CH557866A - Enzymatic hydrolysis of starch in presence of stearic acid - giving stable colloidal solns., useful as paper and cardboard adhesives and coatings - Google Patents

Enzymatic hydrolysis of starch in presence of stearic acid - giving stable colloidal solns., useful as paper and cardboard adhesives and coatings

Info

Publication number
CH557866A
CH557866A CH1210172A CH1210172A CH557866A CH 557866 A CH557866 A CH 557866A CH 1210172 A CH1210172 A CH 1210172A CH 1210172 A CH1210172 A CH 1210172A CH 557866 A CH557866 A CH 557866A
Authority
CH
Switzerland
Prior art keywords
starch
hydrolysis
colloidal
enzymatic hydrolysis
stearic acid
Prior art date
Application number
CH1210172A
Other languages
French (fr)
Original Assignee
Vema S Chemical Processes Dev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vema S Chemical Processes Dev filed Critical Vema S Chemical Processes Dev
Priority to CH1210172A priority Critical patent/CH557866A/en
Publication of CH557866A publication Critical patent/CH557866A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/06Glucose; Glucose-containing syrups obtained by saccharification of starch or raw materials containing starch
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J103/00Adhesives based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09J103/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/28Non-macromolecular organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/54Inorganic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Inorganic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)

Abstract

Starch is hydrolysed enzymatically, at least partly in the presence of stearic acid, to give an aq. colloidal compsn. The compsn. is an adhesive, a binder and a coating compsn. esp. for the prodn. of corrugated cardboard It is also suitable as a pharmaceutical excipient, as a dispersant for fibres of cellulose, viscose, polyamides and polyesters in prodn. of non-woven fabrics, and for emulsification of water-immiscible oils. In comparison with compsns. produced by the Steinhall process, the colloidal solns. have more stable viscosity and adhesiveness during storage for several days and after pumping during use. They dry more rapidly and at a lower temp., giving stronger bonding. They are cheap, non-toxic and chemically inert.

Description

  

  
 



   La présente invention a pour objet un procédé de préparation d'une composition aqueuse colloïdale. utilisable notamment comme colle, liant et enduit. par hydrolyse enzymatique d'amidon.



   Il est connu que   l'hydrolyseà    chaud des amidons par des enzymes de la classe des amylases permet d'obtenir des dextrines.



     Aprés    refroidissement de ces solutions aqueuses de dextrines, il se forme généralement des gelées inutilisables pour les applications courantes. Pour éviter cet inconvénient. on   opére    dans la pratique à basse concentration et on prolonge sensiblement l'hydrolyse. C'est le cas pour l'obtention des produits destinés au traitement de surface des papiers.



   L'addition de monoglycérides d'acides gras pour ralentir la formation de telles gelées a été décrite.



   Conformément à la présente   invention.    on effectue l'hydrolyse enzymatique de l'amidon au moins partiellement en présence d'acide stéarique.



   Les solutions obtenues se distinguent par une viscosité et une adhésivité plus stables que celles des solutions résultant de l'hydrolyse   enzymatique    effectuée en l'absence d'acide stéarique.



  Pour les utiliser comme adhésif. on leur ajoutera avantageusement de l'amidon en poudre. par exemple dans la proportion de 2 à 6 fois le poids du produit d'hydrolyse enzymatique calculé sous forme   séche.   



   Ces mélanges constituent des produits intéressants. tout particuliérement pour la fabrication du carton ondulé double face et également du simple face.



   Par rapport au procédé Steinhal (amidon transformé à chaud par la soude et addition à froid d'amidon et de borate de sodium).



  qui actuellement est le plus largement utilisé dans la plupart des usines de fabrication de carton ondulé. le présent procédé présente les avantages suivants: 1) meilleure stabilité de la viscosité et de l'adhésivité au cours du
 stockage et sur machines   aprés    passage à travers les pompes.



   Contrairement aux solutions fortement alcalines (du procédé
 Steinhal) dont la viscosité   aprés    quelques heures baisse sen
 siblement. les mélanges en question sont plus stables même
   aprés    plusieurs jours: 2) meilleur collage: 3) plus grande rigidité du collage: 4) séchage plus rapide et température du séchage plus basse: il
 s'agit donc là de possibilités nouvelles permettant de réduire.



   au cours de la fabrication du carton ondulé. la phase du traite
 ment thermique: 5) prix de revient inférieur.



   Les compositions aqueuses colloïdales produites par le procédé selon l'invention sont également utilisables comme liant.



  comme enduit non glissant pour le papier et le carton et comme excipient pharmaceutique.



   Pour l'utilisation comme excipient pharmaceutique. par exemple dans des    sprays     et gouttes. la concentration de l'hydrolysat peut atteindre   200,0.    Ces produits d'hydrolyse présentent l'avantage d'être non toxiques. chimiquement inertes. d'un prix de revient bas et de pouvoir mettre en dispersion ou émulsion de nombreuses molécules. Ils peuvent être utilisés tels quels ou mélangés à de faibles proportions de polymères de l'acide acrylique ou méthacrylique ou d'alcool polyvinylique.



   Ils se prêtent à l'incorporation de principes actifs: plus particulièrement ils ouvrent de nouvelles possibilités dans l'émulsification des huiles non miscibles à l'eau. qu'on peut également ajouter au cours du refroidissement des solutions d'amidon hydrolysé.



   On obtient ainsi des émulsions stables en évitant la préparation souvent délicate et plus coûteuse des émulsions conventionnelles.



   Les compositions aqueuses colloïdales produites par le procédé selon l'invention sont encore utilisables comme milieu aqueux pour les dispersions de fibres de cellulose. viscose. polyamide. polyester. etc.. en vue de la fabrication des matériaux textiles dits  non tissés  par la méthode par voie humide.



   Actuellement, ces fibres sont dispersées dans l'eau mais, pour éviter une rapide décantation, on est obligé de travailler à de faibles concentrations. La longueur de ces fibres est également limitée.



   Le présent procédé permet. par l'emploi de mélanges plus concentrés. d'augmenter le rendement de fabrication; il est également possible d'utiliser des fibres plus longues,   d'où    amélioration des qualités textiles des produits finis.



   Les exemples suivants illustrent l'invention. Les parties et pourcentages sont en poids.



     E.remple 1:   
 On mélange en agitant les matières suivantes:
 Eau 75-80 parties
 Amidon 25-20 parties
 Amylase   0.1.0.20/o    par rapport à l'amidon
 Acide stéarique I -1.2% par rapport à l'amidon
 L'amidon peut être de l'amidon de   malus.    de pomme de terre ou de manioc.



   On porte le mélange à une température de 80 C en l'espace de 15 à 20 mn en continuant à agiter. Vers 72-. on observe un épaississement puis, à partir de   801.    la viscosité baisse. On interrompt le chauffage et. environ 5 à 10 mn   aprés.    on inactive l'enzyme par addition d'acide chlorhydrique ou formique jusqu'à un pH du mélange de 5 à 6.



   On pourrait opérer avec d'autres concentrations d'amidon, notamment entre 5 et 55% en poids.



   Dans le domaine du couchage du papier. la composition aqueuse colloïdale de cet exemple donne des surfaces moins sensibles à l'eau que les hydrolysats d'amidon produits de   maniére    connue. Après traitement. les propriétés physiques et mécaniques des papiers sont améliorées de 15 à 30%. Les surfaces obtenues sont résistantes à l'eau. aux huiles et aux solvants.



   Pour l'enduction des papiers et cartons avec passage en four de séchage ou sur des calandres chauffées. on peut disperser dans la composition colloïdale de cet exemple des résines synthétiques sous forme de poudre telles que chlorure de polyvinyle. polyéthy   léne.    etc.



   Etant donné les propriétés hydrophiles des papiers et cartons.



  la composition colloïdale pénètre en formant une première couche. tandis que les polymères forment une couche superficielle, ce qui assure l'étanchéité du produit.



   En variante. on peut à partir de la même formule opérer également en présence de   0. 1%    d'urée ou de 0.1 à   0.20/o    d'hypochlorite de sodium en solution si on désire prolonger encore davantage la stabilité.



   En variante également. on peut opérer en présence de 10 à   30 /0    par rapport à l'amidon de kaolin en poudre de granulométrie pouvant être comprise entre I et 20 microns.

 

   Pour le collage des papiers et cartons. cette addition n'affecte pas les propriétés adhésives. permet de diminuer le temps de prise.



  et le prix de revient.



   On peut d'autre part ajouter à la composition aqueuse colloïdale de cet exemple de l'oxyde d'antimoine ou du borate de zinc.



  La composition ainsi complétée peut servir comme revêtement ignifuge pour fibres cellulosiques.



     Exemple 2:   
 Pour l'utilisation comme colle dans la fabrication du carton ondulé. on disperse dans le mélange obtenu comme dans l'exemple 1. au cours du refroidissement. de l'amidon en poudre à raison de 2 à 6 fois le poids de l'amidon initial. puis on porte le pH à 8-9 par addition de soude caustique.  



  Exemple 3:
 Pour l'utilisation comme colle dans la fabrication du carton ondulé, il s'est avéré particulièrement avantageux d'ajouter aux compositions colloïdales aqueuses obtenues suivant le procédé de l'invention, des prépolymères phénoliques sirupeux formés par condensation de phénol et de formaldéhyde en milieu acide. On opérera par exemple de la façon suivante: 100 parties de phénol sont introduites dans un réacteur. On ajoute 0,2 partie d'acide chlorhydrique concentré et 10 parties d'une solution de formaldéhyde à 30%. On chauffe progressivement jusqu'à la température de 75 à   783.    La réaction démarre et devient rapidement exothermique. On ajoute graduellement le reste du formaldéhyde. soit 90 parties. en l'espace de 20 minutes environ. On maintient à cette température 5 à 10 mn puis on refroidit.

  Le précondensat ainsi obtenu se présente sous forme d'un liquide sirupeux insoluble dans l'eau.



   On l'ajoute en proportion de 5 à 30% au mélange obtenu selon l'exemple 1. avec 0,2 à   0,5%    d'hexaméthyléne tétramine comme catalyseur.



  Exemple 4:
 Les produits d'hydrolyse de l'amidon en milieu alcalin sont connus depuis longtemps. On les utilise en tant que liant dans des bains d'impression destinés à la fabrication des papiers peints. Ils présentent néanmoins l'inconvénient de ne pas être stables. En outre, leur résistance au frottement à l'état humide est à peu près nulle.



   Le liant obtenu selon l'exemple I donne aux bains une stabilité très supérieure.



   D'autre part, si   l'on    pulvérise, sur les impressions obtenues à partir de ce liant, une solution aqueuse de borate de sodium à   5%    environ, leur résistance au frottement à l'état humide peut atteindre 20 coups d'éponge.



  Exemple 5:
 On sait que la propriété de non-glissement permet d'éviter les difficultés rencontrées au cours de l'empilement et du gerbage des emballages constitués par ces matériaux. Plusieurs méthodes ont déjà été proposées: il s'agit tout d'abord de l'emploi de silices colloïdales. Ces préparations sont toutefois très alcalines et peuvent entrainer l'usure plus rapide des organes des machines. D'autre part, leur prix est assez élevé. On a également proposé un procédé qui consiste à rendre la surface du papier plus rugueuse au moyen d'un cylindre frotteur rotatif.

 

   On obvie à cet inconvénient en enduisant le papier d'une composition préparée par addition de 20 à 30 parties de silice en poudre au mélange obtenu selon l'exemple 1.



   Le coefficient de frottement des surfaces des papiers et cartons ainsi traités est de 20 à   300in    supérieur à celui obtenu par les méthodes habituelles. La composition ainsi utilisée présente en outre les avantages suivants:
 1) le pH est voisin de la neutralité; 2) le prix de revient est très bas; 3) le traitement de surface peut être effectué au cours de la fabri
 cation des emballages; 4) il est possible de préparer ces produits à diverses fluidités, ce
 qui permet de réaliser l'enduction soit au rouleau. soit par pul
 vérisation. 



  
 



   The present invention relates to a process for preparing a colloidal aqueous composition. usable in particular as glue, binder and coating. by enzymatic hydrolysis of starch.



   It is known that the hot hydrolysis of starches by enzymes of the amylase class makes it possible to obtain dextrins.



     After cooling these aqueous solutions of dextrins, jellies generally form which cannot be used for current applications. To avoid this inconvenience. the practice is carried out at low concentration and the hydrolysis is substantially prolonged. This is the case for obtaining products intended for the surface treatment of papers.



   The addition of fatty acid monoglycerides to slow the formation of such jellies has been described.



   In accordance with the present invention. the enzymatic hydrolysis of the starch is carried out at least partially in the presence of stearic acid.



   The solutions obtained are distinguished by a viscosity and a more stable adhesiveness than those of the solutions resulting from the enzymatic hydrolysis carried out in the absence of stearic acid.



  To use them as an adhesive. powdered starch will advantageously be added to them. for example in the proportion of 2 to 6 times the weight of the enzymatic hydrolysis product calculated in dry form.



   These mixtures constitute interesting products. especially for the manufacture of double-sided and also single-sided corrugated cardboard.



   Compared to the Steinhal process (starch transformed hot by soda and cold addition of starch and sodium borate).



  which is currently the most widely used in most corrugated cardboard manufacturing plants. the present process has the following advantages: 1) better stability of viscosity and tackiness during
 storage and on machines after passage through the pumps.



   Unlike strongly alkaline solutions (from the process
 Steinhal) whose viscosity after a few hours drops sen
 sibly. the mixtures in question are more stable even
   after several days: 2) better bonding: 3) greater rigidity of the bonding: 4) faster drying and lower drying temperature: it
 These are therefore new possibilities for reducing.



   during the manufacture of corrugated cardboard. the milking phase
 thermal ment: 5) lower cost price.



   The colloidal aqueous compositions produced by the process according to the invention can also be used as a binder.



  as a non-slip coating for paper and board and as a pharmaceutical excipient.



   For use as a pharmaceutical excipient. for example in sprays and drops. the concentration of the hydrolyzate can reach 200.0. These hydrolysis products have the advantage of being non-toxic. chemically inert. a low cost price and being able to disperse or emulsify many molecules. They can be used as they are or mixed with small proportions of polymers of acrylic or methacrylic acid or polyvinyl alcohol.



   They lend themselves to the incorporation of active principles: more particularly they open up new possibilities in the emulsification of oils immiscible with water. which can also be added during cooling of solutions of hydrolyzed starch.



   Stable emulsions are thus obtained while avoiding the often delicate and more expensive preparation of conventional emulsions.



   The colloidal aqueous compositions produced by the process according to the invention can also be used as an aqueous medium for the dispersions of cellulose fibers. viscose. polyamide. polyester. etc. .. for the manufacture of so-called non-woven textile materials by the wet method.



   Currently, these fibers are dispersed in water but, in order to avoid rapid settling, it is necessary to work at low concentrations. The length of these fibers is also limited.



   The present method allows. by the use of more concentrated mixtures. to increase manufacturing efficiency; it is also possible to use longer fibers, thereby improving the textile qualities of the finished products.



   The following examples illustrate the invention. Parts and percentages are by weight.



     E. Example 1:
 The following materials are mixed with stirring:
 Water 75-80 parts
 Starch 25-20 parts
 Amylase 0.1.0.20/o compared to starch
 Stearic acid I -1.2% relative to starch
 The starch can be penalty starch. of potato or cassava.



   The mixture is brought to a temperature of 80 ° C. over a period of 15 to 20 min, while continuing to stir. Around 72-. thickening is observed then, from 801. the viscosity drops. The heating is interrupted and. about 5 to 10 minutes later. the enzyme is inactivated by adding hydrochloric or formic acid to a pH of the mixture of 5 to 6.



   One could operate with other starch concentrations, in particular between 5 and 55% by weight.



   In the field of paper coating. the aqueous colloidal composition of this example gives surfaces less sensitive to water than the starch hydrolysates produced in a known manner. After treatment. the physical and mechanical properties of the papers are improved by 15 to 30%. The surfaces obtained are water resistant. with oils and solvents.



   For coating paper and cardboard with passage in a drying oven or on heated calenders. synthetic resins in powder form, such as polyvinyl chloride, can be dispersed in the colloidal composition of this example. polyethylene. etc.



   Given the hydrophilic properties of papers and boards.



  the colloidal composition penetrates forming a first layer. while the polymers form a surface layer, which ensures the sealing of the product.



   As a variant. from the same formula it is also possible to operate in the presence of 0.1% urea or 0.1 to 0.20 / o sodium hypochlorite in solution if it is desired to prolong the stability even further.



   Also in a variant. it is possible to operate in the presence of 10 to 30/0 relative to the powdered kaolin starch with a particle size which may be between I and 20 microns.

 

   For gluing paper and cardboard. this addition does not affect the adhesive properties. allows to reduce the setting time.



  and the cost price.



   On the other hand, antimony oxide or zinc borate can be added to the colloidal aqueous composition of this example.



  The composition thus completed can serve as a flame retardant coating for cellulosic fibers.



     Example 2:
 For use as an adhesive in the manufacture of corrugated cardboard. it is dispersed in the mixture obtained as in Example 1. during cooling. powdered starch at a rate of 2 to 6 times the weight of the initial starch. then the pH is brought to 8-9 by adding caustic soda.



  Example 3:
 For the use as an adhesive in the manufacture of corrugated cardboard, it has proved particularly advantageous to add to the aqueous colloidal compositions obtained according to the process of the invention, syrupy phenolic prepolymers formed by condensation of phenol and formaldehyde in medium. acid. For example, the operation will be as follows: 100 parts of phenol are introduced into a reactor. 0.2 part of concentrated hydrochloric acid and 10 parts of a 30% formaldehyde solution are added. Gradually heated to a temperature of 75 to 783. The reaction starts and quickly becomes exothermic. Gradually add the rest of the formaldehyde. or 90 games. in about 20 minutes. This temperature is maintained for 5 to 10 min then it is cooled.

  The precondensate thus obtained is in the form of a syrupy liquid insoluble in water.



   It is added in a proportion of 5 to 30% to the mixture obtained according to Example 1. with 0.2 to 0.5% of hexamethylene tetramine as catalyst.



  Example 4:
 The products of hydrolysis of starch in an alkaline medium have been known for a long time. They are used as a binder in printing baths intended for the manufacture of wallpapers. They nevertheless have the drawback of not being stable. In addition, their resistance to rubbing in the wet state is almost zero.



   The binder obtained according to Example I gives the baths much greater stability.



   On the other hand, if one spray, on the prints obtained from this binder, an aqueous solution of sodium borate at about 5%, their resistance to rubbing in the wet state can reach 20 sponge strokes.



  Example 5:
 It is known that the non-slip property makes it possible to avoid the difficulties encountered during the stacking and stacking of packages made of these materials. Several methods have already been proposed: first of all, the use of colloidal silicas. However, these preparations are very alkaline and can lead to faster wear of machine parts. On the other hand, their price is quite high. A method has also been proposed which consists in making the surface of the paper rougher by means of a rotary friction cylinder.

 

   This drawback is overcome by coating the paper with a composition prepared by adding 20 to 30 parts of powdered silica to the mixture obtained according to Example 1.



   The coefficient of friction of the surfaces of the paper and cardboard thus treated is 20 to 300in higher than that obtained by the usual methods. The composition thus used also has the following advantages:
 1) the pH is close to neutrality; 2) the cost price is very low; 3) Surface treatment can be done during the fabrication
 cation of packaging; 4) it is possible to prepare these products at various fluidities, this
 which allows the coating to be carried out either by roller. either by pul
 verification.

 

Claims (1)

REVENDICATIONS I. Procédé de préparation d'une composition aqueuse colloïdale, utilisable notamment comme colle. liant et enduit, par hydrolyse enzymatique d'amidon, caractérisé en ce que l'on effectue l'hydrolyse enzymatique de l'amidon au moins partiellement en présence d'acide stéarique. I. Process for preparing a colloidal aqueous composition, which can be used in particular as an adhesive. binder and coating, by enzymatic hydrolysis of starch, characterized in that the enzymatic hydrolysis of the starch is carried out at least partially in the presence of stearic acid. II. Utilisation de la composition obtenue conformément au procédé selon la revendication I comme colle dans la fabrication du carton ondulé. II. Use of the composition obtained according to the process according to claim I as an adhesive in the manufacture of corrugated cardboard. SOUS-REVENDICATIONS 1. Procédé selon la revendication I. caractérisé en ce que l'on effectue l'hydrolyse enzymatique de l'amidon également en présence d'urée et ou d'hypochlorite de sodium. SUB-CLAIMS 1. Method according to claim I. characterized in that the enzymatic hydrolysis of the starch is also carried out in the presence of urea and or sodium hypochlorite. 2. Procédé selon la revendication I. caractérisé en ce que l'on disperse de l'amidon en poudre dans la solution colloïdale qui résulte de l'hydrolyse. 2. Method according to claim I. characterized in that the powdered starch is dispersed in the colloidal solution which results from the hydrolysis. 3. Procédé selon la revendication I, caractérisé en ce que. à la solution colloïdale qui résulte de l'hydrolyse, on ajoute un précondensat sirupeux. obtenu par condensation de phénol et de formaldéhyde en milieu acide, ainsi qu'un catalyseur pour la polycondensation de ce précondensat. 3. Method according to claim I, characterized in that. to the colloidal solution which results from the hydrolysis, a syrupy precondensate is added. obtained by condensation of phenol and formaldehyde in an acidic medium, as well as a catalyst for the polycondensation of this precondensate. 4. Procédé selon la revendication I. caractérisé en ce que l'on disperse de la silice en poudre dans la solution colloïdale qui résulte de l'hydrolyse. 4. Method according to claim I. characterized in that the powdered silica is dispersed in the colloidal solution which results from the hydrolysis. 5. Procédé selon la revendication I, caractérisé en ce que l'on disperse de l'oxyde d'antimoine et ou du borate de zinc dans la solution colloïdale qui résulte de l'hydrolyse. 5. Method according to claim I, characterized in that the antimony oxide and or zinc borate are dispersed in the colloidal solution which results from the hydrolysis. 6. Procédé selon la revendication I, caractérisé en ce que l'on mélange un polymère d'acide acrylique ou méthacrylique ou de l'alcool polyvinylique à la solution colloïdale qui résulte de l'hydrolyse. 6. Method according to claim I, characterized in that a polymer of acrylic or methacrylic acid or of polyvinyl alcohol is mixed with the colloidal solution which results from the hydrolysis.
CH1210172A 1972-08-15 1972-08-15 Enzymatic hydrolysis of starch in presence of stearic acid - giving stable colloidal solns., useful as paper and cardboard adhesives and coatings CH557866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH1210172A CH557866A (en) 1972-08-15 1972-08-15 Enzymatic hydrolysis of starch in presence of stearic acid - giving stable colloidal solns., useful as paper and cardboard adhesives and coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1210172A CH557866A (en) 1972-08-15 1972-08-15 Enzymatic hydrolysis of starch in presence of stearic acid - giving stable colloidal solns., useful as paper and cardboard adhesives and coatings

Publications (1)

Publication Number Publication Date
CH557866A true CH557866A (en) 1975-01-15

Family

ID=4379856

Family Applications (1)

Application Number Title Priority Date Filing Date
CH1210172A CH557866A (en) 1972-08-15 1972-08-15 Enzymatic hydrolysis of starch in presence of stearic acid - giving stable colloidal solns., useful as paper and cardboard adhesives and coatings

Country Status (1)

Country Link
CH (1) CH557866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2942251A1 (en) * 1979-10-19 1981-04-30 Maizena Gmbh, 2000 Hamburg METHOD FOR THE PRODUCTION OF STARCH SEEDS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2942251A1 (en) * 1979-10-19 1981-04-30 Maizena Gmbh, 2000 Hamburg METHOD FOR THE PRODUCTION OF STARCH SEEDS

Similar Documents

Publication Publication Date Title
EP0742316B1 (en) Composition and process for sizing paper
JP5015388B2 (en) Coating agent for paper products
CA2800647A1 (en) A process for the production of a composition of microfibrillated cellulose and pigment
FR2481707A1 (en) NOVEL SHEET MATERIAL COMPRISING REINFORCING FIBERS AND THERMOPLASTIC POWDER MATERIAL, AND PROCESS FOR PREPARING THE SAME
CN1520335A (en) Process for making polymeric particles
EP1641875B1 (en) Cationic liquid starchy composition and uses thereof
CN114867772A (en) Method for manufacturing a cellulose film comprising microfibrillated cellulose
WO2009071796A1 (en) Aqueous composition containing at least one soluble gelatinized anionic starch
CH557866A (en) Enzymatic hydrolysis of starch in presence of stearic acid - giving stable colloidal solns., useful as paper and cardboard adhesives and coatings
CA2491875A1 (en) Adhesive composition based on polymers and saccharides for the finishing process of a fibrous web
US6217942B1 (en) Lignin based coating
FR2459817A1 (en) Stable aq. reaction prod. from PVA - and cationic melamine-formaldehyde! resin acid colloid, as paper additive
JP4275213B2 (en) Press roll water doctor paper dust adhesion prevention method and paper dust adhesion prevention method
EP0786476B1 (en) Composition and process for bonding plane structures
FR2673208A1 (en) METHOD OF COATING PAPERS AND CARDBOARDS AND ITS APPLICATION TO THE PRODUCTION OF PAPER HAVING A GOOD SMOOTH.
EP1094082B1 (en) Process for modifying amylaceous materials in dry phase
US3356516A (en) Protein adhesive preparation
US11866575B2 (en) Biodegradable polymer
WO2022136794A9 (en) Process for manufacturing paper or cardboard
CN114364705A (en) Sulfonated microfine cellulose fiber and process for producing the same
BE543578A (en)
FR2511717A1 (en) Sheets for prodn. of thermo-formed articles - comprises polyolefin fibres and glass fibres, with improved resistance to repeated flexion
BE572158A (en)
BE497634A (en)
UA44293C2 (en) METHOD OF PREPARATION OF MODIFIED STARCH

Legal Events

Date Code Title Description
PL Patent ceased