CH714232A2 - Process for surface treatment of particles of a ceramic powder and ceramic powder particles - Google Patents

Process for surface treatment of particles of a ceramic powder and ceramic powder particles Download PDF

Info

Publication number
CH714232A2
CH714232A2 CH01245/17A CH12452017A CH714232A2 CH 714232 A2 CH714232 A2 CH 714232A2 CH 01245/17 A CH01245/17 A CH 01245/17A CH 12452017 A CH12452017 A CH 12452017A CH 714232 A2 CH714232 A2 CH 714232A2
Authority
CH
Switzerland
Prior art keywords
particles
ceramic
ceramic material
ions
powder
Prior art date
Application number
CH01245/17A
Other languages
French (fr)
Inventor
Miko Csilla
Bazin Jean-Luc
Original Assignee
Swatch Group Res & Dev Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Res & Dev Ltd filed Critical Swatch Group Res & Dev Ltd
Priority to CH01245/17A priority Critical patent/CH714232A2/en
Publication of CH714232A2 publication Critical patent/CH714232A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62831Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62836Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

L’invention concerne un procédé de traitement de surface d’un matériau céramique à l’état de poudre, ce procédé comprenant l’étape qui consiste à se munir d’une poudre formée d’une pluralité de particules du matériau céramique à traiter, et à soumettre ces particules de poudre céramique à un processus d’implantation ionique en dirigeant vers une surface extérieure de ces particules un faisceau d’ions monochargés ou multichargés produit par une source d’ions monochargés ou multichargés, par exemple du type à résonance cyclotron électronique ECR, ces particules présentant une forme générale polyédrique. L’invention concerne également un matériau à l’état de poudre formé d’une pluralité de particules ayant une couche extérieure (26) céramique et un cœur (24) céramique, ces particules ayant une forme générale polyédrique.The invention relates to a method for surface treatment of a ceramic material in powder form, this process comprising the step of providing a powder formed of a plurality of particles of the ceramic material to be treated, and subjecting said ceramic powder particles to an ion implantation process by directing to an outer surface of said particles a monocharged or multicharged ion beam produced by a source of single-charged or multicharged ions, for example of the cyclotron resonance type ECR electronics, these particles having a generally polyhedral shape. The invention also relates to a powdered material formed of a plurality of particles having an outer ceramic layer (26) and a ceramic core (24), the particles having a generally polyhedral shape.

Description

DescriptionDescription

Domaine technique de l’invention [0001] La présente invention concerne un procédé de traitement de surface de particules d’un matériau céramique à l’état de poudre ainsi que des particules de poudre céramique obtenues par la mise en oeuvre d’un tel procédé. Les particules de poudre céramique obtenues grâce au procédé selon l’invention sont destinées à la fabrication de produits façonnés, c’est-à-dire des pièces livrées sous leur forme définitive et réalisées grâce à des procédés de frittage tels que le frittage à la pression atmosphérique, ou bien le frittage sous pression, encore connu sous sa dénomination anglo-saxonne Hot Isostatic Pressing ou HIP.Technical Field of the Invention The present invention relates to a method of surface treatment of particles of a ceramic material in the powder state as well as particles of ceramic powder obtained by the implementation of such a method . The ceramic powder particles obtained by the process according to the invention are intended for the manufacture of shaped products, that is to say parts delivered in their final form and produced by sintering processes such as sintering. atmospheric pressure, or pressure sintering, also known by its Anglo-Saxon name Hot Isostatic Pressing or HIP.

Arrière-plan technologique de l’invention [0002] Les propriétés mécaniques et physiques des matériaux sont intimement liées à la structure électronique des atomes qui les composent et à la manière dont ils sont liés les uns aux autres. Les matériaux peuvent ainsi être classifiés en trois grandes catégories suivant le type de liaison entre les atomes qui les composent: les métaux (liaisons métalliques), les céramiques (liaison covalente ou ionique) et les polymères (liaison hydrogène). Comme les liaisons covalentes et ioniques sont énergiquement plus fortes que les liaisons métalliques, les céramiques sont plus dures, possèdent un plus haut point de fusion et une plus grande stabilité chimique que les métaux. Par ailleurs, l’absence d’électrons libres fait que les céramiques ont une conductivité électrique et thermique très faible. Pour ces mêmes raisons, il existe un certain antagonisme entre la dureté d’un matériau (qui dépend de la force de la liaison entre les atomes et leur capacité à ne pas se déplacer sous la contrainte), et sa résistance aux chocs (qui dépend de la capacité du matériau à dissiper de l’énergie au travers du mouvement des atomes).Technological background of the invention [0002] The mechanical and physical properties of materials are intimately linked to the electronic structure of the atoms which compose them and to the way in which they are linked to each other. Materials can thus be classified into three main categories according to the type of bond between the atoms which compose them: metals (metallic bonds), ceramics (covalent or ionic bond) and polymers (hydrogen bond). As the covalent and ionic bonds are energetically stronger than the metallic bonds, ceramics are harder, have a higher melting point and greater chemical stability than metals. Furthermore, the absence of free electrons means that ceramics have very low electrical and thermal conductivity. For these same reasons, there is a certain antagonism between the hardness of a material (which depends on the strength of the bond between the atoms and their capacity not to move under stress), and its resistance to impacts (which depends the ability of the material to dissipate energy through the movement of atoms).

[0003] On peut définir les matériaux céramiques comme étant des matériaux inorganiques, non métalliques, nécessitant de hautes températures lors de leur fabrication. La cuisson ou frittage des matériaux céramiques se fait cependant à des températures bien inférieures à leur température de fusion. Si l’on compare les matériaux céramiques aux verres, les deux types de matériaux peuvent être obtenus à partir des mêmes matières premières. La différence réside cependant dans le fait que, dans le cas du verre, la matière première est portée à son point de fusion et, une fois l’état liquide obtenu, on met la matière première en forme par exemple par soufflage ou moulage. A l’inverse, pour élaborer une pièce en matériau céramique, on commence par la phase de mise en forme, à température ambiante, de la matière première à l’état de poudre. Très souvent, cette étape de mise en forme est réalisée en mélangeant la poudre à un liquide ou en utilisant toutes sortes d’additifs afin de favoriser l’homogénéité de l’ébauche de la pièce finale recherchée, mais aussi d’influer sur les caractéristiques de cette pièce. Ensuite, la cuisson de l’ébauche se fait à une température bien inférieure à la température de fusion du matériau céramique. Lors de cette étape de cuisson, les particules de poudre céramique s’agrègent les unes aux autres, ce qui provoque l’élimination de la plupart des pores ou des cavités, et, en conséquence, l’ébauche se contracte et durcit, tout en gardant sa forme de départ. Cette étape de cuisson s’appelle le frittage.[0003] Ceramic materials can be defined as being inorganic, non-metallic materials, requiring high temperatures during their manufacture. However, the firing or sintering of ceramic materials takes place at temperatures well below their melting temperature. If we compare ceramic materials to glasses, both types of materials can be obtained from the same raw materials. The difference however lies in the fact that, in the case of glass, the raw material is brought to its melting point and, once the liquid state has been obtained, the raw material is shaped, for example by blowing or molding. Conversely, to develop a piece of ceramic material, we start with the shaping phase, at room temperature, of the raw material in the powder state. Very often, this shaping step is carried out by mixing the powder with a liquid or by using all kinds of additives in order to promote the homogeneity of the blank of the desired final part, but also to influence the characteristics. of this room. Then, the blank is fired at a temperature well below the melting temperature of the ceramic material. During this firing step, the ceramic powder particles aggregate with each other, which causes the elimination of most of the pores or cavities, and, consequently, the preform contracts and hardens, while keeping its original shape. This cooking step is called sintering.

[0004] Les matériaux céramiques ont en général une structure cristalline, parfois associée à une phase amorphe. On peut classer les matériaux céramiques selon leur application:[0004] Ceramic materials generally have a crystal structure, sometimes associated with an amorphous phase. We can classify ceramic materials according to their application:

1. les céramiques traditionnelles qui sont destinées à un usage alimentaire ou à l’ornementation (poterie, vaisselle, faïence, porcelaine), ou bien encore au bâtiment (carrelage, briques, tuiles);1. traditional ceramics which are intended for food use or ornamentation (pottery, crockery, earthenware, porcelain), or even for the building (tiling, bricks, tiles);

2. les céramiques dites industrielles ou techniques parmi lesquelles on peut citer:2. so-called industrial or technical ceramics, among which there may be mentioned:

• les céramiques électroniques ou fonctionnelles utilisées dans des applications mettant en jeu de faibles courants (céramiques diélectriques (isolantes), céramiques piézoélectriques, céramiques conductrices, céramiques magnétiques, céramiques supraconductrices);• electronic or functional ceramics used in applications involving low currents (dielectric (insulating) ceramics, piezoelectric ceramics, conductive ceramics, magnetic ceramics, superconductive ceramics);

• les céramiques électrotechniques destinées à des applications mettant en jeu de fortes puissances;• electrotechnical ceramics intended for applications involving high powers;

• les céramiques réfractaires pour les applications thermiques;• refractory ceramics for thermal applications;

• les céramiques pour des applications mécaniques telles que les céramiques structurales et les céramiques destinées aux opérations d’usinage (les abrasifs pour les opérations de polissage et les plaquettes de carbure pour les outils de coupe);• ceramics for mechanical applications such as structural ceramics and ceramics intended for machining operations (abrasives for polishing operations and carbide inserts for cutting tools);

• les céramiques utilisées pour réaliser des supports de catalyseurs dans l’industrie chimique et des pots catalytiques notamment dans l’industrie automobile;• the ceramics used to make catalyst supports in the chemical industry and catalytic converters, especially in the automotive industry;

• les céramiques pour les applications optiques (transparence, émission de lumière):• ceramics for optical applications (transparency, light emission):

• les céramiques destinées à être utilisées pour le confinement de combustible nucléaire.• ceramics intended to be used for the containment of nuclear fuel.

[0005] La présente invention s’intéresse plus particulièrement aux céramiques techniques.The present invention relates more particularly to technical ceramics.

CH 714 232 A2 [0006] On peut également classer les produits céramiques selon leur composition chimique. Dans la catégorie des matériaux céramiques monolithiques, on distingue:CH 714 232 A2 [0006] Ceramic products can also be classified according to their chemical composition. In the category of monolithic ceramic materials, there are:

1. les oxydes, à savoir • les produits siliceux à base de silice SiO2;1. oxides, namely • siliceous products based on silica SiO 2 ;

• les produits alumineux comprenant de 30 à 100% d’alumine AI2O3;• aluminous products comprising from 30 to 100% of alumina AI 2 O 3 ;

• les produits basiques à base de magnésie MgO;• basic products based on MgO magnesia;

• les produits spéciaux tels que la zircone ZrO2 ou bien les polycristaux tétragonaux de zircone stabilisés par yttrium (Y-TZP ou Yttrium Stabilized Tetragonal Zirconia Polycristals en terminologie anglo-saxonne).• special products such as ZrO 2 zirconia or else tetragonal zirconia polycrystals stabilized by yttrium (Y-TZP or Yttrium Stabilized Tetragonal Zirconia Polycristals in English terminology).

2. les non-oxydes, à savoir les carbures, les nitrures et les borures.2. non-oxides, namely carbides, nitrides and borides.

[0007] Il existe également des matériaux céramiques composites tels que les matériaux à matrice céramique renforcée par une céramique, par exemple par de la zircone ZrO2, ou bien les matériaux à matrice céramique renforcée par un métal. [0008] La présente invention s’intéresse tout aussi bien aux oxydes qu’aux non-oxydes.There are also composite ceramic materials such as ceramic matrix materials reinforced by a ceramic, for example by ZrO 2 zirconia, or else ceramic matrix materials reinforced by a metal. The present invention is just as interested in oxides as in non-oxides.

[0009] Les procédés d’implantation ionique consistent à bombarder la surface d’un objet à traiter par exemple au moyen d’une source d’ions mono- ou multichargés du type à résonance cyclotron électronique. Une telle installation est encore connue sous sa dénomination anglo-saxonne Electron Cyclotron Résonance ou ECR.[0009] The methods of ion implantation consist in bombarding the surface of an object to be treated, for example by means of a source of mono- or multicharged ions of the electron cyclotron resonance type. Such an installation is also known by its Anglo-Saxon name Electron Cyclotron Résonance or ECR.

[0010] Une source d’ions ECR fait usage de la résonance cyclotronique des électrons pour créer un plasma. Un volume de gaz à basse pression est ionisé au moyen de micro-ondes injectées à une fréquence correspondant à la résonance cyclotron électronique définie par un champ magnétique appliqué à une région située à l’intérieur du volume de gaz à ioniser. Les micro-ondes chauffent les électrons libres présents dans le volume de gaz à ioniser. Ces électrons libres, sous l’effet de l’agitation thermique, vont entrer en collision avec les atomes ou les molécules de gaz et provoquer leur ionisation. Les ions produits correspondent au type de gaz utilisé. Ce gaz peut être pur ou composé. Il peut également s’agir d’une vapeur obtenue à partir d’un matériau solide ou liquide. La source d’ions ECR est en mesure de produire des ions simplement chargés, c’est-à-dire des ions dont le degré d’ionisation est égal à 1, ou bien des ions multichargés, c’est-à-dire des ions dont le degré d’ionisation est supérieur à 1.An ECR ion source makes use of the cyclotron resonance of the electrons to create a plasma. A volume of gas at low pressure is ionized by means of microwaves injected at a frequency corresponding to the electronic cyclotron resonance defined by a magnetic field applied to a region located inside the volume of gas to be ionized. The microwaves heat the free electrons present in the volume of gas to be ionized. These free electrons, under the effect of thermal agitation, will collide with atoms or molecules of gas and cause their ionization. The ions produced correspond to the type of gas used. This gas can be pure or compound. It can also be a vapor obtained from a solid or liquid material. The ECR ion source is able to produce simply charged ions, that is to say ions with a degree of ionization equal to 1, or else multicharged ions, i.e. ions whose degree of ionization is greater than 1.

[0011] Une source d’ions multichargés du type à résonance cyclotron électronique ECR est schématiquement illustrée sur la fig. 1 annexée à la présente demande de brevet. Désignée dans son ensemble par la référence numérique générale 1, une source d’ions multichargés ECR comprend un étage d’injection 2 dans lequel on introduit un volume 4 d’un gaz à ioniser et une onde hyperfréquence 6, un étage de confinement magnétique 8 dans lequel est créé un plasma 10, et un étage d’extraction 12 qui permet d’extraire et d’accélérer les ions du plasma 10 au moyen d’une anode 12a et d’une cathode 12b entre lesquelles est appliquée une haute tension. Un faisceau d’ions multichargés 14 produit en sortie de la source d’ions multichargés ECR 1 vient frapper une surface 16 d’une pièce à traiter 18 et pénètre plus ou moins profondément dans le volume de la pièce à traiter 18.A multicharged ion source of the ECR electronic cyclotron resonance type is schematically illustrated in FIG. 1 annexed to this patent application. Referred to as a whole by the general reference numeral 1, a source of ECR multicharged ions comprises an injection stage 2 into which a volume 4 of a gas to be ionized is introduced and a microwave 6, a magnetic confinement stage 8 in which a plasma 10 is created, and an extraction stage 12 which makes it possible to extract and accelerate the ions from the plasma 10 by means of an anode 12a and a cathode 12b between which a high voltage is applied. A beam of multi-charged ions 14 produced at the outlet of the multi-charged ion source ECR 1 strikes a surface 16 of a workpiece 18 and penetrates more or less deeply into the volume of the workpiece 18.

[0012] L’implantation d’ions par bombardement de la surface d’un objet à traiter a de nombreux effets parmi lesquels la modification de la microstructure du matériau dans lequel l’objet à traiter est réalisé, l’amélioration de la résistance à la corrosion, l’amélioration des propriétés tribologiques et, plus généralement, l’amélioration des propriétés mécaniques. Plusieurs travaux ont ainsi mis en évidence l’augmentation de la dureté du cuivre et du bronze par implantation ionique d’azote. Il a également été démontré que l’implantation d’azote ou de néon dans le cuivre permet d’augmenter sa résistance à la fatigue. De même, des travaux ont montre qu’une implantation d’azote, même à faible dose (1.1015 et 2.1015 ions.cm-2, était suffisante pour modifier de manière significative le module de cisaillement du cuivre.The implantation of ions by bombardment of the surface of an object to be treated has many effects among which the modification of the microstructure of the material in which the object to be treated is produced, the improvement of the resistance to corrosion, improvement of tribological properties and, more generally, improvement of mechanical properties. Several studies have thus demonstrated the increase in the hardness of copper and bronze by ion implantation of nitrogen. It has also been shown that the implantation of nitrogen or neon in copper makes it possible to increase its resistance to fatigue. Similarly, studies have shown that implantation of nitrogen, even at low doses (1.10 15 and 2.10 15 ions.cm-2, was sufficient to significantly modify the shear modulus of copper.

[0013] On comprend donc que l’implantation d’ions par bombardement de la surface d’un objet à traiter présente de grands intérêts tant d’un point de vue scientifique que technique et industriel.It is therefore understandable that the implantation of ions by bombardment of the surface of an object to be treated is of great interest from a scientific, technical and industrial point of view.

[0014] Néanmoins, les études menées jusqu’à ce jour ne se sont intéressées qu’à des objets à traiter massifs. Or, de tels objets massifs sont nécessairement limités par les formes et la géométrie qu’il est possible de leur donner grâce aux techniques d’usinage classiques (perçage, fraisage, alésage etc.).However, the studies carried out to date have focused only on massive objects to be treated. However, such massive objects are necessarily limited by the shapes and geometry that it is possible to give them thanks to conventional machining techniques (drilling, milling, reaming etc.).

[0015] Il existait donc dans l’état de la technique un besoin pour des objets dont les propriétés mécaniques soient améliorées de manière significative tout en n’opposant quasiment aucune limite quant à la forme que de tels objets pouvaient prendre.There therefore existed in the state of the art a need for objects whose mechanical properties are improved significantly while opposing almost no limit as to the form that such objects could take.

Résumé de l’invention [0016] La présente invention a pour but de répondre au besoin mentionné ci-dessus ainsi qu’à d’autres encore en proposant un procédé de traitement de surface d’un matériau céramique permettant de réaliser des objets dont les formesSUMMARY OF THE INVENTION The aim of the present invention is to meet the need mentioned above as well as to others still by proposing a method of surface treatment of a ceramic material making it possible to produce objects the forms

CH 714 232 A2 géométriques sont pratiquement libres de toute contrainte, tout en présentant des propriétés physiques et chimiques modifiées et améliorées.CH 714 232 A2 geometries are practically free of any constraints, while exhibiting modified and improved physical and chemical properties.

[0017] A cet effet, la présente invention concerne un procédé de traitement de surface d’un matériau céramique, ce procédé comprenant l’étape qui consiste à se munir d’une poudre formée d’une pluralité de particules d’un matériau céramique, et à diriger vers une surface de ces particules un faisceau d’ions monochargés ou multichargés produit par une source d’ions monochargés ou multichargés, les particules présentant une forme générale sphérique.To this end, the present invention relates to a method of surface treatment of a ceramic material, this method comprising the step of providing a powder formed from a plurality of particles of a ceramic material , and directing towards a surface of these particles a beam of single or multi-charged ions produced by a source of single or multi-charged ions, the particles having a generally spherical shape.

[0018] Selon des formes préférentielles d’exécution de l’invention:According to preferred forms of execution of the invention:

- la source d’ions mono- ou multichargés est du type à résonance cyclotron électronique ECR;- the source of mono- or multicharged ions is of the ECR electronic cyclotron resonance type;

- on agite les particules de la poudre céramique durant toute la durée du processus d’implantation ionique;- the particles of the ceramic powder are agitated throughout the duration of the ion implantation process;

- la granulométrie des particules de la poudre céramique utilisée est telle que sensiblement 50% de l’ensemble de ces particules a une dimension inférieure à 2 micromètres, la dimension des particules de la poudre céramique utilisée n’excédant pas 60 micromètres;- the particle size of the particles of the ceramic powder used is such that substantially 50% of all of these particles has a size of less than 2 micrometers, the particle size of the ceramic powder used does not exceed 60 micrometers;

- le matériau à ioniser est choisi parmi le carbone, l’azote et le bore;- the material to be ionized is chosen from carbon, nitrogen and boron;

- les ions monochargés ou multichargés sont accélérés sous une tension comprise entre 15 000 et 35 000 volts;- the single-charged or multi-charged ions are accelerated at a voltage between 15,000 and 35,000 volts;

- la dose d’ions implantés est comprise entre 1.1014 et 5.1017ions.cm-2, de préférence entre 1.1016 et 1.1017 ions.cm-2 - the dose of implanted ions is between 1.10 14 and 5.10 17 ions.cm -2 , preferably between 1.10 16 and 1.10 17 ions.cm -2

- la profondeur maximale d’implantation des ions est de 150 à 250 nm;- the maximum depth of implantation of the ions is 150 to 250 nm;

- le matériau céramique traité selon le procédé d’implantation ionique conforme à la présente invention est un carbure, en particulier un carbure de titane TiC ou un carbure de silicium SiC;- The ceramic material treated according to the ion implantation method in accordance with the present invention is a carbide, in particular a titanium carbide TiC or a silicon carbide SiC;

- le matériau céramique de type carbure est bombardé au moyen d’ions azote N pour former un carbonitrure, notamment du carbonitrure de titane TiCN ou bien du carbonitrure de silicium SiCN;- the carbide-type ceramic material is bombarded with N nitrogen ions to form a carbonitride, in particular titanium carbonitride TiCN or else silicon carbonitride SiCN;

- le matériau céramique traité selon le procédé d’implantation ionique selon l’invention est un nitrure, en particulier un nitrure de silicium Si3N4;- The ceramic material treated according to the ion implantation method according to the invention is a nitride, in particular a silicon nitride Si 3 N 4 ;

- le matériau céramique de type nitrure est bombardé au moyen d’une dose d’ions comprise entre 1*1016 cm-2 et 1*1017cm_2.- the nitride-type ceramic material is bombarded with a dose of ions between 1 * 10 16 cm -2 and 1 * 10 17 cm_ 2 .

- le matériau céramique traité selon le procédé d’implantation ionique conforme à la présente invention est un oxyde, notamment de la zircone ZrO2 ou de l’alumine AI2O3;- The ceramic material treated according to the ion implantation method according to the present invention is an oxide, in particular of zirconia ZrO 2 or of alumina AI 2 O 3 ;

- le matériau céramique de type oxyde est bombardé au moyen d’ions azote pour former un oxynitrure, notamment de l’oxynitrure de zircone ZrO(NO3)2, voire du nitrure de zirconium ZrN si l’on prolonge le bombardement ionique suffisamment longtemps, ou bien encore du nitrure d’alumine AIOxNy;- the oxide-type ceramic material is bombarded with nitrogen ions to form an oxynitride, in particular zirconia oxynitride ZrO (NO 3 ) 2 , or even zirconium nitride ZrN if the ion bombardment is prolonged long enough , or alternatively alumina nitride AIO x Ny;

- le matériau céramique de type oxyde est bombardé au moyen d’ions carbone pour former un carbonitrure, notamment du carbure de zircone ZrO2C, voire du carbure de zirconium ZrC;- The ceramic material of the oxide type is bombarded with carbon ions to form a carbonitride, in particular zirconia carbide ZrO 2 C, or even zirconium carbide ZrC;

- le matériau céramique de type oxyde est bombardé au moyen d’ions bore pour former un oxyborure, notamment du borure de zircone ZrO2 B, voire du borure de zircone ZrB2 si l’on prolonge le bombardement ionique suffisamment longtemps.- The oxide-type ceramic material is bombarded with boron ions to form an oxyboride, in particular zirconia boride ZrO 2 B, or even zirconia boride ZrB 2 if the ion bombardment is prolonged long enough.

[0019] La présente invention concerne également une particule d’une poudre céramique avec une surface céramique et un cœur céramique, et plus particulièrement avec une surface qui correspond à un carbure, à un nitrure ou à un borure du matériau céramique dans lequel sont réalisées les particules de la poudre céramique.The present invention also relates to a particle of a ceramic powder with a ceramic surface and a ceramic core, and more particularly with a surface which corresponds to a carbide, a nitride or a boride of the ceramic material in which are produced. the particles of the ceramic powder.

[0020] Grâce à ces caractéristiques, la présente invention procure un procédé de traitement d’un matériau céramique à l’état de poudre dans lequel les particules formant cette poudre conservent leur structure céramique d’origine en profondeur, tandis que, depuis la surface et jusqu’à une certaine profondeur, les ions monochargés ou multichargés avec lesquels les particules de poudre céramique sont bombardées viennent modifier les propriétés de surface de ces particules de poudre céramique en améliorant notamment l’aptitude de ces particules de poudre céramique au compactage et au frittage, ce qui permet ultérieurement d’améliorer les propriétés d’usinage et les caractéristiques tribologiques des pièces réalisées au moyen de ces particules de poudre céramique.Thanks to these characteristics, the present invention provides a method of treating a ceramic material in the powder state in which the particles forming this powder retain their original ceramic structure in depth, while, from the surface and up to a certain depth, the single or multi-charged ions with which the ceramic powder particles are bombarded modify the surface properties of these ceramic powder particles by improving in particular the ability of these ceramic powder particles to compact and sintering, which subsequently improves the machining properties and the tribological characteristics of the parts produced using these ceramic powder particles.

[0021] On notera que les particules de poudre céramique, après traitement par implantation ionique, sont prêtes à être utilisées dans des procédés de frittage des poudres céramiques tels que le procédé de frittage à la pression atmosphérique ou bien le procédé de frittage sous pression encore connu sous sa dénomination anglo-saxonne Hot Isostatic Pressing ou HIP. Par ailleurs, du fait que la surface des particules de poudre céramique se transforme en borure, en carbure ou bien encore en nitrure du matériau céramique qui constitue ces particules, les propriétés physiques et mécaniques initiales de ces poudres telles que la rhéologie, la coulabilité ou bien encore la mouillabilité sont modifiées. Il en résulte que les propriétés des revêtements de surface et des pièces massives réalisés avec ces poudres telles que la dureté, la tribologie ou bien encore l’aspect esthétique sont améliorées.It will be noted that the particles of ceramic powder, after treatment by ion implantation, are ready to be used in sintering processes for ceramic powders such as the sintering process at atmospheric pressure or the pressure sintering process still known by its Anglo-Saxon name Hot Isostatic Pressing or HIP. Furthermore, the fact that the surface of the ceramic powder particles transforms into boride, carbide or even nitride of the ceramic material which constitutes these particles, the initial physical and mechanical properties of these powders such as rheology, flowability or well still the wettability are modified. As a result, the properties of surface coatings and solid parts produced with these powders such as hardness, tribology or even the aesthetic appearance are improved.

[0022] De préférence, les particules formant la poudre céramique sont agitées durant toute la durée du traitement d’implantation ionique afin que ces particules soient exposées aux ions du faisceau d’implantation de manière homogène sur toute leur surface.Preferably, the particles forming the ceramic powder are agitated throughout the duration of the ion implantation treatment so that these particles are exposed to the ions of the implantation beam in a homogeneous manner over their entire surface.

CH 714 232 A2CH 714 232 A2

Brève description des figures [0023] D’autres caractéristiques et avantages de la présente invention ressortiront plus clairement de la description détaillée qui suit d’un exemple de mise en oeuvre du procédé selon l’invention, cet exemple étant donné à titre purement illustratif et non limitatif seulement en liaison avec le dessin annexé sur lequel:BRIEF DESCRIPTION OF THE FIGURES Other characteristics and advantages of the present invention will emerge more clearly from the following detailed description of an example of implementation of the method according to the invention, this example being given purely by way of illustration and nonlimiting only in conjunction with the appended drawing in which:

la fig. 1 déjà citée, est une représentation schématique d’une source d’ions multichargés du type à résonance cyclotron électronique ECR;fig. 1 already cited, is a schematic representation of a multi-charged ion source of the ECR electronic cyclotron resonance type;

la fig. 2 est une vue en coupe d’une particule d’alumine AI2O3 dont le rayon est d’environ 1 micromètre et qui a été bombardée au moyen d’un faisceau d’ions azote N+, et la fig. 3 est une représentation schématique d’une source d’ions multichargés du type à résonance cyclotron électronique ECR utilisée dans le cadre de la présente invention.fig. 2 is a sectional view of an Al 2 O 3 alumina particle whose radius is approximately 1 micrometer and which has been bombarded by means of a beam of N + nitrogen ions, and FIG. 3 is a schematic representation of a multi-charged ion source of the ECR electronic cyclotron resonance type used in the context of the present invention.

Description détaillée d’un mode de réalisation de l’invention [0024] La présente invention procède de l’idée générale inventive qui consiste à soumettre des particules d’une poudre céramique à un processus de traitement d’implantation d’ions dans la surface de ces particules. En bombardant les particules d’une poudre céramique avec des ions mono- ou multichargés fortement accélérés sous des tensions électriques de l’ordre de 15 000 à 35 000 volts, on se rend compte que ces ions se combinent avec les atomes du matériau céramique pour former un nouveau type de céramique. Jusqu’à une certaine profondeur depuis la surface des particules de poudre céramique, celles-ci se transforment par exemple en carbure ou en nitrure du matériau céramique dans lequel sont réalisées les particules. Avantageusement, les propriétés mécaniques et physiques, notamment la dureté, les propriétés tribologiques et l’usinabilité de ces particules de poudre céramique sont sensiblement améliorées. L’amélioration des propriétés mécaniques et physiques des particules de poudre céramique dotées d’une couche céramique superficielle de type borure, carbure ou nitrure est conservée lorsque ces poudres céramiques sont utilisées pour réaliser des pièces massives par les techniques de frittage des poudres telles que frittage à la pression atmosphérique ou frittage sous pression HIR [0025] La fig. 2 est une vue en coupe d’une particule d’alumine AI2O3. Par souci de clarté, on supposera pour les besoins de la démonstration que cette particule d’alumine AI2O3 est sensiblement sphérique, étant entendu que, dans la réalité, de telles particules d’alumine AI2O3 ont plutôt une forme polyédrique. Désignée dans son ensemble par la référence numérique générale 20, cette particule d’alumine AI2O3 présente un rayon R d’environ 1 micromètre. Cette particule d’alumine 20 a été bombardée au moyen d’un faisceau d’ions azote N+ désigné par la référence numérique 22. Comme il ressort de la fig. 2, la particule d’alumine 20 présente un cœur ou noyau 24 en alumine pure et une couche extérieure ou écorce 26 principalement constituée d’oxynitrure d’alumine AlxOyNz dont la stœchiométrie varie en fonction de la profondeur depuis la surface de la particule d’alumine 20.Detailed description of an embodiment of the invention The present invention proceeds from the general inventive idea which consists in subjecting particles of a ceramic powder to a treatment process for implanting ions in the surface. of these particles. By bombarding the particles of a ceramic powder with highly accelerated mono- or multicharged ions under electric voltages of the order of 15,000 to 35,000 volts, we realize that these ions combine with the atoms of the ceramic material to form a new type of ceramic. Up to a certain depth from the surface of the ceramic powder particles, these transform for example into carbide or nitride of the ceramic material in which the particles are produced. Advantageously, the mechanical and physical properties, in particular the hardness, the tribological properties and the machinability of these particles of ceramic powder are significantly improved. The improvement of the mechanical and physical properties of the ceramic powder particles provided with a surface ceramic layer of boride, carbide or nitride type is preserved when these ceramic powders are used to produce solid parts by powder sintering techniques such as sintering at atmospheric pressure or sintering under HIR pressure [0025] FIG. 2 is a sectional view of an Al 2 O 3 alumina particle. For the sake of clarity, it will be assumed for the purposes of the demonstration that this particle of alumina AI 2 O 3 is substantially spherical, it being understood that, in reality, such particles of alumina AI 2 O 3 have rather a polyhedral shape . Designated as a whole by the general reference numeral 20, this alumina particle AI 2 O 3 has a radius R of about 1 micrometer. This alumina particle 20 was bombarded by means of a beam of N + nitrogen ions designated by the reference numeral 22. As is apparent from FIG. 2, the alumina particle 20 has a core or core 24 of pure alumina and an outer layer or bark 26 mainly consisting of alumina oxynitride Al x O y N z whose stoichiometry varies according to the depth from the surface of the alumina particle 20.

[0026] L’épaisseur e de cette couche extérieure 26 est de l’ordre de 7% du rayon R de la particule d’alumine 20, soit environ 70 nanomètres. Cette couche extérieure 26 est en majeure partie constituée d’oxynitrure d’alumine AlxOyNz qui est un matériau céramique. Selon l’invention, la concentration en AlxOyNz va en croissant depuis la surface extérieure 28 de la particule d’alumine 20 jusqu’à environ 15% du rayon R de cette particule d’alumine 20, c’est-à-dire environ 140 nanomètres, puis va en décroissant jusqu’à une profondeur d’environ 200 nm sous la surface de la particule d’alumine 20 où elle est sensiblement nulle.The thickness e of this outer layer 26 is of the order of 7% of the radius R of the alumina particle 20, or about 70 nanometers. This outer layer 26 consists for the most part of alumina oxynitride Al x O y N z which is a ceramic material. According to the invention, the concentration of Al x O y N z increases from the outer surface 28 of the alumina particle 20 to about 15% of the radius R of this alumina particle 20, that is to say ie about 140 nanometers, then decreases to a depth of about 200 nm below the surface of the alumina particle 20 where it is substantially zero.

[0027] Plus précisément, on a analysé la composition de deux échantillons d’alumine AI2O3 appelés respectivement A et B par spectrométrie photoélectronique par rayons X, technique d’analyse également connue sous sa dénomination anglo-saxonne X-ray Photoelectron Spectrometry ou XPS. Ces deux échantillons d’alumine A et B ont été bombardés au moyen d’ions azote N+, puis leur concentration en azote depuis la surface vers le cœur de ces échantillons a été examinée par analyse XPS.More specifically, we analyzed the composition of two alumina samples AI 2 O 3 called respectively A and B by photoelectron spectrometry by X-rays, analysis technique also known by its Anglo-Saxon name X-ray Photoelectron Spectrometry or XPS. These two samples of alumina A and B were bombarded with N + nitrogen ions, then their nitrogen concentration from the surface to the core of these samples was examined by XPS analysis.

[0028] Pour ce qui est de l’analyse XPS de l’échantillon d’alumine A, les tests montrent que les atomes d’azote qui pénètrent par bombardement dans la particule d’alumine AI2O3 d’origine se lient, pour une part, aux atomes d’aluminium qui entrent dans la composition de l’oxynitrure d’alumine AlxOyNz, et pour une autre part, ne sont pas liés aux atomes d’aluminium. Plus précisément, les analyses XPS montrent que la concentration en poids atomique de l’azote lié dans les particules d’oxynitrure d’alumine AlxOyNz présente, depuis la surface vers le cœur de la particule d’alumine AI2O3, deux paliers:As regards the XPS analysis of the alumina A sample, the tests show that the nitrogen atoms which penetrate by bombardment in the original alumina particle AI 2 O 3 bind, on the one hand, to the aluminum atoms which enter into the composition of the alumina oxynitride Al x O y N z , and on the other hand, are not linked to the aluminum atoms. More specifically, the XPS analyzes show that the atomic weight concentration of the bound nitrogen in the alumina oxynitride particles Al x O y N z present, from the surface to the core of the alumina particle AI 2 O 3 , two levels:

• le premier palier de concentration en azote apparaît à une profondeur depuis la surface extérieure des particules d’à-peu-près 70 nm. La concentration moyenne en pourcentage atomique de l’azote lié à l’aluminium de l’oxynitrure d’alumine AlxOyNz est de l’ordre de 6.3%. Par ailleurs, la stœchiométrie moyenne de la couche d’oxynitrure au niveau de ce palier est proche de AIOi.2N0.i6· • le second palier de concentration en azote apparaît à une profondeur de l’ordre de 140 nm. La concentration moyenne en pourcentage atomique de l’azote lié à l’aluminium est de l’ordre de 3.6%, c’est-à-dire presque moi• the first level of nitrogen concentration appears at a depth from the outer surface of the particles of about 70 nm. The average concentration in atomic percentage of the nitrogen bound to the aluminum of the alumina oxynitride Al x O y N z is of the order of 6.3%. Furthermore, the average stoichiometry of the oxynitride layer at this level is close to AIOi. 2 N 0 .i6 · • the second level of nitrogen concentration appears at a depth of the order of 140 nm. The average concentration in atomic percentage of nitrogen bound to aluminum is around 3.6%, that is to say almost me

CH 714 232 A2 tié moins que la concentration de l’azote lié à l’aluminium observée à 70 nm de profondeur. La stœchiométrie moyenne de la couche d’oxynitrure d’alumine au niveau de ce palier est proche de AIOi.3N0.08· • Enfin, au-delà d’une profondeur qui excède 140 nm, on observe une chute exponentielle de la concentration en azote lié à l’aluminium que entre dans la composition de l’oxynitrure d’alumine AlxOyNz. A une profondeur considérée depuis la surface des particules d’alumine AI2O3 qui excède 200 nm, on retrouve un rapport stoechiométrique entre l’oxygène et l’aluminium qui est très proche de celui de l’alumine AI2O3.CH 714 232 A2 less than the concentration of nitrogen bound to aluminum observed at 70 nm depth. The average stoichiometry of the alumina oxynitride layer at this level is close to AIOi. 3 N 0 .08 · • Finally, beyond a depth which exceeds 140 nm, there is an exponential drop in the concentration of nitrogen bound to aluminum that enters into the composition of the alumina oxynitride Al x O y N z . At a depth considered from the surface of the alumina AI 2 O 3 particles which exceeds 200 nm, there is a stoichiometric ratio between oxygen and aluminum which is very close to that of alumina AI 2 O 3 .

[0029] Pour ce qui est de l’échantillon d’alumine B, l’analyse XPS montre que, dans ce cas également, les atomes d’azote qui pénètrent par bombardement dans la particule d’alumine AI2O3 d’origine se lient, pour une part, aux atomes d’aluminium qui entrent dans la composition de l’oxynitrure d’alumine AlxOyNz, et pour une autre part, ne sont pas liés aux atomes d’aluminium. Plus précisément, les analyses XPS montrent que la concentration en poids atomique de l’azote lié dans les particules d’oxynitrure d’alumine AlxOyNz présente, depuis la surface vers le cœur de la particule d’alumine AI2O3, deux paliers:As regards the alumina sample B, the XPS analysis shows that, in this case also, the nitrogen atoms which penetrate by bombardment in the original alumina particle AI 2 O 3 bind, on the one hand, to the aluminum atoms which enter into the composition of the alumina oxynitride Al x O y N z , and on the other hand, are not linked to the aluminum atoms. More specifically, the XPS analyzes show that the atomic weight concentration of the bound nitrogen in the alumina oxynitride particles Al x O y N z present, from the surface to the core of the alumina particle AI 2 O 3 , two levels:

• le premier palier de concentration en azote apparaît à une profondeur depuis la surface extérieure des particules d’à-peu-près 25 nm. La concentration moyenne en pourcentage atomique de l’azote lié à l’aluminium est de l’ordre de 3.6%. Par ailleurs, la stœchiométrie moyenne de la couche d’oxynitrure d’alumine au niveau de ce palier est proche de AIO1.3N0.09.• the first level of nitrogen concentration appears at a depth from the outer surface of the particles of about 25 nm. The average concentration in atomic percentage of nitrogen bound to aluminum is around 3.6%. Furthermore, the average stoichiometry of the alumina oxynitride layer at this level is close to AIO1.3N0.09.

• le second palier de concentration en azote apparaît à une profondeur de l’ordre de 120 nm. La concentration moyenne en pourcentage atomique de l’azote lié à l’aluminium est de l’ordre de 4.7%, c’est-à-dire un peu plus qu’à 25 nm de profondeur. La stœchiométrie moyenne de la couche d’oxynitrure d’alumine au niveau de ce palier est proche de AIOi.3N011.• the second level of nitrogen concentration appears at a depth of the order of 120 nm. The average concentration in atomic percentage of nitrogen bound to aluminum is of the order of 4.7%, that is to say a little more than at 25 nm deep. The average stoichiometry of the alumina oxynitride layer at this level is close to AIOi. 3 N 011 .

• enfin, au-delà d’une profondeur qui excède 120 nm, on observe une chute exponentielle de la concentration en azote lié à l’aluminium qui entre dans la composition de l’oxynitrure d’alumine AlxOyNz. A une profondeur considérée depuis la surface des particules d’alumine AI2O3 qui excède 200 nm, on retrouve un rapport stœchiométrique entre l’oxygène et l’aluminium qui est très proche de celui de l’alumine AI2O3.• finally, beyond a depth which exceeds 120 nm, there is an exponential drop in the concentration of nitrogen bound to aluminum which enters into the composition of the alumina oxynitride Al x O y N z . At a depth considered from the surface of the alumina AI 2 O 3 particles which exceeds 200 nm, there is a stoichiometric ratio between oxygen and aluminum which is very close to that of alumina AI 2 O 3 .

[0030] Il va de soi que la présente invention n’est pas limitée à la description qui précède et que diverses modifications et variantes simples peuvent être envisagées par l’homme du métier sans sortir du cadre de l’invention telle que défini par les revendications annexées. On comprendra en particulier qu’étant donné que les particules céramiques envisagées ici ont une forme générale polyédrique, on entend par «dimension» de telles particules la dimension extérieure la plus grande d’une telle particule.It goes without saying that the present invention is not limited to the preceding description and that various simple modifications and variants can be envisaged by those skilled in the art without departing from the scope of the invention as defined by the appended claims. It will be understood in particular that, since the ceramic particles envisaged here have a generally polyhedral shape, the term "dimension" of such particles is understood to mean the largest external dimension of such a particle.

Nomenclature [0031] 1. Source d’ions multichargés ECRNomenclature [0031] 1. ECR multi-charged ion source

2. Etage d’injection2. Injection stage

4. Volume d’un gaz à ioniser4. Volume of a gas to be ionized

6. Onde hyperfréquence6. Microwave wave

8. Etage de confinement magnétique8. Magnetic confinement stage

10. Plasma10. Plasma

12. Etage d’extraction12. Extraction stage

12a. Anode12a. Anode

12b. Cathode12b. Cathode

14. Faisceau d’ions multichargés14. Multicharged ion beam

16. Surface16. Surface

18. Pièce à traiter18. Workpiece

20. Particule d’alumine AI2O3 20. Al 2 O 3 alumina particle

R. RayonR. Department

22. Faisceau d’ions azote N+ 22. N + nitrogen ion beam

24. Cœur ou noyau24. Heart or nucleus

26. Couche extérieure ou écorce26. Outer layer or bark

e. Epaisseure. Thickness

28. Surface extérieure28. Exterior surface

30. Particules de poudre céramique30. Particles of ceramic powder

Revendicationsclaims

Claims (23)

1. Procédé de traitement de surface d’un matériau céramique à l’état de poudre, ce procédé comprenant l’étape qui consiste à se munir d’une poudre (30) formée d’une pluralité de particules du matériau céramique à traiter, et à 1. A method of surface treatment of a ceramic material in the powder state, this method comprising the step of providing a powder (30) formed from a plurality of particles of the ceramic material to be treated, and to CH 714 232 A2 soumettre ces particules de poudre céramique (30) à un processus d’implantation ionique en dirigeant vers une surface extérieure de ces particules un faisceau d’ions (14) monochargés ou multichargés produit par une source d’ions monochargés ou multichargés.CH 714 232 A2 subject these particles of ceramic powder (30) to an ion implantation process by directing towards an external surface of these particles a beam of single or multi-charged ions (14) produced by a source of single or multi-charged ions . 2. Procédé selon la revendication 1, caractérisé en ce que l’on agite les particules de la poudre céramique (30) durant toute la durée du processus d’implantation ionique.2. Method according to claim 1, characterized in that the particles of the ceramic powder (30) are agitated throughout the duration of the ion implantation process. 3. Procédé selon l’une des revendications 1 ou 2, caractérisé en ce que la granulométrie des particules de la poudre céramique (30) utilisée est telle que sensiblement 50% de l’ensemble de ces particules a une dimension inférieure à 2 micromètres.3. Method according to one of claims 1 or 2, characterized in that the particle size of the particles of the ceramic powder (30) used is such that substantially 50% of all of these particles has a size less than 2 micrometers. 4. Procédé selon la revendication 3, caractérisé en ce que la dimension des particules de poudre céramique (30) utilisée est comprise entre 1.2 micromètres et 63 micromètres.4. Method according to claim 3, characterized in that the size of the ceramic powder particles (30) used is between 1.2 micrometers and 63 micrometers. 5. Procédé selon l’une des revendications 1 à 4, caractérisé en ce que le matériau céramique est un carbure, un nitrure, un borure ou un oxyde.5. Method according to one of claims 1 to 4, characterized in that the ceramic material is a carbide, a nitride, a boride or an oxide. 6. Procédé selon la revendication 5, caractérisé en ce que le matériau céramique de type carbure est bombardé au moyen d’ions azote N pour former un carbonitrure.6. Method according to claim 5, characterized in that the ceramic material of carbide type is bombarded by means of nitrogen nitrogen N to form a carbonitride. 7. Procédé selon la revendication 6, caractérisé en ce que le matériau céramique est un carbure de titane TiC ou un carbure de silicium SiC, et en ce que le produit obtenu après bombardement est du carbonitrure de titane TiCN, respectivement du carbonitrure de silicium SiCN.7. Method according to claim 6, characterized in that the ceramic material is a titanium carbide TiC or a silicon carbide SiC, and in that the product obtained after bombardment is titanium carbonitride TiCN, respectively silicon carbonitride SiCN . 8. Procédé selon la revendication 5, caractérisé en ce que le matériau céramique de type nitrure est bombardé au moyen d’une dose d’ions comprise entre 1*1016 cm-2 et 1*1017 ions.cm-2.8. Method according to claim 5, characterized in that the nitride type ceramic material is bombarded by means of a dose of ions between 1 * 10 16 cm -2 and 1 * 10 17 ions.cm -2 . 9. Procédé selon la revendication 8, caractérisé en ce que le matériau céramique est un nitrure de silicium Si3N4.9. Method according to claim 8, characterized in that the ceramic material is a silicon nitride Si 3 N 4 . 10. Procédé selon la revendication 5, caractérisé en ce que le matériau céramique de type oxyde est bombardé au moyen d’ions azote pour former un oxynitrure.10. Method according to claim 5, characterized in that the ceramic material of the oxide type is bombarded by means of nitrogen ions to form an oxynitride. 11. Procédé selon la revendication 10, caractérisé en ce que le matériau céramique est de la zircone ZrO2 ou de l’alumine AI2O3, et en ce que le produit obtenu après bombardement est du nitrure de zircone ZrxOyNz, ou bien du nitrure de zirconium ZrN, ou bien du nitrure d’alumine AlxOyNz.11. Method according to claim 10, characterized in that the ceramic material is zirconia ZrO 2 or alumina AI 2 O 3 , and in that the product obtained after bombardment is zirconia nitride Zr x O y N z , or zirconium nitride ZrN, or alumina nitride Al x O y N z . 12. Procédé selon la revendication 5, caractérisé en ce que le matériau céramique de type oxyde est bombardé au moyen d’ions carbone pour former un carbonitrure.12. The method of claim 5, characterized in that the ceramic material of the oxide type is bombarded with carbon ions to form a carbonitride. 13. Procédé selon la revendication 12, caractérisé en ce que le matériau céramique est de la zircone ZrO2 ou de l’alumine AI2O3, et en ce que le produit obtenu après bombardement est du carbure de zircone ZrO2C, respectivement du carbure de zirconium ZrC.13. The method of claim 12, characterized in that the ceramic material is zirconia ZrO 2 or alumina AI 2 O 3 , and in that the product obtained after bombardment is zirconia carbide ZrO 2 C, respectively ZrC zirconium carbide. 14. Procédé selon la revendication 5, caractérisé en ce que le matériau céramique de type oxyde est bombardé au moyen d’ions bore pour former un oxyborure, notamment du borure de zircone ZrO2B.14. Method according to claim 5, characterized in that the ceramic material of the oxide type is bombarded by means of boron ions to form an oxyboride, in particular zirconia boride ZrO 2 B. 15. Procédé selon la revendication 14, caractérisé en ce que, si l’on prolonge le bombardement ionique suffisamment longtemps, on obtient du borure de zircone ZrB2.15. Method according to claim 14, characterized in that, if the ion bombardment is prolonged long enough, zirconia boride ZrB 2 is obtained. 16. Procédé selon l’une des revendications 1 à 15, caractérisé en ce que le processus d’implantation ionique est du type à résonance cyclotron électronique ECR.16. Method according to one of claims 1 to 15, characterized in that the ion implantation process is of the ECR electronic cyclotron resonance type. 17. Procédé selon la revendication 16, caractérisé en ce que les ions monochargés ou multichargés sont accélérés sous une tension comprise entre 15 000 et 35 000 volts.17. The method of claim 16, characterized in that the single or multi-charged ions are accelerated at a voltage between 15,000 and 35,000 volts. 18. Procédé selon l’une des revendications 16 et 17, caractérisé en ce que la dose d’ions implantée est comprise entre 1.1014 et 5.1017 ions.cm-2, préférentiellement entre 1.1016 et 1.1017 ions.cm-2.18. Method according to one of claims 16 and 17, characterized in that the implanted ion dose is between 1.10 14 and 5.10 17 ions.cm -2 , preferably between 1.10 16 and 1.10 17 ions.cm -2 . 19. Procédé selon l’une des revendications 16 et 17, caractérisé en ce que les ions pénètrent dans les particules formant la poudre de matériau céramique jusqu’à une profondeur correspondant à environ 20% de la dimension de ces particules.19. Method according to one of claims 16 and 17, characterized in that the ions penetrate into the particles forming the powder of ceramic material to a depth corresponding to about 20% of the dimension of these particles. 20. Matériau à l’état de poudre formé d’une pluralité de particules ayant une couche extérieure (26) céramique et un cœur (24) céramique, ces particules ayant une forme générale polyédrique, la couche extérieure (26) correspondant à un borure, un carbure ou un nitrure du matériau céramique dans lequel est réalisé le cœur (24) des particules de la poudre céramique.20. Powdered material formed from a plurality of particles having an outer ceramic layer (26) and a ceramic core (24), these particles having a generally polyhedral shape, the outer layer (26) corresponding to a boride. , a carbide or a nitride of the ceramic material in which the core (24) of the particles of the ceramic powder is made. 21. Matériau selon la revendication 20, caractérisé en ce qu’environ 50% des particules ont une dimension inférieure à 2 micromètres.21. Material according to claim 20, characterized in that approximately 50% of the particles have a dimension of less than 2 micrometers. 22. Matériau selon la revendication 21, caractérisé en ce que la dimension des particules de poudre céramique (30) utilisée est comprise entre 1.2 micromètres et 63 micromètres.22. Material according to claim 21, characterized in that the size of the ceramic powder particles (30) used is between 1.2 micrometers and 63 micrometers. 23. Matériau selon l’une des revendications 19 à 21, caractérisé en ce que le matériau céramique dans lequel sont réalisées les particules de la poudre céramique (30) est un borure, un carbure, oxyde ou un nitrure.23. Material according to one of claims 19 to 21, characterized in that the ceramic material in which the particles of the ceramic powder (30) are made is a boride, a carbide, oxide or a nitride.
CH01245/17A 2017-10-12 2017-10-12 Process for surface treatment of particles of a ceramic powder and ceramic powder particles CH714232A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH01245/17A CH714232A2 (en) 2017-10-12 2017-10-12 Process for surface treatment of particles of a ceramic powder and ceramic powder particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01245/17A CH714232A2 (en) 2017-10-12 2017-10-12 Process for surface treatment of particles of a ceramic powder and ceramic powder particles

Publications (1)

Publication Number Publication Date
CH714232A2 true CH714232A2 (en) 2019-04-15

Family

ID=66045908

Family Applications (1)

Application Number Title Priority Date Filing Date
CH01245/17A CH714232A2 (en) 2017-10-12 2017-10-12 Process for surface treatment of particles of a ceramic powder and ceramic powder particles

Country Status (1)

Country Link
CH (1) CH714232A2 (en)

Similar Documents

Publication Publication Date Title
EP3632876A1 (en) Coated ceramic powder particles
Thompson et al. Effect of starting particle size and oxygen content on densification of ZrB2
CN1073061C (en) Thermal insulation coating components, their manufacture and gas turbine parts using them
Suganuma et al. Pulsed electric current sintering of silicon nitride
Jasper et al. Behavior of tungsten fiber-reinforced tungsten based on single fiber push-out study
Li et al. Sintering of high‐performance silicon nitride ceramics under vibratory pressure
EP3558893B1 (en) Method for manufacturing a red ceramic material
CA2919590A1 (en) Process for fabricating composite parts by low melting point impregnation
US4678678A (en) Method of strengthening ceramics
CH714232A2 (en) Process for surface treatment of particles of a ceramic powder and ceramic powder particles
CN103101244A (en) Coating layer with low-friction for vehicle component and method for producing the same
Yousefi et al. The effects of adding nano‐alumina filler on the properties of polymer‐derived SiC coating
du Merac et al. Increasing fracture toughness and transmittance of transparent ceramics using functional low-thermal expansion coatings
Reimanis Functionally graded materials
EP3287857B1 (en) Method for obtaining a zirconia item having a metallic appearance
Morsi et al. Current-activated pressure-assisted sintering (CAPAS) and nanoindentation mapping of dual matrix composites
EP4003937B1 (en) Dense part made of a ternary ceramic-ceramic composite material and method for manufacturing same
WANG et al. Metastable phase of β-eucryptite and thermal expansion behavior of eucryptite particles reinforced aluminum matrix composite
EP3425085A1 (en) Method for surface treatment of metal powder particles and metal powder particles obtained using said method
Blinkov et al. Properties of nanostructured TiN-Ni ceramic-metal coatings obtained by ion-plasma vacuum-arc method
JP3009761B2 (en) Mold material for molding
CH712923B1 (en) Process for surface treatment of particles of a metal powder and particles of metal powder obtained by this process
Kumar et al. Cost Effective Deposition System for Nitrogen Incorporated Diamond‐like Carbon Coatings
Hishamuddin et al. Reverse Engineering of Dicing Blade to Prolong its Lifetime
Wang et al. Toughness characteristics of arc enhanced magnetron sputtered SiCN hard films