Die Erfindung betrifft eine Einbauelemente enthaltende Kolonne für den Stoffaustausch und/oder Wärmeaustausch zwischen einer gasförmigen, mindestens einer flüssigen und mindestens einer festen Phase sowie deren Verwendung zum Destillieren, Rektifizieren, Absorbieren, Extrahieren, Trocknen oder Befeuchten oder zum Durchführen chemischer Reaktionen.
Es sind Packungen oder Füllkörper für den Einbau in Stoffaustausch- und/oder Wärmeaustauschkolonnen bekannt, die die Austauschoberfläche für den Stoffaustausch und/oder Wärmeaustausch zwischen den miteinander in Kontakt stehenden Phasen zur Verfügung stellen. Wenn an dem Austausch eine oder mehrere flüssige Phasen beteiligt ist bzw. sind, so findet der Austausch nur an der von dieser Phase bzw. diesen Phasen benetzten Oberfläche der Packungen bzw. der Füllkörper statt. Der Anteil der Oberfläche, der von der flüssigen Phase bzw. den flüssigen Phasen benetzt ist, soll also möglichst gross sein, da der nicht benetzte Anteil für den Austausch verloren ist. Die bisher bekannten Packungen oder Füllkörper nehmen jedoch nicht aktiv am Stoffaustausch und/oder Wärmeaustausch teil.
Unter Sorption versteht man die Aufnahme eines Gases oder Dampfes durch einen anderen, mit ihm in Berührung stehenden Stoff, dem Sorbens. Der Oberbegriff "Sorption" umfasst
a) die Absorption, das heisst, das Eindringen von Gasen oder Gasgemischen durch Diffusion in eine Flüssigkeit oder einen festen Stoff, das Absorbens;
b) die Adsorption, das heisst, die reversible Anlagerung von Gasen und gelösten Stoffen an Phasengrenzflächen, nämlich der Oberfläche eines festen Stoffes oder einer Grenzfläche zwischen zwei Flüssigkeiten, unter dem Einfluss von van der Waals'schen oder elektrostatischen Kräften;
c) die Kapillarkondensation, das heisst, die Kondensation von Dämpfen in feinen Poren eines porösen festen Stoffes während eines Adsorptionsvorganges;
d) die Chemisorption, das heisst, ein irreversibler Adsorptionsprozess, bei dem chemische Reaktionen eintreten;
e) die Desorption, das heisst, das Abtrennen sorbierter Komponenten von dem Sorbens.
Es sind bereits Anwendungen der Adsorption bekannt, bei denen das Adsorptionsmittel in körniger Form im Festbett, im Bewegtbett oder im Wirbelbett oder (nur für Flüssigkeiten) in Pulverform angewendet wird. Festbettverfahren können zur Behandlung von gasförmigen und flüssigen Medien verwendet werden. Die Anwendung von Verfahren mit bewegtem Adsorptionsmittel bereitet bei Systemen mit einer festen Phase Schwierigkeiten infolge von Adsorptionsmittelverlusten durch Abrieb und Störanfälligkeit der Transporteinrichtungen für den Feststoff. Vor allem Aktivkohle wird in grösserem Umfang als Pulver zum Entfärben und Reinigen von Lösungen in den verschiedensten Industriezweigen verwendet.
Bisher wurde die Adsorption nur in Systemen angewandt, in denen nur feste und flüssige oder nur feste und gasförmige Phasen getrennt werden, z.B. zum Filtern in der Abwassertechnik oder bei der Abluftreinigung.
Die Anwendung der Adsorption in Drei- und Mehrphasensystemen, das heisst, Systemen mit einer gasförmigen, mindestens einer flüssigen und mindestens einer festen Phase, die alle am Stoffaustausch beteiligt sind, wurde jedoch noch nicht in Betracht gezogen.
Durch die Anwendung der Adsorption in einem solchen Drei- oder Mehrphasensystem zum Destillieren, Rektifizieren, Absorbieren, Extrahieren, Trocknen oder Befeuchten oder zum Durchführen chemischer Reaktionen kann eine Verbesserung des Wirkungsgrades gegenüber den eingangs erwähnten bekannten Packungen und Füllkörpern erzielt werden, wobei die Anzahl der Übergangseinheiten oder Trennstufen ("theoretische Bodenzahl") erhöht wird, so dass die Kolonnenhöhe reduziert werden kann. Wenn saure Gase absorbiert werden, kann eine starke Pufferwirkung beobachtet werden, so dass der pH-Wert wesentlich länger im Bereich von 6 bis 9 bleibt, als aufgrund der absorbierten Gasmenge zu erwarten wäre, was wiederum eine höhere Aufnahmefähigkeit für das saure Gas hervorruft.
Die erfindungsgemässe Kolonne für den Stoffaustausch und/oder Wärmeaustausch ist nun dadurch gekennzeichnet, dass die in ihr enthaltenen Einbauelemente aus einem mindestens auf einem Teil seiner Oberfläche mit Fasern, Flächengebilden oder Partikeln aus Kohlenstoff beschichteten Substrat bestehen.
Das Substrat kann aus Metall, vorzugsweise rostfreiem Stahl oder Kohlenstoffstahl, keramischem Material, vorzugsweise Steingut oder Porzellan, oder extrudierbarem Kunststoff, vorzugsweise thermoplastischem Kunststoff, insbesondere Polyethylen, Polypropylen, Polyvinylchlorid oder Polyvinylidenfluorid, bestehen. Es kann mit Gewebe, Vlies, Filz, Fasern, Faserhäcksel, Granulat, Schuppen oder Nadeln aus Kohlenstoff beschichtet sein. Die besten Resultate werden jedoch im allgemeinen mit einem Kohlenstoff-Fasergewebe aus senkrecht zueinander verlaufenden Kett- und Schussfäden erzielt. Das Gewebe hat vorzugsweise ein Flächengewicht von 250 bis 460 g/m<2> und eine Dicke von 0,5 bis 1 mm. Die Faserdicke kann 18 mu m oder auch mehr betragen. Vorzugsweise ist die freiliegende Oberfläche des Kohlenstoffs nicht versiegelt.
Die Herstellung der Einbauelemente kann durch Verkleben oder Verschweissen der Kohlenstoffbeschichtung mit dem Substrat oder Aufwalzen, Aufpressen oder Thermokalandrieren der Kohlenstoffbeschichtung auf das Substrat erfolgen, wobei das beschichtete Substrat vorher oder nachher in eine geeignete Form gebracht wird. Es eignen sich die üblichen Formen von Einbauelementen für Kolonnen für den Stoffaustausch und/oder Wärmeaustausch.
Versuche haben ergeben, dass die Oberfläche der Beschichtung bei einem mit Kohlenstoff-Fasern oder -Filamenten beschichteten Substrat infolge der Kapillarkräfte in den Fasern bzw. Filamenten von Flüssigkeiten aller Art, wie Wasser, wässrigen Lösungen, organischen Lösungsmitteln oder sogar schweren, viskosen \len vollständig benetzt wird. Der gemessene Kontaktwinkel beta betrug 0 (cos beta = 1). Es ist ein besonderer Vorteil der vorliegenden Erfindung, dass dieser Effekt sowohl mit hydrophilen als auch mit lipophilen Flüssigkeiten erzielt wird.
In der beiliegenden Zeichnung zeigen:
Fig. 1 ein beidseitig mit Kohlenstoff-Fasergewebe beschichtetes Substrat,
Fig. 2 ein einseitig mit Kohlenstoff-Faserhäcksel beschichtetes Substrat,
Fig. 3 ein Einbauelement für eine erfindungsgemässe Kolonne,
Fig. 4 ein Diagramm, in dem die Trennleistung einer erfindungsgemässen Kolonne gegen den Gasbelastungsfaktor F aufgetragen ist.
In Fig. 1 ist ein Substrat 2 dargestellt, das eine Dicke von 2 bis 3 mm hat und aus einem Thermoplasten besteht.
Das Substrat 2 ist beidseitig mit einem Kohlenstoff-Fasergewebe 1 beschichtet.
Das in Fig. 2 gezeigte Substrat 2 ist einseitig mit Kohlenstoff-Faserhäcksel 3 beschichtet.
In Fig. 3 ist das Einbauelement mit 4 bezeichnet.
Eine erfindungsgemässe Absorptionskolonne, die Einbauelemente aus mit Kohlenstoff-Fasern beschichtetem Polypropylen enthielt, wurde mit einer Absorptionskolonne verglichen, die die ältesten bekannten geordneten Einbauelemente aus unbeschichtetem Polypropylen enthielt. Die erfindungsgemäss verwendeten Einbauelemente und die bekannten Einbauelemente hatten die gleiche spezifische Oberfläche von 245 m<2>/m<3> sowie die gleiche geometrische Form und die gleichen Abmessungen.
Das Ergebnis des Leistungsvergleichs ist in Fig. 4 wiedergegeben. Auf der Ordinate ist die Trennleistung, ausgedrückt als Anzahl Übergangseinheiten/m (number of transfer units per meter, NTUM), aufgetragen, und auf der Abszisse ist der Gasbelastungsfaktor F =
EMI5.1
wobei w die auf den gesamten Kolonnenquerschnitt bezogene Gasgeschwindigkeit und rho g die Gasdichte ist, ausgedrückt in (ms)
EMI5.2
aufgetragen. Die mit A bezeichnete Kurve zeigt die Werte für die erfindungsgemässe Kolonne und die mit B bezeichnete Kurve diejenigen für die Kolonne nach dem Stand der Technik.
Der Kolonne wurde ein Gemisch aus Schwefeldioxid und Luft zugeführt, wobei die Eintrittskonzentration des SO2 bei 2 bis 14 g/Nm<3> lag. Das Gas wurde mit Wasser bei einer Berieselungsdichte von 5 bis 20 m<3>/m<2>h gewaschen. Die Trennleistung wurde nach der Formel von Chilton und Colburn (Ind. Eng. Chem. 27, 1935) berechnet und ausgewertet. Die erfindungsgemässe Kolonne (Kurve A) wies gegenüber der Kolonne nach dem Stand der Technik (Kurve B) eine Verbesserung der Trennleistung um bis zu 100% auf.
Ferner wurde eine erfindungsgemässe Destillationskolonne, die mit Kohlenstoff-Fasern beschichtete Einbauelemente aus rostfreiem Stahl enthielt, mit einer Destillationskolonne, die unbeschichtete Einbauelemente aus rostfreiem Stahl enthielt, verglichen, wobei die Einbauelemente im übrigen die gleichen Eigenschaften (spezifische Oberfläche, Form und Abmessungen) hatten wie die oben erwähnten Absorptionskolonnen.
Die Trennleistung wurde bei unendlichem Rücklauf gemessen. Der Gasbelastungsfaktor F wurde, wie in der Industrie üblich, auf 2 bis 2,4 eingestellt. Die Ergebnisse sind in der folgenden Tabelle zusammengefasst:
<tb><TABLE> Columns=4
<tb>Title: Tabelle
<tb>Head Col 01 AL=L: Stoffsystem
<tb>Head Col 02 AL=L: Kopfdruck
mbar
<tb>Head Col 03 to 04 AL=L: Trennleistung*
<tb>SubHead Col 03 AL=L>A**:
<tb>SubHead Col 04 AL=L>B***:
<tb> <SEP>Aceton/Wasser <SEP>990 <SEP>5,5 <SEP>3,5
<tb> <SEP>Methanol/Wasser <SEP>990 <SEP>4,8 <SEP>3,1
<tb> <SEP>Isooctan/Wasser <SEP>1020 <SEP>3,0 <SEP>2,2
<tb> <SEP>Isopropanol/Wasser <SEP>1000 <SEP>3,6 <SEP>2,4
* Anzahl Trennstufen ("theoretische Böden")/m
** Erfindungsgemässe Kolonne
*** Kolonne nach dem Stand der Technik
<tb></TABLE>
Die erfindungsgemässe Kolonne erbrachte eine Verbesserung der Trennleistung um bis zu 60%. Dass die Verbesserung der Trennleistung bei der Destillation geringer ist als bei der Absorption, beruht darauf, dass bei einem Trennvorgang, der mit einer Phasenumwandlung verbunden ist, der für die Phasenumwandlung erforderliche Energieaufwand (Verdampfungsenthalpie, Kristallisationswärme usw.) gegenüber dem Energieaufwand für die Adsorption, die auf geringen Kräften im molekularen Bereich (van der Waals'sche Kräfte, elektrostatische Kräfte) beruht, überwiegt.
Ein weiterer Vorteil der Verwendung einer erfindungsgemässen Kolonne für Stofftrennungen durch Destillation, die wegen der ungenügenden Flüchtigkeitsunterschiede bei Normaldruck bisher im Vakuum durchgeführt werden mussten, besteht darin, dass mit einer erfindungsgemässen Kolonne schon bei Atmosphärendruck eine gleiche oder höhere Trennleistung erzielt werden kann als mit einer Kolonne nach dem Stand der Technik im Vakuum, so dass der Aufwand für das Erzeugen und Aufrechterhalten eines Vakuums entfällt.
The invention relates to a column containing built-in elements for mass transfer and / or heat exchange between a gaseous, at least one liquid and at least one solid phase and their use for distilling, rectifying, absorbing, extracting, drying or moistening or for carrying out chemical reactions.
Packings or packing elements for installation in mass transfer and / or heat exchange columns are known which provide the exchange surface for mass transfer and / or heat exchange between the phases in contact with one another. If one or more liquid phases is or are involved in the exchange, the exchange only takes place on the surface of the packs or the packing, wetted by this phase or these phases. The proportion of the surface that is wetted by the liquid phase or the liquid phases should therefore be as large as possible since the non-wetted portion is lost for the exchange. However, the packs or packing known to date do not actively participate in mass transfer and / or heat exchange.
Sorption is the absorption of a gas or vapor by another substance in contact with it, the sorbent. The generic term "sorption" includes
a) the absorption, that is, the penetration of gases or gas mixtures by diffusion into a liquid or a solid, the absorbent;
b) the adsorption, that is, the reversible accumulation of gases and solutes at phase interfaces, namely the surface of a solid or an interface between two liquids, under the influence of Van der Waals or electrostatic forces;
c) the capillary condensation, that is, the condensation of vapors in fine pores of a porous solid during an adsorption process;
d) chemisorption, that is, an irreversible adsorption process in which chemical reactions occur;
e) the desorption, that is, the separation of sorbed components from the sorbent.
Applications of adsorption are already known in which the adsorbent is used in granular form in a fixed bed, in a moving bed or in a fluidized bed or (only for liquids) in powder form. Fixed bed processes can be used to treat gaseous and liquid media. In systems with a solid phase, the use of methods with moving adsorbent causes difficulties due to loss of adsorbent due to abrasion and the susceptibility of the transport devices for the solid to failure. Activated carbon in particular is used to a large extent as a powder for decolorizing and cleaning solutions in a wide variety of industries.
So far, adsorption has only been used in systems in which only solid and liquid or only solid and gaseous phases are separated, e.g. for filtering in wastewater technology or for exhaust air purification.
However, the use of adsorption in three-phase and multi-phase systems, that is to say systems with a gaseous, at least one liquid and at least one solid phase, all of which are involved in mass transfer, has not yet been considered.
By using the adsorption in such a three-phase or multi-phase system for distilling, rectifying, absorbing, extracting, drying or moistening or for carrying out chemical reactions, an improvement in the efficiency compared to the known packings and packing elements mentioned at the outset can be achieved, the number of transition units or separation stages ("theoretical plate number") is increased so that the column height can be reduced. When acidic gases are absorbed, a strong buffering effect can be observed, so that the pH remains in the range of 6 to 9 for much longer than would be expected due to the amount of gas absorbed, which in turn causes a higher absorption capacity for the acidic gas.
The column according to the invention for mass transfer and / or heat exchange is now characterized in that the built-in elements contained therein consist of a substrate coated with fibers, sheet-like structures or particles of carbon on at least part of its surface.
The substrate can consist of metal, preferably stainless steel or carbon steel, ceramic material, preferably earthenware or porcelain, or extrudable plastic, preferably thermoplastic, in particular polyethylene, polypropylene, polyvinyl chloride or polyvinylidene fluoride. It can be coated with fabric, fleece, felt, fibers, chopped fibers, granules, scales or needles made of carbon. However, the best results are generally achieved with a carbon fiber fabric made of warp and weft threads running perpendicular to one another. The fabric preferably has a basis weight of 250 to 460 g / m 2 and a thickness of 0.5 to 1 mm. The fiber thickness can be 18 µm or more. Preferably, the exposed surface of the carbon is not sealed.
The built-in elements can be produced by gluing or welding the carbon coating to the substrate or rolling, pressing or thermocalendering the carbon coating onto the substrate, the coated substrate being brought into a suitable shape before or after. The usual forms of built-in elements for columns are suitable for mass transfer and / or heat exchange.
Experiments have shown that the surface of the coating on a substrate coated with carbon fibers or filaments is completely due to the capillary forces in the fibers or filaments of liquids of all kinds, such as water, aqueous solutions, organic solvents or even heavy, viscous oils is wetted. The measured contact angle beta was 0 (cos beta = 1). It is a particular advantage of the present invention that this effect is achieved with both hydrophilic and lipophilic liquids.
The attached drawing shows:
1 is a substrate coated on both sides with carbon fiber fabric,
2 shows a substrate coated on one side with a carbon fiber chop,
3 shows an installation element for a column according to the invention,
4 shows a diagram in which the separation performance of a column according to the invention is plotted against the gas loading factor F.
In Fig. 1, a substrate 2 is shown, which has a thickness of 2 to 3 mm and consists of a thermoplastic.
The substrate 2 is coated on both sides with a carbon fiber fabric 1.
The substrate 2 shown in FIG. 2 is coated on one side with carbon fiber chop 3.
In Fig. 3, the installation element is designated 4.
An absorption column according to the invention which contained built-in elements made of polypropylene coated with carbon fibers was compared with an absorption column which contained the oldest known ordered built-in elements made of uncoated polypropylene. The built-in elements used in accordance with the invention and the known built-in elements had the same specific surface area of 245 m 2 / m 3 as well as the same geometric shape and the same dimensions.
The result of the performance comparison is shown in FIG. 4. The separation performance, expressed as the number of transfer units per meter (NTUM), is plotted on the ordinate, and the gas loading factor F = is plotted on the abscissa
EMI5.1
where w is the gas velocity related to the entire column cross-section and rho g is the gas density, expressed in (ms)
EMI5.2
applied. The curve labeled A shows the values for the column according to the invention and the curve labeled B shows those for the column according to the prior art.
A mixture of sulfur dioxide and air was fed into the column, the inlet concentration of the SO2 being from 2 to 14 g / Nm 3. The gas was washed with water at a sprinkling density of 5 to 20 m 3 / m 2 h. The separation performance was calculated and evaluated according to the formula by Chilton and Colburn (Ind. Eng. Chem. 27, 1935). The column according to the invention (curve A) showed an improvement in the separation performance of up to 100% compared to the column according to the prior art (curve B).
Furthermore, a distillation column according to the invention, which contained stainless steel built-in elements, was compared with a distillation column, which contained uncoated stainless steel built-in elements, the built-in elements otherwise having the same properties (specific surface, shape and dimensions) as the above-mentioned absorption columns.
The separation performance was measured at infinite return. The gas loading factor F was set to 2 to 2.4, as is customary in industry. The results are summarized in the following table:
<tb> <TABLE> Columns = 4
<tb> Title: table
<tb> Head Col 01 AL = L: fabric system
<tb> Head Col 02 AL = L: head pressure
mbar
<tb> Head Col 03 to 04 AL = L: separation performance *
<tb> SubHead Col 03 AL = L> A **:
<tb> SubHead Col 04 AL = L> B ***:
<tb> <SEP> acetone / water <SEP> 990 <SEP> 5.5 <SEP> 3.5
<tb> <SEP> methanol / water <SEP> 990 <SEP> 4.8 <SEP> 3.1
<tb> <SEP> isooctane / water <SEP> 1020 <SEP> 3.0 <SEP> 2.2
<tb> <SEP> isopropanol / water <SEP> 1000 <SEP> 3.6 <SEP> 2.4
* Number of separation stages ("theoretical plates") / m
** Column according to the invention
*** State of the art column
<tb> </TABLE>
The column according to the invention improved the separation performance by up to 60%. The fact that the improvement of the separation performance in the distillation is less than in the absorption is due to the fact that in a separation process which is associated with a phase transition, the energy expenditure required for the phase transition (evaporation enthalpy, heat of crystallization etc.) compared to the energy expenditure for the adsorption, which is based on low forces in the molecular range (van der Waals forces, electrostatic forces) predominates.
Another advantage of using a column according to the invention for separations by distillation, which previously had to be carried out in vacuo at atmospheric pressure because of the insufficient volatility differences, is that a column according to the invention can achieve an identical or higher separation capacity even at atmospheric pressure than with a column according to the prior art in a vacuum, so that the effort for creating and maintaining a vacuum is eliminated.