CN100336597C - Nano ion exchange material and its preparing method - Google Patents
Nano ion exchange material and its preparing method Download PDFInfo
- Publication number
- CN100336597C CN100336597C CNB031398510A CN03139851A CN100336597C CN 100336597 C CN100336597 C CN 100336597C CN B031398510 A CNB031398510 A CN B031398510A CN 03139851 A CN03139851 A CN 03139851A CN 100336597 C CN100336597 C CN 100336597C
- Authority
- CN
- China
- Prior art keywords
- ion exchange
- nano
- nanoparticle
- exchange material
- exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 74
- 238000005342 ion exchange Methods 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims description 10
- 239000002105 nanoparticle Substances 0.000 claims abstract description 13
- 238000006277 sulfonation reaction Methods 0.000 claims abstract description 13
- 239000002994 raw material Substances 0.000 claims abstract description 11
- 229920000642 polymer Polymers 0.000 claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 9
- 150000001768 cations Chemical class 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims abstract description 6
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 claims abstract description 5
- 238000007265 chloromethylation reaction Methods 0.000 claims abstract description 4
- 239000011148 porous material Substances 0.000 claims abstract description 4
- 238000001035 drying Methods 0.000 claims abstract 2
- 238000006243 chemical reaction Methods 0.000 claims description 21
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 claims description 17
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 claims description 17
- 230000035484 reaction time Effects 0.000 claims description 13
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical class CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 6
- 239000003153 chemical reaction reagent Substances 0.000 claims description 5
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 claims description 5
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 150000001450 anions Chemical class 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 238000007796 conventional method Methods 0.000 claims description 3
- 238000009656 pre-carbonization Methods 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 238000010792 warming Methods 0.000 claims description 3
- 238000005341 cation exchange Methods 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 2
- 239000004964 aerogel Substances 0.000 claims 4
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 claims 2
- 241001044369 Amphion Species 0.000 claims 1
- 206010013786 Dry skin Diseases 0.000 claims 1
- 230000009920 chelation Effects 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 230000008961 swelling Effects 0.000 claims 1
- 238000007306 functionalization reaction Methods 0.000 abstract description 8
- 238000005349 anion exchange Methods 0.000 abstract description 4
- 150000003384 small molecules Chemical class 0.000 abstract description 3
- 238000005576 amination reaction Methods 0.000 abstract description 2
- 230000002378 acidificating effect Effects 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 13
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 12
- 229910052717 sulfur Inorganic materials 0.000 description 12
- 239000011593 sulfur Substances 0.000 description 12
- 238000000921 elemental analysis Methods 0.000 description 10
- 230000004584 weight gain Effects 0.000 description 10
- 235000019786 weight gain Nutrition 0.000 description 10
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000002086 nanomaterial Substances 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- 239000003456 ion exchange resin Substances 0.000 description 7
- 229920003303 ion-exchange polymer Polymers 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000004042 decolorization Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
本发明涉及一种纳米离子交换材料及其制备方法。该纳米离子交换材料是以纳米高聚物粒子相互连结而成的网络为基体,纳米粒子的尺寸为10至100纳米,纳米粒子表面连结有丰富的酸性、碱性或螯合基团;比表面积达300~1100m2/g,孔容达1~2ml/g,表观密度为80~800mg/cm3。该纳米离子交换材料可由纳米气凝胶为原料,进行直接功能化反应,如磺化反应,或与小分子反应引进反应性基团(如氯甲基),然后再进一步功能化(如胺化或水解),再经常压干燥而制得。通过氯甲基化和功能化反应,还可制得各种阳离子、阴离子交换或两性离子交换材料。该纳米离子交换材料表观密度低,比表面积大,中孔丰富,交换容量高达14meq/g;具有良好的应用前景。The invention relates to a nano ion exchange material and a preparation method thereof. The nano-ion exchange material is based on a network of nano-polymer particles connected to each other. The size of the nanoparticles is 10 to 100 nanometers. The surface of the nanoparticles is connected with rich acidic, basic or chelating groups; the specific surface area Up to 300~1100m 2 /g, pore volume up to 1~2ml/g, apparent density 80~800mg/cm 3 . The nano-ion exchange material can be made of nano-airgel as a raw material for direct functionalization reactions, such as sulfonation reactions, or reacting with small molecules to introduce reactive groups (such as chloromethyl groups), and then further functionalized (such as amination Or hydrolyzed), and then obtained by drying under constant pressure. Through chloromethylation and functionalization reactions, various cation, anion exchange or amphoteric ion exchange materials can also be prepared. The nanometer ion exchange material has low apparent density, large specific surface area, rich mesopores and high exchange capacity of 14meq/g; it has good application prospects.
Description
技术领域technical field
本发明涉及一种新型纳米离子交换材料及其制备方法。The invention relates to a novel nanometer ion exchange material and a preparation method thereof.
背景技术Background technique
高分子离子交换材料是一类高分子基体上带有可离子化功能基团的物质。由于这些功能基团所带的相反电荷的可交换离子能与水溶液中的各种离子进行交换吸附,利用离子交换的交换和吸附的原理,可以达到浓缩、分离、提纯、净化、脱色、催化及医疗等效果,因此,高分子离子交换材料广泛应用与化工生产、环境保护、电子工业、能源工业、金属冶炼、化学及生物药剂提纯制备、医疗卫生、糖类精制以及食品加工等领域。Polymer ion exchange materials are substances with ionizable functional groups on a polymer matrix. Since the exchangeable ions with opposite charges of these functional groups can exchange and adsorb with various ions in the aqueous solution, using the principle of ion exchange exchange and adsorption can achieve concentration, separation, purification, purification, decolorization, catalysis and Therefore, polymer ion exchange materials are widely used in chemical production, environmental protection, electronics industry, energy industry, metal smelting, purification and preparation of chemical and biological pharmaceuticals, medical and health care, sugar refining and food processing and other fields.
到目前为止,高分子离子交换材料主要按形态区分为离子交换树脂和离子交换纤维两种类型。离子交换树脂的出现至今已经约70年的历史,而且它也是当今实际应用量最广的吸附分离材料。离子交换树脂的基体是三维交联的高聚物网络,通常以小圆球颗粒的形式使用,颗粒直径在几十微米至几毫米不等,离子交换容量约零点几至几毫摩尔之间。So far, polymer ion exchange materials are mainly divided into two types: ion exchange resin and ion exchange fiber according to their morphology. The appearance of ion exchange resin has a history of about 70 years, and it is also the most widely used adsorption separation material in practice today. The matrix of the ion exchange resin is a three-dimensional cross-linked polymer network, which is usually used in the form of small spherical particles, with particle diameters ranging from tens of microns to several millimeters, and the ion exchange capacity is between a few tenths to several millimoles.
随着合成纤维工业的发展,以合成纤维为基体的各种离子交换纤维材料在二十世纪五十年代之后相继被开发出来。与离子交换树脂一样,离子交换纤维也具有丰富的离子交换基团,离子交换容量约为几毫摩尔。除了与通用交换树脂的一些共同特性之外,它还具有一些独特的性能特点。①由于纤维的直径远少于树脂,(纤维直径一般10μm以下,而颗粒状树脂一般30μm以上),纤维材料的比表面积显著大于颗粒树脂(纤维的比表面积约为10-25m2/g,普通颗粒树脂约0.1m2/g);②因此,离子交换纤维的交换吸附速度要比相应的粒状树脂快好几倍,洗脱速度也显著大于树脂;③纤维材料本身有一定的弹性,而且纤维直径的均匀性相对于树脂粒径来说好很多,因此在以分离柱的形式使用时装柱密度(流通阻力)很容易控制,流通阻力较少而且不会出现材料密化而引起柱堵塞,甚至可以将柱倒过来;④分离系数高;⑤由于离子交换纤维可以制成线、无纺布、各种纺织织物等多种形式,因此,应用灵活,这为工程设备结构的合理选型创造了条件,更容易实现交换分离装置的小型化及连续化。With the development of the synthetic fiber industry, various ion exchange fiber materials based on synthetic fibers have been developed successively since the 1950s. Like ion exchange resins, ion exchange fibers also have abundant ion exchange groups, and the ion exchange capacity is about several millimoles. In addition to some common properties with general-purpose exchange resins, it also has some unique performance characteristics. ①Because the diameter of the fiber is much smaller than that of the resin (the fiber diameter is generally less than 10 μm, while the granular resin is generally more than 30 μm), the specific surface area of the fiber material is significantly larger than that of the granular resin (the specific surface area of the fiber is about 10-25m 2 /g, ordinary Granular resin is about 0.1m 2 /g); ② Therefore, the exchange and adsorption speed of ion exchange fiber is several times faster than that of corresponding granular resin, and the elution speed is also significantly greater than that of resin; ③ The fiber material itself has certain elasticity, and the fiber diameter The uniformity of the resin is much better than the particle size of the resin, so the column density (flow resistance) is easy to control when used in the form of a separation column, the flow resistance is less and there will be no material densification to cause column blockage, and even Turn the column upside down; ④High separation coefficient; ⑤Because the ion exchange fiber can be made into various forms such as thread, non-woven fabric, and various textile fabrics, the application is flexible, which creates conditions for the reasonable selection of engineering equipment structures , It is easier to realize the miniaturization and serialization of the exchange separation device.
通过不同的功能化反应,离子交换树脂和纤维可制成阳离子、阴离子或两性交换材料,其中阳离子交换材料包括强酸型(磺酸型)、中强酸型(磷酸型)和弱酸型(羧酸型)等,阴离子交换材料包括强碱型(季铵盐型)和弱碱型(伯、仲、叔胺基、吡啶基、咪唑基)等,而两性离子交换材料包括各种阳离子和阴离子交换基团的组合。Through different functional reactions, ion exchange resins and fibers can be made into cationic, anionic or amphoteric exchange materials, among which cationic exchange materials include strong acid type (sulfonic acid type), medium strong acid type (phosphoric acid type) and weak acid type (carboxylic acid type) ), etc., anion exchange materials include strong base type (quaternary ammonium salt type) and weak base type (primary, secondary, tertiary amino group, pyridyl group, imidazole group), etc., while amphoteric ion exchange materials include various cation and anion exchange groups Group combination.
目前,随着科技的发展,纳米材料的研究和应用引起了人们高度的重视。然而,纳米材料的应用现在主要还是局限与某些结构材料和光电功能材料等方面,在吸附分离材料领域,至今未见到有关纳米离子交换功能材料的文献报道。At present, with the development of science and technology, the research and application of nanomaterials have attracted people's attention. However, the application of nanomaterials is still mainly limited to certain structural materials and photoelectric functional materials. In the field of adsorption and separation materials, there has been no literature report on nanometer ion exchange functional materials.
发明内容Contents of the invention
本发明的目的是提供一种纳米离子交换功能材料及其制备方法。该纳米离子交换吸附材料具有比表面积大、交换容量高、交换速度快和选择性好的特点。The purpose of the present invention is to provide a nanometer ion exchange functional material and a preparation method thereof. The nanometer ion exchange adsorption material has the characteristics of large specific surface area, high exchange capacity, fast exchange speed and good selectivity.
本发明的纳米结构离子交换材料是以纳米高聚物粒子相互连结而成的网络为基体,纳米粒子的尺寸约为10至100纳米,纳米粒子表面连结有丰富的酸性、碱性或螯合基团;比表面积达300~1100m2/g,孔容达1~2ml/g,表观密度为80~800mg/cm3。The nano-structured ion exchange material of the present invention is based on a network formed by interconnecting nano-polymer particles. The size of the nanoparticles is about 10 to 100 nanometers. Agglomerates; the specific surface area is 300-1100m 2 /g, the pore volume is 1-2ml/g, and the apparent density is 80-800mg/cm 3 .
依据所需要引进的离子交换基团的种类,本发明的纳米离子交换材料可以通过以下两种方法之一制备:According to the kind of ion-exchange groups that need to be introduced, the nano ion-exchange material of the present invention can be prepared by one of the following two methods:
方法1:采用小分子试剂直接对纳米气凝胶基体进行功能化,例如对纳米气凝胶基体进行磺化,制得含磺酸基团的强酸型纳米离子交换材料。具体步骤通常为:以高分子纳米粒子联结而成的块状气凝胶为原料,用二氯乙烷为溶剂浸泡溶涨该气凝胶材料,然后加入氯磺酸;氯磺酸∶二氯乙烷(V/V)=2∶98~20∶80(两者之和为100),并使气凝胶重量和反应溶液(氯磺酸/二氯乙烷混合液)体积的比保持在约1/50~1/200;将温度升至40~70℃反应温度,在该温度反应30~120min,之后将样品取出,用水洗至中性,在105~115℃干燥后,得到含磺酸基的纳米离子交换材料。Method 1: Use small molecule reagents to directly functionalize the nano-airgel matrix, for example, sulfonate the nano-airgel matrix to prepare a strong-acid nano-ion exchange material containing sulfonic acid groups. The specific steps are usually: take the bulk airgel formed by the connection of polymer nanoparticles as raw material, soak and swell the airgel material with dichloroethane as a solvent, and then add chlorosulfonic acid; chlorosulfonic acid: dichloro Ethane (V/V)=2: 98 ~ 20: 80 (the sum of the two is 100), and the ratio of airgel weight and reaction solution (chlorosulfonic acid/ethylene dichloride mixture) volume is maintained at About 1/50~1/200; raise the temperature to 40~70℃ reaction temperature, react at this temperature for 30~120min, then take out the sample, wash with water until neutral, and dry at 105~115℃ to get sulfur-containing Acid-based nano ion exchange material.
方法2:采用气凝胶原料,先通过功能化反应引进反应性基团,然后再利用所得到的带有反应性基团的中间体与小分子试剂反应得到各种含相应离子交换基团的纳米离子交换材料。例如,可用气凝胶基体与甲缩醛、二氯亚砜和无水四氯化锡进行氯甲基化反应;按纳米气凝胶中苯环的摩尔数为1,其它试剂用量摩尔比为:甲缩醛为1~6,二氯亚砜为3~10,无水四氯化锡为0.1~1.2,反应温度为30~60℃,反应时间为0.5~8小时;制得含氯甲基的纳米结构中间体材料;将这种含氯甲基的中间体再进一步用常规方法功能化反应(如胺化或水解;参见:汤顺清,有机氧化还原功能纤维的制备、结构与性能及其对贵金属离子吸附机理的研究,中山大学博士论文,1995年5月;中山大学图书馆可公开查阅),即可得到各种含阳离子、阴离子或两性离子交换基团的纳米离子交换材料。Method 2: Using airgel raw materials, first introduce reactive groups through functionalization reactions, and then use the obtained intermediates with reactive groups to react with small molecule reagents to obtain various ion-exchange groups. Nano ion exchange materials. For example, available airgel matrix and methylal, thionyl chloride and anhydrous tin tetrachloride carry out chloromethylation reaction; According to the molar number of benzene ring in the nano airgel is 1, other reagent consumption molar ratio is : Methylal is 1~6, thionyl chloride is 3~10, anhydrous tin tetrachloride is 0.1~1.2, reaction temperature is 30~60°C, reaction time is 0.5~8 hours; Based nanostructure intermediate materials; this chloromethyl-containing intermediate is further functionalized by conventional methods (such as amination or hydrolysis; see: Tang Shunqing, Preparation, structure and properties of organic redox functional fibers and their Research on the adsorption mechanism of noble metal ions, doctoral dissertation of Sun Yat-sen University, May 1995; the library of Sun Yat-sen University can be consulted publicly), and various nano-ion exchange materials containing cations, anions or amphoteric ion exchange groups can be obtained.
在上述方法1和方法2中,为了有效防止材料在功能化后的多孔结构塌陷而破坏纳米离子的联结结构,保持所得离子交换材料的纳米结构,特别是对于一些在功能化后会引起纳米结构塌陷的气凝胶原料,可首先将气凝胶原料进行预碳化处理,即将气凝胶原料置于加热炉中,在氮气保护中升温至约350~450℃进行预碳化30~120分钟;然后再进行功能化反应。In the above method 1 and method 2, in order to effectively prevent the porous structure of the material from collapsing after functionalization and destroy the connection structure of nano-ions, maintain the nanostructure of the obtained ion exchange material, especially for some nanostructures that will cause nanostructure after functionalization For the collapsed airgel raw material, the airgel raw material can be pre-carbonized first, that is, the airgel raw material is placed in a heating furnace, and the temperature is raised to about 350-450°C under nitrogen protection to perform pre-carbonization for 30-120 minutes; then Then carry out the functionalization reaction.
本发明所制备的新型纳米结构离子交换材料比传统的离子交换树脂和离子交换纤维具有更高的比表面积(达300~1100m2/g),中孔丰富(孔容达1~2ml/g),表观密度很低(一般为80~800mg/cm3)。因此,这种纳米离子交换功能材料将具有更高的离子交换容量(可达14meq/g),更快的交换速度以及由于纳米交换空间的作用将有独特的交换选择性。通过氯甲基化和功能化反应,还可制得各种阳离子、阴离子交换或两性离子交换材料。因此,本发明的纳米离子交换功能材料具有良好的应用前景。这种纳米功能材料可以替代传统离子交换树脂和纤维应用于水的净化、废水处理、金属离子的浓缩和收回、食品和药物的分离提纯、脱色和精制、催化剂载体、高分子试剂以及高性能吸附剂等。Compared with traditional ion exchange resins and ion exchange fibers, the novel nanostructure ion exchange material prepared by the present invention has a higher specific surface area (up to 300-1100m 2 /g), rich mesopores (pore volume up to 1-2ml/g), and shows The apparent density is very low (generally 80-800mg/cm 3 ). Therefore, this nano ion exchange functional material will have higher ion exchange capacity (up to 14meq/g), faster exchange speed and unique exchange selectivity due to the role of nano exchange space. Through chloromethylation and functionalization reactions, various cation, anion exchange or amphoteric ion exchange materials can also be prepared. Therefore, the nanometer ion exchange functional material of the present invention has a good application prospect. This nano-functional material can replace traditional ion exchange resins and fibers in water purification, wastewater treatment, concentration and recovery of metal ions, separation and purification of food and drugs, decolorization and refining, catalyst carriers, polymer reagents and high-performance adsorption agent etc.
附图说明Description of drawings
图1是本发明所制得的纳米离子交换材料的透射电子显微镜照片。图中示出了所制的纳米离子交换材料是由50至100纳米的离子联结而成的。Fig. 1 is the transmission electron micrograph of the nanometer ion exchange material that the present invention makes. The figure shows that the prepared nanometer ion exchange material is formed by 50 to 100 nanometer ion connection.
具体实施方式Detailed ways
以下通过实施例对本发明作进一步说明。各实施例中所述的氯磺酸溶液的浓度百分数为体积比(V/V),二氯乙烷为溶剂。The present invention will be further described below through embodiment. The concentration percentage of the chlorosulfonic acid solution described in each embodiment is a volume ratio (V/V), and dichloroethane is a solvent.
实施例1:RF-凝胶0.12g,10%氯磺酸12ml,反应温度60℃,反应时间60min,磺化增重20.4%,所制纳米离子交换材料的含硫量(元素分析)为2.62%,离子交换容量为14.38meq/g,材料的表观密度为271mg/cm3。Embodiment 1: RF-gel 0.12g, 10% chlorosulfonic acid 12ml, temperature of reaction 60 ℃, reaction time 60min, sulfonation weight gain 20.4%, the sulfur content (elemental analysis) of prepared nano-ion exchange material is 2.62 %, the ion exchange capacity is 14.38meq/g, and the apparent density of the material is 271mg/cm 3 .
实施例2:RF-凝胶0.18g,15%氯磺酸18ml,反应温度50℃,反应时间60min,磺化增重40%,所制纳米离子交换材料的含硫量(元素分析)为3.02%,离子交换容量为13.27meq/g,材料的表观密度为265mg/cm3。Embodiment 2: RF-gel 0.18g, 15% chlorosulfonic acid 18ml, temperature of reaction 50 ℃, reaction time 60min, sulfonation weight gain 40%, the sulfur content (elemental analysis) of prepared nano-ion exchange material is 3.02 %, the ion exchange capacity is 13.27meq/g, and the apparent density of the material is 265mg/cm 3 .
实施例3:RF-凝胶0.15g,15%氯磺酸15ml,反应温度50℃,反应时间120min,磺化增重,所制纳米离子交换材料的含硫量(元素分析)为2.81%,离子交换容量为12.28meq/g,材料的表观密度为314mg/cm3。Embodiment 3: RF-gel 0.15g, 15% chlorosulfonic acid 15ml, temperature of reaction 50 ℃, reaction time 120min, sulfonation weight gain, the sulfur content (elemental analysis) of prepared nano-ion exchange material is 2.81%, The ion exchange capacity is 12.28meq/g, and the apparent density of the material is 314mg/cm 3 .
实施例4:RF-凝胶0.10g,10%氯磺酸10ml,反应温度50℃,反应时间60min,磺化增重13.6%,所制纳米离子交换材料的含硫量(元素分析)为2.46%,离子交换容量为11.05meq/g,材料的表观密度为271mg/cm3。Embodiment 4: RF-gel 0.10g, 10% chlorosulfonic acid 10ml, temperature of reaction 50 ℃, reaction time 60min, sulfonation weight gain 13.6%, the sulfur content (elemental analysis) of prepared nano-ion exchange material is 2.46 %, the ion exchange capacity is 11.05meq/g, and the apparent density of the material is 271mg/cm 3 .
实施例5:RF-凝胶0.20g,10%氯磺酸10ml,反应温度60℃,反应时间90min,磺化增重21.7%,所制纳米离子交换材料的含硫量(元素分析)为2.59%,离子交换容量为11.26meq/g,材料的表观密度为293mg/cm3。Embodiment 5: RF-gel 0.20g, 10% chlorosulfonic acid 10ml, temperature of reaction 60 ℃, reaction time 90min, sulfonation weight gain 21.7%, the sulfur content (elemental analysis) of prepared nano-ion exchange material is 2.59 %, the ion exchange capacity is 11.26meq/g, and the apparent density of the material is 293mg/cm 3 .
实施例6:RF-凝胶0.16g,10%氯磺酸16ml,反应温度30℃,反应时间60min,磺化增重5.4%,所制纳米离子交换材料的含硫量(元素分析)为0.59%,离子交换容量为4.38meq/g,材料的表观密度为371mg/cm3。Embodiment 6: RF-gel 0.16g, 10% chlorosulfonic acid 16ml, 30 ℃ of temperature of reaction, 60min of reaction times, sulfonation weight gain 5.4%, the sulfur content (elemental analysis) of prepared nano-ion exchange material is 0.59 %, the ion exchange capacity is 4.38meq/g, and the apparent density of the material is 371mg/cm 3 .
实施例7:RF-凝胶0.14g,10%氯磺酸14ml,反应温度70℃,反应时间60min,磺化增重42%,所制纳米离子交换材料的含硫量(元素分析)为4.02%,离子交换容量为15.27meq/g,材料的表观密度为265mg/cm3。Embodiment 7: RF-gel 0.14g, 10% chlorosulfonic acid 14ml, temperature of reaction 70 ℃, reaction time 60min, sulfonation weight gain 42%, the sulfur content (elemental analysis) of prepared nano-ion exchange material is 4.02 %, the ion exchange capacity is 15.27meq/g, and the apparent density of the material is 265mg/cm 3 .
实施例8:RF-凝胶0.15g,5%氯磺酸15ml,反应温度60℃,反应时间30min,所制纳米离子交换材料的含硫量(元素分析)为2.81%,离子交换容量为10.28meq/g,材料的表观密度为300mg/cm3。Embodiment 8: RF-gel 0.15g, 5% chlorosulfonic acid 15ml, temperature of reaction 60 ℃, reaction time 30min, the sulfur content (elemental analysis) of prepared nano ion exchange material is 2.81%, and ion exchange capacity is 10.28 meq/g, the apparent density of the material is 300 mg/cm 3 .
实施例9:RF-凝胶0.18g,20%氯磺酸9ml,反应温度50℃,反应时间60min,磺化增重36.6%,所制纳米离子交换材料的含硫量(元素分析)为3.78%,离子交换容量为14.05meq/g,材料的表观密度为271mg/cm3。Embodiment 9: RF-gel 0.18g, 20% chlorosulfonic acid 9ml, temperature of reaction 50 ℃, reaction time 60min, sulfonation weight gain 36.6%, the sulfur content (elemental analysis) of prepared nano-ion exchange material is 3.78 %, the ion exchange capacity is 14.05meq/g, and the apparent density of the material is 271mg/cm 3 .
实施例10:RF-凝胶0.12g,10%氯磺酸24ml,反应温度40℃,反应时间90min,磺化增重20.5%,所制纳米离子交换材料的含硫量(元素分析)为2.35%,离子交换容量为8.54meq/g,材料的表观密度为334mg/cm3。Embodiment 10: RF-gel 0.12g, 10% chlorosulfonic acid 24ml, temperature of reaction 40 ℃, reaction time 90min, sulfonation weight gain 20.5%, the sulfur content (elemental analysis) of prepared nano-ion exchange material is 2.35 %, the ion exchange capacity is 8.54meq/g, and the apparent density of the material is 334mg/cm 3 .
实施例11:RF-凝胶0.3g,在氮气保护下加热到400℃热处理90min,降至室温之后,取0.2g,加入10%氯磺酸20ml,反应温度60℃,反应时间90min,磺化增重26.5%,所制纳米离子交换材料的含硫量(元素分析)为3.05%,离子交换容量为10.52meq/g,材料的表观密度为384mg/cm3。Example 11: 0.3g of RF-gel, heated to 400°C for 90min under the protection of nitrogen, heat treatment for 90min, after cooling down to room temperature, take 0.2g, add 20ml of 10% chlorosulfonic acid, reaction temperature 60°C, reaction time 90min, sulfonation The weight gain is 26.5%, the sulfur content (element analysis) of the prepared nanometer ion exchange material is 3.05%, the ion exchange capacity is 10.52meq/g, and the apparent density of the material is 384mg/cm 3 .
实施例12:RF-凝胶0.5g,加入22ml二氯乙烷,室温浸泡半小时,在冰浴条件下加入甲缩醛0.96ml,二氯亚砜1.56ml和无水四氯化锡0.5ml,升温至45℃,反应60小时,取出产品用水洗净,得到含氯甲基的纳米离子交换材料先驱体(纳米结构中间体材料);之后,按常规方法功能化反应(参见:汤顺清,有机氧化还原功能纤维的制备、结构与性能及其对贵金属离子吸附机理的研究,中山大学博士论文,1995年5月;中山大学图书馆可公开查阅),即可得到各种含阳离子、阴离子或两性离子交换基团的纳米离子交换材料。Example 12: RF-gel 0.5g, add 22ml dichloroethane, soak at room temperature for half an hour, add methylal 0.96ml, thionyl chloride 1.56ml and anhydrous tin tetrachloride 0.5ml in ice bath , warming up to 45°C, reacting for 60 hours, taking out the product and washing it with water to obtain a chloromethyl-containing nano-ion exchange material precursor (nanostructure intermediate material); after that, functionalization reaction according to a conventional method (referring to: Tang Shunqing, organic The preparation, structure and performance of redox functional fibers and their research on the adsorption mechanism of noble metal ions, doctoral dissertation of Sun Yat-sen University, May 1995; Sun Yat-sen University library can be consulted publicly), you can get a variety of cations, anions or amphoteric Nano ion exchange materials with ion exchange groups.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031398510A CN100336597C (en) | 2003-07-18 | 2003-07-18 | Nano ion exchange material and its preparing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031398510A CN100336597C (en) | 2003-07-18 | 2003-07-18 | Nano ion exchange material and its preparing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1480257A CN1480257A (en) | 2004-03-10 |
CN100336597C true CN100336597C (en) | 2007-09-12 |
Family
ID=34155124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031398510A Expired - Fee Related CN100336597C (en) | 2003-07-18 | 2003-07-18 | Nano ion exchange material and its preparing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100336597C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106111095A (en) * | 2016-06-27 | 2016-11-16 | 安徽金联地矿科技有限公司 | A kind of preparation method of novel attapulgite powder compound ion exchange fiber aeroge |
CN112973589B (en) * | 2021-02-05 | 2022-04-29 | 中国工程物理研究院激光聚变研究中心 | Preparation method of sulfonated RF aerogel microspheres |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5744510A (en) * | 1995-04-25 | 1998-04-28 | Regents Of The University Of California | Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures |
CN1205709A (en) * | 1995-12-21 | 1999-01-20 | Iab离子交换器股份有限公司 | Process for prepn. of very acidic cation exchangers |
EP1149630A2 (en) * | 2000-04-27 | 2001-10-31 | Bayer Aktiengesellschaft | Method for producing monodispersed gel-like cation exchangers |
CN1401424A (en) * | 2001-08-24 | 2003-03-12 | 中国科学院山西煤炭化学研究所 | Process for preparing barrow size distribution charcoal aerogel |
-
2003
- 2003-07-18 CN CNB031398510A patent/CN100336597C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5744510A (en) * | 1995-04-25 | 1998-04-28 | Regents Of The University Of California | Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures |
CN1205709A (en) * | 1995-12-21 | 1999-01-20 | Iab离子交换器股份有限公司 | Process for prepn. of very acidic cation exchangers |
EP1149630A2 (en) * | 2000-04-27 | 2001-10-31 | Bayer Aktiengesellschaft | Method for producing monodispersed gel-like cation exchangers |
CN1401424A (en) * | 2001-08-24 | 2003-03-12 | 中国科学院山西煤炭化学研究所 | Process for preparing barrow size distribution charcoal aerogel |
Also Published As
Publication number | Publication date |
---|---|
CN1480257A (en) | 2004-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | In-situ growing of metal-organic frameworks on three-dimensional iron network as an efficient adsorbent for antibiotics removal | |
Kong et al. | Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads and their functionalized composites | |
Razzaz et al. | Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions | |
Kampalanonwat et al. | Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal | |
Gu et al. | Fabrication of graphene-based xerogels for removal of heavy metal ions and capacitive deionization | |
Zong et al. | Shapeable aerogels of metal–organic-frameworks supported by aramid nanofibrils for efficient adsorption and interception | |
Gan et al. | Selective removal of nitrate ion using a novel activated carbon composite carbon electrode in capacitive deionization | |
Jin et al. | Efficient adsorption of Congo red by MIL-53 (Fe)/chitosan composite hydrogel spheres | |
Zhang et al. | Sulfhydryl-modified chitosan aerogel for the adsorption of heavy metal ions and organic dyes | |
CN103255634B (en) | A kind of preparation method of polyacrylonitrile/pocompounde compounde micro-nano conductive fiber | |
Li et al. | A novel cellulose/lignin/montmorillonite ternary hybrid aerogel for efficiently adsorptive removal of antibiotics from water | |
CN108609649B (en) | Preparation method of sea urchin-shaped magnetic hollow microspheres | |
Zhao et al. | A highly efficient adsorbent constructed by the in situ assembly of Zeolitic imidazole framework-67 on 3D aramid nanofiber aerogel scaffold | |
CN102372812B (en) | Macroporous strong alkaline carbon nanotube composite ion exchange resin and preparation method thereof | |
Liu et al. | Performance of defective Zr-MOFs for the adsorption of anionic dyes | |
Zhao et al. | Efficient adsorption of Congo red by micro/nano MIL-88A (Fe, Al, Fe-Al)/chitosan composite sponge: Preparation, characterization, and adsorption mechanism | |
Jing et al. | Simple synthesis of chitosan/alginate/graphene oxide/UiO-67 amphoteric aerogels: Characterization, adsorption mechanism and application for removal of cationic and anionic dyes from complex dye media | |
CN103895293A (en) | Nanofiber membrane fabric with modified self-cleaning carbon nano tube and preparation method | |
CN106179264B (en) | A kind of resin base meso-porous nano composite material and preparation method and application | |
CN111203199B (en) | Porous β-cyclodextrin cross-linked polymer nanofibers and their preparation method and application in removing bisphenol organic pollutants in water | |
Si et al. | Metal-organic framework-based core-shell composites for chromatographic stationary phases | |
Wang et al. | Design of adjustable hypercrosslinked poly (ionic liquid) s for highly efficient oil-water separation | |
Weng et al. | Two-dimensional borocarbonitrides nanosheets engineered sulfonated polyether sulfone microspheres as highly efficient and photothermally recyclable adsorbents for hemoperfusion | |
Luo et al. | Processable conjugated microporous polymer gels and monoliths: fundamentals and versatile applications | |
CN100336597C (en) | Nano ion exchange material and its preparing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070912 Termination date: 20100718 |