CH672169A5 - Dual action fluid actuator - operates with two degrees of freedom giving rotary and linear movement - Google Patents

Dual action fluid actuator - operates with two degrees of freedom giving rotary and linear movement Download PDF

Info

Publication number
CH672169A5
CH672169A5 CH252687A CH252687A CH672169A5 CH 672169 A5 CH672169 A5 CH 672169A5 CH 252687 A CH252687 A CH 252687A CH 252687 A CH252687 A CH 252687A CH 672169 A5 CH672169 A5 CH 672169A5
Authority
CH
Switzerland
Prior art keywords
piston
cylinder
rotation
bearing
movement
Prior art date
Application number
CH252687A
Other languages
French (fr)
Inventor
Luciano Gubbiotti
Original Assignee
Luciano Gubbiotti
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luciano Gubbiotti filed Critical Luciano Gubbiotti
Priority to CH252687A priority Critical patent/CH672169A5/en
Publication of CH672169A5 publication Critical patent/CH672169A5/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/02Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member
    • F15B15/06Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement
    • F15B15/063Actuator having both linear and rotary output, i.e. dual action actuator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)

Abstract

The device is an actuator that has two degrees of movement, linear and rotary. It consists of a cylinder (6) and contained inside of it, is a piston (7). A piston rod (13) is connected to the piston by means of a thrust bearing (10). Thus linear movement is effected by introducing a fluid into the chambers (23, 24) either side of the piston . A shaft (18), that can rotate by means of an external drive, is fitted into the cylinder through the rear end cap (4) of the cylinder : where there is a bearing (3) and has the part of its shaft that is contained inside the cylinder splined. A sleeve (11) which contains a splined hole, is free to slide along this shaft. This sleeve is connected to the piston rod and the thrust bearing . On rotating the shaft , the piston rod can also be rotated thus giving it a rotary motion. USE - An actuator for the movement of masses or machines with a linear or rotary action.

Description

       

  
 



   DESCRIPTION



   La présente invention concerne un actuateur hydraulique ou pneumatique.



   Ce type d'actuateur transforme des pressions d'un fluide en mou
 vement lineaire ou rotatif. Les actuateurs sont   généralement    conçus
 pour déplacer des masses, pour des mouvements de machines, etc.



   II existe aussi des actuateurs qui peuvent exécuter la combinaison
 des deux mouvements, linéaire et rotatif. Le document US-A3815479, par exemple, montre un actuateur de mouvements combi   nes    pour imprimer simultanément ou séparément un mouvement   rotatifet    linéaire à la tige. L'actuateur comprend un sytème rotatif couple   A    un piston qui est fixé rigidement   A    la tige dans les deux degrés de liberté linéaire et rotatif. Linéairement, le piston est actionné par une pression hydraulique ou pneumatique. Rotativement, c'est le système   susmentionne    qui lui donne le mouvement.



   Un des désavantages de ce système est que   lejoint    du piston, sous l'action de la pression, provoque un frottement important contre la paroi du cylindre. Ce qui fait que le couple de rotation peut être important. En plus, quand le piston est en fin de course, en appui sur les flasques, sous l'effet de la pression, le frottement est évidemment encore plus élevé.



   La présente invention consiste en un actuateur linéaire et rotatif qui permet Ia rotation continue avec un frottement rotatif constant pour chaque sens des mouvements linéaires-   Me me    quand le piston est en appui en fin de course sur les embouts de cylindre, le couple reste constant.



   Pour obtenir cet effet,   Invention    est   caractérisée    selon la revendication 1. Les buts et avantages de cette invention seront évidents, d'après la description, accompagnée de dessins, sur lesquels:
 la fig. 1 montre un actuateur en coupe axiale, selon l'invention,
 la fig. 2 montre une coupe radiale selon la ligne A-A de la fig. 1,
 la fig. 3 montre une variante de l'invention pour rotations rapides dans les deux sens de mouvements linéaires.



   La fig. I montre le   verin    compose d'un cylindre 6 et de deux embouts 4, 19, qui assurent l'étanchéité et le guidage de différents   elements.   



   Une barre de rotation 18, cannelée dans sa partie interne au cylindre, sort de l'embout 4, quidée par un palier 3 sur lequel frotte un joint rotatif 2, qui assure l'étanchéité de la chambre 23 vers l'exté- rieur, pendant que les joints 8 et 12 assurent son étanchéité vers la chambre 24.



   La barre 18 est   usinte    pour permettre le couplage d'un moteur ou d'un actuateur rotatif, lesquels prendront le couple sur l'embout 4.



   Seule la tige de piston creuse 13 sort de l'embout 19. Les joints 14, 16, et la bague de guidage 15 assurent l'étanchéité de la chambre 24 et le guidage vers l'extérieur, pendant que les joints 8 et 12 assurent l'étanchéité entre la chambre 23 et la chambre 24.



   Le bouchon 17 assure l'étanchéité de l'intérieur 20 de la tige de piston creuse 13 vers l'extérieur.



   Le   dtcouplage    en rotation entre la tige 13 et le piston 7 se fait par l'intermédiaire d'un palier 10, pendant que   lejoint    rotatif 12 empêche les chambres 23, 24 d'être en communication.



   L'arbre cannelé 18 transmet la rotation à la tige 13 par une bague cannelée 11 ou tout autre système de transmission rotative coulissante, laquelle est rigide à la tige 13.



   La bague cannelée 11, sertie ou vissée   Ala    tige 13, prend en sandwich le palier 10, pour supporter la poussée du piston 7,sur lequel sont   months    les joints 8 et un palier 9, pour assurer la   separation    du fluide entre les chambres 23 et 24
 La section de poussée est égale à la pleine section du cylindre car, par l'ouverture 5, dans la barre 18, lors de la mise sous pression de la chambre   23,le    fluide peut atteindre   aisement    la chambre 20 et exercer   in    force sur la section du bouchon 17.



   L'ouverture 5 permet aussi, lors de la mise sous pression de la chambre   24,    au fluide de s'échapper librement dans la chambre 23 et par la sortie 21, po.ur empêcher l'éventuelle compression de la chambre 20, qui freinerait le mouvement.



   Ainsi, pour avoir un mouvement linéaire delta tige vers la droite dans la fig.   1, le    fluide passe par l'entrée 21 dans la chambre 23, laquelle se met sous pression et fait déplacer le piston 7. L'étanchéité de la chambre 23 est assure par les joints 2, 8, 12. Pour avoir la pleine section en travail, le fluide peut passer par l'ouverture 5 et aussi, mais plus difficilement, entre la barre cannelée 18 et la bague
 11, par leurjeu habituel (fig. 2) pour mettre en pression la chambre 20 et appuyer sur la section du bouchon 17. Pendant ce mouvement linéaire, la barre cannelée 18 peut également être facilement mise en rotation par l'embout 1 avec un moteur. Les   seulsjoints    qui exercent une resistance à la rotation sont les joints 2 et 12, spécialement conçus pour la rotation avec un coefficient de frottement minime.



     Mama    quand le piston 7 est en appui sur l'embout 19 avec la pression dans la chambre 23, le couple pour mettre en rotation la barre 18 et la tige 13 reste inchangé,   grAce    au découplage par le palier 10 entre la barre 13 et le piston 7.



   Lorsque le fluide entre par l'ouverture 22, mettant en pression la chambre 24 et faisant bouger linéairement le piston 7 ainsi que la tige 13,l'étanchéité de la chambre 24 est assure par les joints 14, 8 et   lejoint    rotatif 12.



   Le couple de rotation de la barre 18 pour faire tourner la tige 13 sera, dans le cas exposé juste ci-dessus, légèrement   superieur    au mouvement inverse, car le joint 14 est créé pour un frottement qui augmente avec la différence de pression entre les chambres 24 et l'ex- térieur.

 

   Pour   eviter    cet   inconvenient    et avoir alors un couple de rotation de la tige de piston diminué dans les deux sens du mouvement li   neaire    de   retraction    et dans toutes les positions, une tige 26, qui n'opère qu'en mouvement linéaire,   pent,    comme en fig, 3,   metre    une partie   integrate    du piston 7. Ainsi, selon la fig. 3, la tige 13   n'aura    qu'un mouvement   rotatifsnr    les paliers 10-25 à l'intérieur de la partie du piston 26 et n'aura qu'un frottement sur les joints rotatifs 2 et 12, qui ne seront pas en charge.  



   La partie du piston 26 et la tige de piston 13 sont fixes rigidement dans le sens axial et radial, mais découplées en rotation par les paliers 10-25, lesquels reprennent les charges axiales et radiales.



   La longueur de la partie cannelée de la barre de rotation 18 est égale à la course de l'actuateur durant laquelle le mouvement peut être transmis.



   Selon la fig. 3, le piston 7 et la tige 26 sont solidaires et, au moyen des paliers 10, 25, forment un palier à la tige 13, laquelle aura un mouvement rotatif assure par la barre cannelée 18 et un mouvement linéaire assure par le piston 7 qui, au moyen des paliers 10, 25, la   couple,    comme dit préalablement, en rotation mais la couple axialement et radialement. Ainsi, quand la chambre 24 est en charge, le couple de rotation de la barre 13 sera très faible, car le seul frottement sera celui, minime, des paliers 3, 10, 25 et des joints rotatifs 2-12 non charges.

 

   Par contre, quand le fluide passe par l'ouverture 21 et met sous pression la chambre 23 pour mouvoir   linéairement    le piston 7, 26 et la tige 13, le couple de torsion pour faire tourner la tige 13 sera légè- rement augment par la pression qui s'exerce sur les joints rotatifs 2-12, lesquels,   concurs    spécialement à cet effet, ont un frottement minimal. 



  
 



   DESCRIPTION



   The present invention relates to a hydraulic or pneumatic actuator.



   This type of actuator transforms pressures from a fluid to soft
 linear or rotary. Actuators are generally designed
 for moving masses, for machine movements, etc.



   There are also actuators that can execute the combination
 of the two movements, linear and rotary. Document US-A3815479, for example, shows an actuator of combined movements for simultaneously or separately printing a rotary and linear movement on the rod. The actuator comprises a rotary system coupled to a piston which is rigidly fixed to the rod in the two degrees of linear and rotary freedom. Linearly, the piston is actuated by hydraulic or pneumatic pressure. Rotatingly, it is the aforementioned system which gives it movement.



   One of the disadvantages of this system is that the seal of the piston, under the action of pressure, causes significant friction against the wall of the cylinder. What makes that the torque can be important. In addition, when the piston is at the end of its travel, pressing on the flanges, under the effect of the pressure, the friction is obviously even higher.



   The present invention consists of a linear and rotary actuator which allows continuous rotation with constant rotary friction for each direction of the linear movements. Even when the piston is resting at the end of the stroke on the cylinder ends, the torque remains constant.



   To obtain this effect, the invention is characterized according to claim 1. The objects and advantages of this invention will be obvious from the description, accompanied by drawings, in which:
 fig. 1 shows an actuator in axial section, according to the invention,
 fig. 2 shows a radial section along line A-A of FIG. 1,
 fig. 3 shows a variant of the invention for rapid rotations in both directions of linear movement.



   Fig. I shows the cylinder composed of a cylinder 6 and two end pieces 4, 19, which seal and guide different elements.



   A rotation bar 18, grooved in its internal part of the cylinder, comes out of the endpiece 4, which is terminated by a bearing 3 on which a rotary joint 2 rubs, which seals the chamber 23 towards the outside, while the seals 8 and 12 seal it towards the chamber 24.



   The bar 18 is used to allow the coupling of a motor or a rotary actuator, which will take the torque on the end piece 4.



   Only the hollow piston rod 13 exits from the end piece 19. The seals 14, 16, and the guide ring 15 seal the chamber 24 and guide it outwards, while the seals 8 and 12 provide the seal between the chamber 23 and the chamber 24.



   The plug 17 seals the interior 20 of the hollow piston rod 13 outward.



   The rotational decoupling between the rod 13 and the piston 7 is done by means of a bearing 10, while the rotary joint 12 prevents the chambers 23, 24 from being in communication.



   The splined shaft 18 transmits rotation to the rod 13 by a splined ring 11 or any other sliding rotary transmission system, which is rigid to the rod 13.



   The grooved ring 11, crimped or screwed Ala rod 13, sandwiches the bearing 10, to support the thrust of the piston 7, on which are seals 8 and a bearing 9, to ensure the separation of the fluid between the chambers 23 and 24
 The thrust section is equal to the full section of the cylinder because, through the opening 5, in the bar 18, when the chamber 23 is pressurized, the fluid can easily reach the chamber 20 and exert force on the plug section 17.



   The opening 5 also allows, when the chamber 24 is pressurized, the fluid to escape freely into the chamber 23 and through the outlet 21, in order to prevent possible compression of the chamber 20, which would brake movement.



   Thus, to have a linear delta rod movement to the right in fig. 1, the fluid passes through the inlet 21 into the chamber 23, which is pressurized and causes the piston 7 to move. The sealing of the chamber 23 is ensured by the seals 2, 8, 12. To have the full section in work, the fluid can pass through the opening 5 and also, but more difficultly, between the grooved bar 18 and the ring
 11, by their usual game (fig. 2) to pressurize the chamber 20 and press the section of the plug 17. During this linear movement, the grooved bar 18 can also be easily rotated by the end piece 1 with a motor . The only seals that exert resistance to rotation are seals 2 and 12, specially designed for rotation with a low coefficient of friction.



     Mama when the piston 7 is supported on the nozzle 19 with the pressure in the chamber 23, the torque to rotate the bar 18 and the rod 13 remains unchanged, thanks to the decoupling by the bearing 10 between the bar 13 and the piston 7.



   When the fluid enters through the opening 22, putting the chamber 24 under pressure and causing the piston 7 and the rod 13 to move linearly, the chamber 24 is sealed by the seals 14, 8 and the rotary joint 12.



   The torque of the bar 18 to rotate the rod 13 will, in the case described just above, slightly greater than the reverse movement, because the seal 14 is created for friction which increases with the pressure difference between the chambers 24 and outside.

 

   To avoid this drawback and then have a reduced torque of the piston rod in both directions of the linear retraction movement and in all positions, a rod 26, which operates only in linear movement, pent, as in fig, 3, put an integrated part of the piston 7. Thus, according to fig. 3, the rod 13 will only have a rotary movementnr the bearings 10-25 inside the part of the piston 26 and will only have friction on the rotary seals 2 and 12, which will not be loaded .



   The part of the piston 26 and the piston rod 13 are rigidly fixed in the axial and radial directions, but decoupled in rotation by the bearings 10-25, which take up the axial and radial loads.



   The length of the grooved part of the rotation bar 18 is equal to the stroke of the actuator during which the movement can be transmitted.



   According to fig. 3, the piston 7 and the rod 26 are integral and, by means of the bearings 10, 25, form a bearing to the rod 13, which will have a rotary movement provided by the grooved bar 18 and a linear movement provided by the piston 7 which , by means of bearings 10, 25, the torque, as said before, in rotation but the torque axially and radially. Thus, when the chamber 24 is loaded, the torque of the bar 13 will be very low, because the only friction will be that, minimal, of the bearings 3, 10, 25 and of the non-loaded 2-12 rotary joints.

 

   On the other hand, when the fluid passes through the opening 21 and pressurizes the chamber 23 to move the piston 7, 26 and the rod 13 linearly, the torque to rotate the rod 13 will be slightly increased by the pressure which is exerted on the rotary joints 2-12, which, specially designed for this purpose, have minimal friction.


    

Claims (8)

REVENDICATIONS I. Actuateur produisant un mouvement à deux degrés de liberté comprenant un cylindre (6), un piston (7, 26) à mouvement linéaire, actionné par la pression d'un fluide, un axe de rotation (18) transfé- rant un mouvement rotatifde l'extérieur à l'intérieur du cylindre (6), et une tige de piston (13) connectée par des moyens de couplage au piston (7, 26) et à l'axe de rotation (18), transmettant les mouvements linéaires et rotatifs à l'extérieur du cylindre, caractérisé en ce que ledit moyen de couplage entre le piston (7, 26) et la tige de piston (13) comporte au moins un palier de rotation (10, 25).  CLAIMS  I. Actuator producing a movement with two degrees of freedom comprising a cylinder (6), a piston (7, 26) with linear movement, actuated by the pressure of a fluid, an axis of rotation (18) transferring a movement rotatable from the outside inside the cylinder (6), and a piston rod (13) connected by means of coupling to the piston (7, 26) and to the axis of rotation (18), transmitting the linear movements and rotatable outside the cylinder, characterized in that said coupling means between the piston (7, 26) and the piston rod (13) comprises at least one rotation bearing (10, 25). Z. Actuateur selon la revendication 1, caractérisé en ce que ledit palier de rotation (10, 25) est un palier A roulement.  Z. Actuator according to claim 1, characterized in that said rotation bearing (10, 25) is a rolling bearing. 3. Actuateur selon la revendication I, caractérisé en ce que ledit palier de rotation (10, 25) est un palier lisse.  3. Actuator according to claim I, characterized in that said rotation bearing (10, 25) is a smooth bearing. 4. Actuateur selon l'une des revendications précédentes, caracte- risé en ce que ledit palier (10, 25) est situe à l'intérieur du piston (7, 26  4. Actuator according to one of the preceding claims, characterized in that said bearing (10, 25) is located inside the piston (7, 26   5. Actuateur selon I'une des revendications précédentes, caracte- rise en ce qu'un joint d'étanchéité (12) est install: entre l'intérieur du piston et la tige du piston. 5. Actuator according to one of the preceding claims, characterized in that a seal (12) is installed: between the interior of the piston and the piston rod.   6 Actuateur selon I'une des revendications précédentes, caracté- rie en ce que ledit axe de rotation (18) est fixé axialement audit cylindre (6).  6 Actuator according to one of the preceding claims, characterized in that said axis of rotation (18) is fixed axially to said cylinder (6). 7. Actuateur selon I'une des revendications précédentes, caracte- risé en ce que la surface effective sur laquelle s'exerce la pression du fluide pour produire le mouvement linéaire dans au moins I'une des deux directions est égale à la section entire du cylindre.  7. Actuator according to one of the preceding claims, characterized in that the effective surface on which the fluid pressure is exerted to produce the linear movement in at least one of the two directions is equal to the entire section of the cylinder. 8. Actuateur selon l'une des revendications précédentes, caracte- rise en ce que ledit axe de rotation (18) comporte au moins une ouverture radiale (5) et un trou axial permettant à la pression du fluide de communiquer entre I'une des chambres du cylindre (23) et la cavité(20) située dans la tige du piston.  8. Actuator according to one of the preceding claims, characterized in that said axis of rotation (18) comprises at least one radial opening (5) and an axial hole allowing the pressure of the fluid to communicate between one of the chambers of the cylinder (23) and the cavity (20) located in the piston rod.
CH252687A 1987-06-29 1987-06-29 Dual action fluid actuator - operates with two degrees of freedom giving rotary and linear movement CH672169A5 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH252687A CH672169A5 (en) 1987-06-29 1987-06-29 Dual action fluid actuator - operates with two degrees of freedom giving rotary and linear movement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH252687A CH672169A5 (en) 1987-06-29 1987-06-29 Dual action fluid actuator - operates with two degrees of freedom giving rotary and linear movement

Publications (1)

Publication Number Publication Date
CH672169A5 true CH672169A5 (en) 1989-10-31

Family

ID=4235779

Family Applications (1)

Application Number Title Priority Date Filing Date
CH252687A CH672169A5 (en) 1987-06-29 1987-06-29 Dual action fluid actuator - operates with two degrees of freedom giving rotary and linear movement

Country Status (1)

Country Link
CH (1) CH672169A5 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735276A1 (en) * 1995-03-29 1996-10-02 Hydraulik Techniek Emmen B.V. Rotary and linear actuating device
CN105041758A (en) * 2015-08-14 2015-11-11 中国船舶重工集团公司第七一九研究所 Integrated hydraulic cylinder with functions of rotating and telescoping
CN106549531A (en) * 2017-01-13 2017-03-29 佛山市顺德区华顺电机实业有限公司 Automatically the polishing motor compensated into level amount of tape spool water flowing
CN113389767A (en) * 2021-07-23 2021-09-14 中国科学院合肥物质科学研究院 Double-acting pneumatic actuator with long-stroke large-cylinder-diameter structure and control system thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735276A1 (en) * 1995-03-29 1996-10-02 Hydraulik Techniek Emmen B.V. Rotary and linear actuating device
CN105041758A (en) * 2015-08-14 2015-11-11 中国船舶重工集团公司第七一九研究所 Integrated hydraulic cylinder with functions of rotating and telescoping
CN106549531A (en) * 2017-01-13 2017-03-29 佛山市顺德区华顺电机实业有限公司 Automatically the polishing motor compensated into level amount of tape spool water flowing
CN106549531B (en) * 2017-01-13 2023-08-18 广东华顺电机科技有限公司 Polishing motor with shaft water-passing automatic compensation progressive quantity
CN113389767A (en) * 2021-07-23 2021-09-14 中国科学院合肥物质科学研究院 Double-acting pneumatic actuator with long-stroke large-cylinder-diameter structure and control system thereof

Similar Documents

Publication Publication Date Title
FR2522097A1 (en) SEALING SLEEVE FOR ROTARY TRANSMISSION JOINTS
FR2528376A1 (en) PERFECTED ARTICULATED TRICYCLE
CA2728152C (en) Electro-hydraulic actuator with pump incorporated into the piston
FR2571106A1 (en) FRICTION CLUTCH CONTROL BY FLUID PRESSURE
CH672169A5 (en) Dual action fluid actuator - operates with two degrees of freedom giving rotary and linear movement
FR2657051A1 (en) CLUTCH OPERATING DEVICE.
FR2742704A1 (en) DRIVE SYSTEM FOR DRIVE WHEEL
EP0509898B1 (en) System with a hydraulic motor having a brake and application to a vibratory compactor
EP0426540B1 (en) Variable volume internal combustion engine
FR2859770A1 (en) ACTUATOR WITH TWO OPERATING MODES
EP0381716B1 (en) Clutch control device
FR2558552A1 (en) SPEED REDUCER, PLANETARY, PROVIDED WITH A BALANCED CROWN WITH AUTOMATIC CENTERING AND ALIGNMENT
FR2779186A1 (en) Tyre pump mounted in rear of bicycle
FR2739165A1 (en) ACTUATOR, IN PARTICULAR FOR A DRIVE SHAFT OF A MOTOR VEHICLE GEARBOX
FR2518414A1 (en) IMPROVEMENTS IN ROTARY ACTUATORS
FR2655101A1 (en) DEVICE FOR SOLIDARIZING A TREE BY NESTING.
EP0119923A1 (en) Power steering with central output
FR2661468A1 (en) TRANSMISSION JOINT, PART OF TRANSMISSION LINE EQUIPPED WITH SUCH A JOINT AND METHOD OF SETTING UP A JOINT.
FR2522094A1 (en) UNIVERSAL JOINT WITH ANGULAR MOBILITY
FR2653062A1 (en) DEVICE FOR THE ELASTIC DEFORMATION OF A PRINTING PLATE FIXED ON A PLATE HOLDER CYLINDER.
FR2504485A1 (en) Rack and pinion vehicle steering - has rack connected to hydraulic cylinders with flow valves controlled by rack position
FR2621960A1 (en) PRESSURIZED FLUID MECHANISM WITH ROTATING ROTARY ROTOR IN RELATION TO A STATOR USING A ROTATION BEARING
EP1112681A2 (en) Drive, especially for a manure scraper in an animal house
FR2786451A1 (en) DEVICE FOR TRANSMITTING BRAKE TORQUES FOR MOTOR VEHICLES
FR2485457A1 (en) VEHICLE HYDRAULIC BRAKING SYSTEM

Legal Events

Date Code Title Description
PL Patent ceased