CN100342380C - GPS sample strip ground collection method for growing portion of crop based on ridge-direction parallelism - Google Patents
GPS sample strip ground collection method for growing portion of crop based on ridge-direction parallelism Download PDFInfo
- Publication number
- CN100342380C CN100342380C CNB200510017093XA CN200510017093A CN100342380C CN 100342380 C CN100342380 C CN 100342380C CN B200510017093X A CNB200510017093X A CN B200510017093XA CN 200510017093 A CN200510017093 A CN 200510017093A CN 100342380 C CN100342380 C CN 100342380C
- Authority
- CN
- China
- Prior art keywords
- crop
- gps
- spatial data
- transect
- plot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000005070 sampling Methods 0.000 claims abstract description 21
- 238000012545 processing Methods 0.000 claims description 2
- 238000006116 polymerization reaction Methods 0.000 claims 2
- 239000004927 clay Substances 0.000 claims 1
- 238000011835 investigation Methods 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000003672 processing method Methods 0.000 description 6
- 230000002123 temporal effect Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 description 1
- 235000000536 Brassica rapa subsp pekinensis Nutrition 0.000 description 1
- 241000499436 Brassica rapa subsp. pekinensis Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 239000002420 orchard Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明属于信息技术领域,涉及一种作物种植成数地面采集方法,特别是一种基于垄向平行的作物种植成数GPS样带地面采集方法。The invention belongs to the field of information technology, and relates to a ground collection method for crop planting numbers, in particular to a crop planting number GPS transect ground collection method based on parallel ridge directions.
背景技术Background technique
地面采集方法与空间遥感技术相结合具有及时与准确地获取区域作物种植结构信息的巨大潜力。近30年来已出现多种样区耕地作物种植成数的地面采集方法,包括基于航空像片的实地样块制图方法、方形样块实地样点观测方法、GPS定位视频采集(GVG)方法、以及GPS样线地面采集方法等。前两种方法采集数据精度较高。但人工地面观察与测量方式使其工作效率相当低;后两种方法因借助交通工具的快捷性而使地面采集效率得到很大改进,但其获取的数据精度却不高。The combination of ground acquisition methods and space remote sensing technology has great potential to obtain timely and accurate information on regional crop planting structure. In the past 30 years, there have been many ground collection methods for the number of cultivated land crops in the sample area, including the field sample mapping method based on aerial photos, the square sample field sample point observation method, the GPS positioning video acquisition (GVG) method, and GPS transect ground acquisition method, etc. The first two methods collect data with higher accuracy. However, the artificial ground observation and measurement methods make the work efficiency quite low; the latter two methods have greatly improved the ground acquisition efficiency due to the convenience of transportation, but the accuracy of the acquired data is not high.
中国专利公报公开了一种“时空定位的野外地物信息采集、处理与分析方法”(公开号CN1302033A,公开日2001年7月4日),其技术方案主要是在电源逆变器的支持下,利用一定配置的笔记本计算机和数码照相机、GPS接收机、手动输入器,通过由地理信息系统Titan3.1控件与Visual Basic6.0编程语言开发出的软件系统,进行时空定位野外地物信息采集、处理与分析。其中的GPS样线地面采集方法,采集到的仅是交通线路两侧样线处的作物种植成数数据,它所获取的样本信息量非常有限,将直接影响到作物种植成数的抽样精度。The Chinese Patent Bulletin discloses a "Spatial-Temporal Positioning Field Feature Information Acquisition, Processing and Analysis Method" (public number CN1302033A, public date July 4, 2001), and its technical solution is mainly supported by a power inverter , using a certain configuration of notebook computers, digital cameras, GPS receivers, and manual input devices, through the software system developed by the geographic information system Titan3.1 control and Visual Basic6. processing and analysis. Among them, the GPS transect ground collection method only collects the crop planting data at the transects on both sides of the traffic line. The amount of sample information it obtains is very limited, which will directly affect the sampling accuracy of the crop planting rate.
发明内容Contents of the invention
为了克服现有作物种植成数GPS样线地面采集方法获取样本信息量有限的不足,本发明提供一种基于垄向平行的作物种植成数GPS样带地面采集方法,该方法以耕地作物垄向平行分布特征为基础,通过引进耕地地块空间数据,结合作物种植成数GPS样线数据,能够大幅度提高地面获取作物种植成数的信息数量,改进作物种植成数GPS样线地面采集方法获取数据精度低的不足。In order to overcome the shortage of limited sample information obtained by the existing crop planting number GPS transect ground collection method, the present invention provides a ground collection method based on crop planting number GPS transects parallel to the ridge direction. Based on the parallel distribution characteristics, by introducing the spatial data of cultivated land plots and combining the crop planting number GPS transect data, the amount of information on the crop planting number obtained on the ground can be greatly improved, and the crop planting number GPS transect ground acquisition method can be improved. The lack of low data precision.
本发明提出的技术方案分为以下六个基本步骤,即采集GPS样线线状空间数据、获取耕地地块面状空间数据、提取垄向地块面状空间数据、生成作物地块面状空间数据、聚合GPS样带面状空间数据、以及推算采样区域作物种植成数,具体内容如下:The technical scheme proposed by the present invention is divided into the following six basic steps, that is, collecting the linear spatial data of GPS transects, obtaining the planar spatial data of cultivated land plots, extracting the planar spatial data of ridge-oriented plots, and generating the planar space of crop plots Data, aggregation of GPS transect surface spatial data, and estimation of the number of crops planted in the sampling area, the specific content is as follows:
1)采集GPS样线线状空间数据:在作物种植成数采样区域,利用本说明书背景技术中所引用的“时空定位野外地物信息采集、处理与分析方法”,记录野外车辆所行驶的采样路线,同时通过按键输入道路旁侧作物类型编码,生成带有作物种植类型信息的GPS样线矢量数据,不同类型的GPS样线线段对应着不同类型农作物;1) Collecting GPS transect linear space data: in the crop planting area, use the "temporal and spatial positioning field object information collection, processing and analysis method" cited in the background technology of this manual to record the sampling data driven by field vehicles. At the same time, enter the crop type code on the side of the road by pressing the button to generate GPS transect vector data with crop planting type information. Different types of GPS transect line segments correspond to different types of crops;
2)获取耕地地块面状空间数据:借助地理信息系统(GIS)软件工具通过高空间分辨率遥感影像生成或者更新采样区域土地详查空间数据(比例尺≥1∶1万),生成采样区域耕地地块面状空间数据。耕地地块边界由道路、防护林、河流等线状地物及与其他类型面状地物(如林地、草地等)相邻公共边界所确定;2) Acquisition of surface spatial data of cultivated land plots: use geographic information system (GIS) software tools to generate or update detailed survey spatial data of land in the sampling area (scale ≥ 1:10,000) through high spatial resolution remote sensing images, and generate cultivated land in the sampling area Parcel planar spatial data. The boundaries of cultivated land plots are determined by linear features such as roads, shelterbelts, rivers, and other types of planar features (such as woodlands, grasslands, etc.);
3)提取垄向地块面状空间数据:借助GIS软件工具,将耕地地块面状空间数据覆盖于高空间分辨率遥感影像之上,识别每个耕地地块中作物垄向信息,然后据此分割耕地地块面状空间数据,生成具有相同垄向的垄向地块面状空间数据;3) Extract the surface spatial data of ridge-oriented plots: with the help of GIS software tools, overlay the surface-shaped spatial data of cultivated land plots on high-resolution remote sensing images, identify the crop ridge orientation information in each cultivated land plot, and then The planar spatial data of the divided cultivated land plots generates the planar spatial data of the ridge-oriented plots with the same ridge direction;
4)生成作物地块面状空间数据:借助GIS软件工具,将作物种植成数GPS样线空间数据与垄向地块空间数据叠置于一起,以GPS样线矢量数据作物种植类型变化处为起点,做作物垄向的平行线,将垄向地块面状空间数据再次分割成具有相同作物类型的作物地块面状空间数据,并把GPS样线的作物类型编码赋予到作物地块面状空间数据属性表中;4) Generating area-like spatial data of crop plots: With the help of GIS software tools, the spatial data of crop planting number GPS transects and the spatial data of ridge-wise plots are superimposed together, and the crop planting type changes of GPS transect vector data are The starting point is to make a parallel line to the crop ridge, divide the area data of the ridge area into the area data of the crop area with the same crop type, and assign the crop type code of the GPS transect to the crop area In the shape space data attribute table;
5)聚合GPS样带面状空间数据:借助GIS软件工具,将作物种植成数GPS样线空间数据与作物地块空间数据叠置于一起,以每条作物种植成数GPS样线为基础,分别选择其对应的作物地块数据并将作物种植成数GPS样线编码赋到这些作物地块空间数据属性表中,形成作物种植成数GPS样带空间数据;5) Aggregation of GPS transect surface spatial data: with the help of GIS software tools, the spatial data of the number of crop planting GPS transects and the spatial data of crop plots are superimposed together, based on the number of GPS transects of each crop planting, Select the corresponding crop plot data respectively and assign the crop planting number GPS transect codes to these crop plot spatial data attribute tables to form the crop planting number GPS transect spatial data;
6)推算采样区域作物种植成数:借助二维数据表统计软件工具,对GPS样带作物地块面状空间数据属性表中的面积字段,按照作物类型编码进行分类统计,并计算GPS样带中每种作物类型种植面积比例,进而依据整群抽样方式的统计量计算公式推断出采样区域作物种植成数。6) Estimate the number of crops planted in the sampling area: with the help of two-dimensional data table statistical software tools, classify and count the area field in the area data attribute table of crop plots in the GPS transect according to the crop type code, and calculate the GPS transect According to the proportion of planting area of each crop type, the number of crops planted in the sampling area can be inferred according to the statistical calculation formula of the cluster sampling method.
本发明利用耕地作物呈现垄向平行分布特征,通过作物种植成数GPS样线数据与耕地地块面状空间数据两者结合,并加入耕地作物垄向信息,能够将呈线状形式的作物种植成数GPS样线地面采集数据拓展为成面状形式的作物种植成数GPS样带数据,从而大幅度提高了作物种植成数地面采集数据的数量,克服了利用作物种植成数GPS样线地面采集方法推断采样区域作物种植成数抽样精度不高的缺陷。The invention utilizes the characteristic of parallel distribution of ridge directions of cultivated land crops, and combines the GPS transect data of crop planting numbers with the planar space data of cultivated land plots, and adds the ridge direction information of cultivated land crops, so that the crops in the form of lines can be planted The ground collection data of several GPS transects is extended to the crop planting several GPS transect data in the form of area, thus greatly increasing the quantity of crop planting several ground collection data and overcoming the problem of using the crop planting several GPS transect ground The collection method infers the defect that the sampling accuracy of crop planting percentage in the sampling area is not high.
附图说明Description of drawings
图1为农田中不同类型作物空间分布示意图。图中1为单一作物空间分布,2交通线路。Figure 1 is a schematic diagram of the spatial distribution of different types of crops in the farmland. In the figure 1 is the spatial distribution of a single crop, and 2 is the traffic route.
图2为农田中耕地地块示意图。图中3为耕地地块。Figure 2 is a schematic diagram of arable land plots in farmland. Figure 3 is the cultivated land plot.
图3为农田中垄向地块示意图。图中4为垄向地块。Figure 3 is a schematic diagram of ridge-oriented plots in farmland. 4 in the figure is a ridge-oriented plot.
图4为作物种植成数GPS样线线状矢量数据示意图。图中5为GPS样线,10为作物种植成数GPS样线测量耕地地块指向线。Fig. 4 is a schematic diagram of crop planting number GPS transect line vector data. 5 in the figure is the GPS transect, and 10 is the pointing line of the cultivated land plot measured by the GPS transect of the number of crops planted.
图5为基于垄向平行的作物种植成数GPS样带地面采集方法获取的作物空间分布示意图。图中7为作物种植成数GPS样带。Fig. 5 is a schematic diagram of the spatial distribution of crops obtained by the GPS transect ground collection method based on the number of crops planted in parallel to the ridge. Figure 7 is the GPS transect of crop planting percentage.
图6为作物种植成数GPS样带面状矢量数据示意图。图中6为作物地块。Fig. 6 is a schematic diagram of crop planting number GPS transect area vector data. Figure 6 is the crop plot.
图7为吉林省德惠市某试验区域航空彩色影像。Figure 7 is an aerial color image of a test area in Dehui City, Jilin Province.
图8为由试验区域航空彩色影像(图7)提取的农作物空间分布图。图中用不同颜色的区域代表不同类型农作物耕地地块,1为单一作物空间分布,8为面状图例符号。Fig. 8 is the spatial distribution map of crops extracted from the aerial color image of the test area (Fig. 7). In the figure, areas of different colors represent different types of crop land plots, 1 is the spatial distribution of a single crop, and 8 is the area legend symbol.
图9为试验区域耕地地块图。图中3为耕地地块。Figure 9 is a plot of cultivated land in the test area. Figure 3 is the cultivated land plot.
图10为试验区域垄向地块图。图中4为垄向地块,9为作物垄向线。Figure 10 is a plot map of the ridge direction in the test area. In the figure, 4 is the ridge direction plot, and 9 is the crop ridge direction line.
图11为试验区域作物种植成数GPS样线数据图。图中用不同颜色GPS样线代表不同类型的农作物,5为GPS样线,11为线状图例符号,10为作物种植成数GPS样线测量耕地地块指向线。Figure 11 is the GPS transect data map of crop planting percentage in the test area. In the figure, different colors of GPS transects are used to represent different types of crops, 5 is the GPS transect, 11 is the linear legend symbol, and 10 is the pointing line of the cultivated land plot measured by the GPS transect of the number of crops planted.
图12为试验区域作物种植成数GPS样带数据图。图中6为作物地块。Figure 12 is a GPS transect data map of the number of crops planted in the test area. Figure 6 is the crop plot.
图13为试验区域基于作物垄向平行特征的作物种植成数GPS样带地面采集方法获取的作物空间分布图。图中用不同颜色区域代表不同类型的农作物作物地块,7为作物种植成数GPS样带,8为面状图例符号。Figure 13 is the spatial distribution map of crops obtained by GPS transect ground collection method based on the number of crops planted in the test area based on the parallel characteristics of crop ridges. In the figure, different color areas represent different types of crop plots, 7 is the GPS transect of crop planting numbers, and 8 is the area legend symbol.
具体实施方式Detailed ways
本发明基于作物垄向平行特征的作物种植成数GPS样带地面采集方法的目标是通过地面采集手段尽可能多地获取采样区域农作物空间分布准确信息(如图1所示),以准确推断工作区域作物种植成数。The object of the crop planting number GPS transect ground acquisition method based on the parallel feature of crop ridges in the present invention is to obtain as much accurate information as possible on the spatial distribution of crops in the sampling area (as shown in Figure 1) by means of ground acquisition, so as to accurately infer work The number of crops planted in the area.
本发明实施过程中所用的耕地地块3空间数据(如图2所示)可通过地面测绘手段、或者利用空间遥感技术进行获取与更新,并使用GIS软件进行处理与管理;把耕地地块3空间数据叠置在同区域高空间分辨率遥感影像上,使用GIS软件编辑工具,将耕地地块3空间数据分割成具有相同垄向的垄向地块4空间数据(如图3所示);采样区域作物种植成数GPS样线数据(如图4所示)可应用本说明书背景技术中所引用的“时空定位野外地物信息采集、处理与分析方法”于采样区域而获得;在GIS软件环境下,在对采样区域垄向地块4空间数据与作物种植成数GPS样线5数据进行空间叠加的基础上,从GPS样线不同作物类型变化点处分别做各相邻垄向地块4的垄向平行线,将垄向地块4空间数据分割成为分布有相同类型作物的作物地块6空间数据,并将GPS样线5各线段作物类型编码赋到相邻作物地块6空间数据属性表记录中(如图5所示);在GIS软件环境下,将作物种植成数GPS样线5旁侧的作物地块6空间数据进行聚合,生成作物种植成数GPS样带数据(如图6所示);利用电子二维数据表统计软件工具统计出其属性表中不同作物类型种植面积及其所占比例,并根据整群抽样方式的统计量计算公式,由各GPS样带统计出的作物种植比例推断出整个采样区域的作物种植成数及其变动方差。The cultivated
以上基于垄向平行的作物种植成数GPS样带地面采集方法可通过以下实施例进行说明:The above method based on the ridge-to-parallel crop planting into several GPS transect ground collection methods can be illustrated by the following examples:
在吉林省德惠市某一地区进行的基于垄向平行的作物种植成数GPS样带地面采集试验,其步骤如下:In a certain area of Dehui City, Jilin Province, the ground collection experiment of several GPS transects based on crops planted in parallel to the ridge direction was carried out. The steps are as follows:
1)获取作为试验区域的吉林省德惠市某区域高空间分辨率航空遥感真彩色影像数据(如图7所示,)结合由本说明书背景技术中所引用的“时空定位野外地物信息采集、处理与分析方法”实地采集的作物种植成数GPS样线5数据(如图11所示),利用ArcView 3.3软件中的View工具,通过人机交互目视解译方法,提取并生成试验区域作物种植类型空间分布图(如图8所示)。使用ArcView 3.3软件中的Table工具,统计出由遥感调查方法获取的整个试验区域10种农作物种植成数数据,见表1中的农作物种植成数测量遥感调查数据列。1) Obtain the high-spatial-resolution aerial remote sensing true-color image data (as shown in Figure 7) of a certain area in Dehui City, Jilin Province as the test area in combination with the "temporal and spatial positioning field object information collection, Processing and analysis method" The crop planting number
2)在ArcView 3.3软件环境下,以航空遥感真彩色影像为背景,根据从影像中识别出的线状道路信息,提取并生成试验区域耕地地块空间数据(如图9所示),各耕地地块3被有一定宽度的交通线路2所分割。2) Under the ArcView 3.3 software environment, with the aerial remote sensing true-color image as the background, according to the linear road information identified from the image, extract and generate the spatial data of the cultivated land plots in the test area (as shown in Figure 9), each cultivated
3)在ArcView 3.3软件环境下,再次以航空遥感真彩色影像为背景,识别出耕地地块3中作物分布垄向信息并生成作物垄向线9的数据,然后将试验区域耕地地块3空间数据分割成具有相同垄向的垄向地块4空间数据(如图10所示)。3) Under the ArcView 3.3 software environment, again using the aerial remote sensing true-color image as the background, identify the crop distribution ridge direction information in the cultivated
4)由本说明书背景技术中所引用的“时空定位野外地物信息采集、处理与分析方法”实地采集的种植成数GPS样线5的数据(如图11所示)包含了交通线路2一侧的作物类型分布信息,GPS样线5的数据所测量的作物类型分布由作物种植成数GPS样线测量耕地地块指向线10来表示。4) The data collected on-the-spot by the "Space-Temporal Positioning Field Feature Information Collection, Processing and Analysis Method" cited in the background technology of this specification (as shown in Figure 11) includes the data on the side of the
5)在ArcView 3.3软件环境下,将具有统一空间投影的试验区域垄向地块4空间数据与作物种植成数GPS样线5数据叠置起来,结合作物垄向线9与作物分布指向线,从GPS样线5作物类型变化处做作物垄向线9的平行线,将垄向地块4空间数据分割成具有相同作物类型分布的作物地块6空间数据,并把GPS样线5各线段作物类型编码赋到相邻作物地块6空间数据属性表记录中,形成的试验区域作物类型空间分布图如图12所示。5) Under the ArcView 3.3 software environment, the spatial data of the ridge direction plot 4 with a unified spatial projection and the crop planting
6)在ArcView 3.3软件环境下,将试验区域垄向地块4空间数据与作物种植成数GPS样线5数据叠合起来,以每条作物种植成数GPS样线5为基础,分别选择其对应的作物地块6并将作物种植成数GPS样线编码赋予到这些作物地块6空间数据属性表中,形成作物种植成数GPS样带空间数据(如图13所示)。6) Under the ArcView 3.3 software environment, the spatial data of the ridge-wise plot 4 in the test area and the crop planting
7)因试验区域作物种植成数GPS样带被全部测量,下一步GPS样带整群抽样的作物种植成数统计推断环节被省略,其地面采集的结果即为试验区域作物地块6空间数据属性表中不同作物类型种植面积的比例。作物种植成数统计工作是在在ArcView 3.3软件环境下,使用Table工具对试验区域作物地块6空间数据属性表进行操作而完成的,其结果见表1中农作物种植成数测量GPS样带数据列,而GPS样线5数据列表示的是采用本说明书背景技术中所引用的“时空定位野外地物信息采集、处理与分析方法”专利中的作物种植成数GPS样线地面采集方法所得到的结果。7) Since the number of crops planted in the test area is fully measured by the GPS transect, the next step is to omit the statistics and inference of the number of crops planted by the cluster sampling of the GPS transect, and the result of the ground collection is the spatial data of the
表1中测量绝对误差与相对误差数据列表示的是以遥感调查获取的试验区域作物种植成数数据为真值所计算出的GPS样线与GPS样带两种作物种植成数地面采集方法获取数据的精度状况。从此表可以看出,与作物种植成数GPS样线方法相比,本发明所提出的基于作物垄向平行特征的作物种植成数GPS样带地面采集方法,无论从绝对误差还是从相对误差方面,都要远远高于前者,精度提高将近1倍。The measurement absolute error and relative error data columns in Table 1 represent the GPS transects and GPS transects, which are calculated using the crop planting number data obtained from remote sensing surveys as the true value. The precision status of the data. As can be seen from this table, compared with the crop planting number GPS transect method, the crop planting number GPS transect ground acquisition method based on the crop ridge direction parallel feature proposed by the present invention, no matter from the absolute error or from the relative error , are much higher than the former, and the accuracy is nearly doubled.
表1试验区域多种测量方法获取的作物种植成数及其精度比较表
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200510017093XA CN100342380C (en) | 2005-08-31 | 2005-08-31 | GPS sample strip ground collection method for growing portion of crop based on ridge-direction parallelism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200510017093XA CN100342380C (en) | 2005-08-31 | 2005-08-31 | GPS sample strip ground collection method for growing portion of crop based on ridge-direction parallelism |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1731403A CN1731403A (en) | 2006-02-08 |
CN100342380C true CN100342380C (en) | 2007-10-10 |
Family
ID=35963752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB200510017093XA Expired - Fee Related CN100342380C (en) | 2005-08-31 | 2005-08-31 | GPS sample strip ground collection method for growing portion of crop based on ridge-direction parallelism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100342380C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101349561B (en) * | 2007-07-17 | 2010-08-25 | 农业部规划设计研究院 | Vehicle mounted investigation method and system of large scale crops planting area |
CN103761447B (en) * | 2014-02-18 | 2017-05-24 | 中国科学院遥感与数字地球研究所 | Planting area remote sensing confirming method for grain subsidy accounting of prefecture level and county level |
CN111008675B (en) * | 2019-12-26 | 2020-11-24 | 口碑(上海)信息技术有限公司 | Method and device for sampling and processing recall area |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1302033A (en) * | 1999-12-29 | 2001-07-04 | 中国科学院长春地理研究所 | Space-time positioned field culture information collecting, processing and analysing system and method |
JP2002360070A (en) * | 2001-06-12 | 2002-12-17 | Kansai Electric Power Co Inc:The | Evaluation method of plant vitality |
US6792684B1 (en) * | 1999-10-28 | 2004-09-21 | Diware Oy | Method for determination of stand attributes and a computer program to perform the method |
CN1612162A (en) * | 2003-10-31 | 2005-05-04 | 李小文 | Two-step monitoring-free classifying method using space information and spectroscopic information |
CN1651860A (en) * | 2004-06-08 | 2005-08-10 | 王汶 | A Symmetrical Systematic Sampling Technique for Estimating Area Variation Using Different Scale Remote Sensing Data |
-
2005
- 2005-08-31 CN CNB200510017093XA patent/CN100342380C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6792684B1 (en) * | 1999-10-28 | 2004-09-21 | Diware Oy | Method for determination of stand attributes and a computer program to perform the method |
CN1302033A (en) * | 1999-12-29 | 2001-07-04 | 中国科学院长春地理研究所 | Space-time positioned field culture information collecting, processing and analysing system and method |
JP2002360070A (en) * | 2001-06-12 | 2002-12-17 | Kansai Electric Power Co Inc:The | Evaluation method of plant vitality |
CN1612162A (en) * | 2003-10-31 | 2005-05-04 | 李小文 | Two-step monitoring-free classifying method using space information and spectroscopic information |
CN1651860A (en) * | 2004-06-08 | 2005-08-10 | 王汶 | A Symmetrical Systematic Sampling Technique for Estimating Area Variation Using Different Scale Remote Sensing Data |
Non-Patent Citations (3)
Title |
---|
利用遥感技术进行农作物估产 陈迅,计算机应用研究 2001 * |
基于GIS的水稻遥感估产模型研究 黄敬峰,杨忠恩,王人潮,许红卫,蒋亨显,遥感技术与应用,第17卷第3期 2002 * |
遥感影像屏幕数字化高效方法研究——显著地物的矢量跟踪方法 刘兆礼,地理科学,第19卷第3期 1999 * |
Also Published As
Publication number | Publication date |
---|---|
CN1731403A (en) | 2006-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10477756B1 (en) | Correcting agronomic data from multiple passes through a farmable region | |
CN111368736B (en) | Rice refined estimation method based on SAR and optical remote sensing data | |
Schmit et al. | The limitations of spatial land use data in environmental analysis | |
Käyhkö et al. | Change trajectories and key biotopes—Assessing landscape dynamics and sustainability | |
WO2020092798A1 (en) | Automated sample collection and tracking system | |
Ali et al. | Mapping the heterogeneity of natural and semi-natural landscapes | |
Romano et al. | Methodology for the definition of durum wheat yield homogeneous zones by using satellite spectral indices | |
CN1651859A (en) | Stratified Regression Remote Sensing Sampling Technique for Crop Yield and Forest Unit Stock Estimation | |
Petrasova et al. | Visualization of pedestrian density dynamics using data extracted from public webcams | |
CN100342380C (en) | GPS sample strip ground collection method for growing portion of crop based on ridge-direction parallelism | |
CN114442623B (en) | Agricultural machinery operation track Tian Lu segmentation method based on space-time diagram neural network | |
CN1109996C (en) | Space-time positioned field culture information collecting, processing and analysing system and method | |
CN117495425B (en) | A method and system for estimating asset wealth based on multi-dimensional night light characteristics | |
Gedefaw et al. | A cloud-based evaluation of the National land cover database to support New Mexico’s food–energy–water systems | |
Liu et al. | Vegetation mapping for regional ecological research and management: a case of the Loess Plateau in China | |
Mishra et al. | High-resolution mapping of seasonal crop pattern using sentinel imagery in mountainous region of Nepal: a semi-automatic approach | |
CN111539297A (en) | High-resolution remote sensing image road information semi-automatic extraction method | |
CN115797802A (en) | Crop planting structure refined monitoring analysis method based on 3S technology | |
Mohammadi | A Review on GIS in Irrigation and Water Management | |
Al-Tamimi et al. | Comparison between supervised and unsupervised classifications for mapping land use/cover in Ajloun area | |
Memon et al. | Use of GPS and GIS technology in surveying and mapping of wheat and cotton weeds in Khairpur district, Sindh, Pakistan | |
Ji et al. | Sampling robustness in gradient analysis of urban material mixtures | |
CN115062447B (en) | A method and system for simulating hydrological environment based on SWAT model | |
CN114003650B (en) | Automatic mapping method for high-precision acquired data | |
CN112100304B (en) | Geographic information acquisition method based on GIS technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071010 Termination date: 20100831 |