Polymaleinimide lassen sich bekanntlich als Rohstoffe für die Herstellung von Polyadditions- und Polymerisationsprodukten verwenden. So wird beispielsweise in dem FR Patent 1 555 564 die Polyaddition von N,N'-Bis-maleinimiden mit primären Diaminen und die Härtung dieser Voraddukte durch thermische Polymerisation beschrieben.
Die erhaltenen, Succinimidreste aufweisenden Polymeren sind aber für viele Anwendungszwecke unzureichend. Sie weisen nämlich eine vergleichsweise geringe Formbeständigkeit in der Wärme auf.
In dem US-Patent 3 741 942 werden Polyadditionsprodukte aus Bis-maleinimiden und organischen Dithiolen beansprucht. Diese bekannten Polyaddukte und das Herstellungsverfahren derselben weisen all die grossen Nachteile auf, welche für schwefelhaltige Hochpolymere charakteristisch sind. Insbesondere ist auf die starke Geruchsbelästigung durch die Dithiole und auf die toxische Wirkung derselben hinzuweisen. Da analoge Belästigungen auch bei der Verbrennung und der Zersetzung bei hoher Temperatur dieser schwefelhaltigen Polyaddukte auftreten, sind dieselben als Werkstoffe, insbesondere im Bausektor, im Fahrzeug- und im Flugzeugbau, in den meisten Fällen nicht einsetzbar. Als weiterer Nachteil dieser Produkte ist anzuführen, dass die Erweichungstemperaturen nicht höher als 110 bis 1700 C liegen.
Die Aufgabe der Erfindung besteht darin, Imidgruppen aufweisende Polykondensationsprodukte auf der Basis von Polymaleinimiden zu schaffen, welche die Nachteile der bisher bekannten Polyaddukte auf Polymaleinimid-Basis nicht aufweisen, und welche ohne Hantierung gesundheitsschädlicher Stoffe und ohne Geruchsbelästigungen hergestellt werden können.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Imidgruppen aufweisenden Polyadditionsprodukten, welches dadurch gekennzeichnet ist, dass man Polyimide, welche einen Rest der allgemeinen Formel
EMI1.1
in der D einen zweiwertigen, eine Kohlenstoff-Kohlenstoff Doppelbindung enthaltenden Rest bedeutet, mindestens zweimal im Molekül enthalten, mit mehrwertigen Alkoholen und mit primären Polyaminen bei Temperaturen zwischen 50 und 2800 C in einem solchen Mengenverhältnis umsetzt, dass auf 1 Äquivalent Polyimid soviel mehrwertiger Alkohol und primäres Polyamin kommen, dass die Summe der beiden letzteren Substanzen 0,2 bis 1,5 Äquivalente ausmacht und das Äquivalentenverhältnis von dem mehrwertigen Alkohol zu dem Polyamin 1:4 bis 4:1 beträgt.
Die erfindungsgemässe Polyaddition beruht teilweise auf einer Verknüpfung von Polyimid und Polyamin nach der folgenden chemischen Gleichung (I-A), bei der zur Vereinfachung difunktionelle Reaktionspartner und ein Bis-maleinimid eingesetzt werden.
EMI1.2
Zum anderen Teil erfolgt die Polyaddition durch eine der ebenfalls zur Vereinfachung difunktionelle Reaktionsneuartige Verknüpfung von Polyimid und mehrwertigem Al- partner und ein Bis-maleinimid eingesetzt werden.
kohol nach der folgenden chemischen Gleichung (I-P), bei
EMI1.3
<tb> <SEP> CO <SEP> / <SEP> CO <SEP> basischer <SEP> CH2 <SEP> \ <SEP> / <SEP> CO
<tb> <SEP> basischer
<tb> CH <SEP> CH <SEP> Kataly- <SEP> CH2 <SEP> ¯¯ <SEP> / <SEP> CH
<tb> II <SEP> N-A-N <SEP> 11 <SEP> + <SEP> HO-E-OH <SEP> sator <SEP> 1 <SEP> A-N
<tb> CH <SEP> / <SEP> \ <SEP> CH <SEP> sator <SEP> -CH <SEP> CH-O-E-O
<tb> <SEP> CO <SEP> CO <SEP> CO <SEP> CO <SEP> (r-P)
<tb>
Beide Verknüpfungsarten führen zunächst zu Molekülketten, wobei die gemäss den Gleichungen (I-A) und (I-P) entstehenden Kettenglieder alternierend, statistisch verteilt oder getrennt, d. h. jeweils kummuliert in Blockpolymer Form, in die Ketten eingebaut werden können.
Diese Verknüpfung führt zunächst zu Molekülketten. Im Verlaufe der erfindungsgemässen Umsetzung erfolgt auch eine Vernetzung, welche hauptsächlich auf der Homopolymerisation der Doppelbindungen der eingesetzten Polyimide beruht. Diese ist besonders dann wirksam, wenn die Anzahl der Doppelbindungsäquivalente grösser als die Summe der Amino- und Hydroxyläquivalente ist. Besonders einleuchtend ist die Bildung vernetzter Produkte im Falle des Einsatzes trioder höherfunktioneller Ausgangsprodukte.
Die meisten der erfindungsgemäss einsetzbaren Polyimide sind in der Literatur ausführlich beschrieben. Ihre Herstellung kann nach den in der US-Patentschrift 3 010 290 und der GB-Patentschrift 1 137 592 beschriebenen Methoden durch Umsetzung der entsprechenden Diamine mit den ungesättigten Dicarbonsäureanhydriden erfolgen.
Erfindungsgemäss sind u. a. all die Polyimide einsetzbar, welche bereits in dem FR-Patent 1 555 564 aufgezählt worden sind. Besonders gut geeignet sind Maleinimide, d. h.
Polyimide der Formel (I), in der D den zweiwertigen Rest der Formel
EMI1.4
bedeutet, wobei R Wasserstoff oder Methyl darstellt.
Eine Vorzugsform der Erfindung stellt die Umsetzung mit Polyimiden, welche den Rest der Formel (I) zwei- oder dreimal im Molekül enthalten, und somit insbesondere die Umsetzung mit Bis- und Tris-maleinimiden dar.
Als besonders gut geeignete Bis-maleinimide sind Verbindungen der Formel
EMI2.1
in der A einen zweiwertigen organischen Rest mit 2 bis 30 C-Atomen bedeutet, zu nennen.
Der Rest A in Formel (III) entspricht vorzugsweise der Formel
EMI2.2
wobei Rl einen der Reste
EMI2.3
-SO2-, -SO-, -S- und -0- darstellt und n 0 oder 1 ist.
Für das erfindungsgemässe Verfahren können aber auch neue Bis- und Tris-imide eingesetzt werden, welche die folgende Formel VIII aufweisen:
EMI2.4
Darin bedeuten A und A" gegebenenfalls substituierte oder durch ein Sauerstoffatom, eine Alkylengruppe oder Sulfonylgruppe unterbrochene aromatische Reste, D den bereits oben definierten Rest, Z ein Sauerstoffatom oder Schwefelatom, m die Zahl 1 oder 0 und n die Zahl 2 oder 3.
Beispiele für solche neuen, für das erfindungsgemässe Verfahren geeigneten Maleinimide sind: das N,N'-Bis-maleinimid des 4,4'-Diamino-triphenyl phosphats, das N,N'-Bis-maleinimid des 4,4'-Diamino-triphenylthio phosphats, das N,N',N"-Trismaleinimid des Tris-(4-aminophenyl) - phosphats, das N,N',N"-Trismaleinimid des Tris-(4-aminophenyl) thiophosphats.
Man kann erfindungsgemäss auch Mischungen von zwei oder mehreren aller oben erwähnten Polyimide verwenden.
Als mehrwertige Alkohole, welche (gegebenenfalls im Gemisch verschiedener Alkohole) als Ausgangssubstanzen für das erfindungsgemässe Verfahren geeignet sind, sind insbesondere 2- oder 3-wertige Alkohole zu nennen.
Gut geeignet sind unverzweigte oder verzweigte aliphatische Alkohole mit insgesamt 2 bis 12 C-Atomen, wie beispielsweise Ätylenglykol, Propandiol-1,3, Butandiol-1,4, Pentandiol-1,5, Hexandiol-1,6, Octandiol-1,8, 1,2,6-Hexantriol, 1,1,1-Trishydroxymethylpropan und Glycerin. Grundsätzlich können auch Alkohole eingesetzt werden, welche ein oder mehrere olefinische Doppelbindungen enthalten.
Gut geeignet als Ausgangs substanzen sind auch cycloaliphatische oder cycloaliphatisch-aliphatische Alkohole mit 1 oder mehr cycloaliphatischen Kernen, welche gegebenenfalls Sauerstoff, Schwefel oder schwefelhaltige Reste als Bindeglieder enthalten können, wobei die Hydroxylgruppen entweder an die aliphatischen oder an die cycloaliphatischen Reste gebunden sind.
Eine diesbezügliche Vorzugsform der Erfindung stellt der Einsatz von Verbindungen dar, welche der Formel V
EMI2.5
entsprechen, in der Rl einen der Reste -CH2-,
EMI2.6
-SO2-, -SO-, -S- und -0- bedeutet und n 0 oder 1 ist.
Beispiele für solche Verbindungen sind das hydrierte Bisphenol A, Bis-(p-hydroxycyclohexyl) -methan, Bis-(p-hydroxycyclohexyl)-sulfon, Bis-(p-hydroxycyclohexyl)-sulfoxid, Bis-(phydroxycyclohexyl)-sulfid, Bis-(p-hydroxycyclohexyl)-äther und 4,4'-Dihydroxy-dicyclohexyl.
Weitere für das erfindungsgemässe Verfahren gut geeignete Alkohole sind Polyglykoläther von mehrwertigen Alkoholen oder Phenolen, wie beispielsweise die Diglykoläther der oben aufgezählten Verbindungen der Formel (V), insbesondere Bisphenol-A-diglykoläther.
Als weitere geeignete cycloaliphatisch-aliphatische Alkohole sind Polymethylolverbindungen, wie beispielsweise Cyclohexandimethylol, anzuführen. Der einfachste der rein cycloaliphatischen Alkohole, welcher als Ausgangsstoff einsetzbar ist, ist das Cyclohexandiol-1,4.
Alle hier angeführten, als Ausgangsstoffe für das Verfahren gemäss der Erfindung geeigneten Polyalkohole sind dem Fachmann seit langem bekannt und es erübrigt sich deshalb, auf die Gewinnung derselben hier einzugehen.
Gemäss der Erfindung werden bevorzugt aromatische oder araliphatische, di- oder tri-primäre Amine mit 2 bis 40 C-Atomen im Molekül eingesetzt. Besonders gut geeignet sind Diamine der Formel
EMI2.7
in der Rl und n die oben angegebene Bedeutung haben.
Grundsätzlich sind auch alle die Polyamine einsetzbar, welche bereits in dem FR-Patent 1 555 564 aufgezählt worden sind. Im einzelnen sind die folgenden, für das erfindungsgemässe Verfahren geeigneten Polyamine zu nennen: 1,2,4-Triaminobenzol, 1,3,5-Triaminobenzol, 2,4,6-Triaminotoluol, 2,4,6-Triamino-1,3,5-trimethylbenzol, 1,3,7-Triaminonaphthalin, 2,4,4'-Triaminodiphenyl, 3,4,6-Triaminopyridin, 2,4,4'-Triaminophenyläther, 2,4,4'-Triaminodiphenylmethan, 2,4,4'-Triaminodiphenylsulfon, 2,4,4'-Triaminobenzophenon, 2,4,4'-Triamino-3-methyl-diphenylmethan, N,N,N-Tri-(4-aminophenyl)-amin, Tri-(4-aminophenyl)-methan, Tri-(4-aminophenyl)-phosphat, Tri-(4-aminophenyl)-phosphit, Tri-(4-aminophenyl)-thiophosphat, 3,5,4'-Triaminobenzanilid, Melamin, 3,5,3',5'-tetraaminobenzophenon,
1,2,4,5-Tetraaminobenzol, 2,3,6,7-Tetraaminonaphthalin, 3,3'-Diaminobenzidin, 3,3'4,4'-Tetraaminophenyläther, 3,3',4,4'-Tetraaminodiphenylmethan, 3,3',4,4'-Tetraaminodiphenylsulfon, 3,5-Bis-(3,4'-diaminophenyl)-pyridin, 4,4'-Diaminodicyclohexylmethan, 1,4 Diamino-cyclohexan, m-Phenylendiamin, p-Phenylendiamin, 4,4'-Diamino-diphenyl-methan, Bis-(4-aminophenyl)-2,2propan, 4,4'-Diamino-diphenyläther, 4,4'-Diaminodiphenylsulfon, 1,5-Diaminonaphthalin, m-Xylylendiamin, p-Xylylendiamin, Äthylendiamin, Hexamethylendiamin, Bis-(y-amino propyl)-5, 5-dimethyl-hydantoin, 4,4'-Diaminotriphenylphosphat.
Die oben genannten, für das erfindungsgemässe Verfahren geeignete Amine und die Verfahren zu ihrer Herstellung sind bekannt, so dass es sich erübrigt, hierauf näher einzugehen.
Der Vollständigkeit halber soll erwähnt werden, dass als Ausgangssubstanzen auch solche Polyamine geeignet sind, welche durch Umsetzung von primären aromatischen Aminen mit Aldehyden oder Ketonen gewonnen werden. Es ist diesbezüglich auf die französischen Patentschriften 1 430 977 und 1 481 932 hinzuweisen.
Gemäss der Erfindung kann man auch Mischungen mehrerer Polyamine einsetzen.
Bei der erfindungsgemässen Umsetzung beträgt das Äquivalentverhältnis von dem mehrwertigen Alkohol zu dem Polyamin bevorzugt 1:2 bis 4:1.
Die erfindungsgemässe Umsetzung kann in der Schmelze oder teilweise in der Schmelze teilweise in der festen Phase erfolgen. Sie kann aber auch in Lösung durchgeführt werden.
Soweit das Verfahren im Schmelzfluss durchgeführt wird, sind Temperaturen von 100 bis 2500 C besonders gut geeignet. In Lösung sind dagegen auch niedrigere Temperaturen von beispielsweise 500 bis 1500 C anwendbar.
Als geeignete Lösungsmittel sind beispielsweise folgende Substanzen aufzuzählen:
Aromaten, wie Xylol und Toluol; Halogenkohlenwasserstoffe, wie Trichloräthylen, Tetrachloräthan, Tetrachlor äthylen, Chlorbenzol; Äther, wie Dioxan, Tetrahydrofuran, Dibutyläther; Dimethylformamid, Tetramethylharnstoff, Dimethylsulfoxid und N-Methylpyrrolidon.
In manchen Fällen, insbesondere beim Einsatz verhältnismässig wenig reaktiver Substanzgemische oder bei der Polyaddition in Lösung bei niedrigeren Temperaturen, ist es zweckmässig, die Reaktion durch basische Katalysatoren zu beschleunigen.
Als basische Katalysatoren sind gemäss der Erfindung besonders tertiäre, sekundäre, primäre Amine oder Amine, welche mehrere verschiedenartige Aminogruppen enthalten (z. B. gemischte tertiär-sekundäre Amine) und quaternäre Ammoniumverbindungen geeignet. Diese Amin-Katalysatoren können sowohl Monoamine als auch Polyamine sein.
Im Falle der Verwendung von primären und sekundären Aminen sind Monoamine zu bevorzugen. Als Beispiele solcher Amin-Katalysatoren sind die folgenden Substanzen aufzuzählen: Diäthylamin, Tributylamin, Triäthylamin, Triamylamin, Benzylamin, N-Methylpyrrolidin, Tetramethyldiaminodiphenylmethan, Chinolin, N,N-Diisobutylaminoacetonitril, N,N-Dibutylaminoacetonitril, Imidazol, Benzimidazol und deren Homologe. Als geeignete quaternäre Ammoniumverbindungen sind beispielsweise Benzyltrimethylammoniumhydroxid und Benzyltrimethylammoniummethoxid zu nennen.
Weitere geeignete Katalysatoren sind Alkalimetallverbindungen, wie Alkalialkoholate und -hydroxide. Besonders gut geeignet ist Natriummethylat.
Die Katalysatoren sollten in dem Reaktionsgemisch in einer Konzentration von 0,1 bis 15 Gew.- /0, vorzugsweise von 0,3 bis 8 Gew.-0/0, vorliegen, wobei sich die Gew.-0/0- Angaben auf die gesamte Menge der reagierenden Ausgangskomponenten beziehen.
Die durch die Reaktionen entstehenden Produkte, welche sekundäre oder tertiäre Aminogruppen enthalten, können im Verlaufe der Umsetzung auch katalytisch wirken.
Im allgemeinen geht man bei Durchführung des erfindungsgemässen Verfahrens von Reaktionsgemischen aus, welche ausser den Polyimiden gleichzeitig mehrwertige Alkohole und primäre Polyamine enthalten.
Man kann aber auch so vorgehen, dass man zunächst das jeweilige Polyimid ganz oder teilweise mit dem jeweiligen Alkohol in Gegenwart eines Katalysators reagieren lässt und danach die restliche Umsetzung mit dem primären Polyamin und gegebenenfalls mit dem restlichen Alkohol ablaufen lässt.
Auch die umgekehrte Arbeitsweise ist möglich. Man lässt zunächst das jeweilige Polyimid mit dem jeweiligen primären Polyamin ganz oder teilweise reagieren. Danach erfolgt die Umsetzung mit dem jeweiligen mehrwertigen Alkohol und gegebenenfalls mit dem restlichen primären Polyamin.
Bei den beiden zuletzt beschriebenen Verfahrensweisen wird praktisch zunächst ein Präpolymer hergestellt. Man kann aber auch in folgender Weise ein Präpolymer bereiten und weiterverarbeiten. Nach dem Mischen und gegebenenfalls nach einer anschliessenden Vermahlung aller Ausgangsprodukte wird das Pulver zunächst eine begrenzte Zeit lang auf 140 bis 1700 C erhitzt. Es entsteht ein noch thermisch verformbares, teilweise lösliches Produkt. Dieses Präpolymer muss gegebenenfalls wieder zu einem verarbeitbaren Pulver vermahlen werden, bevor es bei der Endverarbeitung endgültig gehärtet wird. Die Präpolymerisation kann auch durch Erhitzen einer Lösung oder Suspension der Ausgangsmaterialien erfolgen.
Die erfindungsgemässe Herstellung der Imidgruppen aufweisenden Polyadditionsprodukte erfolgt in der Regel unter gleichzeitiger Formgebung zu Formkörpern, Flächengebilden, Laminaten, Verklebungen, Schaumstoffen. Dabei können den härtbaren Massen die in der Technologie der härtbaren Kunststoffe gebräuchlichen Zusätze wie Füllstoffe, Weichmacher, Pigmente, Farbstoffe, Formtrennmittel, flammhemmende Stoffe zugesetzt werden. Als Füllstoffe können zum Beispiel Glasfasern, Glimmer, Quarzmehl, Kaolin, kolloidales Silizium-dioxid oder Metallpulver verwendet werden, als Formtrennmittel können zum Beispiel verschiedene Wachse, Zink- oder Kalzinmstearat usw. dienen.
Die Formgebung der nach dem erfindungsgemässen Verfahren herstellbaren Produkte kann in einfachster Weise nach dem Giessverfahren unter Anwendung einer Giessform erfolgen.
Die Formgebung kann aber auch nach dem Heisspress.
verfahren unter Anwendung einer Presse durchgeführt werden. Meistens genügt es, dass man nur kurz auf Temperaturen von 170 bis 2500 C bei einem Druck von 1 bis 200 kp/ cm2 erhitzt, und den so erhaltenen Formling ausserhalb der Presse vollständig aushärtet.
Das erfindungsgemässe Verfahren kann auch in der Weise erfolgen, dass man zunächst ein Präpolymer herstellt, dasselbe in einem geeigneten Lösungsmittel suspendiert oder löst, anschliessend poröse Flächengebilde wie Gewebe, Fasermatte oder Faservliese, besonders Glasfasermatten oder Glasfasergewebe, mit diesen Lösungen oder Suspensionen imprägniert, das Lösungsmittel durch einen Trocknungsvorgang entfernt und schliesslich die so erhaltenen Substrate in einer Presse auf vorzugsweise 170-2500 C bei einem Druck von 5-200 kp/cm2 Druck erhitzt. Es ist auch möglich, die Laminate in der Presse nur vorzuhärten und die so erhaltenen Produkte in einem Ofen bis zum Erreichen optimaler Gebrauchseigenschaften nachzuhärten.
Das erfindungsgemässe Verfahren und die dadurch herstellbaren Polyadditionsprodukte sind vor allem auf den Gebieten des Oberflächenschutzes, der Elektrotechnik, der Laminierverfahren, der Schaumstoffherstellung und im Bauwesen anwendbar.
Vorzugsweise werden bei dem erfindungsgemässen Verfahren Mischpulver eingesetzt. Diese werden am günstigsten dadurch erhalten, dass man die festen Einzelkomponenten unter Anwendung einer intensiv arbeitenden Mahl anlage (wie z. B. Kugelmühlen) gemeinsam mahlt bzw. nachmahlt. Aus dem Pulvergemisch, welches in vielen Fällen als solches eingesetzt werden kann, lässt sich aber auch in bekannter Weise durch Tablettierung, durch eine Aufbaugranulierung oder durch ähnliche Verfahren ein beispielsweise für das Heisspressverfahren besonders gut geeignetes grössere Stücke enthaltendes Material herstellen.
Wenn die erfindungsgemässen heisshärtbaren Mischungen als Giessharze verarbeitet werden sollen, so dürfen dieselben nicht solche Polyalkohole enthalten, welche bei der erforderlichen Entgasung der Mischung in der Schmelze bei Unterdruck (beispielsweise bei 2 bis 20 Torr) entweichen.
So ist beispielsweise Butandiol-1,4 für Giessharzmischungen nicht in Verbindung mit N,N'-4,4'-Diphenylmethan-bis-maleinimid einsetzbar. Bekanntlich schmilzt dieses Maleinimid bei etwa 1500 C und der Siedepunkt von Butandiol-1,4 bei 10 Torr liegt bei etwa 1200 C; d. h. letztere Substanz würde bei der Entgasung der Schmelze abdestillieren.
Eine Vorzugsform der erfindungsgemässen heisshärtbaren Mischungen stellen somit solche Mischungen dar, welche Polyalkohole enthalten, deren Siedepunkte bei dem Druck, welcher allgemein bei der Entgasung der Mischung in der Schmelze angewendet wird (2-20 Torr), oberhalb der Temperatur dieser Schmelze liegen.
Die oben dargelegte Beschränkung der erfindungsgemässen Mischungen bei der Giessverarbeitung gilt aber nicht für die Verarbeitung der Mischungen in Lösung. Im letzteren Fall ist beispielsweise durchaus auch eine Kombination von N,N'-4,4'-Diphenylmethan-bis-maleinimid mit Butandiol1,4 möglich.
Herstellung von Ausgangsprodukten für das erfindungsgemässe Verfahren
I. Herstellung eines Tris-imids der Formel VIII a) In einem mit Rührer und Thermometer versehenen Reaktionsgefäss werden 294 g (3,0 Mol) Maleinsäureanhydrid, gelöst in 800 ml Dioxan, vorgelegt. Zu dieser Lösung wird bei 10-200 C während 95 Stunden eine Lösung von 371 g (1 Mol) Tris-(4-aminophenyl)-phosphat, gelöst in 2,5 Liter Dioxan, hinzugetropft. Nach beendeter Zugabe wird noch 11/2 Stunden gerührt, danach das Reaktionsprodukt abfiltriert, mit Chloroform gewaschen und getrocknet. Man erhält 669 g einer gelblichen Substanz mit einem Schmelzpunkt von 127 bis 1300 C.
Diese besitzt gemäss analytischen Daten die folgende Struktur:
EMI4.1
b) In einem mit Rührer und Thermometer versehenen Reaktionsgefäss werden 85 g Natriumacetat und 1,1 Liter Acetanhydrid vorgelegt und mittels eines Ölbades auf 600 C erwärmt. Zu dieser Lösung werden während 30 Minuten portionenweise 954 g der nach a) hergestellten Trismaleinamidsäure so zugegeben, dass die Reaktionstemperatur 900 C nicht überschreitet. Nach beendeter Zugabe lässt man auf Raumtemperatur abkühlen und tropft anschliessend eine Mischung von 2 Liter Isopropanol und 0,7 Liter Wasser zum teilweise auskristallisierten Reaktionsprodukt. Die ausgefallene Substanz wird abfiltriert, mit Isopropanol und Wasser säurefrei gewaschen und getrocknet.
Es werden 532 g einer Substanz mit einem Schmelzpunkt von 173,5-1770 C erhalten, welche gemäss analytischen Daten das Tris-maleinimid des Tris-(4-aminophenyl)-phosphats mit der folgenden Strukturformel ist:
EMI4.2
Ausführungsbeispiele
179 g (0,5 Mol) N,N'-p,p'-Diphenylmethan-bis-maleinimid und 9,9 g (0,05 Mol) 4,4'-Diaminodiphenylmethan werden zusammengeschmolzen bei ca. 1800 C Ölbadtemperatur.
Nach dem Entgasen bei 20-30 Torr werden 13,5 g (0,15 Mol) Butandiol-1,4 bei Normaldruck zugemischt. Gleich danach wird die erhaltene klare Schmelze in Formen der Masse 150 X 150 X 4 mm gegossen und bei 2050 C 10 Stunden lang gehärtet. Es entsteht in Giesskörper, welcher eine Formbeständigkeit in der Wärme (nach ISO/R 75) von > 3000 C aufweist
As is known, polymaleimides can be used as raw materials for the production of polyaddition and polymerization products. For example, FR patent 1 555 564 describes the polyaddition of N, N'-bis-maleimides with primary diamines and the hardening of these pre-adducts by thermal polymerization.
The polymers obtained, containing succinimide residues, are, however, inadequate for many purposes. This is because they have a comparatively low dimensional stability under heat.
Polyaddition products of bis-maleimides and organic dithiols are claimed in US Pat. No. 3,741,942. These known polyadducts and the manufacturing process for them have all the major disadvantages which are characteristic of sulfur-containing high polymers. In particular, reference should be made to the strong odor nuisance caused by the dithiols and their toxic effect. Since similar nuisances also occur during the combustion and decomposition at high temperatures of these sulfur-containing polyadducts, they cannot be used as materials in most cases, especially in the construction sector, in vehicle and aircraft construction. Another disadvantage of these products is that the softening temperatures are not higher than 110 to 1700.degree.
The object of the invention is to create polymaleimide-based polymaleimide-based polycondensation products containing imide groups, which do not have the disadvantages of the previously known polyadducts based on polymaleimide, and which can be produced without handling harmful substances and without odor nuisance.
The invention relates to a process for the preparation of polyadducts containing imide groups, which is characterized in that polyimides which are a radical of the general formula
EMI1.1
in which D denotes a divalent radical containing a carbon-carbon double bond, contains at least twice in the molecule, reacts with polyhydric alcohols and with primary polyamines at temperatures between 50 and 2800 C in such a proportion that for 1 equivalent of polyimide so much polyhydric alcohol and primary polyamine come that the sum of the latter two substances is 0.2 to 1.5 equivalents and the equivalent ratio of the polyhydric alcohol to the polyamine is 1: 4 to 4: 1.
The polyaddition according to the invention is partly based on a linkage of polyimide and polyamine according to the following chemical equation (I-A), in which difunctional reactants and a bis-maleimide are used for simplification.
EMI1.2
On the other hand, the polyaddition takes place by means of a novel combination of polyimide and polyvalent Al-partner and a bis-maleimide, which is also used to simplify bifunctional reaction.
alcohol according to the following chemical equation (I-P)
EMI1.3
<tb> <SEP> CO <SEP> / <SEP> CO <SEP> basic <SEP> CH2 <SEP> \ <SEP> / <SEP> CO
<tb> <SEP> more basic
<tb> CH <SEP> CH <SEP> Kataly- <SEP> CH2 <SEP> ¯¯ <SEP> / <SEP> CH
<tb> II <SEP> N-A-N <SEP> 11 <SEP> + <SEP> HO-E-OH <SEP> sator <SEP> 1 <SEP> A-N
<tb> CH <SEP> / <SEP> \ <SEP> CH <SEP> sator <SEP> -CH <SEP> CH-O-E-O
<tb> <SEP> CO <SEP> CO <SEP> CO <SEP> CO <SEP> (r-P)
<tb>
Both types of linkage initially lead to molecular chains, the chain links resulting from equations (I-A) and (I-P) alternating, statistically distributed or separately, i.e. H. each cumulated in block polymer form into which chains can be built.
This link first leads to molecular chains. In the course of the reaction according to the invention, crosslinking also takes place, which is mainly based on the homopolymerization of the double bonds of the polyimides used. This is particularly effective when the number of double bond equivalents is greater than the sum of the amino and hydroxyl equivalents. The formation of cross-linked products is particularly evident in the case of using tri-functional or higher-functional starting products.
Most of the polyimides which can be used according to the invention are described in detail in the literature. They can be prepared by the methods described in US Pat. No. 3,010,290 and GB Pat. No. 1,137,592 by reacting the corresponding diamines with the unsaturated dicarboxylic acid anhydrides.
According to the invention are u. a. all the polyimides can be used which have already been enumerated in FR patent 1,555,564. Maleimides are particularly suitable; H.
Polyimides of the formula (I) in which D is the divalent radical of the formula
EMI1.4
where R is hydrogen or methyl.
A preferred form of the invention is the reaction with polyimides which contain the remainder of the formula (I) two or three times in the molecule, and thus in particular the reaction with bis- and tris-maleimides.
Particularly suitable bis-maleimides are compounds of the formula
EMI2.1
in which A is a divalent organic radical having 2 to 30 carbon atoms.
The radical A in formula (III) preferably corresponds to the formula
EMI2.2
where Rl is one of the residues
EMI2.3
Represents -SO2-, -SO-, -S- and -0- and n is 0 or 1.
However, new bis- and tris-imides which have the following formula VIII can also be used for the process according to the invention:
EMI2.4
A and A ″ denote aromatic radicals which are optionally substituted or interrupted by an oxygen atom, an alkylene group or sulfonyl group, D the radical defined above, Z an oxygen atom or sulfur atom, m the number 1 or 0 and n the number 2 or 3.
Examples of such new maleimides suitable for the process according to the invention are: the N, N'-bis-maleimide of 4,4'-diamino-triphenyl phosphate, the N, N'-bis-maleimide of 4,4'-diamino triphenylthio phosphate, the N, N ', N "-trismaleinimide of tris (4-aminophenyl) phosphate, the N, N', N" -trismaleinimide of tris (4-aminophenyl) thiophosphate.
According to the invention, mixtures of two or more of all the above-mentioned polyimides can also be used.
Polyhydric alcohols which are suitable as starting substances for the process according to the invention (optionally in a mixture of different alcohols) are, in particular, dihydric or trihydric alcohols.
Straight or branched aliphatic alcohols with a total of 2 to 12 carbon atoms, such as, for example, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, are very suitable , 1,2,6-hexanetriol, 1,1,1-trishydroxymethylpropane and glycerine. In principle it is also possible to use alcohols which contain one or more olefinic double bonds.
Also suitable as starting substances are cycloaliphatic or cycloaliphatic-aliphatic alcohols with 1 or more cycloaliphatic nuclei, which may optionally contain oxygen, sulfur or sulfur-containing radicals as connecting members, the hydroxyl groups being bonded either to the aliphatic or to the cycloaliphatic radicals.
A preferred form of the invention in this regard is the use of compounds which of the formula V.
EMI2.5
correspond, in which Rl is one of the radicals -CH2-,
EMI2.6
-SO2-, -SO-, -S- and -0- and n is 0 or 1.
Examples of such compounds are hydrogenated bisphenol A, bis (p-hydroxycyclohexyl) methane, bis (p-hydroxycyclohexyl) sulfone, bis (p-hydroxycyclohexyl) sulfoxide, bis (phydroxycyclohexyl) sulfide, bis- (p-hydroxycyclohexyl) ether and 4,4'-dihydroxydicyclohexyl.
Further alcohols which are well suited for the process according to the invention are polyglycol ethers of polyhydric alcohols or phenols, such as, for example, the diglycol ethers of the compounds of the formula (V) listed above, in particular bisphenol A diglycol ethers.
Other suitable cycloaliphatic-aliphatic alcohols are polymethylol compounds, such as, for example, cyclohexanedimethylol. The simplest of the purely cycloaliphatic alcohols that can be used as a starting material is 1,4-cyclohexanediol.
All of the polyalcohols listed here and suitable as starting materials for the process according to the invention have been known to the person skilled in the art for a long time and it is therefore unnecessary to go into the details of their production here.
According to the invention, preference is given to using aromatic or araliphatic, di- or tri-primary amines with 2 to 40 carbon atoms in the molecule. Diamines of the formula are particularly suitable
EMI2.7
in which Rl and n have the meaning given above.
In principle, all of the polyamines that have already been listed in FR patent 1,555,564 can also be used. The following polyamines suitable for the process according to the invention should be mentioned in detail: 1,2,4-triaminobenzene, 1,3,5-triaminobenzene, 2,4,6-triaminotoluene, 2,4,6-triamino-1,3 , 5-trimethylbenzene, 1,3,7-triaminonaphthalene, 2,4,4'-triaminodiphenyl, 3,4,6-triaminopyridine, 2,4,4'-triaminophenyl ether, 2,4,4'-triaminodiphenylmethane, 2, 4,4'-triaminodiphenylsulfone, 2,4,4'-triaminobenzophenone, 2,4,4'-triamino-3-methyl-diphenylmethane, N, N, N-tri- (4-aminophenyl) -amine, tri- ( 4-aminophenyl) methane, tri- (4-aminophenyl) phosphate, tri- (4-aminophenyl) phosphite, tri- (4-aminophenyl) thiophosphate, 3,5,4'-triaminobenzanilide, melamine, 3, 5,3 ', 5'-tetraaminobenzophenone,
1,2,4,5-tetraaminobenzene, 2,3,6,7-tetraaminonaphthalene, 3,3'-diaminobenzidine, 3,3'4,4'-tetraaminophenyl ether, 3,3 ', 4,4'-tetraaminodiphenylmethane, 3,3 ', 4,4'-tetraaminodiphenylsulfone, 3,5-bis- (3,4'-diaminophenyl) -pyridine, 4,4'-diaminodicyclohexylmethane, 1,4 diamino-cyclohexane, m-phenylenediamine, p-phenylenediamine , 4,4'-diamino-diphenyl-methane, bis- (4-aminophenyl) -2,2propane, 4,4'-diamino-diphenyl ether, 4,4'-diaminodiphenyl sulfone, 1,5-diaminonaphthalene, m-xylylenediamine, p-xylylenediamine, ethylenediamine, hexamethylenediamine, bis (γ-amino propyl) -5, 5-dimethyl-hydantoin, 4,4'-diaminotriphenyl phosphate.
The above-mentioned amines which are suitable for the process according to the invention and the processes for their preparation are known, so that it is unnecessary to go into them in more detail.
For the sake of completeness, it should be mentioned that polyamines obtained by reacting primary aromatic amines with aldehydes or ketones are also suitable as starting substances. In this regard, reference should be made to French patents 1,430,977 and 1,481,932.
Mixtures of several polyamines can also be used according to the invention.
In the reaction according to the invention, the equivalent ratio of the polyhydric alcohol to the polyamine is preferably 1: 2 to 4: 1.
The reaction according to the invention can take place in the melt or partly in the melt, partly in the solid phase. But it can also be carried out in solution.
If the process is carried out in melt flow, temperatures of 100 to 2500 C are particularly suitable. In contrast, lower temperatures of 500 to 1500 C, for example, can also be used in solution.
Examples of suitable solvents include the following substances:
Aromatics such as xylene and toluene; Halogenated hydrocarbons, such as trichlorethylene, tetrachloroethane, tetrachloroethylene, chlorobenzene; Ethers such as dioxane, tetrahydrofuran, dibutyl ether; Dimethylformamide, tetramethylurea, dimethyl sulfoxide and N-methylpyrrolidone.
In some cases, especially when using relatively less reactive substance mixtures or when performing polyaddition in solution at lower temperatures, it is advantageous to accelerate the reaction with basic catalysts.
According to the invention, particularly suitable basic catalysts are tertiary, secondary, primary amines or amines which contain several different types of amino groups (for example mixed tertiary-secondary amines) and quaternary ammonium compounds. These amine catalysts can be both monoamines and polyamines.
If primary and secondary amines are used, monoamines are preferred. The following substances are to be listed as examples of such amine catalysts: diethylamine, tributylamine, triethylamine, triamylamine, benzylamine, N-methylpyrrolidine, tetramethyldiaminodiphenylmethane, quinoline, N, N-diisobutylaminoacetonitrile, N, N-dibutylaminoacetonitrile and their homologeazole, their homologeazole. Examples of suitable quaternary ammonium compounds are benzyltrimethylammonium hydroxide and benzyltrimethylammonium methoxide.
Further suitable catalysts are alkali metal compounds, such as alkali alcoholates and hydroxides. Sodium methylate is particularly suitable.
The catalysts should be present in the reaction mixture in a concentration of 0.1 to 15% by weight, preferably from 0.3 to 8% by weight, the 0/0 by weight data being based on the refer to the total amount of reacting starting components.
The products resulting from the reactions which contain secondary or tertiary amino groups can also have a catalytic effect in the course of the reaction.
In general, when carrying out the process according to the invention, reaction mixtures are used which, in addition to the polyimides, also contain polyhydric alcohols and primary polyamines.
However, one can also proceed in such a way that the respective polyimide is first allowed to react in whole or in part with the respective alcohol in the presence of a catalyst and then the remainder of the reaction with the primary polyamine and optionally with the remaining alcohol is allowed to proceed.
The reverse is also possible. The respective polyimide is first allowed to react in whole or in part with the respective primary polyamine. This is followed by the reaction with the respective polyhydric alcohol and, if appropriate, with the remaining primary polyamine.
In the two procedures described last, a prepolymer is practically first produced. However, a prepolymer can also be prepared and further processed in the following manner. After all the starting materials have been mixed and, if necessary, after subsequent grinding, the powder is first heated to 140 to 1700 ° C. for a limited time. A partially soluble product is still thermally deformable. This prepolymer may have to be ground again to a processable powder before it is finally hardened in the final processing. The prepolymerization can also be carried out by heating a solution or suspension of the starting materials.
The production according to the invention of the polyadducts containing imide groups is generally carried out with simultaneous shaping to give moldings, sheet-like structures, laminates, adhesives and foams. The additives customary in the technology of curable plastics, such as fillers, plasticizers, pigments, dyes, mold release agents and flame-retardant substances, can be added to the curable compositions. For example, glass fibers, mica, quartz powder, kaolin, colloidal silicon dioxide or metal powder can be used as fillers; various waxes, zinc or calcine stearate, etc. can serve as mold release agents.
The shaping of the products which can be produced by the process according to the invention can be carried out in the simplest possible manner by the casting process using a casting mold.
The shaping can also take place after hot pressing.
procedure can be carried out using a press. In most cases, it is sufficient to only briefly heat to temperatures of 170 to 2500 C at a pressure of 1 to 200 kp / cm2 and then completely cure the molding obtained in this way outside the press.
The process according to the invention can also be carried out in such a way that a prepolymer is first produced, suspended or dissolved in a suitable solvent, then porous flat structures such as woven fabrics, fiber mats or nonwovens, especially glass fiber mats or glass fiber woven fabrics, are impregnated with these solutions or suspensions, the solvent removed by a drying process and finally the substrates obtained in this way are heated in a press to preferably 170-2500 ° C. at a pressure of 5-200 kp / cm2 pressure. It is also possible to just pre-cure the laminates in the press and to post-cure the products obtained in this way in an oven until they have achieved optimum performance properties.
The process according to the invention and the polyaddition products which can be produced thereby are particularly applicable in the fields of surface protection, electrical engineering, lamination processes, foam production and in construction.
Mixed powders are preferably used in the process according to the invention. These are best obtained by grinding or re-grinding the solid individual components together using an intensively working grinding system (such as ball mills, for example). From the powder mixture, which can be used as such in many cases, however, a material containing larger pieces, particularly suitable for the hot-pressing process, can also be produced in a known manner by tableting, by build-up granulation or by similar processes.
If the hot-curable mixtures according to the invention are to be processed as casting resins, they must not contain polyalcohols which escape during the required degassing of the mixture in the melt at reduced pressure (for example at 2 to 20 Torr).
For example, 1,4-butanediol cannot be used in connection with N, N'-4,4'-diphenylmethane-bis-maleimide for casting resin mixtures. It is known that this maleimide melts at around 1500 C and the boiling point of 1,4-butanediol at 10 Torr is around 1200 C; d. H. the latter substance would distill off during the degassing of the melt.
A preferred form of the hot-curable mixtures according to the invention are thus those mixtures which contain polyalcohols whose boiling points at the pressure generally used for degassing the mixture in the melt (2-20 Torr) are above the temperature of this melt.
However, the restriction set out above for the mixtures according to the invention in casting processing does not apply to processing the mixtures in solution. In the latter case, for example, a combination of N, N'-4,4'-diphenylmethane-bis-maleimide with butanediol1,4 is also possible.
Production of starting products for the process according to the invention
I. Preparation of a trisimide of the formula VIII a) 294 g (3.0 mol) of maleic anhydride, dissolved in 800 ml of dioxane, are placed in a reaction vessel equipped with a stirrer and thermometer. A solution of 371 g (1 mol) of tris (4-aminophenyl) phosphate, dissolved in 2.5 liters of dioxane, is added dropwise to this solution at 10-200 ° C. over the course of 95 hours. After the addition has ended, the mixture is stirred for a further 11/2 hours, then the reaction product is filtered off, washed with chloroform and dried. 669 g of a yellowish substance with a melting point of 127 to 1300 ° C. are obtained.
According to the analytical data, this has the following structure:
EMI4.1
b) 85 g of sodium acetate and 1.1 liters of acetic anhydride are placed in a reaction vessel equipped with a stirrer and thermometer and heated to 600 ° C. in an oil bath. 954 g of the trismaleamic acid prepared according to a) are added to this solution in portions over the course of 30 minutes so that the reaction temperature does not exceed 900.degree. When the addition is complete, the mixture is allowed to cool to room temperature and a mixture of 2 liters of isopropanol and 0.7 liters of water is then added dropwise to the partially crystallized reaction product. The precipitated substance is filtered off, washed acid-free with isopropanol and water and dried.
532 g of a substance with a melting point of 173.5-1770 C are obtained which, according to analytical data, is the tris-maleinimide of tris- (4-aminophenyl) phosphate with the following structural formula:
EMI4.2
Embodiments
179 g (0.5 mol) of N, N'-p, p'-diphenylmethane-bis-maleimide and 9.9 g (0.05 mol) of 4,4'-diaminodiphenylmethane are melted together at an oil bath temperature of about 1800.degree.
After degassing at 20-30 torr, 13.5 g (0.15 mol) of 1,4-butanediol are mixed in at normal pressure. Immediately thereafter, the clear melt obtained is poured into molds measuring 150 × 150 × 4 mm and cured at 2050 ° C. for 10 hours. It is created in cast bodies which have a dimensional stability under heat (according to ISO / R 75) of> 3000 C.