
At the limitation of above-mentioned SPME coating material, the objective of the invention is target molecule MIP to be coated with and steep the quartz fibre surface by chemical bonding effect and free radicals copolymerization reaction at aspects such as selectivity, stability, repeatability.Simultaneously, by adopting repeatedly coating method and optimizing polymerizing condition, realize MIP solid-phase micro-extraction coating controllable thickness, raising is coated with the repeatability of stain and the stability of coating.MIP selectivity height, good stability and SPME technology characteristics easy and simple to handle, easy automation are combined, make SPME obtain higher selectivity, can be efficiently from complex sample, separate, a compounds of enrichment target molecule and structural similarity, the removing matrix disturbs, thereby the reduction detection limit improves precision and the accuracy analyzed.
The present invention is achieved through the following technical solutions:
(1) quartz fibre is carried out alkali cleaning, pickling, activates dehydration down at 150 ℃, carry out silanization with silylating reagent then and handle with unsaturated double-bond;
(2) very propane trimethyl acrylic ester, toluene are respectively function monomer, crosslinking agent and polymer solvent with methacrylic acid, three hydroxyl first, template molecule, function monomer, crosslinking agent three's mol ratio is 1: 4: 4, function monomer adds the volume of crosslinking agent and the ratio of used polymer solvent volume is 1: 6, and the template molecule and the function monomer of said ratio placed the polymer solvent self assembly;
(3) crosslinking agent and the initator of adding proportioning in the solution in (2) step under the condition of no oxygen, insert the silanization quartz fibre, and heat causes copolyreaction;
(4) polymerization certain hour before polymeric solution solidifies, takes out quartz fibre, and is aging;
(5) (2)-(4) go on foot to coating layer thickness and reach requirement more than repeating on the same quartz fibre;
(6) wash-out is removed template molecule in the molecularly imprinted polymer coating.
Molecularly imprinted polymer is generally dystectic solid phase high molecular polymer, and adopt physical method to be coated with and steep difficult the realization, and problems such as same existence comes off, fracture.The present invention adopts the silylating reagent with unsaturated double-bond that quartz fibre is handled, and quartz fibre has more silicon hydroxyl through overpickling and alkali cleaning rear surface, and behind the silylating reagent generation Silanization reaction unsaturated double-bond is bonded to the quartz fibre surface.This quartz fibre is inserted in the polymeric solution of preparation MIP, unsaturated double-bond participates in the free radicals copolymerization reaction of MIP, steeps the quartz fibre surface thereby MIP is coated with by chemical bond.Overcome that the physics coating method easily comes off, shortcoming such as fracture and sol-gel process poor repeatability.
The silanization of quartz fibre is handled, be prone to since after the alkali cleaning, pickling the quartz fibre water absorbent surface cause silicon hydroxyl inactivation, silanization is handled not exclusively, thereby makes the MIP coating produce problems such as lack of homogeneity, coverage rate are low, compactness difference.The present invention takes the quartz fibre after pickling, the alkali cleaning is activated dehydration method under 150 ℃, and coating uniformity, coverage rate, compactness are all improved fully.
Ratio between synthetic function monomer, crosslinking agent, polymer solvent and each reactant that is adopted of MIP directly influences the key issues such as feasibility of form, thickness and the coating operation of MIP coating.The present invention adopts methacrylic acid, trimethylol-propane trimethacrylate, toluene to be respectively function monomer, crosslinking agent and polymer solvent; By optimizing, selecting template molecule, function monomer, crosslinking agent three's mol ratio is 1: 4: 4, and function monomer adds the volume of crosslinking agent and the ratio of used polymer solvent volume is 1: 6.The MIP coating of preparation is even, fine and close, and the surface is a loose and porous structure.Help increasing the coating specific area, reduce the diffusional resistance of extraction and desorb, improve the repeatability of coating stability and coating operation.
The SPME extracting head generally adopts the quartz fibre preparation, and when preparing the MIP coating by copolyreaction, quartz fibre and polymeric solution are solidified togather fully and can't extract after the polymerization.Take out quartz fibre if break polymer into pieces back, the uniformity of coating and the repeatability of coating operation can not get guaranteeing at all, and quartz fibre is frangible.The present invention adopts the method for control polymerization time, and after being aggregated to certain hour, polymeric solution therefrom takes out quartz fibre before solidifying.Guarantee that promptly fiber does not rupture, can improve the uniformity of coating and the repeatability of coating operation again.This moment, the MIP degree of cross linking was not high enough, and coating is insecure, must be placed under the no oxygen condition aging a period of time under (for example under the nitrogen protection) and conditions of polymerization temperature vary, with the degree of cross linking of raising MIP.
When being coated with stain MIP coating, because quartz fibre must take out before polymeric solution solidifies, polymerization time is restricted, and causes the MIP coating layer thickness less.The present invention adopts the method repeatedly be coated with stain to realize control to thickness, after promptly quartz fibre has been coated with 1 time, by same procedure carry out the 2nd, 3 on its surface ... inferior MIP is coated with stain, reaches requirement until thickness.Because molecularly imprinted polymer does not reach crosslinked fully, so last time be coated with the remained on surface of stain coating unsaturated double-bond was arranged, can participate in being coated with the copolyreaction of stain next time, all link together between the adjacent coating, can guarantee coating stability and be coated with stain repeatability with the chemical bonding effect.Coating layer thickness and being coated with is the good linear relation between the hierachy number, can be by being coated with hierachy number control coating layer thickness.
Description of drawings
Fig. 1. prometryn molecular blotting solid phase microextraction coating preparation process schematic diagram
Fig. 2. the electron scanning micrograph of prometryn molecular blotting solid phase microextraction coating (300 times, it is 10 that coating is coated with the stain number of times)
Fig. 3. the electron scanning micrograph of prometryn molecular blotting solid phase microextraction coating (5000 times, it is 10 that coating is coated with the stain number of times)
Fig. 4. different coating SPME extracting head extraction prometryn liquid chromatogram (prometryn MIP and blank polymer (NIP, except that do not add template molecule in building-up process, all the other steps and MIP are identical) coating extracting head extraction 3mL 0.005g/mL prometryn benzene mark liquid; PDMS-DVB, PDMS, PA coating extraction 3mL 0.5g/mL prometryn benzene mark liquid; Peak 1 is a benzene, and peak 2 is a prometryn.Even concentration increases by 100 times, three kinds of commercial coatings to the extracting power of prometryn still far below prometryn MIP coating)
Fig. 5. prometryn MIP, blank polymer coating extracting head extraction 0.005g/mL prometryn, six kinds of similar triazine herbicides of structure and benzene performance evaluation figure
The specific embodiment
Present embodiment describes in detail the present invention, but does not limit protection scope of the present invention with this as being example with the prometryn.
As shown in Figure 1, the preparation method of prometryn molecular blotting solid phase microextraction coating is as follows:
(1) quartz fibre was put into 1.0mol/L NaOH alkali wash water soaking at room temperature 1 hour, taken out, use distilled water flushing three times; Quartz fibre after the alkali cleaning is put into 1.0mol/L HCl pickle immediately and soaked 1 hour, takes out, and is clean with distilled water flushing, removes the HCl of remained on surface, puts into culture dish and places 150 ℃ of activation of baking oven 1 hour.Take out quartz fibre from baking oven, put into 10% (V/V) 3-methacryl-propyl group-trimethoxy silane silicon acetone soln immediately, Silanization reaction took out after 1 hour, and with washed with methanol three times, nitrogen dries up.
(2) add 19.44mL toluene, 0.4827g prometryn (2mmol) and 0.68mL methacrylic acid function monomer (8mmol) respectively in the ground conical flask, fully shake up, room temperature was placed 12 hours.
(3) in above-mentioned solution, add 2.56mL trimethylol-propane trimethacrylate crosslinking agent (8mmol) and 25.6mg azodiisobutyronitrile initator, fully shake up.Get test tube, add the above polymeric solution of 1.5mL, ultrasonic degas.In test tube, put into a quartz fibre of handling through silanization, logical nitrogen deoxygenation.Test tube seals with plug, places 60 ℃ of heated polymerizables of solid heating module of Nitrogen evaporator.
(4) examine solution and change, after 1~3 hour, when the approaching curing of polymeric solution, open plug, at the uniform velocity extract quartz fibre, be transferred in the sky test tube, letting nitrogen in and deoxidizing seals the back with plug and continues to heat 3~6 hours down at 60 ℃.
(5) take out quartz fibre, go on foot according to above-mentioned 2~4 and carry out being coated with the second time stain.The rest may be inferred, thereby make repeatedly the prometryn MIP coating quartz fibre of coating 10 times.
(6) will be coated with the prometryn MIP coating quartz fibre that steeps 10 times soaks repeatedly with 5mL 10% (V/V) acetate methanol solution in test tube, each soak time is 1 hour, remove the prometryn template molecule with wash-out, do not have the prometryn molecule through liquid chromatographic detection until soak.After soaking 24 hours once more, dry up with nitrogen.
Present embodiment prepares the prometryn molecular blotting solid phase microextraction coating and has the following advantages:
1. owing to adopt the chemical bonding method, the free radicals copolymerization reaction by optimal conditions prepares the MIP coating, and the taking-up of quartz fibre controls by polymerization time and polymeric solution state of cure, and preparation method's (as shown in Figure 1) has than high duplication.Prepare 10 prometryn MIP coating SPME extracting head simultaneously, every extracting head repeats to be coated with stain 10 times, and average coating layer thickness is 25 μ m, and precision is 2.9%.
2. the prepared coating that goes out is even, fine and close, and the surface is loose and porous structure (shown in Fig. 2-3).Coating has good chemistry and mechanical stability, use more than 100 time in direct extraction mode after, coating without any the fracture, peel off or corrosion phenomenon.
3. can be by being coated with the thickness of hierachy number control coating, coating layer thickness and be coated with and be good linear relationship between the hierachy number, coefficient R is 0.996.
4. utilize the prepared prometryn MIP coating of method of the present invention, the herbicide prometryn is had very high selective extraction capacity, can be used for the separation and the enrichment of trace prometryn.By comparison, commercialization coating such as PDMS, PDMS-DVB, PA to the extracting power of trace prometryn very a little less than, as shown in Figure 4.
5. the prometryn MIP coating of utilizing the method for the invention preparation all has good selective extraction capacity to other closely similar triazine herbicide of structure and prometryn molecule, non-structural similarity thing such as benzene etc. there is not selective extraction capacity, as shown in Figure 5.Can be used for the separation and the enrichment of trace triazine herbicide in the complex sample.

Claims (5)

1. the preparation method of a molecular blotting solid phase microextraction coating, carry out according to the following steps:
(1) quartz fibre is carried out alkali cleaning, pickling, activates dehydration down at 150 ℃, carry out silanization with silylating reagent then and handle with unsaturated double-bond;
(2) be respectively function monomer, crosslinking agent and polymer solvent with methacrylic acid, trimethylol-propane trimethacrylate, toluene, template molecule, function monomer, crosslinking agent three's mol ratio is 1: 4: 4, function monomer adds the volume of crosslinking agent and the ratio of used polymer solvent volume is 1: 6, and the template molecule and the function monomer of said ratio placed the polymer solvent self assembly;
(3) crosslinking agent and the initator of adding proportioning in the solution in (2) step under the condition of no oxygen, insert the silanization quartz fibre, and heat causes copolyreaction;
(4) polymerization certain hour before polymeric solution solidifies, takes out quartz fibre, and is aging;
(5) (2)-(4) go on foot to coating layer thickness and reach requirement more than repeating on the same quartz fibre;
(6) wash-out is removed template molecule in the molecularly imprinted polymer coating.
2. the preparation method of molecular blotting solid phase microextraction coating as claimed in claim 1 is characterized in that, described template molecule is a prometryn.
3. the preparation method of molecular blotting solid phase microextraction coating as claimed in claim 1 is characterized in that, the temperature that described quartz fibre activates after process alkali cleaning, pickling is 150 ℃, and soak time is no less than 1 hour.
4. the preparation method of molecular blotting solid phase microextraction coating as claimed in claim 1 or 2 is characterized in that, described silylating reagent with unsaturated double-bond is 3-methacryl-propyl group-trimethoxy silane, and the silanization time is 1 hour.
5. the preparation method of molecular blotting solid phase microextraction coating as claimed in claim 1 or 2 is characterized in that, described quartz fibre, therefrom takes out when the approaching curing of polymeric solution after 1~3 hour in copolyreaction, and taking-up is placed on 60 ℃ and wore out 3-6 hour down.
CNB2006100342201A 2006-03-13 2006-03-13 Molecular blotting solid phase microextraction coating preparation method Expired - Fee Related CN100382869C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100342201A CN100382869C (en) 2006-03-13 2006-03-13 Molecular blotting solid phase microextraction coating preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100342201A CN100382869C (en) 2006-03-13 2006-03-13 Molecular blotting solid phase microextraction coating preparation method

Publications (2)

Publication Number Publication Date
CN1843551A CN1843551A (en) 2006-10-11
CN100382869C true CN100382869C (en) 2008-04-23

Family

ID=37062538

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100342201A Expired - Fee Related CN100382869C (en) 2006-03-13 2006-03-13 Molecular blotting solid phase microextraction coating preparation method

Country Status (1)

Country Link
CN (1) CN100382869C (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410283C (en) * 2006-12-20 2008-08-13 南开大学 Resveratrol imprinted polymer preparation and extraction method for resveratrol
CN101637668B (en) * 2009-01-14 2011-07-20 中山大学 Device and method for combined use of molecular imprinting solid phase microextraction and hollow fiber liquid phase microextraction, and application thereof
CN101590394B (en) * 2009-06-18 2012-09-26 中山大学 Preparation method and use of molecular imprinting-absorbing extraction stirring rod
CN102294131B (en) * 2011-06-20 2013-06-19 大连理工大学 Electricity enhanced molecular imprinting solid phase micro-extraction method
CN102784628B (en) * 2012-08-15 2014-07-30 华南师范大学 Solid-phase micro extraction fiber extraction head and preparation method thereof
CN103341355A (en) * 2013-06-18 2013-10-09 大连理工大学 Preparation method for molecularly imprinted monolithic column solid-phase microextraction fiber
CN106622181B (en) * 2015-10-30 2019-08-02 中国科学院大连化学物理研究所 A kind of immobilized metal affinity chromatography material and its preparation and application
CN107629166B (en) * 2017-11-01 2020-11-27 中国药科大学 Preparation method and application of thermosensitive macrolide antibiotic molecularly imprinted solid-phase microextraction fiber
CN109633023B (en) * 2018-12-29 2022-02-18 上海微谱化工技术服务有限公司 Method for analyzing odor substances in automobile material
CN110018142B (en) * 2019-03-20 2021-10-22 西南交通大学 Composite fluorescent substrate, preparation method and application thereof
CN110585758B (en) * 2019-09-18 2021-10-19 昆明理工大学 Construction method of selectable array type analysis platform based on solid-phase microextraction of various template molecularly imprinted polymers
CN112934200B (en) * 2021-02-04 2023-01-31 昆明理工大学 Supermolecule imprinting solid-phase microextraction fiber coating, and preparation method and application thereof
CN113385154B (en) * 2021-07-15 2022-09-27 吉林化工学院 Molecular imprinting sol-gel coating fiber tube internal solid phase micro-extraction device and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239293A (en) * 1997-02-26 1998-09-11 Nissan Chem Ind Ltd Selective solid-phase extraction method of triazine herbicide
US20050016923A1 (en) * 2003-07-22 2005-01-27 Kraft Foods Holdings, Inc. Molecular imprinting of solute on cellulose/silica composite, and products and uses thereof
CN1601272A (en) * 2004-10-26 2005-03-30 湖南纽尔科技有限公司 Ethylene equol molecular engram solid phase extracting small pole and its its prepn process
CN1632563A (en) * 2005-01-06 2005-06-29 湖南纽尔科技有限公司 Streptomycin molecular engram solid phase extraction column and preparing process and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239293A (en) * 1997-02-26 1998-09-11 Nissan Chem Ind Ltd Selective solid-phase extraction method of triazine herbicide
US20050016923A1 (en) * 2003-07-22 2005-01-27 Kraft Foods Holdings, Inc. Molecular imprinting of solute on cellulose/silica composite, and products and uses thereof
CN1601272A (en) * 2004-10-26 2005-03-30 湖南纽尔科技有限公司 Ethylene equol molecular engram solid phase extracting small pole and its its prepn process
CN1632563A (en) * 2005-01-06 2005-06-29 湖南纽尔科技有限公司 Streptomycin molecular engram solid phase extraction column and preparing process and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fibers Coated with Molecularly Imprinted Polymersfor Solid-Phase Microextraction. Emile H. M. Koster, et al.Analytical Chemistry,Vol.73 No.13. 2001 *
分子印迹聚合物制备技术研究进展. 胡小刚等.华南师范大学学报(自然科学版),第3期. 2003 *

Also Published As

Publication number Publication date
CN1843551A (en) 2006-10-11

Similar Documents

Publication Publication Date Title
CN100382869C (en) Molecular blotting solid phase microextraction coating preparation method
Turiel et al. Molecularly imprinted polymers-based microextraction techniques
Djozan et al. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber
CN103055830B (en) Preparation method for solid-phase micro-extraction head based on single-stranded DNA aptamer modified graphene oxide coating
Martín-Esteban Recent molecularly imprinted polymer-based sample preparation techniques in environmental analysis
Sarafraz-Yazdi et al. Application of molecularly-imprinted polymers in solid-phase microextraction techniques
Hu et al. A novel molecularly imprinted solid-phase microextraction fiber coupled with high performance liquid chromatography for analysis of trace estrogens in fishery samples
CN101590394B (en) Preparation method and use of molecular imprinting-absorbing extraction stirring rod
Turiel et al. Molecularly imprinted polymers for solid‐phase microextraction
CN102489272B (en) Solid-phase micro-extraction coating prepared on basis of polydopamine modified stainless steel wires and preparation method and application thereof
CN101565485B (en) Method for preparing molecularly imprinted polymers of ethinylestradiol analogue
CN104258833B (en) Preparation method based on aptamer/nanometer gold/porous polymer coating novel solid phase micro extraction fiber
CN102416313B (en) Bisphenol A dummy template molecularly imprinted stir bar and preparation method thereof
Martín-Esteban Membrane-protected molecularly imprinted polymers: Towards selectivity improvement of liquid-phase microextraction
CN108722373B (en) Solid-phase microextraction fiber coating and preparation method and application thereof
CN102169109B (en) Method for preparing estrogen substitution template molecular imprinting solid phase micro extraction head
Brüggemann Molecularly imprinted materials—receptors more durable than nature can provide
Liu et al. Novel stir bar array sorptive extraction coupled with gas chromatography–mass spectrometry for simultaneous determination of three β2-agonist residues in pork
CN103736468A (en) Preparation method of dual-template molecular imprinting adsorption and extraction stirring rod
CN107629166B (en) Preparation method and application of thermosensitive macrolide antibiotic molecularly imprinted solid-phase microextraction fiber
Pan et al. Preparation of solid-phase microextraction fibers by in-mold coating strategy for derivatization analysis of 24-epibrassinolide in pollen samples
CN106519150B (en) A kind of preparation method of fluorescence polarization fluorescence magnetic molecular engram sensor
CN102784628B (en) Solid-phase micro extraction fiber extraction head and preparation method thereof
CN104606919B (en) Preparation method of nucleic acid aptamer/nano-gold modified solid phase microextraction quartz capillary tube
CN101672820A (en) Thermal polymerization preparation method of tetracycline molecular imprinted polymer membrane electrode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080423