CN100369016C - A controller for synchronous dynamic random access memory - Google Patents
A controller for synchronous dynamic random access memory Download PDFInfo
- Publication number
- CN100369016C CN100369016C CNB2005100870161A CN200510087016A CN100369016C CN 100369016 C CN100369016 C CN 100369016C CN B2005100870161 A CNB2005100870161 A CN B2005100870161A CN 200510087016 A CN200510087016 A CN 200510087016A CN 100369016 C CN100369016 C CN 100369016C
- Authority
- CN
- China
- Prior art keywords
- random access
- access memory
- dynamic random
- synchronous dynamic
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 34
- 238000003491 array Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 9
- 230000004913 activation Effects 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Landscapes
- Dram (AREA)
Abstract
本发明属于空间电子技术领域,具体地说,本发明涉及一种同步动态随机存取存储器的控制器芯片,包括片选及地址锁存电路、同步动态随机存取存储器数据总线接口电路;其特征在于,还包括指令译码及刷新控制单元;所述指令译码及刷新控制单元根据接收到的控制用CPU的指令,产生同步动态随机存取存储器阵列所需的控制信号;所述片选及地址锁存电路根据接收到的控制用CPU的指令,产生同步动态随机存取存储器阵列所需的片选、时钟使能、地址信号。本发明的优点在于:1)适用于超大容量存储器;2)可靠性更高,更适用于空间辐射环境;3)实现简单灵活。
The invention belongs to the technical field of space electronics. Specifically, the invention relates to a controller chip of a synchronous dynamic random access memory, including a chip selection and address latch circuit, and a synchronous dynamic random access memory data bus interface circuit; its characteristics In that, it also includes an instruction decoding and refreshing control unit; the instruction decoding and refreshing control unit generates the control signals required by the synchronous dynamic random access memory array according to the received control CPU instruction; the chip selection and The address latch circuit generates chip select, clock enable and address signals required by the synchronous dynamic random access memory array according to the received instructions of the control CPU. The invention has the advantages of: 1) it is suitable for super-large-capacity storage; 2) it has higher reliability and is more suitable for the space radiation environment; 3) it is simple and flexible to implement.
Description
技术领域technical field
本发明属于空间电子技术领域,具体地说,本发明涉及一种基于软件控制的同步动态随机存取存储器控制器芯片,该芯片用于与空间飞行器CPU接口的同步动态随机存取存储器阵列的数据存储与回放及数据保持控制。The invention belongs to the technical field of space electronics, and in particular, the invention relates to a software-controlled synchronous dynamic random access memory controller chip, which is used for synchronous dynamic random access memory array data of a space vehicle CPU interface Store and playback and data retention control.
背景技术Background technique
空间飞行器在其执行任务过程中产生大量数据,这些数据由于受飞行器——地面数据链路的时间及带宽限制,通常需要由大容量存储器暂存,在飞行器过站时下行回放。大容量存储器的存储介质通常采用磁介质或固态存储介质,其中固态存储介质中主要有同步动态随机存取存储器存储器(SDRAM)及闪速存储器(FLASH存储器)。SDRAM具有机械结构简单、可靠性高、数据可随机存取、数据存取速度快等优点,但由于同步动态随机存取存储器本身固有的需要动态刷新才能保持数据不丢失的特性,也存在刷新控制复杂、功耗较大的缺点,需要专门控制器进行控制。现有的SDRAM控制器一般有如下几种:一种是专用SDRAM接口芯片,这种控制器接口固定,访问容量有限,不能满足飞行器对于存储器超大容量的要求;另一种是带有SDRAM接口的DSP,例如TMS320C6000系列,其缺点是容量有限,不易扩展;还有一种是针对各种应用设计的基于FPGA的SDRAM控制器,如Xilinx公司提供的SDRAM控制器IP核,但这些SDRAM控制器除同样容量有限外,还往往采用状态机作为其控制器的核心,未考虑空间辐射环境下的单粒子效应可能导致状态机的错误动作,从而使SDRAM存储芯片进入错误状态,导致数据丢失。Space vehicles generate a large amount of data during their missions. Due to the time and bandwidth limitations of the aircraft-ground data link, these data usually need to be temporarily stored in a large-capacity memory and played back down when the aircraft passes the station. The storage medium of the large-capacity memory usually adopts a magnetic medium or a solid-state storage medium, wherein the solid-state storage medium mainly includes a synchronous dynamic random access memory (SDRAM) and a flash memory (FLASH memory). SDRAM has the advantages of simple mechanical structure, high reliability, random access to data, and fast data access speed. However, due to the inherent characteristics of synchronous dynamic random access memory itself that requires dynamic refresh to keep data from being lost, there is also a refresh control The shortcomings of complexity and high power consumption require a special controller to control. The existing SDRAM controllers generally have the following types: one is a dedicated SDRAM interface chip, which has a fixed interface and limited access capacity, which cannot meet the requirements of the aircraft for a large memory capacity; the other is a chip with an SDRAM interface. DSP, such as the TMS320C6000 series, has the disadvantage of limited capacity and is not easy to expand; there is also an FPGA-based SDRAM controller designed for various applications, such as the SDRAM controller IP core provided by Xilinx, but these SDRAM controllers have the same In addition to the limited capacity, the state machine is often used as the core of its controller. The single event effect in the space radiation environment may cause the wrong action of the state machine, so that the SDRAM memory chip enters an error state, resulting in data loss.
发明内容Contents of the invention
本发明的目的在于提供一种适于空间飞行器使用的,基于软件控制的同步动态随机存取存储器控制器(即SDRAM控制器),该SDRAM控制器能够在软件控制下将数据存储到固态存储器阵列的任意指定地址的存储单元中,并能够将任意指定地址的存储单元中的数据读出,同时能够利用软件单独控制各SDRAM芯片进入自动刷新(AUTOREFRESH)模式。The object of the present invention is to provide a kind of synchronous dynamic random access memory controller (being SDRAM controller) based on software control that is suitable for space vehicle use, this SDRAM controller can store data to solid-state memory array under software control In the storage unit of any specified address, the data in the storage unit of any specified address can be read out, and at the same time, the software can be used to independently control each SDRAM chip to enter the automatic refresh (AUTOREFRESH) mode.
为实现上述发明目的,本发明提供的基于软件控制的同步动态随机存取存储器控制器,包括片选及地址锁存电路、同步动态随机存取存储器数据总线接口电路;其特征在于,还包括指令译码及刷新控制单元,其中指令译码及刷新控制单元、片选及地址锁存电路与控制用CPU的控制总线及数据总线相连;所述片选及地址锁存电路根据接收到的控制用CPU的指令,产生同步动态随机存取存储器阵列所需的片选、时钟使能、地址信号;所述指令译码及刷新控制单元根据接收到的控制用CPU的指令,产生同步动态随机存取存储器阵列所需的控制信号;同步动态随机存取存储器数据总线接口电路与CPU数据总线、同步动态随机存取存储器阵列的数据总线及指令译码及刷新控制单元相连,从而完成CPU与同步动态随机存取存储器阵列间的数据交换及同步动态随机存取存储器的自动刷新功能。In order to realize the above-mentioned object of the invention, the synchronous dynamic random access memory controller based on software control provided by the present invention comprises a chip selection and address latch circuit, a synchronous dynamic random access memory data bus interface circuit; it is characterized in that it also includes an instruction Decoding and refresh control unit, wherein the instruction decoding and refresh control unit, chip selection and address latch circuit are connected with the control bus and data bus of the CPU for control; The instructions of the CPU generate chip selection, clock enable, and address signals required by the synchronous dynamic random access memory array; the instruction decoding and refresh control unit generates synchronous dynamic random access according to the received instructions of the control CPU The control signal required by the memory array; the synchronous dynamic random access memory data bus interface circuit is connected with the CPU data bus, the data bus of the synchronous dynamic random access memory array and the instruction decoding and refresh control unit, thereby completing the CPU and the synchronous dynamic random access memory Data exchange between access memory arrays and automatic refresh function of synchronous dynamic random access memory.
所述指令译码及刷新控制单元产生的控制信号包括同步动态随机存取存储器阵列所需的RAS、CAS、WE、DQM信号。The control signals generated by the instruction decoding and refresh control unit include RAS, CAS, WE, and DQM signals required for synchronizing the DRAM array.
所述指令译码及刷新控制单元还产生地址输出控制信号,该信号控制片选及地址锁存电路输出行地址或列地址;指令译码及刷新控制单元还产生数据输入输出控制信号,该信号控制同步动态随机存取存储器数据总线接口电路的数据流向。The instruction decoding and refreshing control unit also produces an address output control signal, which controls the chip selection and address latch circuit to output row address or column address; the instruction decoding and refreshing control unit also produces a data input and output control signal, and the signal Control the data flow direction of the synchronous dynamic random access memory data bus interface circuit.
所述指令译码及刷新控制单元会自动产生自动刷新指令,对同步动态随机存取存储器进行定期刷新,以保持数据存储的正确。The instruction decoding and refresh control unit will automatically generate an automatic refresh instruction to periodically refresh the synchronous dynamic random access memory to keep the data storage correct.
所述控制器可以支持容量最大至4096G bits的存储器阵列。The controller can support memory arrays with a maximum capacity of 4096G bits.
所述控制器电路全部用硬件实现,写入一片FPGA(现场可编程门阵列)芯片。The controller circuit is all realized by hardware and written into a chip of FPGA (Field Programmable Gate Array).
与现有技术相比,本发明的优点在于:1)适用于超大容量存储器,通过对“片选及地址锁存器”的扩展,容量可无限扩大,完全可以满足空间飞行器对于大容量存储器的容量需求。2)采用软件发指令,硬件译码的控制方式,相比较有限状态机的状态自动转换控制方式,可靠性更高,更适用于空间辐射环境。3)实现简单灵活,可以根据系统需要与其他接口电路或编译码器等电路用一片FPGA实现,从而大大提高系统的灵活性,降低整机的体积和重量。Compared with the prior art, the present invention has the advantages that: 1) it is suitable for ultra-large-capacity memory, and the capacity can be infinitely expanded by expanding the "chip select and address latch", which can fully meet the needs of space vehicles for large-capacity memory. capacity requirements. 2) The control method of sending instructions by software and decoding by hardware is more reliable than the automatic state conversion control method of the finite state machine, and is more suitable for the space radiation environment. 3) The implementation is simple and flexible, and can be implemented with a single FPGA according to system requirements and other interface circuits or codec circuits, thereby greatly improving the flexibility of the system and reducing the volume and weight of the whole machine.
附图说明Description of drawings
图1为本发明提供的SDRAM控制器的原理框图;Fig. 1 is the functional block diagram of the SDRAM controller that the present invention provides;
图2为指令译码及刷新控制单元框图;Fig. 2 is a block diagram of instruction decoding and refresh control unit;
图3为SDRAM读写时序图;Figure 3 is a timing diagram of SDRAM read and write;
图中各符号表示的意义如下,The meanings of the symbols in the figure are as follows:
Ra:a行行地址 Ca:a列列地址 BS:块选择 Qa:读出的a列数据Ra: a row address Ca: a column address BS: block selection Qa: read column a data
Db:写入b列地址的数据Db: data written to column b address
tSS:输入建立时间 tSH:输入保持时间 tCCD:列地址间延时 tRAS:行激活时间tSS: Input setup time tSH: Input hold time tCCD: Delay between column addresses tRAS: Row activation time
tRC:行周期时间 tRP:行预充电时间 tRCD:行激活到列地址时延 tCC:时钟周期tRC: row cycle time tRP: row precharge time tRCD: row activation to column address delay tCC: clock cycle
tSAC:时钟到有效输出延时tSAC: clock to valid output delay
图4为本发明实际仿真所得的SDRAM读写波形图。Fig. 4 is the SDRAM reading and writing waveform diagram obtained by the actual simulation of the present invention.
具体实施方式Detailed ways
为进一步说明本发明的目的和特征,下面结合附图及具体实施例对本发明作一详细描述,其中图1为本发明的原理框图,图2为指令译码及刷新控制单元框图,图3为SDRAM读写时序图。图4为本发明实际仿真所得SDRAM读写波形图(采用的是软件仿真,仿真平台为Modelsim)。表1为SDRAM工作所需外部指令及控制信号真值表。In order to further illustrate the purpose and characteristics of the present invention, the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments, wherein Fig. 1 is a functional block diagram of the present invention, Fig. 2 is a block diagram of instruction decoding and refresh control unit, and Fig. 3 is SDRAM read and write timing diagram. Fig. 4 is the SDRAM reading and writing wave form diagram (what adopted is software emulation, emulation platform is Modelsim) of the present invention's actual emulation gained. Table 1 is the truth table of external commands and control signals required for SDRAM work.
如图1所示,本发明由片选及地址锁存电路、指令译码及刷新控制单元、SDRAM数据总线接口电路三部分组成,其中片选及地址锁存电路、指令译码及刷新控制单元均与控制用CPU的控制总线和数据总线相连,片选及地址锁存电路产生SDRAM存储器阵列所需的片选(CS)、时钟使能(CKE)、Bank及地址信号,指令译码及刷新控制单元产生SDRAM存储器阵列所需的控制信号(RAS、CAS、WE、DQM)。SDRAM数据总线接口电路与CPU数据总线、SDRAM存储器阵列的数据总线及指令译码及刷新控制单元相连,从而完成CPU与SDRAM存储器阵列间的数据交换及SDRAM存储器的自动刷新功能。本实施例中的控制器可以支持容量最大至4096G bits的存储器阵列。As shown in Fig. 1, the present invention is made up of chip selection and address latch circuit, instruction decoding and refresh control unit, SDRAM data bus interface circuit three parts, wherein chip selection and address latch circuit, instruction decoding and refresh control unit Both are connected to the control bus and data bus of the control CPU, and the chip select and address latch circuits generate chip select (CS), clock enable (CKE), Bank and address signals required by the SDRAM memory array, and instruction decoding and refreshing The control unit generates the control signals (RAS, CAS, WE, DQM) required by the SDRAM memory array. The SDRAM data bus interface circuit is connected with the CPU data bus, the data bus of the SDRAM memory array, and the command decoding and refresh control unit, thereby completing the data exchange between the CPU and the SDRAM memory array and the automatic refresh function of the SDRAM memory. The controller in this embodiment can support a memory array with a maximum capacity of 4096G bits.
SDRAM完成读写及刷新等操作是依靠其输入控制信号CLOCK、CKE、CS、RAS、CAS、WE、DQM的不同时序及地址、数据总线上的相应地址及数据完成的。参看图3,以从某存储单元读出一个数据为例,需先给出行地址有效指令(CKE=HIGH,CSn=LOW,RAS=LOW,CAS=HIGH,WE=HIGH)及相应行地址(ADDR,A10/AP)及块(Bank)地址(BA),间隔一定时间(若干时钟周期)之后再给出读指令(CKE=HIGH,CSn=LOW,RAS=HIGH,CAS=LOW,WE=HIGH)及相应列地址(ADDR,A10/AP),在CAS Latency=3时,3个时钟周期之后,该地址的数据将会出现在数据总线(DQ)上。同样,写操作及存储器初始化、刷新、预充电等均需外部SDRAM控制器按照表1的规定给出相应指令信号。SDRAM completes read, write and refresh operations by relying on the different timing and addresses of its input control signals CLOCK, CKE, CS, RAS, CAS, WE, DQM, and the corresponding addresses and data on the data bus. Referring to Fig. 3, taking reading a data from a certain memory unit as an example, it is necessary to give the row address effective instruction (CKE=HIGH, CSn=LOW, RAS=LOW, CAS=HIGH, WE=HIGH) and the corresponding row address (ADDR , A10/AP) and the block (Bank) address (BA), give the read command (CKE=HIGH, CSn=LOW, RAS=HIGH, CAS=LOW, WE=HIGH) after a certain time interval (several clock cycles) And the corresponding column address (ADDR, A10/AP), when CAS Latency=3, after 3 clock cycles, the data of this address will appear on the data bus (DQ). Similarly, write operations and memory initialization, refresh, pre-charging, etc. require the external SDRAM controller to give corresponding command signals in accordance with the provisions of Table 1.
表1Table 1
表1中,V=有效 X=无所谓 H=逻辑高电平 L=逻辑低电平In Table 1, V=valid X=don’t matter H=logic high level L=logic low level
本发明根据计算机软件发出的指令,由指令译码及刷新控制单元进行指令译码,在此单元的输出信号端产生相应时序的RAS、CAS、WE、DQM信号,同时指令译码及刷新控制单元还控制片选及地址锁存单元产生相应的CKE、CS、BA及地址(ADDR)信号,并控制SDRAM数据总线接口单元将CPU数据总线上的数据写入到SDRAM存储器中或将数据从SDRAM存储器阵列中读到CPU数据总线上。在完成读写各时序的同时,图1的指令译码及刷新控制单元还会自动产生自动刷新指令,对SDRAM存储器进行定期刷新,以保持数据存储的正确。According to the instructions issued by the computer software, the present invention uses the instruction decoding and refresh control unit to perform instruction decoding, and the output signal end of this unit generates corresponding timing RAS, CAS, WE, DQM signals, and at the same time, the instruction decoding and refresh control unit It also controls the chip select and address latch unit to generate corresponding CKE, CS, BA and address (ADDR) signals, and controls the SDRAM data bus interface unit to write the data on the CPU data bus into the SDRAM memory or transfer the data from the SDRAM memory read from the array onto the CPU data bus. While completing the read and write sequences, the instruction decoding and refresh control unit in Figure 1 will automatically generate an automatic refresh instruction to refresh the SDRAM memory regularly to keep the data stored correctly.
图2是指令译码及刷新控制单元的内部原理框图。指令译码单元接收CPU控制总线及数据总线的指令(所有指令均列在表1中),将指令译码后信号Y1、Y2、Y3和Y4、Y5、Y6分别送到WE及DQM信号产生单元和RAS及CAS信号产生单元,同时还会产生刷新启动指令启动刷新及预充电指令产生单元产生刷新(REFRESH)及预充电指令信号PRG,WE及DQM信号产生单元和RAS及CAS信号产生单元产生符合SDRAM存储器要求时序的RAS、CAS、WE、DQM信号。同时,还将产生地址输出控制信号控制输出行地址还是列地址,产生数据输入输出控制信号以控制数据流向。Fig. 2 is an internal functional block diagram of the instruction decoding and refresh control unit. The instruction decoding unit receives the instructions of the CPU control bus and data bus (all instructions are listed in Table 1), and sends the signals Y1, Y2, Y3 and Y4, Y5, and Y6 after decoding the instructions to the WE and DQM signal generating units respectively and RAS and CAS signal generation unit, and also generate refresh start command to start refresh and pre-charge command generation unit to generate refresh (REFRESH) and pre-charge command signal PRG, WE and DQM signal generation unit and RAS and CAS signal generation unit to generate compliance SDRAM memory requires sequential RAS, CAS, WE, DQM signals. At the same time, an address output control signal will be generated to control whether to output a row address or a column address, and a data input and output control signal will be generated to control the data flow.
本实施例中,片选及地址锁存单元主要由一个6-64译码器、两个12位锁存器和一个12位二选一多路选择器组成。6-64译码器根据软件指令产生相应的CS、Bank及CKE信号;两个12位锁存器分别锁存行地址和列地址,这两路地址信号送给12位二选一多路选择器,多路选择器在地址输出控制信号的控制下输出行地址或列地址给SDRAM阵列的地址总线。In this embodiment, the chip select and address latch unit is mainly composed of a 6-64 decoder, two 12-bit latches and a 12-bit two-to-one multiplexer. The 6-64 decoder generates corresponding CS, Bank and CKE signals according to software instructions; two 12-bit latches respectively latch the row address and column address, and these two address signals are sent to the 12-bit two-to-one multi-way selection The multiplexer outputs the row address or column address to the address bus of the SDRAM array under the control of the address output control signal.
SDRAM数据总线接口单元主要由一个16位的三态门组成,三态门的控制端与接收指令译码及刷新控制单元产生的数据输入输出信号,以控制将CPU数据总线上的数据写入到SDRAM存储器中或将数据从SDRAM存储器阵列中读到CPU数据总线上。The SDRAM data bus interface unit is mainly composed of a 16-bit tri-state gate. The control terminal of the tri-state gate receives the instruction decoding and refreshes the data input and output signals generated by the control unit to control the writing of data on the CPU data bus to the SDRAM memory or read data from the SDRAM memory array to the CPU data bus.
本实施例可以支持容量最大至4096G bits的存储器阵列,值得注意的是,通过对本发明中片选及地址锁存电路的扩展,可以进一步扩大存储器阵列的容量。This embodiment can support a memory array with a maximum capacity of 4096G bits. It is worth noting that the capacity of the memory array can be further expanded by expanding the chip selection and address latch circuits in the present invention.
本实施例中的控制器电路全部用硬件实现,最后写入一片FPGA(现场可编程门阵列)芯片。The controller circuits in this embodiment are all implemented by hardware, and finally written into an FPGA (Field Programmable Gate Array) chip.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100870161A CN100369016C (en) | 2005-07-22 | 2005-07-22 | A controller for synchronous dynamic random access memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100870161A CN100369016C (en) | 2005-07-22 | 2005-07-22 | A controller for synchronous dynamic random access memory |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1900918A CN1900918A (en) | 2007-01-24 |
CN100369016C true CN100369016C (en) | 2008-02-13 |
Family
ID=37656807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100870161A Expired - Fee Related CN100369016C (en) | 2005-07-22 | 2005-07-22 | A controller for synchronous dynamic random access memory |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100369016C (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101216751B (en) * | 2008-01-21 | 2010-07-14 | 戴葵 | DRAM device with data handling capacity based on distributed memory structure |
CN101494090B (en) * | 2008-01-21 | 2014-03-19 | 南亚科技股份有限公司 | Memory access control method |
CN101539981B (en) * | 2009-05-06 | 2011-07-20 | 成都市华为赛门铁克科技有限公司 | Method, system and sensor node for controlling data security |
CN105094103A (en) * | 2015-06-09 | 2015-11-25 | 中国电子科技集团公司第三十六研究所 | DSP code solidification storage circuit applied in spacecraft |
CN111124433B (en) * | 2018-10-31 | 2024-04-02 | 华北电力大学扬中智能电气研究中心 | Program programming equipment, system and method |
CN110022101B (en) * | 2019-04-04 | 2024-04-19 | 苏州国科视清医疗科技有限公司 | FSMC-based multi-step motor driving method, circuit and device |
CN114721581A (en) * | 2021-01-04 | 2022-07-08 | 瑞昱半导体股份有限公司 | Control module for synchronous dynamic random access memory and control method thereof |
CN119336672B (en) * | 2024-12-23 | 2025-06-24 | 西安紫光国芯半导体股份有限公司 | Storage controller and electronic system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1243285A (en) * | 1998-07-24 | 2000-02-02 | 国际商业机器公司 | High-bandwidth dynamic direct access storage device with low energy-consumption mode |
KR20030051966A (en) * | 2001-12-20 | 2003-06-26 | 엘지전자 주식회사 | Private branch exchange's public line board for dsl connecting |
US20040160853A1 (en) * | 2003-02-17 | 2004-08-19 | Renesas Technology Corp. | Semiconductor memory device inputting/outputting data and parity data in burst operation |
CN1524230A (en) * | 2001-06-22 | 2004-08-25 | 英特尔公司 | Method and apparatus for active memory bus peripheral control utilizing address call sequencing |
-
2005
- 2005-07-22 CN CNB2005100870161A patent/CN100369016C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1243285A (en) * | 1998-07-24 | 2000-02-02 | 国际商业机器公司 | High-bandwidth dynamic direct access storage device with low energy-consumption mode |
CN1524230A (en) * | 2001-06-22 | 2004-08-25 | 英特尔公司 | Method and apparatus for active memory bus peripheral control utilizing address call sequencing |
KR20030051966A (en) * | 2001-12-20 | 2003-06-26 | 엘지전자 주식회사 | Private branch exchange's public line board for dsl connecting |
US20040160853A1 (en) * | 2003-02-17 | 2004-08-19 | Renesas Technology Corp. | Semiconductor memory device inputting/outputting data and parity data in burst operation |
Also Published As
Publication number | Publication date |
---|---|
CN1900918A (en) | 2007-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190189194A1 (en) | Semiconductor memory devices, memory systems and methods of operating a semiconductor memory device | |
US7778099B2 (en) | Semiconductor memory, memory system, and memory access control method | |
JP4984129B2 (en) | Data strobe synchronization circuit and method for writing at double data rate multi-bit | |
US10872646B2 (en) | Apparatuses and methods for providing active and inactive clock signals | |
US20020054516A1 (en) | Semiconductor device | |
CN100479058C (en) | Latch circuit and synchronous memory including the same | |
US8125847B2 (en) | Semiconductor memory device and access method thereof | |
US20120079180A1 (en) | DRAM Controller and a method for command controlling | |
US6728157B2 (en) | Semiconductor memory | |
KR20200083641A (en) | Apparatus and method comprising memory instructions for semiconductor memory | |
KR100799946B1 (en) | Semiconductor memory and control method thereof | |
CN113129958A (en) | Apparatus and method for wide clock frequency range command path | |
CN100369016C (en) | A controller for synchronous dynamic random access memory | |
JP2002074952A (en) | Synchronous semiconductor memory device and input circuit control method | |
JP3689229B2 (en) | Column selection line enable circuit for semiconductor memory device | |
KR100894252B1 (en) | Semiconductor memory device and operation control method thereof | |
KR20020096867A (en) | Semiconductor memory device operable for both of cas latencies of one and more than one | |
US8924679B2 (en) | Memory device and memory system including the same | |
KR102070626B1 (en) | Semiconductor memory device, and memory system including the same | |
CN104658578A (en) | SDRAM (synchronous dynamic random access memory) control method in high-speed data acquisition system | |
CN101813966A (en) | Chip resetting method, chip and double rate memory system | |
CN101425330B (en) | A Refresh Control Module for Synchronous Dynamic Memory | |
Lee et al. | A 1.6-Gb/s/pin double data rate SDRAM with wave-pipelined CAS latency control | |
US7397727B2 (en) | Write burst stop function in low power DDR sDRAM | |
Sreehari et al. | AHB DDR SDRAM enhanced memory controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080213 Termination date: 20160722 |