CH716262A2 - Procédé de stockage de données informatiques par distribution d'un conteneur crypté et de sa clé de déchiffrement sur des noeuds distincts d'un réseau blockchain. - Google Patents

Procédé de stockage de données informatiques par distribution d'un conteneur crypté et de sa clé de déchiffrement sur des noeuds distincts d'un réseau blockchain. Download PDF

Info

Publication number
CH716262A2
CH716262A2 CH00736/19A CH7362019A CH716262A2 CH 716262 A2 CH716262 A2 CH 716262A2 CH 00736/19 A CH00736/19 A CH 00736/19A CH 7362019 A CH7362019 A CH 7362019A CH 716262 A2 CH716262 A2 CH 716262A2
Authority
CH
Switzerland
Prior art keywords
data
network
node
nodes
enclave
Prior art date
Application number
CH00736/19A
Other languages
English (en)
Inventor
Attia Jonathan
Louiset Raphaël
Original Assignee
Lapsechain Sa C/O Leax Avocats
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapsechain Sa C/O Leax Avocats filed Critical Lapsechain Sa C/O Leax Avocats
Priority to CH00736/19A priority Critical patent/CH716262A2/fr
Publication of CH716262A2 publication Critical patent/CH716262A2/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0894Escrow, recovery or storing of secret information, e.g. secret key escrow or cryptographic key storage
    • H04L9/0897Escrow, recovery or storing of secret information, e.g. secret key escrow or cryptographic key storage involving additional devices, e.g. trusted platform module [TPM], smartcard or USB
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/52Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow
    • G06F21/53Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow by executing in a restricted environment, e.g. sandbox or secure virtual machine
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/64Protecting data integrity, e.g. using checksums, certificates or signatures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09CCIPHERING OR DECIPHERING APPARATUS FOR CRYPTOGRAPHIC OR OTHER PURPOSES INVOLVING THE NEED FOR SECRECY
    • G09C1/00Apparatus or methods whereby a given sequence of signs, e.g. an intelligible text, is transformed into an unintelligible sequence of signs by transposing the signs or groups of signs or by replacing them by others according to a predetermined system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/0643Hash functions, e.g. MD5, SHA, HMAC or f9 MAC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3236Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
    • H04L9/3239Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions involving non-keyed hash functions, e.g. modification detection codes [MDCs], MD5, SHA or RIPEMD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2107File encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/12Details relating to cryptographic hardware or logic circuitry
    • H04L2209/127Trusted platform modules [TPM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/50Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using hash chains, e.g. blockchains or hash trees

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioethics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Power Engineering (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

L'invention concerne un procédé de stockage sécurisé de données ( 15 ) informatiques au sein d'un réseau ( 1 ) pair-à-pair composé d'une pluralité de nœuds ( 2 ) sur lequel est distribué une chaîne ( 5 ) de blocs, procédé dans lequel les données sont cryptées au sein d'une enclave ( 8 ). Les données ( 15 ) ainsi cryptées et une clé ( 23 ) de déchiffrement de celles-ci sont distribuées sur des nœuds ( 2A , 2B ) distincts du réseau ( 1 ), et des empreintes numériques du chargement des données dans l'enclave ( 8 ) et de leur mémorisation sont stockées dans un bloc ( 4 ) de la chaîne ( 5 ) de blocs.

Description

DOMAINE TECHNIQUE
[0001] L'invention a trait au domaine de l'informatique, et plus précisément au domaine du stockage sécurisé des données informatiques en réseau.
ART ANTERIEUR
[0002] La sécurisation du stockage en réseau des données informatiques a pour double objectif d'éviter la perte des données (c'est-à-dire leur effacement intempestif) et leur exploitation (ce terme incluant la lecture ainsi que la copie partielle ou totale des données) par des tiers non autorisés. En d'autres termes, la sécurisation vise à garantir la pérennité et la confidentialité des données.
[0003] Pour minimiser le risque de perte des données (en d'autres termes, pour maximiser la pérennité des données), on procède généralement à des réplications, c'est-à-dire que l'on effectue une distribution des données parmi plusieurs espaces de stockage. Les données sont par conséquent stockées de manière redondante.
[0004] Pour garantir (autant que possible) la confidentialité des données stockées en réseau, on recourt généralement à deux méthodes : La première consiste à restreindre (typiquement via des mots de passe ou des certificats électroniques) l'accès à un serveur sur lequel sont stockées les données, ce qui minimise les risques de lecture ou de copie ; La deuxième consiste à chiffrer les données elles-mêmes au moyen de techniques cryptographiques.
[0005] La première méthode est efficace à deux conditions principales.
[0006] Première condition : le risque de faille dans les restrictions d'accès au serveur doit être nul ou, à tout le moins, minimum.
[0007] L'expérience montre toutefois que certaines attaques permettent de contourner ces restrictions, typiquement en récupérant les identifiants et mots de passe d'utilisateurs et en usurpant leur identité pour accéder à leurs données.
[0008] Deuxième condition : l'administrateur du serveur doit lui-même être digne de confiance.
[0009] L'expérience montre toutefois que certains fournisseurs de services en ligne (notamment de réseaux sociaux), qui administrent des serveurs sur lesquels sont stockées les données personnelles de nombreux utilisateurs, se permettent d'accéder à ces données et d'en faire une exploitation pour leur propre compte, typiquement en revendant les données à des sociétés commerciales ou à des agences gouvernementales, ou en analysant elles-mêmes les données.
[0010] La deuxième méthode résout les problèmes de la première, puisque les tiers non autorisés ne peuvent faire aucune exploitation des données, sauf à craquer les algorithmes de cryptage, ce qui, jusqu'à présent, s'est révélé infaisable pour les algorithmes les plus couramment utilisés, tels que l'algorithme RSA (Rivest, Shamir, Adleman) ou l'algorithme des courbes elliptiques.
[0011] Généralement, les données sont chiffrées localement au sein d'un terminal émetteur (typiquement un ordinateur personnel), puis les données chiffrées sont transmises au réseau pour y être stockées tandis qu'une clé cryptographique de déchiffrement des données est stockée localement au sein du terminal émetteur.
[0012] Cette méthode présente cependant un risque : la perte de la clé cryptographique de déchiffrement des données, ce qui rend les données définitivement inexploitables (et ce par quiconque, y compris leur propriétaire), car indéchiffrables.
[0013] Il est envisageable de déléguer au réseau (typiquement à un serveur mandataire distant) le soin de procéder au chiffrement des données et d'administrer la clé cryptographique de déchiffrement.
[0014] Dans ce cas se pose à nouveau le problème d'un potentiel accès aux données par l'administrateur du serveur mandataire, soit que celui-ci les copie avant leur chiffrement, soit qu'il prenne la liberté de les déchiffrer en exploitant la clé cryptographique générée. Se pose également le problème, du point de vue du terminal émetteur, d'obtenir une preuve, de la part du réseau, que le chiffrement a bien été effectué.
[0015] L'invention vise à offrir une solution efficace à ces problèmes, en particulier au problème de la confidentialité.
RESUME DE L'INVENTION
[0016] Il est proposé un procédé de stockage sécurisé de données informatiques au sein d'un réseau pair-à-pair composé d'une pluralité de nœuds formant une base de données distribuée sur laquelle est mémorisée, par réplication sur chaque nœud, une chaîne de blocs, ce procédé comprenant les opérations consistant à : <tb><SEP>- Emettre, à partir d'un terminal émetteur dans lequel sont stockées les données, une requête de stockage à destination du réseau ; <tb><SEP>- A réception de la requête de stockage par au moins un nœud du réseau, sélectionner au sein du réseau au moins un nœud, dit nœud d'entrée, équipé d'une unité de traitement informatique dans laquelle est implémenté un environnement d'exécution sécurisé par cryptographie, dit enclave ; <tb><SEP>- Instancier l'enclave ; <tb><SEP>- Charger les données, à partir du terminal émetteur et via une ligne de communication sécurisée, vers l'enclave du nœud d'entrée ; <tb><SEP>- Inscrire dans un bloc de la chaîne de blocs, par un ou plusieurs nœuds du réseau, au moins une transaction contenant une empreinte numérique de la requête de stockage et/ou du chargement ainsi effectué ; <tb><SEP>- Dans l'enclave : <tb><SEP><SEP>o Chiffrer les données pour former un conteneur crypté, en lui associant une clé cryptographique de déchiffrement ; <tb><SEP><SEP>o Désigner, parmi le réseau, un ou plusieurs nœuds primaires de stockage et un ou plusieurs nœuds secondaires de stockage distincts du ou des nœuds primaires de stockage ; <tb><SEP><SEP>o Distribuer le conteneur crypté vers le ou les nœuds primaires de stockage ; <tb><SEP><SEP>o Distribuer la clé cryptographique de déchiffrement vers le ou les nœuds secondaires de stockage ; <tb><SEP>- Hors de l'enclave : <tb><SEP><SEP>o Mémoriser le conteneur crypté au sein de chaque nœud primaire de stockage ; <tb><SEP><SEP>o Mémoriser la clé cryptographique de déchiffrement au sein de chaque nœud secondaire de stockage ; <tb><SEP>- Inscrire dans un bloc de la chaîne de blocs, par un ou plusieurs nœuds du réseau, au moins une transaction contenant une empreinte numérique des distributions ou des mémorisations ainsi effectuées.
BREVE DESCRIPTION DES FIGURES
[0017] D'autres objets et avantages de l'invention apparaîtront à la lumière de la description d'un mode de réalisation, faite ci-après en référence aux dessins annexés dans lesquels : <tb><SEP>LaFIG.1est un schéma fonctionnel simplifié illustrant un réseau pair-à-pair sur lequel est distribuée une chaîne de blocs ; <tb><SEP>LaFIG.2est un schéma fonctionnel simplifié illustrant différents composants d'une unité de traitement informatique impliqués dans la création et l'exploitation d'un environnement d'exécution sécurisé appelé enclave ; <tb><SEP>LaFIG.3est un schéma fonctionnel illustrant pour partie une architecture réseau, pour partie des étapes d'un procédé de stockage, et pour partie des fichiers produits, échangés ou stockés au sein du réseau pour les besoins (ou en application) de ce procédé.
DESCRIPTION DETAILLEE DE L'INVENTION
[0018] Sans s'y restreindre, le procédé de stockage proposé exploite, en les combinant, des fonctionnalités offertes par deux technologies relativement récentes dont il paraît utile de faire une description préalable avant d'entrer dans les détails du procédé, à savoir : La technologie de la chaîne de blocs ou, en terminologie anglo-saxonne, blockchain (dans ce qui suit, on préférera la terminologie anglo-saxonne, en raison de son emploi courant dans la plupart des langues, y compris en langue française) ; La technologie de l'environnement d'exécution sécurisé ou, en terminologie anglo-saxonne, du trusted execution environment (TEE).
[0019] La technologie blockchain est organisée en couches. Elle comprend : Une couche d'infrastructure matérielle, appelée „réseau blockchain“ ; Une couche protocolaire appelée „protocole blockchain“ ; Une couche informationnelle, appelée „registre blockchain“.
[0020] Le réseau blockchain est un réseau informatique décentralisé, dit réseau pair-à-pair (en terminologie anglo-saxonne Peer-to-Peer ou P2P), constitué d'une pluralité d'ordinateurs (au sens fonctionnel du terme : il s'agit d'un appareil pourvu d'une unité de traitement informatique programmable, qui peut se présenter sous forme d'un smartphone, d'une tablette, d'un ordinateur de bureau, d'une station de travail, d'un serveur physique ou virtuel, c'est-à-dire un espace de calcul et de mémoire alloué au sein d'un serveur physique et sur lequel tourne un système d'exploitation ou une émulation de système d'exploitation), appelés „nœuds“ en référence à la théorie des graphes, capables de communiquer entre eux (c'est-à-dire de s'échanger des données informatiques), deux à deux, au moyen de liaisons filaires ou sans fil.
[0021] Un réseau1blockchain comprenant des nœuds2communiquant par des liaisons3est illustré sur laFIG.1. Par souci de simplification et de conformité à la théorie des graphes, sur laFIG.1, les nœuds2du réseau1sont représentés par des cercles ; les liaisons3, par des arêtes reliant les cercles. Pour ne pas surcharger de traits le dessin, seules certaines liaisons3entre les nœuds2sont représentées.
[0022] Les nœuds2peuvent être disséminés sur de larges régions géographiques ; ils peuvent également être regroupés dans des régions géographiques plus restreintes.
[0023] Le protocole blockchain se présente sous forme d'un programme informatique implémenté dans chaque nœud2du réseau1blockchain, et qui inclut, outre des fonctions de dialogue - c'est-à-dire d'échange des données informatiques - avec les autres nœuds2du réseau1, un algorithme de calcul qui, à partir de données d'entrée appelées „transactions“ (qui sont des transcriptions d'interactions entre un ou plusieurs terminaux informatiques émetteurs et un ou plusieurs terminaux informatiques destinataires) : <tb><SEP>- Élabore des fichiers4de données structurées appelés „blocs“, chaque bloc4comprenant un corps4Acontenant des empreintes numériques de transactions, et un en-tête4Bcontenant : <tb><SEP><SEP>o Un numéro d'ordre, ou rang, ou encore hauteur (height en anglais), sous forme d'un nombre entier qui désigne la position du bloc4au sein d'une chaîne dans l'ordre croissant à partir d'un bloc initial (Genesis block en anglais) ; <tb><SEP><SEP>o Une empreinte numérique unique des données du corps4A ; <tb><SEP><SEP>o Une empreinte numérique unique, appelée pointeur, de l'en-tête du bloc4précédent, <tb><SEP><SEP>o Une donnée d'horodatage (timestamp en anglais) ; <tb><SEP>- Met en œuvre un mécanisme de validation des blocs4par consensus entre tout ou partie des nœuds2 ; <tb><SEP>- Concatène les blocs4validés pour former un registre5(le registre blockchain) sous forme d'un agrégat dans lequel chaque bloc4est relié mathématiquement au précédent par son pointeur.
[0024] La moindre modification des données du corps4Aou de l'en-tête4Bd'un bloc4affecte la valeur de son empreinte numérique et rompt par conséquent le lien existant entre ce bloc4ainsi modifié et le bloc4suivant dont le pointeur ne correspond plus.
[0025] Selon un mode particulier de réalisation, l'empreinte numérique de chaque bloc4est un condensé (ou condensat, en anglais hash) des données du bloc4, c'est-à-dire le résultat d'une fonction de hachage appliquée aux données du bloc4(y compris le corps4Aet l'en-tête4Bà l'exception de l'empreinte numérique elle-même). La fonction de hachage est typiquement SHA-256.
[0026] Pour un bloc4donné de rang N (N un entier), le pointeur assure avec le bloc4précédent de rang N-1 une liaison inaltérable. En effet, toute modification des données du bloc4de rang N-1 aboutirait à la modification de son empreinte, et donc à un défaut de correspondance entre cette empreinte (modifiée) du bloc4de rang N-1 et le pointeur mémorisé parmi les métadonnées du bloc4de rang N.
[0027] La succession des blocs4reliés entre eux deux à deux par correspondance du pointeur d'un bloc4donné de rang N avec l'empreinte numérique du bloc précédent de rang N-1 constitue par conséquent le registre5blockchain sous forme d'un agrégat de blocs4corrélés, dans lequel la moindre modification des données d'un bloc4de rang N-1 se traduit par une rupture du lien avec le bloc4suivant de rang N - et donc la rupture du registre blockchain.
[0028] C'est cette structure particulière qui procure aux données contenues dans le registre5blockchain une réputation d'immuabilité, garantie par le fait que le registre5blockchain est répliqué sur tous les nœuds2du réseau1, obligeant tout attaquant, non seulement à modifier tous les blocs4de rang supérieur au bloc4modifié, mais à déployer ces modifications (alors même que le registre5blockchain continue de se constituer par les nœuds2appliquant le protocole blockchain) à l'ensemble des nœuds2.
[0029] Quel que soit le type de consensus appliqué par le mécanisme de validation des blocs4, la plupart des technologies blockchain ont pour fonction primaire d'enregistrer, dans leur registre5blockchain, des transactions passées entre un ou plusieurs terminaux émetteurs, et un ou plusieurs terminaux récepteurs, indifféremment appelés „utilisateurs“.
[0030] A chaque utilisateur est associé un compte, appelé de manière simplificatrice „portefeuille électronique“ (en anglais digital wallet), qui contient une zone mémoire et une interface programmatique ayant des fonctions d'interaction avec le réseau1blockchain pour lui soumettre des transactions, et des fonctions de synchronisation avec le registre5blockchain pour inscrire, dans la zone mémoire, les transactions validées par inscription dans le registre5blockchain.
[0031] Sauf mention contraire, et par souci de simplification, l'expression simple „chaîne de blocs“ ou „blockchain“ désigne le registre 5 blockchain lui-même.
[0032] Certaines technologies blockchain récentes (Ethereum, typiquement) ajoutent aux trois couches matérielle (réseau blockchain), protocolaire (protocole blockchain) et informationnelle (registre blockchain) une couche applicative qui se présente sous forme d'un environnement de développement permettant de programmer des applications, appelées „contrats intelligents“ (en anglais Smart contracts), qui peuvent être déployées sur le registre5blockchain à partir des nœuds2.
[0033] On décrit à présent succinctement la technologie des contrats intelligents.
[0034] Un contrat intelligent comprend deux éléments : Un compte, appelé „compte de contrat“ (en anglais Contract account), dans la zone mémoire duquel est inscrit un code source contenant des instructions informatiques implémentant les fonctions attribuées au contrat intelligent ; Un code exécutable (en anglais Exécutable Bytecode) résultant d'une compilation du code source, ce code exécutable étant mémorisé ou déployé au sein du registre5blockchain, c'est-à-dire inséré en tant que transaction dans un bloc4du registre5blockchain.
[0035] Dans la technologie blockchain proposée par Ethereum, un smart contrat est activé par un appel (en anglais Call) adressé par un autre compte, dit compte initiateur (qui peut être un compte utilisateur ou un compte de contrat), cet appel se présentant sous forme d'une transaction contenant, d'une part, un fonds de réserve à transférer (c'est-à-dire un paiement) depuis le compte initiateur au compte de contrat et, d'autre part, des conditions initiales.
[0036] Cet appel est inscrit en tant que transaction dans le registre5blockchain. Il déclenche : Le transfert du fonds de réserve du compte initiateur au compte de contrat ; La désignation, parmi le réseau1blockchain, d'un nœud d'exécution associé à un compte utilisateur ; L'activation, dans une unité de traitement informatique du nœud d'exécution, d'un environnement d'exécution ou machine virtuelle (appelé Ethereum Virtual Machine ou EVM dans le cas d'Ethereum) ; L'exécution pas-à-pas des étapes de calcul du code exécutable par la machine virtuelle à partir des conditions initiales, chaque étape de calcul étant accompagnée d'un transfert d'une fraction (appelée gas dans le cas d'Ethereum) du fonds de réserve depuis le compte de contrat vers le compte utilisateur du nœud d'exécution, et ce jusqu'à épuisement des étapes de calcul, au terme desquelles est obtenu un résultat ; L'inscription (éventuellement sous forme d'une empreinte numérique) de ce résultat en tant que transaction dans le registre5blockchain.
[0037] Le compte initiateur récupère (c'est-à-dire, en pratique, télécharge) le résultat lors de sa synchronisation au registre5blockchain.
[0038] On introduit à présent brièvement les environnements d'exécution sécurisé.
[0039] Un environnement d'exécution sécurisé (Trusted exécution environment ou TEE) est, au sein d'une unité6de traitement informatique pourvue d'un processeur ou CPU (Central Processing Unit)7, un espace temporaire de calcul et de stockage de données, appelé (par convention) enclave, ou encore enclave cryptographique, qui se trouve isolé, par des moyens cryptographiques, de toute action non autorisée résultant de l'exécution d'une application hors de cet espace, typiquement du système d'exploitation.
[0040] Intel® a, par exemple, revu à partir de 2013 la structure et les interfaces de ses processeurs pour y inclure des fonctions d'enclave, sous la dénomination Software Guard Extension, plus connue sous l'acronyme SGX. SGX équipe la plupart des processeurs de type XX86 commercialisés par Intel® depuis 2015, et plus précisément à partir de la sixième génération incorporant la microarchitecture dite Skylake. Les fonctions d'enclave proposées par SGX ne sont pas accessibles d'office : il convient de les activer via le système élémentaire d'entrée/sortie (Basic Input Output System ou BIOS).
[0041] Il n'entre pas dans les nécessités de la présente description de détailler l'architecture des enclaves, dans la mesure où : En dépit de sa relative jeunesse, cette architecture est relativement bien documentée, notamment par Intel® qui a déposé de nombreux brevets, cf. par ex., parmi les plus récents, la demande de brevet américain US 2019/0058696 ; Des processeurs permettant de les implémenter sont disponibles sur le marché - notamment les processeur Intel® précités ; Seules les fonctionnalités permises par l'enclave nous intéressent ici, ces fonctionnalités pouvant être mises en œuvre via des lignes de commande spécifiques. A ce titre, l'homme du métier pourra se référer au guide édité en 2016 par Intel® : Software Guard Extensions, Developer Guide.
[0042] Pour une description plus accessible des enclaves, et plus particulièrement d'Intel® SGX, l'homme du métier peut également se référer à A. Adamski, Overview of Intel SGX - Part 1, SGX Internal, ou à D. Boneh, Surnaming Schemes, Fast Verification, and Applications to SGX Technology, in Topics in Cryptology, CT - RSA 2017, The Cryptographers' Track at the RSA Conférence 2017, San Francisco, CA, USA, Feb.14-17, 2017, Proceedings, pp.149-164, ou encore à K. Severinsen, Secure Programming with Intel SGX and Novel Applications, Thesis submitted for the Degree of Master in Programming and Networks, Dept. Of Informatics, Faculty of Mathematics and Natural Science, University of Oslo, Autumn 2017.
[0043] Pour résumer, en référence à laFIG.2, une enclave8comprend, en premier lieu, une zone9mémoire sécurisée (dénommée Page Cache d'enclave, en anglais Enclave Page Cache ou EPC), qui contient du code et des données relatives à l'enclave elle-même, et dont le contenu est chiffré et déchiffré en temps réel par une puce dédiée dénommée Moteur de Chiffrement de Mémoire (en anglais Memory Encryption Engine ou MEE). L'EPC9est implémentée au sein d'une partie de la mémoire vive dynamique (DRAM)10allouée au processeur7, et à laquelle les applications ordinaires (notamment le système d'exploitation) n'ont pas accès.
[0044] L'enclave8comprend, en deuxième lieu, des clés cryptographiques employées pour chiffrer ou signer à la volée les données sortant de l'EPC9, ce grâce à quoi l'enclave8peut être identifiée (notamment par d'autres enclaves), et les données qu'elle génère peuvent être chiffrées pour être stockées dans des zones de mémoire non protégées (c'est-à-dire hors de l'EPC9).
[0045] Pour pouvoir exploiter une telle enclave8, une application11doit être segmentée en, d'une part, une ou plusieurs parties12non sécurisées (en anglais untrusted part(s)), et, d'autre part, une ou plusieurs parties13sécurisées (en anglais trusted part(s)).
[0046] Seuls les processus induits par la (les) partie(s)13sécurisée(s) de l'application11peuvent accéder à l'enclave8. Les processus induits par la (les) partie(s)12non sécurisée(s) ne peuvent pas accéder à l'enclave8, c'est-à-dire qu'ils ne peuvent pas dialoguer avec les processus induits par la (les) partie(s)13sécurisée(s).
[0047] La création (également dénommée instanciation) de l'enclave8et le déroulement de processus en son sein sont commandés via un jeu14d'instructions particulières exécutables par le processeur7et appelées par la (les) partie(s)13sécurisée(s) de l'application11.
[0048] Parmi ces instructions : ECREATE commande la création d'une enclave8 ; EINIT commande l'initialisation de l'enclave8 ; EADD commande le chargement de code dans l'enclave8 ; EENTER commande l'exécution de code dans l'enclave8 ; ERESUME commande une nouvelle exécution de code dans l'enclave8 ; EEXIT commande la sortie de l'enclave8, typiquement à la fin d'un processus exécuté dans l'enclave8.
[0049] On a, sur laFIG.2, représenté de manière fonctionnelle l'enclave8sous la forme d'un bloc (en traits pointillés) englobant la partie13sécurisée de l'application11, le jeu14d'instructions du processeur7, et l'EPC9. Cette représentation n'est pas réaliste ; elle vise simplement à regrouper visuellement les éléments qui composent ou exploitent l'enclave8.
[0050] Nous expliquerons ci-après comment sont exploitées les enclaves.
[0051] Les nœuds2du réseau1blockchain étant tous équipés de zones mémoires, celles-ci peuvent être exploitées en tant qu'espace de stockage pour des données15issues d'un terminal16émetteur (ici représenté sous forme d'un smartphone) relié au réseau1. Pour minimiser le risque de perte des données15, il est avantageux de procéder à une réplication de celles-ci, c'est-à-dire d'effectuer une copie des données15, et de distribuer une copie à plusieurs nœuds2du réseau1blockchain. La traçabilité des données15peut être réalisée par inscription, dans le registre5blockchain, d'une ou plusieurs empreintes numériques des mémorisations ainsi effectuées.
[0052] Ce stockage distribué des données15est avantageusement piloté par un contrat intelligent, activé par exemple par le terminal16émetteur qui, tout en transmettant les données15à stocker au réseau1, transmet au contrat intelligent un appel par la procédure décrite précédemment.
[0053] Si la réplication des données15au sein du réseau1blockchain résout le problème de la pérennité des données15, il ne résout pas le problème de leur confidentialité.
[0054] Procéder à un chiffrement des données15au niveau du terminal16émetteur (lequel stockerait une clé de déchiffrement des données) résoudrait le problème de la confidentialité vis-à-vis des tiers non autorisés (sauf à admettre que la clé de déchiffrement pourrait être copiée par un tiers non autorisé à partir du terminal16émetteur), mais ne garantirait cependant pas que les données demeureraient accessibles par le terminal16émetteur lui-même, dans l'hypothèse - qui est réaliste en pratique - où la clé cryptographique serait perdue ou corrompue.
[0055] Il est ici proposé de distribuer sur le réseau1non seulement les données15(sous forme cryptée), mais également une clé de déchiffrement de celles-ci, via une enclave8instanciée sur un nœud2E, dit nœud d'entrée, du réseau1(FIG.3).
[0056] A cet effet, une opération préliminaire consiste, à partir du terminal16émetteur dans lequel sont stockées les données15, à transmettre une requête de stockage des données15à destination du réseau1, typiquement en activant un contrat intelligent déployé sur la blockchain5.
[0057] A réception de la requête de stockage par au moins un nœud2du réseau1, le contrat intelligent sélectionne, au sein du réseau1au moins un nœud2Ed'entrée, équipé d'une unité de traitement informatique dans laquelle est implémentée une enclave8.
[0058] Cette enclave8est alors instanciée en application des instructions du contrat intelligent, et les données15y sont chargées à partir du terminal16émetteur et via une ligne17de communication sécurisée (par ex. utilisant le protocole Transport Layer Security ou TLS). A cet effet, l'enclave8peut être pourvue, dès son instanciation, d'une émulation d'interface18de communication supportant le protocole choisi (ici TLS) pour l'échange des données sécurisées.
[0059] Le protocole blockchain est avantageusement chargé dans l'enclave8, pour former un module19blockchain apte à interroger le registre5blockchain et/ou à participer au processus de création et validation des blocs4.
[0060] Une transaction20contenant une empreinte numérique du chargement des données ainsi effectué est inscrite dans un bloc4de la blockchain5, aux fins de traçabilité.
[0061] Cette transaction20peut être transmise au module19blockchain par le terminal16émetteur, pour être inscrite par un ou plusieurs nœuds2du réseau (par le processus décrit plus haut) dans un nouveau bloc4du registre5blockchain. En variante, le module19blockchain émet de lui-même une transaction20pour inscription dans un nouveau bloc4.
[0062] Dans l'enclave8se déroule alors un processus qui comprend les opérations suivantes.
[0063] Une première opération consiste à chiffrer les données15au moyen d'une clé21cryptographique de chiffrement pour former un conteneur22crypté, en lui associant une clé23cryptographique de déchiffrement. A cet effet, les données15reçues du terminal16émetteur sont relayées par l'interface18de communication à un module24de chiffrement implémenté dans l'enclave8.
[0064] Selon un mode préféré de réalisation, le chiffrement est symétrique. Dans ce cas, la clé21de chiffrement et la clé23de déchiffrement sont une seule et même clé.
[0065] Une deuxième opération consiste à désigner, parmi le réseau1, un ou plusieurs nœuds2Aprimaires de stockage et un ou plusieurs nœuds2Bsecondaires de stockage distinct(s) des nœuds2Aprimaires de stockage.
[0066] En d'autres termes, lorsque plusieurs nœuds2Aprimaires de stockage et, respectivement, plusieurs nœuds2Bsecondaires de stockage sont sélectionnés, ils forment deux groupes disjoints (représentés en pointillés sur laFIG.3).
[0067] Une troisième opération consiste à distribuer le conteneur22crypté vers le ou les nœuds2Aprimaires de stockage.
[0068] A cet effet, l'enclave8est avantageusement pourvue d'un module25de distribution de données, auquel le module24de chiffrement communique le conteneur22crypté pour distribution aux nœuds2Aprimaires de stockage.
[0069] Une quatrième opération consiste à distribuer la clé23cryptographique de déchiffrement vers les nœuds2Bsecondaires de stockage.
[0070] A cet effet, l'enclave8est avantageusement pourvue d'un module26de distribution de clé, auquel le module24de chiffrement communique la clé23de déchiffrement pour distribution aux nœuds2Bsecondaires de stockage.
[0071] Ces opérations achevées, l'enclave8peut être refermée.
[0072] Hors de l'enclave8, les opérations suivantes sont réalisées : <tb><SEP>o Le conteneur22crypté est mémorisé au sein de chaque nœud2Aprimaire de stockage ; <tb><SEP>o La clé23cryptographique de déchiffrement est mémorisée au sein de chaque nœud2Bsecondaire de stockage.
[0073] Pour assurer la traçabilité de ces opérations, au moins une transaction contenant une empreinte numérique des distributions ou des mémorisations ainsi effectuées est inscrite dans un bloc4de la chaîne5de blocs, par un ou plusieurs nœuds2du réseau1. Cette transaction peut être initiée par les nœuds2Aprimaires et2Bsecondaires de stockage, mais elle peut également être initiée par l'enclave8elle-même (et plus précisément par le module19blockchain) avant sa fermeture.
[0074] Le procédé qui vient d'être décrit présente les avantages suivants.
[0075] La clé23de déchiffrement des données n'étant pas stockée localement au niveau du terminal16émetteur, elle ne risque pas d'être perdue avec celui-ci. On peut observer que le fait qu'elle soit stockée sur des nœuds2Bdistants ne la rend pas plus vulnérable aux appropriations indues que si elle était stockée dans le terminal16émetteur.
[0076] Les données étant cryptées au sein du conteneur22, leur accès est impossible sans obtenir (indument) la clé de déchiffrement. Le fait que le conteneur22et la clé23de déchiffrement soient stockés sur des nœuds (ou des groupes de nœuds)2A,2Bdistincts limite le risque de déchiffrement non autorisé, chaque nœud2A,2Bn'ayant qu'une partie de l'information (le conteneur22crypté sans la clé23, ou, à l'inverse, la clé23sans le conteneur22crypté).
[0077] Quant à la réplication du conteneur22sur le réseau1blockchain, elle permet de stocker les données avec une bonne assurance qu'elles pourront être récupérées le moment venu par les personnes autorisées à récupérer également la clé23de déchiffrement depuis au moins un nœud2Bsecondaire de stockage.

Claims (1)

1. Procédé de stockage sécurisé de données (15) informatiques au sein d'un réseau (1) pair-à-pair composé d'une pluralité de nœuds (2) formant une base de données distribuée sur laquelle est mémorisée, par réplication sur chaque nœud (2), une chaîne (5) de blocs, ce procédé comprenant les opérations consistant à : - Emettre, à partir d'un terminal (16) émetteur dans lequel sont stockées les données (15), une requête de stockage à destination du réseau (1) ; - A réception de la requête de stockage par au moins un nœud (2) du réseau, sélectionner au sein du réseau (1) au moins un nœud (2), dit nœud (2E) d'entrée, équipé d'une unité de traitement informatique dans laquelle est implémenté un environnement d'exécution sécurisé par cryptographie, dit enclave (8) ; - Instancier l'enclave (8) ; - Charger les données (15), à partir du terminal (16) émetteur et via une ligne (17) de communication sécurisée, vers l'enclave (8) du nœud (2E) d'entrée ; - Inscrire dans un bloc (4) de la chaîne (5) de blocs, par un ou plusieurs nœuds (2) du réseau (1), au moins une transaction (20) contenant une empreinte numérique de la requête de stockage et/ou du chargement ainsi effectué ; - Dans l'enclave (8) : o Chiffrer les données (15) pour former un conteneur (22) crypté, en lui associant une clé (23) cryptographique de déchiffrement ; o Désigner, parmi le réseau (1), un ou plusieurs nœuds (2A) primaires de stockage et un ou plusieurs nœuds (2B) secondaires de stockage distincts du ou des nœuds (2A) primaires de stockage ; o Distribuer le conteneur (22) crypté vers le ou les nœuds (2A) primaires de stockage ; o Distribuer la clé (23) cryptographique de déchiffrement vers le ou les nœuds (2B) secondaires de stockage ; - Hors de l'enclave (8) : o Mémoriser le conteneur (22) crypté au sein de chaque nœud (2) primaire de stockage ; o Mémoriser la clé (23) cryptographique de déchiffrement au sein de chaque nœud (2B) secondaire de stockage ; - Inscrire dans un bloc (4) de la chaîne (5) de blocs, par un ou plusieurs nœuds (2) du réseau (1), au moins une transaction contenant une empreinte numérique des distributions ou des mémorisations ainsi effectuées.
CH00736/19A 2019-06-07 2019-06-07 Procédé de stockage de données informatiques par distribution d'un conteneur crypté et de sa clé de déchiffrement sur des noeuds distincts d'un réseau blockchain. CH716262A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH00736/19A CH716262A2 (fr) 2019-06-07 2019-06-07 Procédé de stockage de données informatiques par distribution d'un conteneur crypté et de sa clé de déchiffrement sur des noeuds distincts d'un réseau blockchain.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00736/19A CH716262A2 (fr) 2019-06-07 2019-06-07 Procédé de stockage de données informatiques par distribution d'un conteneur crypté et de sa clé de déchiffrement sur des noeuds distincts d'un réseau blockchain.

Publications (1)

Publication Number Publication Date
CH716262A2 true CH716262A2 (fr) 2020-12-15

Family

ID=73727398

Family Applications (1)

Application Number Title Priority Date Filing Date
CH00736/19A CH716262A2 (fr) 2019-06-07 2019-06-07 Procédé de stockage de données informatiques par distribution d'un conteneur crypté et de sa clé de déchiffrement sur des noeuds distincts d'un réseau blockchain.

Country Status (1)

Country Link
CH (1) CH716262A2 (fr)

Similar Documents

Publication Publication Date Title
EP3673620B1 (fr) Stockage de données de chaîne de blocs partagées
CA3061427C (fr) Traitement de donnees de chaine de blocs sur la base d&#39;operations sur contrats intelligents executees dans un environnement d&#39;execution de confiance
US20210234702A1 (en) Multi-decentralized private blockchains network
CN105071936A (zh) 用于安全数据共享的系统和方法
FR3082023A1 (fr) Une application logicielle et un serveur informatique pour authentifier l’identite d’un createur de contenu numerique et l’integrite du contenu du createur publie
CN112199697A (zh) 基于共享根密钥的信息处理方法、装置、设备及介质
CH716295A2 (fr) Procédé de signature multiple d&#39;une transaction destinée à une blockchain, au moyen de clés cryptographiques distribuées parmi les noeuds d&#39;un réseau pair-à-pair.
WO2020136206A1 (fr) Plateforme de sécurisation de données
CH716262A2 (fr) Procédé de stockage de données informatiques par distribution d&#39;un conteneur crypté et de sa clé de déchiffrement sur des noeuds distincts d&#39;un réseau blockchain.
CH716261A2 (fr) Procédé de stockage de données informatiques par distribution d&#39;un conteneur crypté et de sa clé de déchiffrement sur un réseau blockchain.
CH716285A2 (fr) Procédé de contrôle de données biométriques d&#39;un individu, avec inscription, dans une blockchain, d&#39;un résultat d&#39;analyse.
CH716263A2 (fr) Procédé de stockage de données informatiques par distribution d&#39;un conteneur crypté et de sa clé de déchiffrement fragmentée sur un réseau blockchain.
CH716298A2 (fr) Procédé de stockage, sous forme cryptée, d&#39;une application sur un réseau blockchain, avec audit préalable du code source de cette application.
CH716294A2 (fr) Procédé de signature décentralisée, sous contrôle biométrique et sous conditions d&#39;identification personnelle et de géolocalisation, d&#39;une transaction destinée à une blockchain.
CH716266A2 (fr) Procédé de stockage de données informatiques sur un réseau blockchain avec preuve de stockage à partir d&#39;un noeud de stockage équipé d&#39;une enclave cryptographique.
CH716267A2 (fr) Procédé de stockage de données informatiques sur un réseau blockchain avec preuve de stockage à partir d&#39;un noeud de calcul épuipé d&#39;une enclave cryptographique.
CH716272A2 (fr) Procédé de stockage de données informatiques par distribution sur un réseau public, avec sauvegarde sur un réseau privé ayant des noeuds équipés d&#39;enclaves.
CH716273A2 (fr) Procédé de stockage de données informatiques sur un réseau, avec double distribution sur deux ensembles disjoints de noeuds du réseau.
CH716269A2 (fr) Procédé de stockage de données informatiques par distribution sur un réseau public, avec sauvegarde sur un réseau privé ayant un noeud maître équipé d&#39;une enclave.
CN114239043A (zh) 一种基于区块链技术构建的共享加密存储系统
CH716284A2 (fr) Procédé de traitement distribué, au sein d&#39;un réseau blockchain et sous enclaves, de données informatiques chiffrées avec une clé fragmentée.
FR3107416A1 (fr) Tokenisation aléatoire efficace dans un environnement dématérialisé
CH716281A2 (fr) Procédé de traitement, au sein d&#39;un réseau blockchain et sous enclave, de données informatiques chiffrées au moyen d&#39;une application chiffrée.
CH716265A2 (fr) Procédé de stockage de données informatiques sur un réseau avec preuve de stockage à partir d&#39;un noeud de calcul équipé d&#39;une enclave cryptographique.
CH716264A2 (fr) Procédé de stockage de données informatiques sur un réseau avec preuve de stockage obtenue par un noeud de stockage équipé d&#39;une enclave cryptographique.

Legal Events

Date Code Title Description
AZW Rejection (application)