CH507596A - Solid electrolyte for high-temp fuel cells - Google Patents

Solid electrolyte for high-temp fuel cells

Info

Publication number
CH507596A
CH507596A CH381268A CH381268A CH507596A CH 507596 A CH507596 A CH 507596A CH 381268 A CH381268 A CH 381268A CH 381268 A CH381268 A CH 381268A CH 507596 A CH507596 A CH 507596A
Authority
CH
Switzerland
Prior art keywords
solid electrolyte
fuel cells
zro2
yb2o3
temp fuel
Prior art date
Application number
CH381268A
Other languages
German (de)
Inventor
Josef Dr Rohr Franz
Original Assignee
Bbc Brown Boveri & Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bbc Brown Boveri & Cie filed Critical Bbc Brown Boveri & Cie
Publication of CH507596A publication Critical patent/CH507596A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

Mixtures of ZrO2 (a), Y2O3 (b), Yb2O3 (c) and Al2O3 (d), where the molar fractions (a) = 0.84-0.96, (b) is not >0.16, (c) is not >0.16, and (d) is not >0.04, and pref. either: (a) = 0.88, (b) = 0.06, (c) = 0.04, and (d) = 0.02, or (a) = 0.92, (b) = 0.04, (c) = 0.04, and (d) = 0) show good oxygen conductivity and phase stability at 750-800 degrees C.

Description

  

  
 



  Festelektrolyt für   Hochtemperatur-Brennstoffzellen   
Brennstoffzellen dienen bekanntlich zur direkten Umwandlung von chemischer in elektrische Energie.



  Zu diesem Zweck führt man bei Brennstoffzellen mit einem Festelektrolyten, deren Arbeitstemperatur rund 1000   0C    beträgt, der einen Elektrode Sauerstoff und der anderen einen Brennstoff, z. B. Wasserstoff, zu.



  Der Sauerstoff nimmt an seiner Elektrode Elektronen auf, wandert als zweifach negativ geladenes Ion durch den Festelektrolyten und reagiert an der anderen Elektrode mit Wasserstoff zu Wasser unter gleichzeitiger Elektronenabgabe. Es baut sich auf diese Weise zwischen den beiden Elektroden eine Potentialdifferenz auf, so dass in einem angeschlossenen Verbraucherkreis ein Strom fliesst.



   Als Festelektrolyt wird bevorzugt Zirkondioxyd verwendet, dem weitere Oxyde zur Verbesserung der Phasenstabilität und Ionenbeweglichkeit der Sauerstoffionen zugesetzt sind. Es ist bekannt (W. Nernst, Zeitschrift  Elektrochemie , H. 6, 1900, Seite 41, und C. Wagner, Zeitschrift  Naturwissenschaften , H. 31, 1943,   5. 265),    zu diesem Zwecke dem Zirkondioxyd Yttriumoxyd Y2   O8    oder Kalziumoxyd CaO zuzusetzen.



  Auf diese Weise wurden zwar die Phasenstabilität und die Sauerstoffionenleitfähigkeit verbessert, nachteilig ist jedoch die hohe Betriebstemperatur derartiger Zellen (1000    C).   



   Es ist weiterhin bekannt (H. Tannenberger et al, Zeitschrift  Revue Energie Primaire  III, 1965, S.



  19-26), Ytterbiumoxyd   Yb2O3    zuzusetzen, das bei Temperaturen unterhalb 1000    C    wohl eine Verbesserung der Sauerstoffionenleitfähigkeit, aber nicht der Phasenstabilität bewirkt.



   Weiterhin sind Festelektrolyte bekannt, die aus drei Oxyden bestehen, wie Zr   O2/CaO/MgO    oder Zr   O2/Yb2      O3/Al2O3.    Diese genannten Festelektrolyte weisen jedoch erhebliche Nachteile auf. Entweder sind sie bei hohen Temperaturenn von 800-1000    C    nicht phasenstabil wie Zr O2/Yb2O3, so dass sich die Sauerstoffionenbeweglichkeit laufend verschlechtert, oder letztere ist bei den gewünschten Arbeitstemperaturen von 700    C-800       C    sehr gering.



   Es ist Aufgabe der Erfindung, diese Nachteile zu beheben.



   Der erfindungsgemässe Festelektrolyt für Hochtemperatur-Brennstoffzellen ist dadurch gekennzeichnet, dass er der Formel     [ ZrO2 ] a    +    [ Y2Oss ] ss    +    [ Yb2O3 ]     +    [ AlO3 ] a    entspricht, mit a   +ss      +      y    +   a    =   1, woba a, B, r und 8    jeweils den Molenbruch bedeutet und 0    <       d.   



   Durch diese Massnahme wird eine sehr gute Sauerstoffionenleitfähigkeit und Phasenstabilität des Festelektrolyten erreicht. Es wurde erkannt, dass der Festelektrolyt dann die gewünschten Eigenschaften aufweist, wenn die Molenbrüche in folgenden Intervallen liegen:
0,84  <  a   S    0,96  ss   S    0,16    y 0,16       d      S   0,04
Es zeigte sich weiterhin, dass sich die oben erwähnten Nachteile der bekannten Festelektrolyten beheben lassen, wenn der Festelektrolyt erfindungsgemäss die Zusammensetzung     [ ZrO2 ] a    +    [ Y2O3J >     +    [ YbO3Jy    aufweist, die mit a +   fl    + y = 1, wobei die Indices die Molenbrüche angeben, die vorteilhafterweise in folgenden Wertbereichen liegen:

  :
0,84  <  a   :5    0,96    ss S 0,16       Y     <  0,16
Den erfindungsgemässen Festelektrolyten sind also Yttriumoxyd und Ytterbiumoxyd gleichzeitig zugesetzt,  die beide zusammen in überraschender Weise die bekannten Nachteile beheben. Die Festelektrolyten besitzen bei einer Arbeitstemperatur von   750-800  C    eine gute Sauerstoffionenleitfähigkeit und Phasenstabilität. Die Beweglichkeit für andere Ionen ist ebenso wie die elektronische Leitfähigkeit gering (Anteil  <  1%). Sie sind ausserdem gasdicht und chemisch beständig gegen oxydierende und reduzierende Reaktionsstoffe. 

  Als besonders günstig hinsichtlich ihrer Eigenschaften erweisen sich die Festelektrolyte der Zusammensetzung:  [ZrO2]0,92 + [Y2O3]0,04 + [Yb2O3]0,04  [ZrO2]0,88 + [Y2O3]0,06 + [Yb2O3]0,04 + [Al2O3]0,02
Zur Herstellung dieser Festelektrolyte werden die betreffenden binären Mischoxyde, z. B.   ZrO2/Y2O3    bzw.   ZrO2/Yb2O3    bzw.   ZrO2/Y2O3,      ZrO2/Yb2O3    und   ZrO2/Al2O3    oder die einzelnen Komponenten ZrO2,   Y2O3,      Yb2O3    und A1203 im entsprechenden Verhältnis gemischt und die an sich bekannten Verfahren angewandt.



   Der Festelektrolyt kann in Form von Platten bzw.



  Vollzylindern oder Rohren hergestellt und durch Schleifen, Bohren und Sägen weiterverarbeitet werden. 



  
 



  Solid electrolyte for high temperature fuel cells
It is well known that fuel cells are used for the direct conversion of chemical into electrical energy.



  For this purpose, in fuel cells with a solid electrolyte, the working temperature of which is around 1000 ° C., one electrode is oxygen and the other a fuel, e.g. B. hydrogen, too.



  Oxygen absorbs electrons at its electrode, migrates through the solid electrolyte as a doubly negatively charged ion and reacts with hydrogen to form water at the other electrode while simultaneously releasing electrons. In this way, a potential difference builds up between the two electrodes, so that a current flows in a connected consumer circuit.



   Zirconium dioxide is preferably used as the solid electrolyte, to which further oxides have been added to improve the phase stability and ion mobility of the oxygen ions. It is known (W. Nernst, Zeitschrift Elektrochemie, H. 6, 1900, page 41, and C. Wagner, Zeitschrift Naturwissenschaften, H. 31, 1943, 5. 265), for this purpose the zirconium dioxide yttrium oxide Y2 O8 or calcium oxide CaO to add.



  Although the phase stability and the oxygen ion conductivity were improved in this way, the high operating temperature of such cells (1000 C) is disadvantageous.



   It is also known (H. Tannenberger et al, Revue Energie Primaire III, 1965, p.



  19-26) to add ytterbium oxide Yb2O3, which at temperatures below 1000 C probably improves the oxygen ion conductivity, but not the phase stability.



   Solid electrolytes are also known which consist of three oxides, such as Zr O2 / CaO / MgO or Zr O2 / Yb2 O3 / Al2O3. However, these solid electrolytes mentioned have considerable disadvantages. Either they are not phase-stable at high temperatures of 800-1000 C, such as Zr O2 / Yb2O3, so that the mobility of oxygen ions continuously deteriorates, or the latter is very low at the desired working temperatures of 700 C-800 C.



   The object of the invention is to remedy these disadvantages.



   The solid electrolyte according to the invention for high-temperature fuel cells is characterized in that it corresponds to the formula [ZrO2] a + [Y2Oss] ss + [Yb2O3] + [AlO3] a, with a + ss + y + a = 1, wherea a, B , r and 8 each denotes the mole fraction and 0 <d.



   This measure achieves very good oxygen ion conductivity and phase stability of the solid electrolyte. It was recognized that the solid electrolyte has the desired properties when the mole fractions are in the following intervals:
0.84 <a S 0.96 ss S 0.16 y 0.16 d S 0.04
It was also found that the above-mentioned disadvantages of the known solid electrolytes can be eliminated if the solid electrolyte according to the invention has the composition [ZrO2] a + [Y2O3J> + [YbO3Jy, with a + fl + y = 1, the indices being the Specify mole fractions, which are advantageously in the following value ranges:

  :
0.84 <a: 5 0.96 ss S 0.16 Y <0.16
Yttrium oxide and ytterbium oxide are therefore added to the solid electrolytes according to the invention at the same time, and both of these together surprisingly eliminate the known disadvantages. The solid electrolytes have good oxygen ion conductivity and phase stability at a working temperature of 750-800 C. The mobility for other ions is low, as is the electronic conductivity (proportion <1%). They are also gas-tight and chemically resistant to oxidizing and reducing reactants.

  The solid electrolytes of the composition prove to be particularly favorable in terms of their properties: [ZrO2] 0.92 + [Y2O3] 0.04 + [Yb2O3] 0.04 [ZrO2] 0.88 + [Y2O3] 0.06 + [Yb2O3] 0.04 + [Al2O3] 0.02
To produce these solid electrolytes, the binary mixed oxides in question, e.g. B. ZrO2 / Y2O3 or ZrO2 / Yb2O3 or ZrO2 / Y2O3, ZrO2 / Yb2O3 and ZrO2 / Al2O3 or the individual components ZrO2, Y2O3, Yb2O3 and A1203 mixed in the appropriate ratio and the known methods applied.



   The solid electrolyte can be in the form of plates or



  Solid cylinders or pipes and processed by grinding, drilling and sawing.

 

Claims (1)

PATENTANSPRUCH PATENT CLAIM Festelektrolyt für Hochtemperatur-Brennstoffzellen, dadurch gekennzeichnet, dass er der Formel [ Zr 2 ] a + [ Y2O3 ] + [Yb2O3]&gamma; + [ Al2O3 ] a entspricht, mit &alpha; + # + &gamma; + # =1, wobei &alpha;, #, &gamma; und # jeweils den Molenbruch bedeuten und 0# # ist. Solid electrolyte for high-temperature fuel cells, characterized by being of the formula [Zr 2] a + [Y2O3] + [Yb2O3]? + [Al2O3] a, with? + # +? + # = 1, where?, #,? and # each mean the mole fraction and 0 is # #. UNTERANSPRÜCHE 1. Festelektrolyt nach Patentanspruch, dadurch gekennzeichnet, dass die Molenbrüche a, ss, y und 8 in den Wertbereichen 0,84 < &alpha; # 0,96 # # 0,16 &gamma; # 0,16 # # 0,04 liegen. SUBCLAIMS 1. Solid electrolyte according to claim, characterized in that the mole fractions a, ss, y and 8 in the value ranges 0.84 <? # 0.96 # # 0.16? # 0.16 # # 0.04 lie. Festelektrolyt nach Patentanspruch, dadurch gekennzeichnet, dass die Molenbrüche &alpha;, #, &gamma;, # die Werte a = 0,88 fl = 0,06 &gamma; = 0,04 # = 0,02 aufweisen. Solid electrolyte according to claim, characterized in that the mole fractions α, #, γ, # have the values a = 0.88 fl = 0.06 γ; = 0.04 # = 0.02. 3. Festelektrolyt nach Patentanspruch und Unteranspruch 1, dadurch gekennzeichnet, dass der Molenbruch # den Wert Null aufweist. 3. Solid electrolyte according to claim and dependent claim 1, characterized in that the mole fraction # has the value zero. 4. Festelektrolyt nach Patentanspruch und Unteranspruch 3, dadurch gekennzeichnet, dass die Molen brüche &alpha;, #, &gamma;, # die Werte a = 0,92 # = 0,04 &gamma; = 0,04 # = 0,00 aufweisen. 4. Solid electrolyte according to claim and dependent claim 3, characterized in that the mole fractions α, #, γ, # have the values a = 0.92 # = 0.04? = 0.04 # = 0.00.
CH381268A 1967-03-18 1968-03-14 Solid electrolyte for high-temp fuel cells CH507596A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1967B0091678 DE1671704B2 (en) 1967-03-18 1967-03-18 SOLID ELECTROLYTE FOR FUEL ELEMENTS

Publications (1)

Publication Number Publication Date
CH507596A true CH507596A (en) 1971-05-15

Family

ID=6985980

Family Applications (1)

Application Number Title Priority Date Filing Date
CH381268A CH507596A (en) 1967-03-18 1968-03-14 Solid electrolyte for high-temp fuel cells

Country Status (5)

Country Link
JP (1) JPS4825573B1 (en)
CH (1) CH507596A (en)
DE (1) DE1671704B2 (en)
FR (1) FR1557333A (en)
GB (1) GB1170046A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2904069A1 (en) * 1979-02-03 1980-08-07 Bosch Gmbh Robert FIXED ELECTROLYTE FOR ELECTROCHEMICAL APPLICATIONS AND METHOD FOR PRODUCING THE SAME
DE3914244A1 (en) * 1989-04-29 1990-10-31 Asea Brown Boveri FUEL CELL ARRANGEMENT AND METHOD FOR THE PRODUCTION THEREOF
DE3929730A1 (en) * 1989-09-07 1991-03-21 Kernforschungsz Karlsruhe HYDROGEN / OXYGEN FUEL CELL
DE4237519C1 (en) * 1992-11-06 1994-03-31 Dornier Gmbh Solid electrolyte with multi-layer electrode attached to it

Also Published As

Publication number Publication date
DE1671704B2 (en) 1976-05-06
DE1671704A1 (en) 1971-09-23
JPS4825573B1 (en) 1973-07-30
GB1170046A (en) 1969-11-12
FR1557333A (en) 1969-02-14

Similar Documents

Publication Publication Date Title
DE3611291C2 (en)
DE60007326T2 (en) OXYGEN IONE CONDUCTIVE CERAMIC MEMBRANE
DE2837593C3 (en) Stabilized zirconium dioxide for solid electrolytes that conduct oxygen ions
DE1483273C3 (en) Process for improving the galvanic properties of an aluminum alloy suitable for the production of sacrificial electrodes or galvanic elements
DE69314124T2 (en) Oxygen ion conductor and solid electrolyte fuel cell
DE7638054U1 (en) ELECTROCHEMICAL CELL
DE3403608A1 (en) FUEL CELL
DE19839382B4 (en) Oxide ion conductor and its use
DE1933735A1 (en) Compact oxygen electrolyte cell for the dissociation of steam
DE1947899B2 (en) Fuel cell
DE69629322T2 (en) Solid cerium oxide electrolyte with structure of the fluorite type
DE4406276A1 (en) Electrically conductive ceramic material and fuel cell produced using it
CH507596A (en) Solid electrolyte for high-temp fuel cells
DE2819685A1 (en) GALVANIC PRIMARY CELL WITH AT LEAST ONE NEGATIVE ELECTRODE MADE OF ALUMINUM OR AN ALUMINUM ALLOY
DE102010062713A1 (en) Sodium-chalcogen cell
DE3319987A1 (en) Nonaqueous cell
EP0046932A2 (en) Mixed crystals, process for their manufacture and application
CH649869A5 (en) LITHIUM ION-DRYING ELECTROLYTE.
DE1671704C3 (en) Solid electrolyte for fuel elements
DE2705681A1 (en) METHOD OF MAKING BETA &#39;&#39; -AL LOW 2 O LOW 3
DE2451964A1 (en) POWDERED LEAD, LEAD OXIDE AND A PORE-FORMING ADDITIVE MIXTURE FOR THE MANUFACTURING OF ELECTRODES FOR LEAD ACCUMULATORS
DE1571419A1 (en) Process for the manufacture of ion exchange membranes
DE2600103C2 (en) Solid electrolyte with predominantly ionic conductivity at higher temperatures
EP0968543B1 (en) High-temperature fuel cells with a composite material cathode
DE1225255B (en) Fuel element with acidic electrolyte

Legal Events

Date Code Title Description
PL Patent ceased