CH697536B1 - Plastic mesh web producing method for use in e.g. industrial sector, involves vertically moving sheets along lines of gravitational field strength using vertical displacement units during non-contacting and welding of sheets - Google Patents

Plastic mesh web producing method for use in e.g. industrial sector, involves vertically moving sheets along lines of gravitational field strength using vertical displacement units during non-contacting and welding of sheets Download PDF

Info

Publication number
CH697536B1
CH697536B1 CH00472/04A CH4722004A CH697536B1 CH 697536 B1 CH697536 B1 CH 697536B1 CH 00472/04 A CH00472/04 A CH 00472/04A CH 4722004 A CH4722004 A CH 4722004A CH 697536 B1 CH697536 B1 CH 697536B1
Authority
CH
Switzerland
Prior art keywords
sheets
welding
polymer sheets
vertical displacement
contacting
Prior art date
Application number
CH00472/04A
Other languages
French (fr)
Inventor
Alain Hofer
Jean-Marie Grognuz
Original Assignee
Apswiss Tech S A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apswiss Tech S A filed Critical Apswiss Tech S A
Priority to CH00472/04A priority Critical patent/CH697536B1/en
Publication of CH697536B1 publication Critical patent/CH697536B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D28/00Producing nets or the like, e.g. meshes, lattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/002Joining methods not otherwise provided for
    • B29C65/008Joining methods not otherwise provided for making use of electrostatic charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/022Particular heating or welding methods not otherwise provided for
    • B29C65/028Particular heating or welding methods not otherwise provided for making use of inherent heat, i.e. the heat for the joining comes from the moulding process of one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/438Joining sheets for making hollow-walled, channelled structures or multi-tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/826Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps without using a separate pressure application tool, e.g. the own weight of the parts to be joined
    • B29C66/8266Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps without using a separate pressure application tool, e.g. the own weight of the parts to be joined using fluid pressure directly acting on the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0089Producing honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • B29C65/7852Holding or clamping means for handling purposes using electrostatic forces to hold at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2028/00Nets or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/60Multitubular or multicompartmented articles, e.g. honeycomb
    • B29L2031/608Honeycomb structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

The method involves non-contacting a set of parallel polymer sheets i.e. extruded plastic sheets (11), and welding the sheets by pairs in specific places to form a web of a honeycomb structure. The sheets vertically move along lines of gravitational field strength using vertical displacement units during non-contacting and welding of the sheets. Connection and removal of the sheets are realized by mechanical elements e.g. pressers (12), a fluid injection and by electrostatic attraction and/or repulsion. An independent claim is also included for an operating device for producing a web of plastic mesh from a set of parallel polymer sheets, comprising vertical displacement units.

Description

       

  Domaine de l'invention

[0001] La présente invention concerne un procédé et un dispositif de production de nappes de mailles plastiques à partir d'un ensemble de feuilles de polymère.

[0002] Les nappes obtenues par ces procédés trouvent de nombreuses applications, en particulier dans le secteur de l'habitat ou de l'industrie pour la réalisation de niches de rangement verticales, claustras, pour la stabilisation des sols, la régulation de flux laminaires, la réalisation d'écarteurs pour le revêtement de panneaux composites, d'éléments décoratifs, etc.

Etat de la technique

[0003] On connaît déjà des procédés pour obtenir des nappes de mailles en plastique à partir de polymères.

   La production de nappes se fait horizontalement et/ou en recourant à des procédés de soudure complexes qui se caractérisent notamment par un grand nombre d'étapes.

Résumé de l'invention

[0004] Le procédé selon l'invention offre plusieurs avantages par rapport aux procédés de l'état de la technique.
Il se caractérise par la combinaison d'une extrusion verticale des feuilles de polymère et le rapprochement alterné de paires de feuilles.

[0005] L'invention concerne également un dispositif fonctionnant selon le procédé précité.

[0006] Une partie des avantages offerts par le procédé selon l'invention résulte du rôle joué par la gravité.

   Il est donc possible:
 de traiter des feuilles extrudées de largeur importante (plusieurs centimètres),
 d'avoir des intervalles importants entre chaque feuille, ce qui permet d'obtenir des mailles de grandes dimensions,
 d'avoir de larges fentes d'extrusion, ce qui permet d'utiliser des feuilles de polymère recyclées, donc économiques, tout en obtenant, grâce à l'étirement des feuilles de plastique non encore refroidies, des épaisseurs finales de feuilles faibles, et donc des nappes allégées,
 d'utiliser, selon l'application envisagée, plusieurs types de polymères, purs ou recyclés, avec ou sans adjuvants ou renforts (polyester, nylon, polypropylène, polycarbonate, polyéthylène, etc...)

  .

Description sommaire des dessins

[0007] L'invention sera décrite ci-après de manière plus détaillée au moyen d'exemples non limitatifs et en référence aux dessins annexés dans lesquels:
 le schéma 1 illustre le principe de l'invention appliqué à une tête d'extrusion,
 le schéma 2 représente des éléments du dispositif selon l'invention,
 le schéma 3 illustre de façon schématique une première forme de réalisation du dispositif selon l'invention,
 le schéma 4 représente en détail la disposition des feuilles et des presseurs du dispositif lors d'un cycle du procédé,
 le schéma 5 représente la tête d'extrusion d'une seconde forme de réalisation du dispositif selon l'invention,
 les schéma 6 et 7 illustrent la connexion des conduits de fluide de la tête d'extrusion du schéma 5 à des tubulures d'alimentation,

  
 le schéma 8 représente la formation de mailles par le dispositif du schéma 5, et
 le schéma 9 représente une nappe de mailles obtenues par les différents dispositifs de l'invention.

Description détaillée de l'invention

[0008] Le principe général de l'invention est en partie illustré par le schéma 1. Au moyen de fentes aménagées sur une tête de filière d'extrusion 10 de matière plastique, des feuilles de polymères 11 encore en fusion s'écoulent verticalement de haut en bas.

   En fonction du polymère utilisé, de la température d'extrusion, de l'indice de viscosité, d'adjuvants ou renforts éventuels, les feuilles de plastique peuvent avoir un écoulement plus ou moins rapide et un étirement plus ou moins prononcé.

[0009] Trois variantes, parmi d'autres, de soudure des feuilles sont décrites ci-après
 variante 1 (utilisée de préférence pour l'obtention de grosses mailles): soudure par rapprochement mécanique des feuilles.
 variante 2 (utilisée de préférence pour l'obtention de mailles de taille moyenne) soudure par injection de fluide
 variante 3 (utilisée de préférence pour l'obtention de mailles de faible taille): soudure électrostatique.

Variante 1:

   Soudure par rapprochement mécanique des feuilles

[0010] En référence aux schéma 2 et 3, sur chacune des faces A et B des feuilles de plastique extrudées 11 sont disposées des paires de presseurs 12 reliés à des châssis mobiles horizontalement 13, eux-mêmes solidaires de châssis mobiles 14 coulissant verticalement de haut en bas (puis de bas en haut), permettant d'accompagner pendant la phase de pressage l'écoulement des feuilles de polymère.

[0011] Comme illustré en détail par le schéma 4, les presseurs d'une des faces (face A) sont disposés entre les feuilles numérotées 1 et 2 et les feuilles numérotées 3 et 4 tandis que les presseurs de l'autre face (face B), sont disposés entre les feuilles numérotées 2 et 3 et les feuilles numérotées 4 et 5 (non représentées).

   Pour généraliser, nous dirons que les presseurs de la face A sont disposés entre les feuilles de rangs impairs/pairs, et ceux de la face B entre les feuilles de rangs paires/impaires.

[0012] Lorsque les presseurs d'une des faces du châssis sont engagés entre les feuilles plastiques, les presseurs de l'autre face en sont retirés. Au cycle suivant, ce sera l'inverse.
Lorsque les paires de presseurs 12 de la face A sont engagées entre les feuilles par l'action du châssis mobile horizontal 13, elles demeurent dans un premier serrées, puis elles s'écartent et viennent pincer l'une contre l'autre les feuilles de plastique qu'elles encadrent respectivement.

   Ainsi, sur le schéma 4, les feuilles 2 et 3 seront pressées l'une à l'autre (ainsi que les feuilles 4 et 5, 6 et 7, etc.. ).
Les feuilles, ainsi rapprochées et pressées entre elles, alors qu'elles sont encore à une température supérieure à celle de fusion du polymère utilisé, s'interpénètrent et se soudent l'une à l'autre.
A relever que pour que cette soudure puisse s'effectuer correctement, il faut préalablement régler la température d'extrusion de façon à ce que les presseurs soient disposés au niveau idéal de température, de préférence juste au-dessus (de 2 à 5 deg.

   C) de la température de fusion du polymère utilisé.
Pendant cette phase de pressage/soudure, le châssis coulissant vertical 14 accompagne l'écoulement de haut en bas des feuilles plastiques concernées.

[0013] Les paires de presseurs 12 entre les feuilles 1/2, 3/4 reviennent en position serrée, puis se retirent hors du volume constitué par les feuilles par l'action de retrait du châssis mobile horizontal 13, tandis que le châssis coulissant vertical 14 remonte à sa position d'origine.

[0014] En même temps que les paires de presseurs de la face A se retirent, celles de la face B sont engagées entre les feuilles de rangs paires/impaires, et suivent à leur tour le même processus, permettant la soudure entre elles des feuilles de rang impaires/paires (feuilles 1 et 2, et 3 et 4 dans le schéma 4).
Et ainsi de suite, par action successive des presseurs d'une des faces,

   puis de l'autre. Les phases d'un cycle se suivent et se décomposent comme suit:

Phase 1:

[0015] B2: les presseurs de la face B et le châssis mobile auquel ils sont fixés accompagnent les feuilles de plastique de rang pair/impair dans leur écoulement vers le bas tout en les pressant l'une à l'autre

[0016] A4: les presseurs de la face A et le châssis mobile auquel ils sont fixés remontent à leur position d'origine

Phase 2:

[0017] B3: les presseurs de la face B se retirent du périmètre des feuilles de polymère extrudé (après s'en être écartés)

[0018] A1: les presseurs de la face A encore écartés sont introduits entre les feuilles de polymère de rangs impair/pair

Phase 3:

[0019] B4: les presseurs de la face B et le châssis mobile auquel ils sont fixés remontent à leur position d'origine

[0020] A2:

   les presseurs de la face A et le châssis mobile auquel ils sont fixés accompagnent les feuilles de plastique de rang impair/pair dans leur écoulement vers le bas tout en les pressant l'une à l'autre

Phase 4:

[0021] B1: les presseurs de la face B encore écartés sont introduits entre les feuilles de polymère de rangs pair/impair

[0022] A3: les presseurs de la face A se retirent du périmètre des feuilles de polymère extrudé (après s'en être écartés)

Variante 2: Soudure par injection de fluide

[0023] Le schéma 5 montre la découpe d'une tête d'extrusion 20 qui comporte une succession de pointes 21 au bout desquelles se trouvent des fentes d'extrusion de feuilles de plastique 11 ainsi que des creux 22 qui permettent d'héberger pendant la phase de démarrage des conduits de fluide (un gaz de préférence) 23 sous pression.

   Ces conduits de fluide 23 sous pression comportent des fentes 24 qui permettent d'orienter les lames de fluide vers le bas, de part et d'autre des conduits.

[0024] Le schéma 6 montre en coupe transversale la connexion des conduits de fluide sous pression à des tubulures d'alimentation 30 et 31.

[0025] Le schéma 7 montre comment les conduits 23a de rangs impairs, solidaires d'un premier châssis 25a, sont connectés à la tubulure d'alimentation 30, tandis que les conduits 23b de rangs pairs, solidaires d'un second châssis 25b, sont connectés à la tubulure d'alimentation 31. Lorsque les conduits 23a sont alimentés en fluide sous pression, les conduits 23b ne le sont pas; au cycle suivant, la situation inverse se produit.

[0026] Lorsque les conduits 23a sont sous pression, ils génèrent deux lames de fluide orientées grâce aux fentes 24 pratiquées dans lesdits conduits.

   Ces lames écartent vers l'extérieur les feuilles de plastique qui encadrent les conduits 23a.

[0027] Ainsi, dans le schéma 8, les feuilles 11 de rangs 2 et 3, encadrant des conduits 23b, sont alors collées l'une contre l'autre, tout comme les feuilles de rangs 4 et 5, 6 et 7, 8 et 9, et 10 et 11. Les feuilles, ainsi rapprochées et pressées entre elles, alors qu'elles sont encore à une température supérieure à celle de fusion du polymère utilisé, s'interpénètrent et se soudent l'une à l'autre.

[0028] A relever que pour que cette soudure puisse s'effectuer correctement, il faut préalablement régler la température d'extrusion de façon à ce que les presseurs soient disposés au niveau idéal de température, de préférence juste au-dessus (de 2 à 5 deg.

   C) de la température de fusion du polymère utilisé.

[0029] A l'issue de cette soudure, les conduits 23a ne sont plus alimentés d'air sous pression, c'est au tour des conduits 23b de l'être. Lorsque les conduits 23b sont sous pression, ils génèrent une lame d'air orientée grâce aux volets d'orientation, et écartent vers l'extérieur les feuilles de plastique 11 qui les encadrent.

   C'est alors au tour des feuilles de rangs 1 et 2, encadrant des conduits 23a, d'être alors collées l'une contre l'autre, tout comme les feuilles 3 et 4, 5 et 6, 7 et 8, 9 et 10, etc...
Et ainsi de suite, par action successive des conduits d'air 23a puis 23b.

[0030] Les phases d'un cycle se suivent et se décomposent comme suit:

Phase 1:

[0031] Les conduits 23a sont alimentés en fluide sous pression.
Les lames de fluide générées par les conduits 23a pressent l'une contre l'autre les feuilles plastiques de rangs pairs/impairs pendant leur descente.

Phase 2:

[0032] Les conduits 23a et 23b ne reçoivent aucune pression.

   Les feuilles reprennent une descente verticale.

Phase 3:

[0033] Les conduits 23b sont alimentés en fluide sous pression.
Les lames de fluide générées par les conduits 23b pressent l'une contre l'autre les feuilles plastiques de rang impairs/pairs pendant leur descente.

Phase 4:

[0034] Les conduits 23a et 23b ne reçoivent aucune pression. Les feuilles reprennent une descente verticale.
Et ainsi de suite.

[0035] Comme on peut le constater, le principe de fonctionnement de la 2<ème> variante est similaire à celui de la 1<ère> variante. Ils diffèrent uniquement par les moyens utilisés pour rapprocher les feuilles et obtenir les mailles 40 de la nappe 100 représentée par le schéma 9, soit des moyens mécaniques dans la variante 1 et un fluide dans la variante 2.

Variante 3: Soudure électrostatique

[0036] Cette 3<ème> variante est identique aux deux précédentes.

   Elle diffère uniquement en ce que les moyens utilisés pour rapprocher les feuilles sont du type électrostatique.
Des plaques chargées électrostatiquement sont utilisées pour influencer et/ou contrôler le déplacement des feuilles extrudées. Avantageusement, ce système est utilisé en association avec les moyens décrits à la variante 1 et/ou 2.
A noter par ailleurs que l'utilisation d'un système électrostatique permet de mieux stabiliser la position des feuilles les unes par rapport aux autres.

[0037] Les plaques chargées électrostatiquement sont insérées entre les feuilles selon une configuration similaire à celle utilisée pour l'insertion des moyens mécaniques ou fluidiques des variantes 1 et 2.
Un voltage élevé est appliqué sur les plaques, ce qui a pour effet d'induire des charges à la surface des feuilles.

   Selon un mode préférentiel, ces dernières peuvent être chargées d'un additif qui les rend semi-conductrices.
Suivant le sens du voltage appliqué, les feuilles peuvent être rapprochées ou éloignées.

[0038] Une fois la structure en nid-d'abeilles et par conséquent la nappe 100 formée, le voltage, et de ce fait les charges induites sur les feuilles, sont supprimées.

Régulation de la vitesse

[0039] Quelle que soit la variante utilisée, on dispose de préférence immédiatement au-dessous et après le soudage des feuilles deux rouleaux 40a, 40b recouverts de téflon qui pressent de part et d'autre la nappe de mailles 100.

   La vitesse des rouleaux est contrôlée par une motorisation.
Les rouleaux ont une triple fonction:
 réguler la vitesse d'écoulement des feuilles de polymère et de la nappe de maille, en particulier en supportant le poids en dessous des rouleaux, de sorte que seul le poids des feuilles de polymère situées entre les fentes de la tête d'extrusion et les presseurs puissent avoir un effet d'étirement et d'accélération verticale sur les feuilles concernées (par exemple, le poids suspendu de feuilles en polypropylène de densité 0,9, de largeur 20 mm, d'épaisseur 0,5 mm, et de hauteur 10 cm ne sera que de 0,9 grammes, ce qui n'est pas de nature à accélérer sensiblement la vitesse d'écoulement),
 tracter, si nécessaire, vers le bas des feuilles de polymère extrudées à partir de matières premières ayant un indice de viscosité faible,

  
 constituer un gabarit conférant à la nappe de cellules une épaisseur parfaitement constante.

[0040] La forme générale des mailles 40 obtenues dépend de l'intervalle entre les fentes de la tête d'extrusion, de la vitesse de descente des feuilles extrudées 11, et de la rapidité du cycle.

Quelques données indicatives chiffrées

[0041] Les chiffres ci-dessous sont des données indicatives pratiques tenant compte des contraintes du procédé.

   Elles n'en constituent pas les limites, hautes ou basses.

Dimensions des fentes d'extrusion des feuilles de polymères:

[0042] largeur de 0, 7 à 1 mm, longueur 5 à 50 mm environ

Dimensions des feuilles de polymère obtenues:

[0043] 3 à 48 mm de largeur, 0,4 à 0,5 mm d'épaisseur

Intervalle entre 2 fentes (et entre les feuilles):

[0044] de 4 mm à 12 mm (pour obtenir des mailles de largeurs 8 à 24 mm)

Vitesse d'extrusion des feuilles de polymère:

[0045] entre 2,5 et 4 mètres/minute, selon la taille et la forme des cellules à obtenir

Largeur de la nappe de mailles obtenue:

[0046] en théorie, il n'y a pas de limites, car le procédé est modulaire.

   En pratique, de 500 à 2.500 mm.
(nota: les fentes latérales de la filière d'extrusion pouvant être occultées, le procédé permet de s'adapter à chaque largeur requise).

Densité des nappes de mailles obtenues:

[0047] dépend de l'intervalle entre feuilles, de la densité du polymère utilisé, de la largeur des fentes. Pratiquement, elle varie globalement de 0,040 gramme/litre à 0,15 gramme/litre



  Field of the invention

The present invention relates to a method and a device for producing plastic mesh plies from a set of polymer sheets.

The sheets obtained by these methods find many applications, particularly in the housing sector or industry for the realization of vertical storage niches, trellises, for soil stabilization, laminar flow control , making spacers for coating composite panels, decorative elements, etc.

State of the art

Methods are already known for obtaining plastic mesh plies from polymers.

   The production of layers is done horizontally and / or by resorting to complex welding processes which are characterized in particular by a large number of steps.

Summary of the invention

The method according to the invention offers several advantages over the methods of the state of the art.
It is characterized by the combination of vertical extrusion of the polymer sheets and the alternating approximation of pairs of leaves.

The invention also relates to a device operating according to the aforementioned method.

Part of the advantages offered by the method according to the invention results from the role played by gravity.

   It is therefore possible:
 to treat extruded leaves of large width (several centimeters),
 to have important intervals between each sheet, which makes it possible to obtain large meshes,
 to have large extrusion slots, which allows the use of recycled polymer sheets, so economic, while obtaining, by stretching plastic sheets not yet cooled, final thicknesses of weak leaves, and therefore light tablecloths,
 to use, according to the intended application, several types of polymers, pure or recycled, with or without adjuvants or reinforcements (polyester, nylon, polypropylene, polycarbonate, polyethylene, etc ...)

  .

Brief description of the drawings

The invention will be described hereinafter in more detail by way of nonlimiting examples and with reference to the accompanying drawings in which:
 FIG. 1 illustrates the principle of the invention applied to an extrusion head,
 FIG. 2 represents elements of the device according to the invention,
 FIG. 3 schematically illustrates a first embodiment of the device according to the invention,
 FIG. 4 shows in detail the arrangement of the sheets and the pressers of the device during a cycle of the process,
 FIG. 5 shows the extrusion head of a second embodiment of the device according to the invention,
 FIGS. 6 and 7 illustrate the connection of the fluid conduits of the extrusion head of FIG. 5 to feed pipes,

  
 FIG. 8 represents the formation of meshes by the device of FIG. 5, and
 Figure 9 shows a web of meshes obtained by the various devices of the invention.

Detailed description of the invention

The general principle of the invention is partly illustrated by diagram 1. By means of slots provided on a plastic extrusion die head 10, still molten polymer sheets 11 flow vertically from top to bottom.

   Depending on the polymer used, the extrusion temperature, the viscosity index, any adjuvants or reinforcements, the plastic sheets may have a more or less rapid flow and a more or less pronounced stretching.

Three variants, among others, of welding of the sheets are described below.
 variant 1 (preferably used for obtaining large meshes): welding by mechanical approximation of the sheets.
 variant 2 (preferably used for obtaining meshes of average size) welding by fluid injection
 variant 3 (preferably used for obtaining small mesh size): electrostatic welding.

Variant 1:

   Welding by mechanical approximation of the sheets

Referring to Figures 2 and 3, on each of the faces A and B of the extruded plastic sheets 11 are arranged pairs of pressers 12 connected to horizontally movable frames 13, themselves secured to the movable frame 14 sliding vertically of from top to bottom (then from bottom to top), allowing the flow of the polymer sheets to be accompanied during the pressing phase.

As illustrated in detail in Figure 4, the pressers of one of the faces (A side) are arranged between the numbered sheets 1 and 2 and the numbered sheets 3 and 4 while the pressers on the other side (face B), are arranged between the sheets numbered 2 and 3 and the numbered sheets 4 and 5 (not shown).

   To generalize, we will say that the pressureers of the face A are arranged between the leaves of odd / even rows, and those of the face B between the leaves of even / odd rows.

When the pressers of one of the faces of the frame are engaged between the plastic sheets, the pressers on the other side are removed. In the next cycle, it will be the opposite.
When the pairs of pressers 12 of the face A are engaged between the sheets by the action of the horizontal movable frame 13, they remain in a first tight, then they deviate and come to pinch one against the other the sheets of plastic that they frame respectively.

   Thus, in Figure 4, sheets 2 and 3 will be pressed together (as well as sheets 4 and 5, 6 and 7, etc.).
The leaves, thus brought together and pressed together while still at a temperature higher than that of melting the polymer used, interpenetrate and weld together.
Note that for this weld can be performed properly, it must first set the extrusion temperature so that the pressers are arranged at the ideal temperature, preferably just above (2 to 5 deg.

   C) the melting temperature of the polymer used.
During this pressing / welding phase, the vertical sliding frame 14 accompanies the flow from top to bottom of the plastic sheets concerned.

The pairs of pressers 12 between the sheets 1/2, 3/4 return in a tight position, then withdraw from the volume constituted by the sheets by the removal action of the horizontal movable frame 13, while the sliding frame vertical 14 goes back to its original position.

At the same time that the pairs of pressers of the side A are withdrawn, those of the face B are engaged between the sheets of even / odd rows, and follow in turn the same process, allowing the welding between them sheets Odd / Even Ranks (Sheets 1 and 2, and 3 and 4 in Figure 4).
And so on, by successive action of the pressers of one of the faces,

   then from the other. The phases of a cycle follow one another and break down as follows:

Phase 1:

B2: the B-side of the pressers and the mobile frame to which they are attached accompany the plastic sheets odd / even rank in their flow down while pressing them to one another

A4: the pressers of the side A and the mobile frame to which they are attached back to their original position

Phase 2:

B3: the pressureers of the B side withdraw from the perimeter of the extruded polymer sheets (after being removed)

A1: the squeezers of the A side still spaced are introduced between the sheets of polymer odd / even ranks

Phase 3:

B4: the pressers of the B-side and the mobile frame to which they are attached back to their original position

A2:

   the A-side pressers and the mobile frame to which they are attached accompany the odd / even plastic sheets in their downward flow while squeezing them together

Phase 4:

B1: the squeezers of the B face still spaced are introduced between the sheets of polymer odd / even ranks

A3: the pressureers of the side A withdraw from the perimeter of the extruded polymer sheets (after being removed)

Variant 2: Welding by fluid injection

Figure 5 shows the cutout of an extrusion head 20 which comprises a succession of spikes 21 at the end of which are extrusion slots of plastic sheets 11 and recesses 22 which allow to accommodate during the starting phase of the fluid conduits (a gas preferably) 23 under pressure.

   These pressurized fluid conduits 23 comprise slots 24 which make it possible to orient the fluid blades downwards, on either side of the ducts.

Figure 6 shows in cross section the connection of the fluid conduits under pressure to the supply pipes 30 and 31.

Figure 7 shows how the ducts 23a of odd rows, integral with a first frame 25a, are connected to the supply pipe 30, while the ducts 23b even rows, secured to a second frame 25b, are connected to the supply pipe 31. When the ducts 23a are supplied with pressurized fluid, the ducts 23b are not; in the next cycle, the opposite situation occurs.

When the ducts 23a are under pressure, they generate two fluid slats oriented through the slots 24 formed in said ducts.

   These blades spread outwardly the plastic sheets that frame the conduits 23a.

Thus, in Figure 8, the leaves 11 of rows 2 and 3, flanking ducts 23b, are then glued against each other, as are the leaves of rows 4 and 5, 6 and 7, 8 and 9, and 10 and 11. The sheets, thus brought together and pressed together, while still at a temperature higher than that of melting the polymer used, interpenetrate and weld to one another.

Note that for this weld can be performed properly, it must first set the extrusion temperature so that the pressers are arranged at the ideal temperature, preferably just above (2 to 5 deg.

   C) the melting temperature of the polymer used.

At the end of this weld, the ducts 23a are no longer supplied with air under pressure, it is the turn of the ducts 23b to be. When the ducts 23b are under pressure, they generate an air space oriented through the orientation flaps, and outwardly outwardly the plastic sheets 11 which surround them.

   It is then the turn of the leaves of rows 1 and 2, flanking ducts 23a, to then be glued together, just like the sheets 3 and 4, 5 and 6, 7 and 8, 9 and 10, etc ...
And so on, by successive action of the air ducts 23a and 23b.

The phases of a cycle follow each other and decompose as follows:

Phase 1:

The conduits 23a are supplied with fluid under pressure.
The fluid blades generated by the ducts 23a press against each other the plastic sheets of even / odd rows during their descent.

Phase 2:

The conduits 23a and 23b receive no pressure.

   The leaves resume a vertical descent.

Phase 3:

The conduits 23b are supplied with fluid under pressure.
The fluid blades generated by the ducts 23b press the plastic sheets odd / even rank during their descent against each other.

Phase 4:

The conduits 23a and 23b receive no pressure. The leaves resume a vertical descent.
And so on.

As can be seen, the operating principle of the 2 nd variant is similar to that of the 1st variant. They differ only by the means used to bring the sheets together and to obtain the stitches 40 of the ply 100 represented by the drawing 9, that is mechanical means in the variant 1 and a fluid in the variant 2.

Variant 3: Electrostatic welding

This <3> variant is identical to the previous two.

   It differs only in that the means used to bring the sheets together are of the electrostatic type.
Electrostatically charged plates are used to influence and / or control the displacement of the extruded sheets. Advantageously, this system is used in combination with the means described in variant 1 and / or 2.
Note also that the use of an electrostatic system makes it possible to better stabilize the position of the sheets relative to each other.

The electrostatically charged plates are inserted between the sheets in a configuration similar to that used for the insertion of the mechanical or fluidic means of variants 1 and 2.
A high voltage is applied to the plates, which has the effect of inducing loads on the surface of the leaves.

   According to a preferred embodiment, the latter can be loaded with an additive which renders them semiconducting.
Depending on the direction of the applied voltage, the leaves may be near or far apart.

Once the honeycomb structure and therefore the web 100 formed, the voltage, and thus the charges induced on the sheets, are removed.

Speed regulation

Whatever the variant used, it is preferably immediately below and after the sheets are sold two rollers 40a, 40b covered with Teflon which press on both sides of the mesh ply 100.

   The speed of the rollers is controlled by a motorization.
The rollers have a triple function:
 regulate the flow rate of the polymer sheets and the mesh ply, in particular by supporting the weight below the rolls, so that only the weight of the polymer sheets located between the slits of the extrusion head and the The presses can have a vertical stretching and acceleration effect on the sheets concerned (for example, the hanging weight of polypropylene sheets of density 0.9, width 20 mm, thickness 0.5 mm, and height 10 cm will be only 0.9 grams, which is not likely to significantly accelerate the flow rate),
 retract, if necessary, down the extruded polymer sheets from raw materials having a low viscosity index,

  
 to constitute a template conferring on the sheet of cells a perfectly constant thickness.

The overall shape of the meshes 40 obtained depends on the gap between the slots of the extrusion head, the speed of descent of the extruded sheets 11, and the speed of the cycle.

Some indicative figures

The figures below are practical indicative data taking into account the constraints of the process.

   They do not constitute the limits, high or low.

Dimensions of extrusion slots of polymer sheets:

Width from 0, 7 to 1 mm, length 5 to 50 mm approximately

Dimensions of the obtained polymer sheets:

3 to 48 mm wide, 0.4 to 0.5 mm thick

Interval between 2 slots (and between sheets):

From 4 mm to 12 mm (to obtain mesh widths 8 to 24 mm)

Extrusion speed of the polymer sheets:

Between 2.5 and 4 meters / minute, depending on the size and shape of the cells to be obtained

Width of the mesh layer obtained:

In theory, there are no limits because the process is modular.

   In practice, from 500 to 2,500 mm.
(note: the side slots of the extrusion die can be hidden, the method allows to adapt to each required width).

Density of the meshes obtained:

Depends on the gap between sheets, the density of the polymer used, the width of the slots. In practice, it varies overall from 0.040 gram / liter to 0.15 gram / liter


    

Claims (8)

1. Procédé de production d'une nappe de mailles plastiques à partir d'un ensemble de feuilles de polymère parallèles (11) qui, dans une première étape, ne se contactent pas et qui, dans une deuxième étape, se soudent par paires en des endroits spécifiques de manière à former une nappe (100) de structure en nid-d'abeilles, ledit procédé étant caractérisé par le fait que pendant la première et la deuxième étape, les feuilles de polymère (11) se déplacent verticalement, selon les lignes de force du champ gravifique. A process for producing a web of plastic meshes from a set of parallel polymer sheets (11) which, in a first step, do not contact each other and which, in a second step, are soldered in pairs specific locations to form a web (100) of honeycomb structure, said method being characterized in that during the first and second stages, the polymer sheets (11) move vertically, according to the lines of force of the gravitational field. 2. Procédé selon la revendication 1 caractérisé par le fait que le rapprochement des feuilles de polymère (11), respectivement leur éloignement, est réalisé au moyen d'éléments mécaniques tels que des presseurs (12). 2. Method according to claim 1 characterized in that the approximation of the polymer sheets (11), respectively their removal, is achieved by means of mechanical elements such as pressers (12). 3. Procédé selon la revendication 1 caractérisé par le fait que le rapprochement des feuilles de polymère (11), respectivement leur éloignement, est réalisé par injection d'un fluide. 3. Method according to claim 1 characterized in that the approximation of the polymer sheets (11), respectively their distance, is achieved by injection of a fluid. 4. Procédé selon la revendication 1 caractérisé par le fait que le rapprochement des feuilles de polymère (11), respectivement leur éloignement, est réalisé par attraction et/ou répulsion électrostatique. 4. Method according to claim 1 characterized in that the approximation of the polymer sheets (11), respectively their removal, is achieved by attraction and / or repulsion electrostatic. 5. Dispositif fonctionnant selon l'une quelconque des revendications précédentes caractérisé par le fait qu'il comprend des moyens de déplacement vertical adaptés pour déplacer verticalement un ensemble de feuilles de polymère (11) selon les lignes de force du champ gravifique. 5. Operating device according to any one of the preceding claims characterized in that it comprises vertical displacement means adapted to move vertically a set of polymer sheets (11) along the lines of force of the gravitational field. 6. Dispositif selon la revendication 5 comprenant des moyens mécaniques tels que des presseurs (12), pour rapprocher et souder des feuilles de polymère (11) en des endroits spécifiques. 6. Device according to claim 5 comprising mechanical means such as pressers (12) to bring and weld polymer sheets (11) at specific locations. 7. Dispositif selon la revendication 5 comprenant des moyens fluidiques (23) pour rapprocher et souder des feuilles de polymère (11) en des endroits spécifiques. 7. Device according to claim 5 comprising fluid means (23) for bringing and welding polymer sheets (11) at specific locations. 8. Dispositif selon la revendication 5 comprenant des moyens électrostatiques pour rapprocher et souder des feuilles de polymère (11) en des endroits spécifiques. 8. Device according to claim 5 comprising electrostatic means for bringing and welding polymer sheets (11) at specific locations.
CH00472/04A 2004-03-22 2004-03-22 Plastic mesh web producing method for use in e.g. industrial sector, involves vertically moving sheets along lines of gravitational field strength using vertical displacement units during non-contacting and welding of sheets CH697536B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH00472/04A CH697536B1 (en) 2004-03-22 2004-03-22 Plastic mesh web producing method for use in e.g. industrial sector, involves vertically moving sheets along lines of gravitational field strength using vertical displacement units during non-contacting and welding of sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00472/04A CH697536B1 (en) 2004-03-22 2004-03-22 Plastic mesh web producing method for use in e.g. industrial sector, involves vertically moving sheets along lines of gravitational field strength using vertical displacement units during non-contacting and welding of sheets

Publications (1)

Publication Number Publication Date
CH697536B1 true CH697536B1 (en) 2008-11-28

Family

ID=34973934

Family Applications (1)

Application Number Title Priority Date Filing Date
CH00472/04A CH697536B1 (en) 2004-03-22 2004-03-22 Plastic mesh web producing method for use in e.g. industrial sector, involves vertically moving sheets along lines of gravitational field strength using vertical displacement units during non-contacting and welding of sheets

Country Status (1)

Country Link
CH (1) CH697536B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010943A1 (en) * 2009-07-24 2011-01-27 Geo Globe Polska An apparatus for the manufacture of geocells

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1486473A (en) * 1966-05-18 1967-06-30 Cellular material in thermoplastic material and its manufacturing process
DE1779330A1 (en) * 1968-08-01 1971-09-23 Arnold Vogts Cable net tree as well as method and spray head for the production of net-like or honeycomb-like structures from malleable masses
FR2271914A1 (en) * 1974-05-20 1975-12-19 Rose Frank Closed cell material esp. for insulation continuously extruded - as numerous parallel tubes for fluctuating dia. bonded together
US3949031A (en) * 1970-08-19 1976-04-06 Fmc Corporation Method for making cellular articles
JPS5962137A (en) * 1982-10-04 1984-04-09 三菱化成ポリテック株式会社 Manufacture of honeycomb structure
BE1003784A4 (en) * 1988-04-13 1992-06-16 Euro Composites Method of manufacturing a honeycomb core for a composite panel forlightweight construction or any other sandwich construction
EP0750971A2 (en) * 1995-06-26 1997-01-02 Corning Incorporated Cross-flow honeycomb structure and method of making same
US6277231B1 (en) * 1997-03-19 2001-08-21 Guy Ducruy Method for producing a honeycomb core in thermofusible material, and device for implementing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1486473A (en) * 1966-05-18 1967-06-30 Cellular material in thermoplastic material and its manufacturing process
DE1779330A1 (en) * 1968-08-01 1971-09-23 Arnold Vogts Cable net tree as well as method and spray head for the production of net-like or honeycomb-like structures from malleable masses
US3949031A (en) * 1970-08-19 1976-04-06 Fmc Corporation Method for making cellular articles
FR2271914A1 (en) * 1974-05-20 1975-12-19 Rose Frank Closed cell material esp. for insulation continuously extruded - as numerous parallel tubes for fluctuating dia. bonded together
JPS5962137A (en) * 1982-10-04 1984-04-09 三菱化成ポリテック株式会社 Manufacture of honeycomb structure
BE1003784A4 (en) * 1988-04-13 1992-06-16 Euro Composites Method of manufacturing a honeycomb core for a composite panel forlightweight construction or any other sandwich construction
EP0750971A2 (en) * 1995-06-26 1997-01-02 Corning Incorporated Cross-flow honeycomb structure and method of making same
US6277231B1 (en) * 1997-03-19 2001-08-21 Guy Ducruy Method for producing a honeycomb core in thermofusible material, and device for implementing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199041, Derwent World Patents Index; Class A32, AN 1990-310588, XP002310741 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010943A1 (en) * 2009-07-24 2011-01-27 Geo Globe Polska An apparatus for the manufacture of geocells

Similar Documents

Publication Publication Date Title
EP1617987B1 (en) Simultaneous longitudinal and transverse film drawing device
EP3448646B1 (en) Improved method for forming retaining elements
EP2914523B1 (en) Device for holding a flat sheet-like element circulating in a treatment machine
FR2900419A1 (en) METHOD OF MANUFACTURING NON-WOVEN THREE DIMENSIONS, MANUFACTURING LINE FOR CARRYING OUT SAID METHOD, AND NON-WOVEN PRODUCT IN THREE DIMENSIONS OBTAINED
CA2719896C (en) Cell-like structure manufacturing method, cell-like structure, and corresponding equipment
EP0960227B1 (en) Method and device for making textile products and resulting textile products
CA2547526A1 (en) Machine for production of non-woven material, adjustment procedure for the same and non-woven material produced thus
WO1991017038A1 (en) Continuous film folding device for forming flattened folds and arrangement for forming fold-free areas
CH697536B1 (en) Plastic mesh web producing method for use in e.g. industrial sector, involves vertically moving sheets along lines of gravitational field strength using vertical displacement units during non-contacting and welding of sheets
EP1798175B1 (en) Transport of a non-woven web by means of a conveyor belt with an ascending portion and/or a variable speed
FR2523895A1 (en) APPARATUS FOR DIVIDING AERIAL CONCRETE BLOCKS
FR2655903A1 (en) METHOD AND APPARATUS FOR SEPARATING PARTS CUT, ACCORDING TO A MODEL, FROM A FALL MATERIAL.
FR2795099A1 (en) Appts for bonding a nonwoven fabric with water needle jets has a channel between the filter and the perforated plate to give a stable water flow under high pressures without turbulence
FR2927274A1 (en) PROCESS FOR PRODUCING A PERFORATED THREE-DIMENSIONAL STRUCTURE BASED ON PLASTIC MATERIAL AND DEVICE FOR CARRYING OUT SAID METHOD
EP2812148B1 (en) Method and installation for the manufacture of a honeycomb cellular structure
EP0954475A1 (en) Method and device for packaging compressible materials
EP1384804B1 (en) Process for limiting the fooling of a needling machine from flying fibers and a needle machine therefore
EP1790766B1 (en) Method and device for transferring a fibre layer, and consolidation machine, in particular a (pre-) needling machine thus equipped
CA1029908A (en) Installation for the continuous manufacture of synthetic material panels
EP3363916B1 (en) Device for flattening a flexible membrane
FR2458498A1 (en) METHOD AND INSTALLATION FOR STACKING BAGS, IN PARTICULAR PLASTIC MATERIAL
FR2707531A1 (en) Process for the production of coatings, especially for flooring, from plastic material, and installation for its implementation.
FR3097157A1 (en) Depositing module for depositing fiber strip sections for the production of parts in composite materials, depositing head, depositing robot, and depositing method.
FR2806426A1 (en) INSTALLATION FOR THE PRODUCTION OF NONWOVEN TABLECLOTHS WHICH COHESION IS OBTAINED BY THE ACTION OF FLUID JETS
FR2734585A1 (en) METHOD AND DEVICE FOR SHAPING A PANEL OF A FIBER MATTRESS STRIP

Legal Events

Date Code Title Description
PCAR Change of the address of the representative

Free format text: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDUSTRIELLE S.A.;Y-PARC RUE GALILEE;1400 YVERDON-LES-BAINS (CH)

PL Patent ceased