CH711155A2 - Device provided with an articulated arm making it possible to bring to the center of the optics a probe in order to measure a depth or a height directly below the objective of a microscope. - Google Patents
Device provided with an articulated arm making it possible to bring to the center of the optics a probe in order to measure a depth or a height directly below the objective of a microscope. Download PDFInfo
- Publication number
- CH711155A2 CH711155A2 CH00780/15A CH7802015A CH711155A2 CH 711155 A2 CH711155 A2 CH 711155A2 CH 00780/15 A CH00780/15 A CH 00780/15A CH 7802015 A CH7802015 A CH 7802015A CH 711155 A2 CH711155 A2 CH 711155A2
- Authority
- CH
- Switzerland
- Prior art keywords
- probe
- articulated arm
- center
- depth
- optical axis
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/004—Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
- G01B5/008—Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/04—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
- G01B21/047—Accessories, e.g. for positioning, for tool-setting, for measuring probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/0002—Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/04—Measuring microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/0016—Technical microscopes, e.g. for inspection or measuring in industrial production processes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/24—Base structure
-
- G—PHYSICS
- G04—HOROLOGY
- G04D—APPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
- G04D1/00—Gripping, holding, or supporting devices
- G04D1/0092—Devices for positioning and sorting of the components
-
- G—PHYSICS
- G04—HOROLOGY
- G04D—APPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
- G04D7/00—Measuring, counting, calibrating, testing or regulating apparatus
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Optics & Photonics (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
L’invention concerne un dispositif (0) qui place un palpeur de profondeur (6) (analogique ou incrémentale) exactement au centre d’un axe optique (1) juste dessous l’objectif d’un microscope afin de mesurer une profondeur ou hauteur d’une pièce directement sous l’objectif du microscope. Ce dispositif (0) est muni d’un bras articulé (2). Le mouvement du bras articulé (2) est rotatif (8). Le dispositif (0) possède un support de fixation (9). Le dispositif (0) possède une fixation pour un palpeur qui possède un axe (20) de mesure avec ou sans contact pour déterminer une profondeur ou hauteur sur une pièce mécanique (7).A device (0) places a depth probe (6) (analog or incremental) exactly in the center of an optical axis (1) just below the objective of a microscope to measure a depth or height of a piece directly under the microscope objective. This device (0) is provided with an articulated arm (2). The movement of the articulated arm (2) is rotatable (8). The device (0) has a mounting bracket (9). The device (0) has a fixture for a probe which has a measuring axis (20) with or without contact for determining a depth or height on a mechanical part (7).
Description
Domaine techniqueTechnical area
[0001] Microscope, Vision [0001] Microscope, Vision
Etat de la techniqueState of the art
[0002] A ce jour il n’était pas possible de mesurer une profondeur ou une hauteur précise (inférieure à 1 µm) à l’endroit au centre de l’axe optique. Un moyen était de mesurer cette profondeur ou hauteur en mesurant le déplacement de l’axe Z des microscopes grâce à la netteté de la distance focale. La netteté de la distance focale donnait la position de profondeur ou hauteur, mais pas assez précis (environ 0.02 mm). Les pièces horlogères possédant des tolérances bien plus précises, se mesurent séparément avec des palpeurs mécaniques mais pas dans l’axe du centre de l’optique. L’endroit de la mesure est regardé depuis le côté avec un monoculaire. L’autre solution est le laser qui est très cher. L’expérience de notre entreprise et la date de sa fondation 1949 suffit à reflété l’état de la technique car c’était le début du microscope et jusqu’à ce jour rien de tel ne fut exposé ou vu chez nos clients. L’état de la technique est complété par la recherche de l’Institut Fédéral de la Propriété Intellectuelle effectuée le 27.5.2015. To date it was not possible to measure a depth or a precise height (less than 1 micron) at the center of the optical axis. One way was to measure this depth or height by measuring the Z-axis motion of the microscopes through the sharpness of the focal length. The sharpness of the focal length gave the position of depth or height, but not precise enough (about 0.02 mm). Watch parts with much more precise tolerances are measured separately with mechanical probes but not in the axis of the center of the optics. The location of the measurement is viewed from the side with a monocular. The other solution is the laser which is very expensive. The experience of our company and the date of its founding 1949 is enough to reflect the state of the art because it was the beginning of the microscope and until today nothing of this kind was exposed or seen in our customers. The state of the art is completed by the research of the Federal Institute of Intellectual Property carried out on 27.5.2015.
[0003] Seul les documents énumérés ci-après ont été intéressants pour constater l’état de la technique au niveau des inventions. CN 202 361 948 U mesure de profondeur avec un laser. US 5 324 935 A mesure de profondeur avec élément piézo-électrique Only the documents listed below have been interesting to note the state of the art at the level of inventions. CN 202 361 948 U Depth measurement with a laser. US 5,324,935 Depth measurement with piezoelectric element
[0004] Voici d’autres documents qui ont très peu en commun. CN 103 018 492 A; DE 10 110 109 A1; EP 0 539 485 A1; FR 1 197 952 A; FR 1 495 058 A; FR 1 538 349 A; JPH 04 318 404 A; TW 2015 06 353 A; TWM 470 248 UU; US 2002 166 976 A1; WO 2014 186 562 A1 [0004] Here are other documents that have very little in common. CN 103 018 492 A; DE 10110109 A1; EP 0539485 A1; GB 1197952 A; GB 1495058 A; GB 1538349 A; JPH 04,318,404 A; TW 2015 06 353 A; TWM 470,248 UU; US 2002 166 976 A1; WO 2014 186 562 A1
Exposé de l’inventionPresentation of the invention
[0005] La demande de l’invention est venue de l’état de la technique disant: «mais est-ce que vous arrivez aussi à mesurer la profondeur avec votre microscope ?». La réponse était: «non, car la netteté de la distance focale ne permet pas une précision suffisante avec un agrandissement normal». C’est alors qu’est venue l’idée de descendre à l’aide d’une coulisse un palpeur et d’arrêter la descente de la coulisse dès la détection de la pièce par le palpeur. Ce devait être précis (environ 1 µm). Au début nous avions utilisé un vérin hydraulique car c’était le seul moyen de stopper une coulisse verticale avec précision. Ensuite il fallait faire le mouvement qui positionne le palpeur au centre de l’axe optique, d’où le bras articulé, car il permet une grande précision de positionnement autant dans l’axe optique qu’en hauteur. Puis de définir la vitesse de descente pour arrêter la coulisse avec précision (car plus on descend lentement plus il est facile d’arrêter la coulisse avec précision). Le but de la coulisse verticale était d’avoir une course maximale et une précision digne d’une règle analogique ou incrémentale qui était placé à l’extérieur de la coulisse. Il a fallu 3 vitesses pour atteindre la précision inférieure à 1 µm et une rapidité de prise de la mesure acceptable inférieur à 10 seconde, ceci pour une course d’environ 20 mm sous l’optique. Ce système devait être autonome, c’est pourquoi il devait s’arrêter suffisamment longtemps pour permettre la prise de position. Partie difficile de l’invention était la descente hydraulique avec arrêt par niveau de pression d’air (sans contact). Mais la partie commerciale est le bras articulé qui positionne au centre de l’axe optique un palpeur de profondeur. Ce principe de mesure avec la descente de la coulisse hydraulique n’est pas limité dans sa hauteur, mais le fait d’aller sous un système de vision limite sa course. The application of the invention came from the state of the art saying, "but you can also measure the depth with your microscope?". The answer was: "No, because the sharpness of the focal length does not allow sufficient precision with normal magnification". Then came the idea of descending with a slide a probe and stop the descent of the slide as soon as the probe is detected by the probe. It had to be precise (about 1 μm). At first we used a hydraulic cylinder because it was the only way to stop a vertical slide precisely. Then it was necessary to make the movement that positions the probe in the center of the optical axis, hence the articulated arm, because it allows a high positioning accuracy both in the optical axis and height. Then set the speed of descent to stop the slide precisely (because the more you go down slowly, the easier it is to stop the slide precisely). The purpose of the vertical slide was to have a maximum stroke and a precision worthy of an analog or incremental rule that was placed on the outside of the slide. It took 3 speeds to reach the accuracy of less than 1 μm and an acceptable measurement speed of less than 10 seconds, this for a stroke of about 20 mm under the optics. This system had to be autonomous, that is why it had to stop long enough to allow the taking of position. Difficult part of the invention was the hydraulic descent with stop by air pressure level (non-contact). But the commercial part is the articulated arm that positions in the center of the optical axis a depth sensor. This principle of measurement with the descent of the hydraulic slide is not limited in its height, but going under a vision system limits its course.
AvantagesAdvantages
[0006] <tb>1.<SEP>On mesure exactement au centre de l’image ce qui fait que l’on peut mesurer très près d’une arrête ou au fond d’un petit trou d’un diamètre de 0.3 mm sur 3 mm de profond avec une touche que l’on fixe au bout du palpeur (6) <tb>2.<SEP>Le palpeur (6) peut être sans contact avec la pièce (exemple épaisseur verre de montre) <tb>3.<SEP>Une très grande précision sur toute la hauteur de mesure environ 20 mm dû à la règle incrémentale montée sur la coulisse verticale <tb>4.<SEP>Une très grande répétabilité du bras articulé rotatif en hauteur inférieure à 0.1 µm <tb>5.<SEP>La mesure est accessible à tous et est indépendante.[0006] <tb> 1. <SEP> We measure exactly in the center of the image so that we can measure very close to a stop or the bottom of a small hole with a diameter of 0.3 mm by 3 mm deep with a key that is fixed at the end of the probe (6) <tb> 2. <SEP> The probe (6) can be without contact with the part (example thickness watch glass) <tb> 3. <SEP> A very high accuracy over the entire measuring height of about 20 mm due to the incremental rule mounted on the vertical slide <tb> 4. <SEP> A very high repeatability of the articulated arm rotating in height less than 0.1 μm <tb> 5. <SEP> The measure is accessible to all and is independent.
Désavantagesdisadvantages
[0007] <tb>1.<SEP>La hauteur mesurée est limitée à environ 20 mm dû à l’espace entre l’objectif 90 mm et la pièce. <tb>2.<SEP>L’encombrement du dispositif est assez volumineux.[0007] <tb> 1. <SEP> The measured height is limited to about 20 mm due to the space between the 90 mm objective and the workpiece. <tb> 2. <SEP> The size of the device is quite large.
Liste des dessinsList of drawings
[0008] <tb>Fig. 1<SEP>Microscope d’atelier avec son dispositif à bras articulé. <tb>Fig. 2<SEP>Dispositif avec bras articulé en position mesure <tb>Fig. 3<SEP>Détail de la fig. 1 avec bras articulé en position mesure <tb>Fig. 4<SEP>Détail de la fig. 1 avec bras articulé en position repos <tb>Fig. 5<SEP>Dispositif avec bras articulé montée sur une coulisse verticale[0008] <Tb> Fig. 1 <SEP> Workshop microscope with articulated arm device. <Tb> Fig. 2 <SEP> Device with articulated arm in measuring position <Tb> Fig. 3 <SEP> Detail of fig. 1 with articulated arm in measuring position <Tb> Fig. 4 <SEP> Detail of fig. 1 with articulated arm in rest position <Tb> Fig. 5 <SEP> Device with articulated arm mounted on a vertical slide
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH00780/15A CH711155A2 (en) | 2015-06-01 | 2015-06-01 | Device provided with an articulated arm making it possible to bring to the center of the optics a probe in order to measure a depth or a height directly below the objective of a microscope. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH00780/15A CH711155A2 (en) | 2015-06-01 | 2015-06-01 | Device provided with an articulated arm making it possible to bring to the center of the optics a probe in order to measure a depth or a height directly below the objective of a microscope. |
Publications (1)
Publication Number | Publication Date |
---|---|
CH711155A2 true CH711155A2 (en) | 2016-12-15 |
Family
ID=57518103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH00780/15A CH711155A2 (en) | 2015-06-01 | 2015-06-01 | Device provided with an articulated arm making it possible to bring to the center of the optics a probe in order to measure a depth or a height directly below the objective of a microscope. |
Country Status (1)
Country | Link |
---|---|
CH (1) | CH711155A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11940269B1 (en) * | 2023-09-29 | 2024-03-26 | Mloptic Corp. | Feature location detection utilizing depth sensor |
-
2015
- 2015-06-01 CH CH00780/15A patent/CH711155A2/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11940269B1 (en) * | 2023-09-29 | 2024-03-26 | Mloptic Corp. | Feature location detection utilizing depth sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3207361B1 (en) | Method, device and inspection line for visualizing the flatness of a ring surface of a container | |
FR3093935A1 (en) | sensor cleaning device | |
EP0206860A1 (en) | Apparatus for centering and placing an adapter on a lens blank and for controlling a grinding machine | |
WO1990004802A1 (en) | Stage for the rapid and indexed analysis with a microscope of filters and other supports carrying multiple samples, and method for analyzing such samples by using said stage | |
EP2909574B1 (en) | Facility for measuring the thickness of the wall of containers | |
EP2556164A1 (en) | Method for detecting clusters of biological particles | |
WO2018189250A1 (en) | System and method for super-resolution full-field optical metrology on the far-field nanometre scale | |
FR2889312A1 (en) | OPTICAL REFRACTOMETER FOR MEASURING SALINITY OF SEA WATER AND CORRESPONDING SALINITY SENSOR | |
FR2790170A1 (en) | VIDEO CONTROL APPARATUS | |
EP2356429B1 (en) | Device for analyzing a polyphase mixture via a light beam backscattered by said mixture | |
CH711155A2 (en) | Device provided with an articulated arm making it possible to bring to the center of the optics a probe in order to measure a depth or a height directly below the objective of a microscope. | |
WO2020115621A1 (en) | System and method for measuring the profile of a workpiece | |
EP2128723A1 (en) | Method of manufacturing or assembling an oscillator and oscillator obtained by this method | |
FR3033643B1 (en) | DEVICE AND METHOD FOR DETECTING FAULTS IN BINDING AREAS BETWEEN SAMPLES SUCH AS WAFERS | |
FR3007522A1 (en) | MECHANICAL TENSION / COMPRESSION AND / OR TORSION MECHANICAL SOLICITATION DEVICE | |
EP2684006B1 (en) | Device for measuring the surface state of a surface | |
EP3365663B1 (en) | Method and apparatus for optically inspecting the profile of containers, the profile including the bottom | |
WO2018109350A1 (en) | Protection device used in a lensless imaging detection system and lensless imaging detection system using said device | |
FR3100333B1 (en) | Device and method for determining characteristic parameters of the dimensions of nanoparticles | |
EP2742320B1 (en) | Optoelectronic method and device for measuring the inner diameter of a hollow body | |
FR2813677A1 (en) | Method for controlling shape of radio telescope reflector has deformable surface with actuators to deflect surface | |
FR2762083A1 (en) | OPTICAL METHOD FOR MEASURING THE WALL THICKNESS AND / OR OVALIZATION OF A CONTAINER AND DEVICE USING THE SAME | |
FR2919723A1 (en) | INSTALLATION OF LINEAR FORCE DISTRIBUTION MEASUREMENT OF A WIPER BLADE AGAINST A WIPING SURFACE | |
FR3045828A1 (en) | DEVICE FOR MEASURING AND MONITORING THE CONFORMITY OF AN IMPACT ON A STRUCTURE | |
FR2950971A1 (en) | METHOD AND DEVICE FOR MEASURING AN INTERFACIAL OR SUPERFICIAL VOLTAGE BY PENETROMETRY OF AN INTERFACE BETWEEN TWO FLUIDS. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AZW | Rejection (application) |