CH670105A5 - Homogeneous boron nitride coating prodn. - by forming low volatility borazine deriv. layer and heating - Google Patents

Homogeneous boron nitride coating prodn. - by forming low volatility borazine deriv. layer and heating Download PDF

Info

Publication number
CH670105A5
CH670105A5 CH3104/86A CH310486A CH670105A5 CH 670105 A5 CH670105 A5 CH 670105A5 CH 3104/86 A CH3104/86 A CH 3104/86A CH 310486 A CH310486 A CH 310486A CH 670105 A5 CH670105 A5 CH 670105A5
Authority
CH
Switzerland
Prior art keywords
borazine
substrate
layer
solution
boron nitride
Prior art date
Application number
CH3104/86A
Other languages
French (fr)
Inventor
Otto Bastian Baumberger
Original Assignee
Battelle Memorial Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Memorial Institute filed Critical Battelle Memorial Institute
Priority to CH3104/86A priority Critical patent/CH670105A5/en
Publication of CH670105A5 publication Critical patent/CH670105A5/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis

Abstract

A homogeneous boron nitride coating is obtd. by applying a layer of non-volatile or weakly volatile borazine deriv. onto a substrate and then heating to pyrolyse the layer and convert it to BN with hydrogen evolution. Pref. the layer is heated at 600-800 deg.C to obtain BN with a corrosion resistant amorphous strcture, opt. followed by heating at 1100-1300 deg.C to convert the amorphous BN to hexagonal BN. USE/ADVANTAGE - The process may be used to form BN films useful as dielectrics in microelectronics, corrosion protection for chemical equipment, and as reinforcement and protection for glass or ceramic fibres used in telecommunications and composite materials. The process is simple.

Description

       

  
 



   DESCRIPTION



   La présente invention a pour objet un procédé pour former, sur un substrat, un film de nitrure de bore résistant à la corrosion par les agents chimiques et atmosphériques. Ce film, non conducteur, dur, résistant aux hautes températures à l'air, agit comme revêtement protecteur d'une grande variété de substrats, de préférence métalliques ou minéraux.



   De nombreuses techniques pour effectuer un tel dépôt sont connues de par l'état de la technique.



   Ainsi, on peut procéder par décomposition thermique de mélanges de BCI3 et NH3 (G. Male et al., Laboratoire des   Ultra-Réfrac-    taires du CNRS, F. 66120 Font-Romeu, 1979) et de l'hexachloroborazine en phase vapeur [G. Constant et   ai.,    J. of the Less-Common
Metals 82(1981), 113-118]. On peut aussi faire réagir en phase vapeur le diborane et l'ammoniac   OI.O.    Pierson et al.), Proceedings   ouf tue    Seventh Internat. Conf. on CVD, The Electrochemical Soc.



  Softbound Proceedings Series, Princeton, N.J. (1979), USA; US-A4,118,211; ainsi que des composés de bore et d'azote tels que   trifluo-    rotriméthylaminoborane et dibromodipropylamineborane [E.A. Balabanova et   ai.,    Russian J.   ofînorg.    Chem. 25 (7), 1980, English translation, 995-996]. On a également procédé par décomposition de la borazine, sous forme de vapeur [A.C. Adams, J. Electrochem.



  Soc. 128 (1981), 1378-1379] ou de plasma [S. Shanfield et al.,
G. Vac. Sci. Technol. A1 (2), April-June 1983, 323-324].



   Les films de BN sont utiles comme diélectriques en microélectronique, comme protecteurs contre la corrosion dans des dispositifs de l'industrie chimique, ainsi que comme renforçateurs et protecteurs de fibres de verre ou de céramiques dans les télécommunications et matériaux composites.



   Les différentes techniques d'obtention évoquées ci-dessus présentent des inconvénients liés à l'instabilité des produits de départ ainsi   qu'à    l'obligation d'opérer en phase vapeur dans des conditions bien contrôlées qui exigent l'utilisation de cellules de réactions réfractaires chauffées à température élevée ainsi que de dispositifs de vaporisation des réactifs relativement compliqués. Il était donc désirable de disposer d'un procédé simplifié dans lequel on fait intervenir un composé de bore et d'azote suffisamment stable pour pouvoir être appliqué directement sur l'objet à revêtir, celui-ci étant ensuite simplement chauffé à une température suffisante pour provoquer la décomposition pyrolytique dudit composé en une couche homogène et résistante à la corrosion de nitrure de bore.



   Un tel procédé est défini à la revendication 1. La borazine monomère est un liquide à température ambiante et sa pression de vapeur est élevée. En conséquence, un film de borazine liquide obtenu sur un substrat par trempage s'évapore bien avant que la température de pyrolyse soit atteinte et même en autoclave; les pertes de produit sont trop importantes pour qu'une telle technique soit exploitable.



  Par contre, en utilisant un dérivé solide peu volatil de la borazine, par exemple un oligomère tel que le biborazinyle ou le borazanaph   talène,    ou des mélanges de ces corps, cet inconvénient disparaît.



   Pour préparer de tels dérives de la borazine, on peut irradier celle-ci en phase vapeur au moyen d'une source actinique [M.A.



  Ness et al., J.A.C.S.   94(1972),    1438], ce qui provoque la formation de divers oligoméres outre les   diméres    précités. On peut également polymériser la borazine par la chaleur (voir A. Laubengayer et al.).



  Tous ces corps sont utilisables dans la présente invention, pour autant qu'ils soient solubles en milieu organique volatil. On peut également utiliser des dérivés alcoylés de ces oligomères [voir G.A.



  Kline et al., Inorg. Chem. 16(1977), 11].



   Le présent inventeur a, de plus, trouvé que les oligomères de la borazine sont préparables par irradiation de la borazine liquide, les radiations utiles se situant dans le visible et   l'W.    Des traces de métaux de transition (Cr, Fe, Mo, W, etc.) peuvent catalyser une telle réaction.



   Pour mettre en oeuvre la présente invention, on procède de préférence comme suit: on prépare une solution du ou des composés boraziniques solides dans un solvant organique neutre, par exemple, benzène, toluène, dioxanne, THF, etc., et, dans cette solution, on trempe l'objet à revêtir. Cette technique présente l'avantage considérable de rendre accessibles au produit de revêtement tous les éléments de la surface de l'objet considéré, fussent-ils même difficilement atteignables par les réactifs gazeux dans le cas d'application des techniques de revêtement habituelles. Puis on retire l'objet de la solution et, après égouttage, on fait en sorte que le solvant s'évapore, ce qui laisse, à la surface de l'objet, une mince pellicule du dérivé borazinique solide.

  La concentration en dérivé borazinique de la solution peut être quelconque; plus elle est élevée, plus la pellicule obtenue par évaporation est épaisse. Pratiquement, des concentrations de 5 à 50% conviennent.



   On chauffe ensuite l'objet dans un four sous atmosphère contrôlée, par exemple sous azote ou argon à une température suffisante pour provoquer la pyrolyse du dépôt et sa conversion en BN avec départ d'hydrogène. Cette température se situe de préférence dans la gamme des   600-800"    C, ce qui fournit un dépôt amorphe, homogène et résistant à la corrosion par l'humidité et les agents chimiques corrosifs usuels (HF, acides minéraux et organiques, hydroxydes alcalins, NH3, etc.).  



   La couche borazinique étant très mince (de l'ordre de quelques   pm    à environ 500   llm),    sa décomposition pyrolytique est très rapide et ne dure, en fait, que quelques secondes à quelques minutes (par exemple 10 s à 10 min). Elle s'applique donc aussi bien à un processus discontinu que continu au cours duquel l'objet (un ruban, un filament, ou une série d'objets disposés sur une bande transporteuse) est, successivement, trempé dans la solution, séché et chauffé par passage dans un four à la température considérée (le tout en atmosphère inerte).



   Le dépôt obtenu vers   600-800     C, amorphe, peut être cristallisé par chauffage à une température plus élevée; par exemple vers 1100   1300     C, il se transforme en BN hexagonal qui, de par sa structure, présente des propriétés différentes de celles de la couche amorphe, mais également intéressantes industriellement.



   Parmi les substrats métalliques et minéraux se prêtant à la mise en oeuvre de la présente invention, on peut citer des articles comportant une surface d'un métal tel que Ti, Mo, Fe, Mn, Cr, Co, Ni et autres métaux usuels. Sur des métaux plus nobles tels que Cu, Ag,
Au, Pt, Pd, etc., I'application du procédé est également possible, mais l'adhérence est moins satisfaisante. Comme substrats minéraux, on peut citer Al203, SiO2 ZrO2, le verre, le grès, les céramiques, les métaux durs, les borures, carbures, nitrures métalliques, etc.



   Les exemples qui suivent illustrent l'invention en détail.



  Exemple 1:
 Dans un récipient standard en quartz, on a placé, sous protection d'azote sec, 100 g de borazine liquide qu'on a soumise à irradiation par la lumière solaire. Après quelques jours, on a procédé à une distillation sous azote, ce qui a fourni 26 g de solide non distillable, la portion volatile étant constituée de borazine. Ce solide consiste en un mélange de borazanaphtalène, de biborazinyle et d'une faible quantité d'oligomères de poids moléculaire plus élevé, dont on n'a pas déterminé la structure.



   On a obtenu des résultats similaires par irradiation de plus courte durée au moyen d'une lampe UV fournissant un flux de 20 W/cm à une distance de 30 cm. En présence de traces de composés de métaux de transition, le temps d'oligomérisation est encore raccourci.



  Exemple 2:
 Sous protection d'azote, on a dissous 25 g du solide tel qu'obtenu comme décrit ci-dessus dans 150   ml    de benzène sec et, dans cette solution, on a immergé un faisceau d'environ 20 g de fibres d'alumine d'un diamètre de 20-40   llm.    On a retiré cet écheveau de la solution et on l'a séché sous azote à   30400 C jusqu'à    disparition complète du solvant.



   On a alors rapidement chauffé à   800"    C, en atmosphère d'azote, ces fibres recouvertes d'une mince pellicule de composés boraziniques solides dans un four électrique. Après quelques minutes à cette température, on a retiré l'écheveau et, par analyse SEM, on a constaté la présence sur les fibres d'un film homogène de nitrure de bore amorphe. L'épaisseur de ce film était d'environ 0,5   llm.    En répétant cet exemple avec des solutions de dérivé borazinique dont la concentration variait entre 2 et 35% en poids, on a obtenu des films similaires dont l'épaisseur variait entre 0,1 et 2   um.    On a obtenu des résultats similaires sur d'autres substrats, par exemple des fibres ou fils de
SiO2, Fe, Ni.



   Par chauffage à   12500    C, on a converti le revêtement amorphe d'une partie de ces fibres en nitrure de bore hexagonal adhérent, isolant et non poreux.



  Exemple 3:
 Sous protection d'azote, on dissout 25 g du solide borazinique tel qu'obtenu comme décrit à l'exemple 1 dans 150   ml    de toluène sec et, dans cette solution, on immerge de façon continue une fibre optique de silice qui est ensuite séchée sous azote sec à   60-80     Cjusqu'à élimination complète du solvant. Par la suite on chauffe rapidement la surface de la fibre recouverte d'une mince pellicule de composés boraziniques solides entre 600 et 8000 C. On obtient ainsi un film protecteur de nitrure de bore amorphe d'une épaisseur de l'ordre de 0,4 micron. Cette couche assure une protection contre les agents chimiques et en particulier contre l'eau, compte tenu du caractère hydrophile de la couche.

  De plus, la couche assure également une protection mécanique et confère à la fibre un coefficient de friction peu élevé, ce qui est d'un grand intérêt pour la confection des câbles de transmission optique.



  Exemple 4:
 Sous protection d'azote, on dissout 20 g du solide tel qu'obtenu comme décrit à l'exemple 1 dans le trichloréthylène. Cette solution est pulvérisée au moyen d'un pistolet à la surface d'une plaque de verre (on pourrait aussi utiliser un métal ou une céramique) maintenue à   80"    C. Après disparition complète du solvant, il reste sur la surface du substrat une mince pellicule de composés boraziniques solides. On chauffe ensuite le substrat à des températures comprises entre 600 et   800     C et on obtient ainsi une couche de nitrure de silicium amorphe.



   Par chauffage à   12500    C, on convertit le revêtement amorphe en nitrure de bore hexagonal adhérent, isolant et non poreux.



  Exemple 5:
 On procède comme dans l'exemple 4, mais, au lieu de chauffer tout le substrat à haute température, on dirige un faisceau laser sur une portion de celui-ci, de manière à ne chauffer que localement la fine pellicule de composés boraziniques solides qui le recouvre. On peut aussi utiliser un faisceau d'électrons ou d'ions. On obtient ainsi, localement, une couche de nitrure de bore hexagonale adhérente, isolante et non poreuse. En immergeant, sous atmosphère protectrice, le substrat dans le solvant utilisé pour dissoudre l'oligomère de borazine, on élimine la couche de composés boraziniques non   trans-    formés en BN par le faisceau laser. Avec cette technique, on dépose ainsi sur le substrat une couche de nitrure de bore hexagonale adhérente, isolante et non poreuse sous la forme d'une zone de dessin défini préétabli. 

  Cette technique peut s'appliquer également à des substrats métalliques, vitreux, céramiques et autres. Cette technique offre, en conséquence, un grand intérêt dans le domaine de la fabrication de microcircuits électroniques. 



  
 



   DESCRIPTION



   The present invention relates to a process for forming, on a substrate, a boron nitride film resistant to corrosion by chemical and atmospheric agents. This hard, non-conductive film, resistant to high air temperatures, acts as a protective coating for a wide variety of substrates, preferably metallic or mineral.



   Many techniques for making such a deposit are known from the state of the art.



   Thus, one can proceed by thermal decomposition of mixtures of BCI3 and NH3 (G. Male et al., Laboratory of Ultra-Refractories of CNRS, F. 66120 Font-Romeu, 1979) and hexachloroborazine in vapor phase [ G. Constant et al., J. of the Less-Common
Metals 82 (1981), 113-118]. Diborane and ammonia OI.O can also be reacted in the vapor phase. Pierson et al.), Proceedings ouf tue Seventh Internat. Conf. on CVD, The Electrochemical Soc.



  Softbound Proceedings Series, Princeton, N.J. (1979), USA; US-A4,118,211; as well as boron and nitrogen compounds such as trifluorotrimrimaminaminoborane and dibromodipropylamineborane [E.A. Balabanova et al., Russian J. ofînorg. Chem. 25 (7), 1980, English translation, 995-996]. We also proceeded by decomposition of borazine, in the form of vapor [A.C. Adams, J. Electrochem.



  Soc. 128 (1981), 1378-1379] or plasma [S. Shanfield et al.,
G. Vac. Sci. Technol. A1 (2), April-June 1983, 323-324].



   BN films are useful as dielectrics in microelectronics, as corrosion protectors in devices in the chemical industry, and as reinforcers and protectors for glass fibers or ceramics in telecommunications and composite materials.



   The various production techniques mentioned above have drawbacks linked to the instability of the starting materials as well as to the obligation to operate in the vapor phase under well-controlled conditions which require the use of refractory reaction cells. heated to high temperature as well as relatively complicated reagent vaporization devices. It was therefore desirable to have a simplified process in which a boron and nitrogen compound sufficiently stable to be applied can be applied directly to the object to be coated, the latter then being simply heated to a temperature sufficient to causing the pyrolytic decomposition of said compound into a homogeneous and corrosion-resistant layer of boron nitride.



   Such a process is defined in claim 1. The monomeric borazine is a liquid at room temperature and its vapor pressure is high. Consequently, a liquid borazine film obtained on a substrate by soaking evaporates well before the pyrolysis temperature is reached and even in an autoclave; the product losses are too great for such a technique to be usable.



  On the other hand, by using a solid volatile derivative of borazine, for example an oligomer such as biborazinyl or borazanaph talene, or mixtures of these bodies, this drawback disappears.



   To prepare such borazine derivatives, it can be irradiated in the vapor phase by means of an actinic source [M.A.



  Ness et al., J.A.C.S. 94 (1972), 1438], which causes the formation of various oligomers in addition to the above-mentioned dimers. Borazine can also be polymerized by heat (see A. Laubengayer et al.).



  All these bodies can be used in the present invention, provided that they are soluble in volatile organic medium. Alkylated derivatives of these oligomers can also be used [see G.A.



  Kline et al., Inorg. Chem. 16 (1977), 11].



   The present inventor has, moreover, found that the oligomers of borazine can be prepared by irradiation of liquid borazine, the useful radiations being located in the visible and the W. Traces of transition metals (Cr, Fe, Mo, W, etc.) can catalyze such a reaction.



   To implement the present invention, the procedure is preferably as follows: a solution of the solid borazine compound (s) is prepared in a neutral organic solvent, for example, benzene, toluene, dioxane, THF, etc., and, in this solution , the object to be coated is soaked. This technique has the considerable advantage of making all the elements of the surface of the object under consideration accessible to the coating product, even if they are difficult to reach by gaseous reagents in the case of application of the usual coating techniques. Then the object is removed from the solution and, after draining, the solvent is evaporated, which leaves a thin film of the solid borazine derivative on the surface of the object.

  The concentration of borazine derivative in the solution can be arbitrary; the higher it is, the thicker the film obtained by evaporation. In practice, concentrations of 5 to 50% are suitable.



   The object is then heated in an oven under a controlled atmosphere, for example under nitrogen or argon to a temperature sufficient to cause the pyrolysis of the deposit and its conversion to BN with the departure of hydrogen. This temperature is preferably in the range of 600-800 "C, which provides an amorphous deposit, homogeneous and resistant to corrosion by humidity and the usual corrosive chemical agents (HF, mineral and organic acids, alkali hydroxides, NH3, etc.).



   The borazine layer being very thin (of the order of a few μm to approximately 500 μm), its pyrolytic decomposition is very rapid and lasts, in fact, only a few seconds to a few minutes (for example 10 s to 10 min). It therefore applies to both a discontinuous and a continuous process during which the object (a ribbon, a filament, or a series of objects placed on a conveyor belt) is successively soaked in the solution, dried and heated by passage through an oven at the temperature considered (all in an inert atmosphere).



   The deposit obtained around 600-800 C, amorphous, can be crystallized by heating at a higher temperature; for example around 1100 1300 C, it turns into a hexagonal BN which, by its structure, has properties different from those of the amorphous layer, but also interesting industrially.



   Among the metallic and mineral substrates which lend themselves to the implementation of the present invention, mention may be made of articles comprising a surface of a metal such as Ti, Mo, Fe, Mn, Cr, Co, Ni and other common metals. On more noble metals such as Cu, Ag,
Au, Pt, Pd, etc., the application of the process is also possible, but the adhesion is less satisfactory. As mineral substrates, there may be mentioned Al203, SiO2 ZrO2, glass, sandstone, ceramics, hard metals, borides, carbides, metal nitrides, etc.



   The following examples illustrate the invention in detail.



  Example 1:
 In a standard quartz container, 100 g of liquid borazine were placed under dry nitrogen protection and subjected to irradiation with sunlight. After a few days, distillation was carried out under nitrogen, which gave 26 g of non-distillable solid, the volatile portion consisting of borazine. This solid consists of a mixture of borazanaphthalene, biborazinyl and a small quantity of oligomers of higher molecular weight, the structure of which has not been determined.



   Similar results have been obtained by shorter duration irradiation using a UV lamp providing a flux of 20 W / cm at a distance of 30 cm. In the presence of traces of transition metal compounds, the oligomerization time is further shortened.



  Example 2:
 Under nitrogen protection, 25 g of the solid as obtained as described above was dissolved in 150 ml of dry benzene and, in this solution, a bundle of about 20 g of alumina fibers was immersed. '' a diameter of 20-40 llm. This skein was removed from the solution and dried under nitrogen at 30400 C until complete disappearance of the solvent.



   These fibers covered with a thin film of solid borazine compounds were then rapidly heated to 800 ° C. in a nitrogen atmosphere in an electric oven. After a few minutes at this temperature, the skein was removed and, by analysis SEM, a homogeneous film of amorphous boron nitride has been observed on the fibers. The thickness of this film was approximately 0.5 μm. By repeating this example with solutions of borazine derivative whose concentration varied between 2 and 35% by weight, similar films were obtained whose thickness varied between 0.1 and 2 μm. Similar results were obtained on other substrates, for example fibers or yarns.
SiO2, Fe, Ni.



   By heating to 12500 ° C., the amorphous coating of part of these fibers was converted into adherent, insulating and non-porous hexagonal boron nitride.



  Example 3:
 Under nitrogen protection, 25 g of the borazine solid as obtained as described in Example 1 are dissolved in 150 ml of dry toluene and, in this solution, a silica optical fiber is continuously immersed, which is then dried. under dry nitrogen at 60-80 C until complete removal of the solvent. Subsequently, the surface of the fiber covered with a thin film of solid borazine compounds is rapidly heated to between 600 and 8000 C. This gives a protective film of amorphous boron nitride with a thickness of the order of 0.4 micron. This layer provides protection against chemical agents and in particular against water, taking into account the hydrophilic nature of the layer.

  In addition, the layer also provides mechanical protection and gives the fiber a low coefficient of friction, which is of great interest for making optical transmission cables.



  Example 4:
 Under nitrogen protection, 20 g of the solid as obtained as described in Example 1 are dissolved in trichlorethylene. This solution is sprayed by means of a gun on the surface of a glass plate (one could also use a metal or a ceramic) maintained at 80 "C. After complete disappearance of the solvent, there remains on the surface of the substrate thin film of solid borazine compounds The substrate is then heated to temperatures between 600 and 800 ° C and a layer of amorphous silicon nitride is obtained.



   By heating to 12500 ° C., the amorphous coating is converted into adherent, insulating and non-porous hexagonal boron nitride.



  Example 5:
 The procedure is as in Example 4, but, instead of heating the entire substrate at high temperature, a laser beam is directed on a portion of it, so as to only locally heat the thin film of solid borazine compounds which covers it. One can also use a beam of electrons or ions. There is thus obtained locally an adherent, insulating and non-porous hexagonal boron nitride layer. By immersing the substrate in the solvent used to dissolve the borazine oligomer, under a protective atmosphere, the layer of borazine compounds not transformed into BN by the laser beam is removed. With this technique, an adherent, insulating and non-porous hexagonal boron nitride layer is thus deposited on the substrate in the form of a predefined defined drawing area.

  This technique can also be applied to metallic, vitreous, ceramic and other substrates. This technique therefore offers great interest in the field of manufacturing electronic microcircuits.


    

Claims (10)

REVENDICATIONS 1. Procédé pour obtenir sur un substrat un revêtement de nitrure de bore homogène, caractérisé par le fait qu'on applique sur ce substrat une couche d'un dérivé non volatil ou faiblement volatil de la borazine, puis qu'on chauffe ce substrat de manière à pyrolyser ladite couche et à la transformer en BN avec départ d'hydrogène.  CLAIMS  1. A process for obtaining a homogeneous boron nitride coating on a substrate, characterized in that a layer of a non-volatile or slightly volatile derivative of borazine is applied to this substrate, then this substrate is heated. so as to pyrolyze said layer and transform it into BN with the departure of hydrogen. 2. Procédé suivant la revendication 1, caractérisé par le fait qu'on chauffe le substrat entre 600 et 800 C, le BN obtenu ayant une structure amorphe résistante à la corrosion.  2. Method according to claim 1, characterized in that the substrate is heated between 600 and 800 C, the BN obtained having an amorphous structure resistant to corrosion. 3. Procédé suivant la revendication 2, caractérisé par le fait qu'ensuite on chauffe la couche de BN amorphe à 1100-1300" C, de manière à la convertir en BN hexagonal.  3. Method according to claim 2, characterized in that the layer of amorphous BN is then heated to 1100-1300 "C, so as to convert it into hexagonal BN. 4. Procédé suivant la revendication 1, caractérisé par le fait que le dérivé de la borazine est un oligomére de celle-ci, solide à la température ambiante.  4. Method according to claim 1, characterized in that the borazine derivative is an oligomer thereof, solid at room temperature. 5. Procédé suivant la revendication 4, caractérisé par le fait que l'oligomére est un dimère choisi parmi le biborazinyle et le borazanaphtalène ou un mélange de ceux-ci.  5. Method according to claim 4, characterized in that the oligomer is a dimer chosen from biborazinyl and borazanaphthalene or a mixture of these. 6. Procédé suivant la revendication 1, caractérisé par le fait que, pour effectuer l'application, on trempe le substrat dans une solution du ou des composés boraziniques de manière que se forme à la surface de ce substrat une couche de cette solution, puis on évapore le solvant de celle-ci de manière à laisser un film de composés boraziniques solides sur la surface de ce substrat.  6. Method according to claim 1, characterized in that, to carry out the application, the substrate is soaked in a solution of the borazine compound (s) so that a layer of this solution is formed on the surface of this substrate, then the solvent is evaporated therefrom so as to leave a film of solid borazine compounds on the surface of this substrate. 7. Procédé suivant la revendication 1, caractérisé par le fait qu'on pulvérise la solution du ou des composés boraziniques sur le substrat maintenu à une température suffisante pour provoquer l'évaporation du solvant et former à la surface du substrat un film mince de composés boraziniques solides  7. Method according to claim 1, characterized in that the solution of the borazine compound (s) is sprayed onto the substrate maintained at a temperature sufficient to cause the evaporation of the solvent and form a thin film of compounds on the surface of the substrate. solid borazinics   8. Procédé suivant la revendication 6, caractérisé par le fait qu'on utilise, pour ladite solution, un solvant organique choisi parmi les solvants aromatiques tels que benzène, toluène, xylène, etc., des éthers tels que tétrahydrofuranne, dioxanne, diglyme, et des solvants chlorés tels que CHCl3, CH2CI2, trichloréthyléne, etc. 8. Process according to claim 6, characterized in that an organic solvent chosen from aromatic solvents such as benzene, toluene, xylene, etc., is used for said solution, ethers such as tetrahydrofuran, dioxane, diglyme, and chlorinated solvents such as CHCl3, CH2CI2, trichlorethylene, etc.   9. Procédé suivant la revendication 8, caractérisé par le fait que la concentration pondérale de la solution en composés boraziniques est de 1 à 50%.  9. Method according to claim 8, characterized in that the weight concentration of the solution of borazine compounds is from 1 to 50%. 10. Procédé suivant la revendication 2, caractérisé par le fait qu'on dirige sur le substrat, et cela par balayage suivant un dessin préétabli, un faisceau énergétique, laser, électrons ou ions, de manière à produire, sur la zone atteinte, un échauffement local transformant le film borazinique en BN, puis on dissout, par un solvant, le dérivé borazinique non transformé, le substrat conservant alors à sa surface une zone recouverte de nitrure de bore conforme au dessin original.  10. The method of claim 2, characterized in that it directs on the substrate, and this by scanning according to a predetermined pattern, an energy beam, laser, electrons or ions, so as to produce, on the affected area, a local heating transforming the borazine film into BN, then dissolving, by a solvent, the unprocessed borazine derivative, the substrate then retaining on its surface an area covered with boron nitride conforming to the original drawing.
CH3104/86A 1986-08-01 1986-08-01 Homogeneous boron nitride coating prodn. - by forming low volatility borazine deriv. layer and heating CH670105A5 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH3104/86A CH670105A5 (en) 1986-08-01 1986-08-01 Homogeneous boron nitride coating prodn. - by forming low volatility borazine deriv. layer and heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH3104/86A CH670105A5 (en) 1986-08-01 1986-08-01 Homogeneous boron nitride coating prodn. - by forming low volatility borazine deriv. layer and heating

Publications (1)

Publication Number Publication Date
CH670105A5 true CH670105A5 (en) 1989-05-12

Family

ID=4248701

Family Applications (1)

Application Number Title Priority Date Filing Date
CH3104/86A CH670105A5 (en) 1986-08-01 1986-08-01 Homogeneous boron nitride coating prodn. - by forming low volatility borazine deriv. layer and heating

Country Status (1)

Country Link
CH (1) CH670105A5 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025454A (en) * 1990-03-09 2000-02-15 The Trustees Of The University Of Pennsylvania Direct thermal synthesis and ceramic applications of poly(borazylenes) and borazine/polyhedral borane oligomers
US6419981B1 (en) 1998-03-03 2002-07-16 Ppg Industries Ohio, Inc. Impregnated glass fiber strands and products including the same
US6593255B1 (en) 1998-03-03 2003-07-15 Ppg Industries Ohio, Inc. Impregnated glass fiber strands and products including the same
US8062746B2 (en) 2003-03-10 2011-11-22 Ppg Industries, Inc. Resin compatible yarn binder and uses thereof
US8105690B2 (en) 1998-03-03 2012-01-31 Ppg Industries Ohio, Inc Fiber product coated with particles to adjust the friction of the coating and the interfilament bonding
CN106241753A (en) * 2015-05-19 2016-12-21 常州新墨能源科技有限公司 A kind of preparation method of white graphite alkene nanoparticle
WO2019220033A1 (en) * 2018-05-15 2019-11-21 Safran Ceramics Method and device for depositing a coating on an endless fiber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025454A (en) * 1990-03-09 2000-02-15 The Trustees Of The University Of Pennsylvania Direct thermal synthesis and ceramic applications of poly(borazylenes) and borazine/polyhedral borane oligomers
US6419981B1 (en) 1998-03-03 2002-07-16 Ppg Industries Ohio, Inc. Impregnated glass fiber strands and products including the same
US6593255B1 (en) 1998-03-03 2003-07-15 Ppg Industries Ohio, Inc. Impregnated glass fiber strands and products including the same
US8105690B2 (en) 1998-03-03 2012-01-31 Ppg Industries Ohio, Inc Fiber product coated with particles to adjust the friction of the coating and the interfilament bonding
US8062746B2 (en) 2003-03-10 2011-11-22 Ppg Industries, Inc. Resin compatible yarn binder and uses thereof
CN106241753A (en) * 2015-05-19 2016-12-21 常州新墨能源科技有限公司 A kind of preparation method of white graphite alkene nanoparticle
WO2019220033A1 (en) * 2018-05-15 2019-11-21 Safran Ceramics Method and device for depositing a coating on an endless fiber
FR3081171A1 (en) * 2018-05-15 2019-11-22 Safran Ceramics METHOD AND DEVICE FOR DEPOSITING A COATING ON A CONTINUOUS FIBER
CN112154223A (en) * 2018-05-15 2020-12-29 赛峰航空陶瓷技术公司 Method and apparatus for depositing a coating on continuous fibers
US11390986B2 (en) 2018-05-15 2022-07-19 Safran Ceramics Method and device for depositing a coating on an endless fiber

Similar Documents

Publication Publication Date Title
US5273788A (en) Preparation of diamond and diamond-like thin films
JPH1171681A (en) Protective coating film by high speed arc plasma coating formation
EP0387113A1 (en) Process for the deposition of a ceramic coating on a metal substrate, and article coated by this process
FR2699543A1 (en) A method of surface modification of a fluorocarbon polymer molded article and method of chemically coating the surface using an ultraviolet laser.
CH670105A5 (en) Homogeneous boron nitride coating prodn. - by forming low volatility borazine deriv. layer and heating
Esrom et al. Investigation of the mechanism of the UV-induced palladium deposition process from thin solid palladium acetate films
FR2564110A1 (en) PROCESS FOR PRODUCING VAPO-DEPOSITED CARBON FIBERS FROM METHANE
EP1261560B1 (en) Radiation-transmissive films on glass articles
WO2008009715A9 (en) Method for depositing non-oxide ceramic coatings
EP0555130A1 (en) Method of making composite material parts having a ceramic matrix
EP0529593B1 (en) A glass carbon coated graphite chuck for use in producing polycrystalline silicon
US5320878A (en) Method of chemical vapor deposition of boron nitride using polymeric cyanoborane
FR2707799A1 (en) Process for forming a ceramic coating, coated substrate by this process and composition used in this process
Zettsu et al. Surface functionalization of PTFE sheet through atmospheric pressure plasma liquid deposition approach
US5238711A (en) Method of coating carbon fibers with a carbide
Klerer On the mechanism of the deposition of Silica by Pyrolytic decomposition of Silanes
Mihailescu et al. Excimer laser reactive ablation: An efficient approach for the deposition of high quality TiN films
US5368681A (en) Method for the deposition of diamond on a substrate
US5521001A (en) Carbide formed on a carbon substrate
EP0730564B1 (en) Method for densifying a porous structure using boron nitride
EP0634378A1 (en) Process for improving the oxydation resistance of a filtre-reinforced composite having a glass, ceramic or glass-ceramic matrix
CN115917037A (en) Silicon-based films from N-alkyl substituted perhydrocyclotrisilazanes
Huang et al. Laser ablated coatings on ceramic fibers for ceramic matrix composites
Urbanová et al. Laser induced chemical vapour deposition of polypyridine films
WO1986003228A1 (en) Method for deposition of gallium arsenide from vapor phase gallium-arsenic complexes

Legal Events

Date Code Title Description
PL Patent ceased