CH498061A - Cyclic dimers and trimers of 1 3-diolefines - Google Patents

Cyclic dimers and trimers of 1 3-diolefines

Info

Publication number
CH498061A
CH498061A CH560163A CH560163A CH498061A CH 498061 A CH498061 A CH 498061A CH 560163 A CH560163 A CH 560163A CH 560163 A CH560163 A CH 560163A CH 498061 A CH498061 A CH 498061A
Authority
CH
Switzerland
Prior art keywords
butadiene
compounds
electron donors
nickel
metal
Prior art date
Application number
CH560163A
Other languages
German (de)
Inventor
Guenther Dr Wilke
Original Assignee
Studiengesellschaft Kohle Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle Mbh filed Critical Studiengesellschaft Kohle Mbh
Publication of CH498061A publication Critical patent/CH498061A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/21Alkatrienes; Alkatetraenes; Other alkapolyenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/189Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms containing both nitrogen and phosphorus as complexing atoms, including e.g. phosphino moieties, in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1895Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing arsenic or antimony
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2286Alkynes, e.g. acetylides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/38Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of dienes or alkynes
    • C07C2/40Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of dienes or alkynes of conjugated dienes
    • C07C2/403Catalytic processes
    • C07C2/406Catalytic processes with hydrides or organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/42Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion
    • C07C2/44Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion of conjugated dienes only
    • C07C2/46Catalytic processes
    • C07C2/465Catalytic processes with hydrides or organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/50Diels-Alder conversion
    • C07C2/52Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/324Cyclisations via conversion of C-C multiple to single or less multiple bonds, e.g. cycloadditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/324Cyclisations via conversion of C-C multiple to single or less multiple bonds, e.g. cycloadditions
    • B01J2231/326Diels-Alder or other [4+2] cycloadditions, e.g. hetero-analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • C07C2601/20Systems containing only non-condensed rings with a ring being at least seven-membered the ring being twelve-membered

Abstract

In the di- or trimerisation of 1,3-diolefines, esp. butadiene to cyclic cpds. at normal or raised press. and raised temp. in the presence of a catalyst, cpds. with C=C bonds are used as electron donors, e.g. ethylene and cycloctadiene. The catalyst are carbon monoxide free-cpds. of Ni or Co, e.g. Ni acetyl acetonate, with organometallic cpds., e.g. briguans reagents and metal hydride complexes. Solvent for reaction is aliphatic aromatic or halogenated hydrocarbon. Metal organic cmpds. or metal hydrides are from groups (I) to (III). Task of electron donors is to hold the reaction products in true or colloidal soln. Pressure 1 to 20 atm., temp. 20-150 deg.C.

Description

  

  
 



  Verfahren zur katalytischen Di- bzw. Trimerisation von 1,3-Diolefinen
Verfahren zur Herstellung von Cyclododecatrienen (1,5,9) neben anderen ringförmigen Kohlenwasserstoffen mit mindestens 8 Kohlenstoffatomen und mindestens 2 Doppelbindungen im Ring durch Einwirkung von Titan- bzw. Chromhalogeniden und aluminiumorganischen Verbindungen auf Isopren, Piperylen und vorzugsweise Butadien bei Temperaturen bis   1500 C,    zweckmässig in Gegenwart von Lösungsmitteln, wie aliphatischen, aromatischen oder halogenierten Kohlenwasserstoffen sind bekannt.



   Weiterhin ist es bekannt, dass Butadien mit Hilfe von Katalysatoren wie   [R3P]      *2Ni    (CO)2 bzw. (ROP)   .Ni      (CO);    in Mischungen von Cyclooctadien-(1,5) und 4-Vinylcyclohexen verwandelt werden kann. Diese Katalysatoren leiten sich von dem extrem giftigen   Ni(CO    ab und werden auch aus diesem hergestellt. Die besten Ergebnisse werden mit den Katalysatoren des genannten Typus erhalten, wenn diese durch eine Vorbehandlung mit Acetylen unter Druck aktiviert werden, aber auch dann sind immer noch lange Reaktionszeiten bis zu 100 Stunden notwendig, um tragbare Umsätze zu erzielen.

  Ferner ist es bekannt, bei der Herstellung von   Cyclododecatrien-( 1,5,9)    durch Einwirkung von Katalysatoren aus Aluminiumalkylhalogenid und Titanhaligenid auf Butadien Verbindungen mit semipolarer Doppelbindung wie Sulfoxyde, Aminoxyde oder Nitrone zuzusetzen.



   Schliesslich ist es bekannt, die katalytische Di- bzw.



  Trimerisation von 1,3-Diolefinen, wie Isopren, Piperylen oder vorzugsweise Butadien zu cyclischen Verbindungen bei normalem oder erhöhtem Druck und bei erhöhten Temperaturen in Gegenwart von Katalysatoren durchzuführen, die durch Mischen von kohlenoxydfreien Verbindungen des Nickels mit metallorganischen Verbindungen, wie Metallalkylen, Metallarylen, Grignard-Verbindungen oder mit Metallhydriden oder Metallhydridkomplexen und Elektronendonatoren entstehen.



   Als Elektronendonatoren werden hierbei Verbindungen eingesetzt, die sich allgemein als Lewis-Basen kennzeichnen lassen, und die mit freien Elektronenpaaren an anderen Atom gruppierungen anteilig werden können. In diesem Sinne kommen Äther, insbesondere cyclische Äther, tert. Amine, insbesondere cyclische tert. Amine, Alkyl- oder Arylphosphine, insbesondere Triphenylphosphin, Alkyl- oder Arylphosphite oder Verbindungen mit Kohlenstoff-3fach-Bindungen in Frage.



   Die vorliegende Erfindung betrifft nun ein Verfahren zur katalytischen Di- bzw. Trimerisation von 1,3-Diolefinen, wie Isopren, Piperylen oder vorzugsweise Butadien zu cyclischen Verbindungen bei normalem oder erhöhtem Druck und bei erhöhten Temperaturen in Gegenwart von Katalysatoren, die durch Mischen von kohlenoxydfreien Verbindungen des Nickels mit metallorganischen Verbindungen, oder Metallhydriden oder Metallhydridkomplexen und Elektronendonatoren entstehen und ist dadurch gekennzeichnet, dass man als Elektronendonatoren offenkettige Verbindungen mit Kohlenstoff-Doppelbindungen oder Cycloolefine mit mindestens 2 Doppelbindungen verwendet.



   Den erfindungsgemäss verwendeten Elektronendonatoren kommt hierbei die Aufgabe zu, das bei der Katalysatorherstellung entstehende elementare Nickel in komplexer Form zu binden.



   Besonders bewährt hat sich von diesen als Elektronendonatoren wirksamen Verbindungen mit Kohlenstoff-Doppelbindungen beispielsweise das Cyclooctadien; gleichermassen können aber auch die zu polymerisierenden 1,3-Diolefine selbst, beispielsweise das Butadien, als Elektronendonatoren verwendet werden.



   Die als Elektronendonatoren wirksamen Verbindungen mit Kohlenstoff-Doppelbindungen können neben oder anstelle der in dem früheren Vorschlag genannten Lewis-Basen verwendet werden. Besonders günstige Ergebnisse werden im allgemeinen dann erzielt, wenn Vertreter beider Klassen zugegen sind.



   Das Verfahren gemäss der Erfindung wird im übrigen mit besonderem Vorteil in Gegenwart von Lösungsmitteln durchgeführt, die durch die metallorganischen Verbindungen oder Metallhydride nicht angegriffen  werden. Als solche können aliphatische, aromatische oder halogenierte Kohlenwasserstoffe angewandt werden.



   Vorzugsweise werden solche Verbindungen des Nickels zur Herstellung der Katalysatoren verwendet, in denen die Metallatome an organische Reste gebunden sind, wie Acetylacetonate, Acetessigesterenolate, Alkoholate, Salze schwacher organischer Säuren oder Dimethylglyoximverbindungen.



   Das Verfahren wird bei Normaldruck oder aber bevorzugt bei geringem Überdruck von beispielsweise 1 bis 20 Atm. und bei Temperaturen von 20 bis 1500 C ausgeführt.



   Die nachstehenden Beispiele dienen der Erläuterung des erfindungsgemässen Verfahrens:
Beispiel 1
20,8 g = 45,2 mMol Tri-a-naphthyl-phosphit werden zusammen mit 5,8 g = 22,6 mMol Nickelacetylacetonat in einer Mischung von 85 g Cyclooctadien (1,5) und 15 g Butadien gelöst. Die Mischung wird mit Wasser gekühlt und mit 5,9 g = 42,2 mMol   Athoxy-    diäthylaluminium versetzt. Die orange gefärbte Katalysatorlösung wird in einen evakuierten 2 1-V4A-Stahl Autoklaven eingesaugt, der mit magnetischer Rührung ausgerüstet ist. Es werden 200 g Butadien aufgepresst, dann wird der Autoklav auf 850 C aufgeheizt. Die Innentemperatur steigt durch die Reaktionswärme bis auf 1150 C. Die Aussenheizung wird abgestellt. Nach etwa 15 Minuten ist der Druck auf 3 Atm. abgefallen.



  Jetzt presst man weiteres Butadien so schnell nach, dass die Innentemperatur sich zwischen 110 und 1150 C hält. Der Druck steigt dabei nicht über 4 Atm. In 1,5 Stunden werden 1185 g Butadien eingespritzt. Man erhält nach insgesamt 1,75 Stunden Reaktionszeit 1249 g Reaktionsprodukt (89   S    Umsatz), das 102 g =   8s4 50    Vinylcyclohexen, 1128 g =   90,2    Cyclooctadien (1,5) und 5,7 g =   0,5 %    all, trans-Cyclododecatrien neben 13,4 g =   1,1 %    höheren Polymeren enthält.



   Beispiel 2
Die Reaktion wird in folgender Weise kontinuierlich durchgeführt: Als Reaktor dient eine 100 m lange Kupferkapillare mit einer lichten Weite von 4 mm, die zusammengerollt in einem auf 1200 C geheizten Ölbad liegt. Mit Hilfe von zwei Einspritzpumpen wird sowohl eine benzolische Katalysatorlösung sowie flüssiges Butadien in die geheizte Kapillare eingespritzt. Am Ende des Reaktors befindet sich ein auf 30 Atm. eingestelltes Entspannungsventil, durch das entsprechend der Förderleistung der beiden Pumpen das entstandene Produkt auf Normaldruck entspannt wird. Das Verhältnis von Katalysatormenge und Butadienmenge wird zweckmässig so gewählt, dass bei einer Verweilzeit von etwa 1 Stunde das Butadien möglichst weitgehend umgesetzt wird.



   Folgende Versuchsdaten erläutern das Verfahren: Durch Umsetzung von Nickelacetylacetonat mit   Athoxy-    diäthylaluminium in Gegenwart von Triphenylphosphit und kleinen Mengen   Butadien    wird im Benzol eine Katalysatorlösung hergestellt, die 1 g Nickel in 200 cm3 Lösung enthält. Das Molverhältnis von   Ni : P : Al    wird wie 1 2: 2 gewählt.



   Innerhalb von 50 Minuten werden 330 cm3 Katalysatorlösung und 500 g Butadien in den Reaktor eingespritzt. Anschliessend wird 1 Liter Benzol nachgepumpt und damit das gesamte Reaktionsprodukt ausgetragen. Man erhält 490 g Reaktionsprodukt   (98 %    Umsatz), das 1,1 g = 0,2 % 5-Methylheptatrien-(1,3,6), 58,4 g = 11,9% Vinylcyclohexen, 399 g = 81,4% Cyclooctadien-(1,5), 16,5 g =   3,4 %    all, trans-Cyclo   dodecatrien    und 4,4 g = 0,9 % trans, trans, cis-Cyclododecatrien neben 10,7 g =   2,2 %    höhere Polymere enthält. Bei 98 %igem Umsatz reagieren 400 g Buta   dien/1    g Nickel/Stunde.



   Wählt man bei sonst gleichen Bedingungen das Verhältnis von Nickel zu Triphenylphosphit wie 1: 4 und werden in 40 Minuten 250 cm3 Katalysatorlösung und 440 g Butadien eingespritzt, so erhält man 117,3 g Reaktionsprodukt (27 % Umsatz), das 22,8 g = 19,4 % Vinylcyclohexen, 85,7 g = 73 % Cyclooctadien-(1,5), 1,4 g = 1,2 % all, trans-Cyclododecatrien neben 7,4 g = 6,3 % höheren Polymeren enthält.



   Bei nur   27 Sigem    Umsatz reagieren nur 150 g   Butadien/1 g    Nickel/Stunde.



   Wählt man bei sonst gleichen Bedingungen das Verhältnis von Nickel zu Triphenylphosphit wie 1: 6 und werden in 50 Minuten 350 cm3 Katalysatorlösung und 500 g Butadien eingespritzt, so erhält man 19,8 g Reaktionsprodukt   (4%    Umsatz), das 5,5 g =   27,8%    Vinylcyclohexen, 13,75 g = 69,5 % Cyclooctadien-(1,5) und 0,55 g = 2,8 % höhere Polymere enthält.



   Bei nur   4 %igem    Umsatz reagieren nur 15 g Butadien/1 g   Nickel/Stunde.   



   Beispiel 3
Man arbeitet wie im Beispiel 2 bei einem Molverhältnis Nickel zu Triphenylphosphit wie 1: 2, jedoch bei 1500 C. In 30 Minuten werden 220 cm3 Katalysatorlösung und 305 g Butadien eingespritzt. Man erhält 304 g Reaktionsprodukt (100 % Umsatz), das 38,8 g = 12,8   X    Vinylcyclohexen, 239,3 g = 78,7 % Cyclooctadien-(1,5), 11,6 g = 3,8 % all, trans-Cyclododecatrien, 1,3 g = 0,4 % trans, trans, cis-Cyclododecatrien, 12,9 g  = 4,2 % höhere Polymere enthält.



   Bei praktisch quantitativem Umsatz reagieren 600 g Butadien/l g Nickel/Stunde.



   Beispiel 4
Man arbeitet wie im Beispiel 2 bei einem Molverhältnis Nickel zu Donator wie 1: 2, jedoch wird als Donator Triguajacylphosphit eingesetzt. Man arbeitet bei   100in    C. In 1,5 Stunden werden 590 cm3 Katalysatorlösung und 900 g Butadien eingespritzt. Man erhält 740 g Reaktionsprodukt (82 % Umsatz), das 53,9 g = 7,3 % Vinylcyclohexen, 672,0 g =   91 %    Cyclooctadien (1,5), 6,2 g = 0,8 % all, trans-Cyclododecatrien und 7,7 g =   1,0 %    höhere Polymere enthält.

 

   Bei 82 %igem Umsatz reagieren 200 g Butadien/l g Nickel/Stunde.



   Beispiel 5
Ausführung wie in Beispiel 2, jedoch wird als Donator Tri-(o-Oxydiphenyl-phosphit im Verhältnis Donator: Ni wie 1:1 eingesetzt. Man arbeitet bei 800 C. In 25 Minuten werden 340   cm3    Katalysatorlösung und 560 g Butadien eingespritzt. Man erhält 403 g Reaktionsprodukt (72 % Umsatz), das 15,4 g = 3,8 % Vinylcyclohexen, 384 g = 95,4 % Cyclooctadien und 3,2 g = 0,8 % höhere Polymere enthält.



   Bei 72 %igem Umsatz reagieren 500 g Butadien/l g Nickel/Stunde.



   Beispiel 6
Ausführung wie in Beispiel 5, jedoch arbeitet man bei 1200 C. In 27 Minuten werden 330 cm3 Kontakt  lösung und 800 g Butadien eingespritzt. Man erhält 647 g Produkt   (81 %    Umsatz), das 32,7 g = 5,1 % Vinylcyclohexen, 598 g = 92,5   %    Cyclooctadien und 16,4 g = 2,5 % Cyclodedecatrien enthält.



   Bei 81 %igem Umsatz reagieren 870 g Butadien/l g Nickel/Stunde.



   Beispiele 7 bis 10
Ausführung wie in Beispiel 2, jedoch wird bei 1200 C gearbeitet und das Molverhältnis Ni: Donator geändert. Als Donator wird Triguajacylphosphit eingesetzt.



      Umsatz Ni: Donator Umsatz VCH COD CDT cycl. KW Pol. g Butadien % % % % % % pro 1 g/Ni/Std.   



   7   1 : 0,5    48 7,9 82,7 8,7 99,3 0,7 410
8 1 : 1 90 7,0 85,3 6,1 98,4 1,6 930
9   1 : 2    98 6,8 89,2 2,4 98,4 1,6 670
10 1 : 4 93 10,2 88,3 1,4 99,9 - 230
Beispiele 11 bis 13 Ausführung wie in Beispiel 9, jedoch wird das Nickelsalz mit verschiedenen aluminiumorganischen Verbindungen reduziert.



      Umsatz VCH COD CDT Pol. g Butadien Beispiel Ni: Al Reduktionsmittel % % % % % pro 1 g/Ni/Std.   



   11 1:1 Al   (i-C4H9)3    80 6,5 89,5 2,3 1,3 650
12 1:1 Al (C2H5)3 82 8,1 88,4 2,5 1,0 660
13 1:1 HAl   (C2Hs)2    21 9,8 76,2 Spur 14,0 110
Beispiele 14 und 15
Ausführung in Beispiel 14 wie in Beispiel 9, jedoch wird bei 800 C gearbeitet und das Entspannungsventil des Reaktors auf 35 Atm. eingestellt. In Beispiel 15 wird wie in Beispiel 16 gearbeitet.



     Druck Druck Umsatz VCH COD CDT Pol. g Butadien Beispiel Atm. % % % % % pro 1 g/Ni/Std.   



   14 35 90 7,1 92,3 Spur 0,7 290
15 1 99 7,1 92,3 - 0,7 300
Beispiel 16 bis 18
Die Reaktion wird in folgender Weise bei Normaldruck durchgeführt. Durch Reduktion von Nickelacetylacetonat mit Athoxydiäthylaluminium in Gegenwart von Tri-arylphosphit und kleinen Mengen Butadien wird in Cyclooctadien eine Katalysatorlösung hergestellt, die 1 g Nickel in 100   cm3    Lösung enthält. Das Molverhältnis von   Ni: Donator: Al    wird wie   1:1:    2 gewählt.



  Als Donator werden die drei möglichen Tri-monomethoxyphenylphosphite eingesetzt.



   Die Kontaktlösung wird in einem Kolben, der mit Thermometer, Rührer und Einleitrohr versehen ist, unter Einleiten von Butadien auf 800 C erwärmt und bei dieser Temperatur intensiv gerührt.



      Stellung Stellung der VCH COD CDT Pol. g Butadien Beisplel OCH3-Gruppe % % % % pro 1 g/Ni/Std.   



   16 ortho 6,0 91,3 1,6 1,1 300
17 meta 7,5 83,3 9,3 - 140
18 para 10,1 78,6 9,6 1,8 90
Alle drei Versuche liefen 3 Stunden.



   Beispiel 19
Ausführung wie in Beispiel 16, jedoch wird als Donator Tri-(o-Oxydiphenyl-)-phosphit eingesetzt. Das eingesetzte Butadien wurde mit Hilfe von metallorganischen Verbindungen getrocknet. Mit 1,12 g Ni wurden in 9 Stunden 7,42 kg Butadien umgesetzt. 5,53 kg Produkt wurden bei 14 mm Hg abdestilliert. In die zurückgebliebene Lösung wurde bei 800 C weiteres Butadien eingeleitet. Im Verlauf von 7 Stunden wurden weitere 4,97 kg Butadien umgesetzt. Mit Hilfe eines geeichten Rotameters wurden folgende Umsatzgeschwindigkeiten festgestellt:
Zu Beginn der 1. Charge: 810 g Butadien/l g Ni/Stunde nach 9 Stunden: 655 g Butadien/l g Ni/Stunde = 81 % der Anfangs aktivität.  



   Zu Beginn der 2. Charge: 740 g Butadien/l g Ni/Stunde =   91 %    der Anfangs aktivität.



  Nach weiteren 7 Stunden: 540 g Butadien/l g Ni/Stunde =   67 %    der Anfangs aktivität.



   Nach 16 Stunden haben sich insgesamt 12,48 kg Butadien umgesetzt. Das Reaktionsprodukt enthält 385 g Vinylcyclohexen =   3,1 %    11 895 g Cyclooctadien = 95,3 %, 114 g   Cyclododecatrien    =   0,9 %    und 86 g Polymeres = 0,7 %.



   Beispiel 20
9 g = 0,035 Mol Nickelacetylacetonat werden in 200 g Benzol gelöst. Man sättigt die Lösung bei Normaldruck mit Butadien und tropft dann bei   0     9,5 g = 0,073 Mol Monoäthoxydiäthylaluminium zu. Es entsteht eine rotorange gefärbte Lösung. Diese Lösung wird in einem Autoklaven mit 1,3 kg Butadien gemischt. Mit Hilfe einer Einspritzpumpe wird diese Lösung durch eine 175 m lange und 4 mm weite (lichte Weite) Kapillare gepumpt, die in einem auf 800 geheizten Ölbad liegt. Die Pumpgeschwindigkeit wird so eingestellt, dass sich eine Verweilzeit von etwa 55 Minuten ergibt. Am Ende der Reaktionskapillare befindet sich ein auf 30-50   atin    eingestelltes Auslassventil, durch das die Reaktionsmischung auf Normaldruck entspannt wird.

  Unter den genannten Bedingungen wird das vorgelegte Butadien zu 35 % umgesetzt, und man erhält ein Reaktionsprodukt (445 g), das sich folgendermassen zusammensetzt:
21,4 g = 4,8   S;    Vinylcyclohexen
12,6 g = 2,8 % Cyclooctadien-(1,5)
4,5 g = 1,0 % eines   C12-Kohlenwasserstoffs    unbekannter Konstitution 315,0 g   =70,8 eO      all-trans-Cyclododecatrien-(1,5,9)   
23,3 g = 5,2 % trans, trans, cis-Cyclododecatrien  (1,5,9)
31,6 g = 7,1   %    cis, cis, trans-Cyclododecatrien-(1,5,9)
37,0 g = 8,3 % destillierbare Oligomere    83,1 %    des umgesetzten Butadiens fallen somit als   Cyclododecatrien-(1,5,9)    an.



   Beispiel 21
Man arbeitet wie in Beispiel 20 angegeben, wählt jedoch als Reaktionstemperatur   950.    Bei einem Umsatz von   88 %    erhält man ein Reaktionsprodukt (1139 g), das sich wie folgt zusammensetzt:
68,3 g = 6,0 % Vinylcyclohexen
48,5 g = 4,3 % Cyclooctadien-(1,5)
14,4g =   1,2X    eines   Cl2-Kohlenwasserstoffs    unbekannter Konstitution 723,0 g   =63,5 X    all-trans-Cyclododecatrien-(1,5,9)
80,0 g = 7,0 % trans, trans, cis-Cyclododecatrien  (1,5,9) 114 g =   10,0 %    cis,   cis,1trans-Cyclododecatrien-(1;5,9)   
91,0 g =   8,0 %    destillierbare Oligomere    80,5 eo    des umgesetzten Butadiens fallen somit als   Cyclododecatrien-(1,5,9)    an.



   Beispiel 22
Man arbeitet wie in Beispiel 20 angegeben, jedoch mischt man die dort angegebene Katalysatormenge mit 2,6 kg Butadien und führt die Reaktion bei einer Verweilzeit von 50 Minuten bei 1100 durch. Bei einem Umsatz von   75 %    erhält man ein Reaktionsprodukt (1829 g) folgender Zusammensetzung:    162 g    =   8,9 %    Vinylcyclohexen
99 g = 5,4% Cyclooctadien-(1,5) 1193 g   =65,3 %      all-trans-CyclododecatrieWn-    (1,5,9)
133 g = 7,3 % trans, trans, cis- Cyclododecatrien    167 g    =   9,1%    cis,cis,trans-Cyclododecatrien-(1,5,9)
75 g = 4,0 % destillierbare Oligomere    81,7 %    des umgesetzten Butadiens fallen somit als   Cyclododecatrien-(1,5,9)    an.



   Beispiel 23
10 g Nickelacetylacetonat (0,039 Mol) werden in 200 g flüssigem Butadien bei   -5     mit 12 g Mono äthoxydiäthylaluminium (0,093 Mol) umgesetzt. Wie in Beispiel 20 wird die entstehende Lösung im Autoklaven mit weiteren 3 kg Butadien vermischt und dann in der Reaktionskapillare bei 1100 zur Reaktion gebracht.

 

  Bei einem Umsatz von 65 % erhält man ein Reaktionsprodukt (1941 g), das sich wie folgt zusammensetzt:    174 g    = 9 % Vinylcyclohexen
96 g = 4,9 % Cyclooctadien-(1,5)
24 g = 1,2 % eines   Cl2-Kohlenwasserstoffs    unbekannter Konstitution
1306 g =67,3 % all-trans-Cyclododecatrien-(1,5,9)
130 g = 6,7 % trans, trans, cis-Cyclododecatrien  (1,5,9)
166 g =   8,6 %    cis, cis, trans-Cyclododecatrien-(1,5,9)
45 g = 2,3 % destillierbare Oligomere    82,6%    des umgesetzten Butadiens fallen somit als   Cyclododecatrien-(1,5,9)    an. 



  
 



  Process for the catalytic dimerization or trimerization of 1,3-diolefins
Process for the production of cyclododecatrienes (1,5,9) in addition to other ring-shaped hydrocarbons with at least 8 carbon atoms and at least 2 double bonds in the ring by the action of titanium or chromium halides and organoaluminum compounds on isoprene, piperylene and preferably butadiene at temperatures up to 1500 C, expedient in the presence of solvents such as aliphatic, aromatic or halogenated hydrocarbons are known.



   It is also known that butadiene with the help of catalysts such as [R3P] * 2Ni (CO) 2 or (ROP) .Ni (CO); can be converted into mixtures of cyclooctadiene (1,5) and 4-vinylcyclohexene. These catalysts are derived from the extremely toxic Ni (CO) and are also made from it. The best results are obtained with the catalysts of the type mentioned if they are activated by a pretreatment with acetylene under pressure, but even then they are still long Response times of up to 100 hours are necessary to achieve sustainable sales.

  It is also known to add compounds with semipolar double bonds such as sulfoxides, amine oxides or nitrones in the preparation of cyclododecatriene (1,5,9) by the action of catalysts composed of aluminum alkyl halide and titanium halide on butadiene.



   Finally, it is known that the catalytic di- or



  Carry out trimerization of 1,3-diolefins, such as isoprene, piperylene or preferably butadiene to cyclic compounds at normal or elevated pressure and at elevated temperatures in the presence of catalysts, which are obtained by mixing carbon-oxide-free compounds of nickel with organometallic compounds such as metal alkyls, metal aryls Grignard compounds or with metal hydrides or metal hydride complexes and electron donors arise.



   The electron donors used here are compounds which can generally be characterized as Lewis bases and which can be grouped with free electron pairs on other atom groups. In this sense, ethers, especially cyclic ethers, tert. Amines, especially cyclic tert. Amines, alkyl or aryl phosphines, especially triphenyl phosphine, alkyl or aryl phosphites or compounds with 3-fold carbon bonds are possible.



   The present invention relates to a process for the catalytic dimerization or trimerization of 1,3-diolefins, such as isoprene, piperylene or, preferably, butadiene, to give cyclic compounds at normal or elevated pressure and at elevated temperatures in the presence of catalysts obtained by mixing carbon oxide-free Compounds of nickel with organometallic compounds, or metal hydrides or metal hydride complexes and electron donors are formed and are characterized in that the electron donors used are open-chain compounds with carbon double bonds or cycloolefins with at least 2 double bonds.



   The task of the electron donors used according to the invention is to bind the elemental nickel in a complex form which is produced during catalyst production.



   Of these compounds with carbon double bonds which are effective as electron donors, cyclooctadiene, for example, has proven particularly useful; however, the 1,3-diolefins to be polymerized themselves, for example butadiene, can also be used as electron donors.



   The compounds with carbon double bonds which act as electron donors can be used in addition to or instead of the Lewis bases mentioned in the earlier proposal. Particularly favorable results are generally achieved when representatives of both classes are present.



   The process according to the invention is moreover carried out with particular advantage in the presence of solvents which are not attacked by the organometallic compounds or metal hydrides. As such, aliphatic, aromatic or halogenated hydrocarbons can be used.



   Nickel compounds in which the metal atoms are bound to organic radicals, such as acetylacetonates, acetoacetic ester enolates, alcoholates, salts of weak organic acids or dimethylglyoxime compounds, are preferably used to produce the catalysts.



   The process is carried out at normal pressure or, however, preferably at a slight excess pressure of, for example, 1 to 20 atm. and carried out at temperatures of 20 to 1500 C.



   The following examples serve to explain the process according to the invention:
example 1
20.8 g = 45.2 mmol of tri-a-naphthyl phosphite are dissolved together with 5.8 g = 22.6 mmol of nickel acetylacetonate in a mixture of 85 g of cyclooctadiene (1.5) and 15 g of butadiene. The mixture is cooled with water and treated with 5.9 g = 42.2 mmol of ethoxy diethylaluminum. The orange-colored catalyst solution is sucked into an evacuated 2 l V4A steel autoclave which is equipped with a magnetic stirrer. 200 g of butadiene are pressed in, then the autoclave is heated to 850.degree. The internal temperature rises due to the heat of reaction to 1150 C. The external heating is switched off. After about 15 minutes the pressure is 3 atm. fallen off.



  Now you press in more butadiene so quickly that the internal temperature remains between 110 and 1150 C. The pressure does not rise above 4 atm. 1185 g of butadiene are injected in 1.5 hours. After a total of 1.75 hours of reaction time, 1249 g of reaction product (89% conversion) are obtained, the 102 g = 8s4 50 vinylcyclohexene, 1128 g = 90.2 cyclooctadiene (1.5) and 5.7 g = 0.5% all, contains trans-cyclododecatriene in addition to 13.4 g = 1.1% higher polymers.



   Example 2
The reaction is carried out continuously in the following way: A 100 m long copper capillary with a clear width of 4 mm, which is rolled up in an oil bath heated to 1200 ° C., serves as the reactor. With the help of two injection pumps, both a benzene catalyst solution and liquid butadiene are injected into the heated capillary. At the end of the reactor there is a 30 atm. Set expansion valve through which the resulting product is expanded to normal pressure according to the delivery rate of the two pumps. The ratio of the amount of catalyst and the amount of butadiene is expediently chosen so that the butadiene is converted as much as possible with a residence time of about 1 hour.



   The following test data explain the process: By reacting nickel acetylacetonate with ethoxy diethylaluminum in the presence of triphenyl phosphite and small amounts of butadiene, a catalyst solution is produced in benzene which contains 1 g of nickel in 200 cm3 of solution. The molar ratio of Ni: P: Al is chosen as 1 2: 2.



   330 cm3 of catalyst solution and 500 g of butadiene are injected into the reactor within 50 minutes. Then 1 liter of benzene is pumped in and the entire reaction product is discharged. 490 g of reaction product (98% conversion) are obtained, which contains 1.1 g = 0.2% 5-methylheptatriene (1,3,6), 58.4 g = 11.9% vinylcyclohexene, 399 g = 81.4 % Cyclooctadiene- (1.5), 16.5 g = 3.4% all, trans-cyclo dodecatriene and 4.4 g = 0.9% trans, trans, cis-cyclododecatriene in addition to 10.7 g = 2.2 % contains higher polymers. At 98% conversion, 400 g of butadiene / 1 g of nickel / hour react.



   If, under otherwise identical conditions, the ratio of nickel to triphenyl phosphite is selected as 1: 4 and 250 cm3 of catalyst solution and 440 g of butadiene are injected in 40 minutes, 117.3 g of reaction product (27% conversion) are obtained, which equals 22.8 g 19.4% vinylcyclohexene, 85.7 g = 73% cyclooctadiene (1.5), 1.4 g = 1.2% all, trans-cyclododecatriene in addition to 7.4 g = 6.3% higher polymers.



   With only 27% conversion, only 150 g of butadiene / 1 g of nickel / hour react.



   If, all other things being equal, the ratio of nickel to triphenyl phosphite is selected as 1: 6 and 350 cm3 of catalyst solution and 500 g of butadiene are injected in 50 minutes, 19.8 g of reaction product (4% conversion) are obtained, which = 5.5 g Contains 27.8% vinylcyclohexene, 13.75 g = 69.5% cyclooctadiene (1.5) and 0.55 g = 2.8% higher polymers.



   With only 4% conversion, only 15 g of butadiene / 1 g of nickel / hour react.



   Example 3
The procedure is as in Example 2 with a molar ratio of nickel to triphenyl phosphite of 1: 2, but at 1500 ° C. 220 cm 3 of catalyst solution and 305 g of butadiene are injected in 30 minutes. 304 g of reaction product are obtained (100% conversion), the 38.8 g = 12.8% vinylcyclohexene, 239.3 g = 78.7% cyclooctadiene (1.5), 11.6 g = 3.8% all contains, trans-cyclododecatriene, 1.3 g = 0.4% trans, trans, cis-cyclododecatriene, 12.9 g = 4.2% higher polymers.



   With practically quantitative conversion, 600 g of butadiene / 1 g of nickel / hour react.



   Example 4
The procedure is as in Example 2 with a molar ratio of nickel to donor of 1: 2, but triguajacylphosphite is used as the donor. The work is carried out at 100 ° C. In 1.5 hours, 590 cm3 of catalyst solution and 900 g of butadiene are injected. 740 g of reaction product are obtained (82% conversion), which contains 53.9 g = 7.3% vinylcyclohexene, 672.0 g = 91% cyclooctadiene (1.5), 6.2 g = 0.8% all, trans- Contains cyclododecatriene and 7.7 g = 1.0% higher polymers.

 

   At 82% conversion, 200 g of butadiene / 1 g of nickel / hour react.



   Example 5
Execution as in Example 2, but tri- (o-oxydiphenyl-phosphite in a donor: Ni ratio of 1: 1 is used as the donor. The process is carried out at 800 ° C. 340 cm3 of catalyst solution and 560 g of butadiene are injected in 25 minutes 403 g of reaction product (72% conversion), which contains 15.4 g = 3.8% vinylcyclohexene, 384 g = 95.4% cyclooctadiene and 3.2 g = 0.8% higher polymers.



   At 72% conversion, 500 g of butadiene / 1 g of nickel / hour react.



   Example 6
Execution as in Example 5, but working at 1200 C. 330 cm3 of contact solution and 800 g of butadiene are injected in 27 minutes. 647 g of product (81% conversion) are obtained, which contains 32.7 g = 5.1% vinylcyclohexene, 598 g = 92.5% cyclooctadiene and 16.4 g = 2.5% cyclodedecatriene.



   At 81% conversion, 870 g of butadiene / l g of nickel / hour react.



   Examples 7-10
Execution as in Example 2, but working at 1200 ° C. and changing the molar ratio Ni: donor. Triguajacylphosphit is used as a donor.



      Conversion Ni: donor conversion VCH COD CDT cycl. KW Pol. g butadiene%%%%%% per 1 g / Ni / hour.



   7 1: 0.5 48 7.9 82.7 8.7 99.3 0.7 410
8 1: 1 90 7.0 85.3 6.1 98.4 1.6 930
9 1: 2 98 6.8 89.2 2.4 98.4 1.6 670
10 1: 4 93 10.2 88.3 1.4 99.9-230
Examples 11 to 13 Execution as in Example 9, but the nickel salt is reduced with various organoaluminum compounds.



      Sales VCH COD CDT Pol. g butadiene example Ni: Al reducing agent%%%%% per 1 g / Ni / hour.



   11 1: 1 Al (i-C4H9) 3 80 6.5 89.5 2.3 1.3 650
12 1: 1 Al (C2H5) 3 82 8.1 88.4 2.5 1.0 660
13 1: 1 HAl (C2Hs) 2 21 9.8 76.2 lane 14.0 110
Examples 14 and 15
Execution in example 14 as in example 9, but the work is carried out at 800 C and the expansion valve of the reactor at 35 atm. set. Example 15 is carried out as in Example 16.



     Printing Printing Sales VCH COD CDT Pol. g butadiene example Atm. %%%%% per 1 g / Ni / hr.



   14 35 90 7.1 92.3 trace 0.7 290
15 1 99 7.1 92.3-0.7 300
Example 16 to 18
The reaction is carried out in the following manner at normal pressure. By reducing nickel acetylacetonate with ethoxydiethylaluminum in the presence of tri-aryl phosphite and small amounts of butadiene, a catalyst solution is produced in cyclooctadiene which contains 1 g of nickel in 100 cm3 of solution. The molar ratio of Ni: donor: Al is chosen as 1: 1: 2.



  The three possible tri-monomethoxyphenyl phosphites are used as donors.



   The contact solution is heated to 800 ° C. in a flask equipped with a thermometer, stirrer and inlet tube while passing in butadiene and stirred intensively at this temperature.



      Position Position of the VCH COD CDT Pol. g butadiene Beisplel OCH3-Gruppe%%%% per 1 g / Ni / h.



   16 ortho 6.0 91.3 1.6 1.1 300
17 meta 7.5 83.3 9.3 - 140
18 para 10.1 78.6 9.6 1.8 90
All three attempts ran for 3 hours.



   Example 19
Execution as in Example 16, but tri- (o-oxydiphenyl) - phosphite is used as the donor. The butadiene used was dried with the aid of organometallic compounds. 7.42 kg of butadiene were reacted with 1.12 g of Ni in 9 hours. 5.53 kg of product were distilled off at 14 mm Hg. Further butadiene was passed into the remaining solution at 800.degree. A further 4.97 kg of butadiene were converted over the course of 7 hours. With the help of a calibrated rotameter, the following turnover rates were determined:
At the beginning of the 1st batch: 810 g butadiene / l g Ni / hour after 9 hours: 655 g butadiene / l g Ni / hour = 81% of the initial activity.



   At the beginning of the 2nd batch: 740 g butadiene / l g Ni / hour = 91% of the initial activity.



  After a further 7 hours: 540 g butadiene / 1 g Ni / hour = 67% of the initial activity.



   After 16 hours, a total of 12.48 kg of butadiene have reacted. The reaction product contains 385 g of vinylcyclohexene = 3.1%, 11,895 g of cyclooctadiene = 95.3%, 114 g of cyclododecatriene = 0.9% and 86 g of polymer = 0.7%.



   Example 20
9 g = 0.035 mol of nickel acetylacetonate are dissolved in 200 g of benzene. The solution is saturated with butadiene at normal pressure and then 9.5 g = 0.073 mol of monoethoxydiethylaluminum are added dropwise at 0. A red-orange colored solution is formed. This solution is mixed with 1.3 kg of butadiene in an autoclave. With the help of an injection pump, this solution is pumped through a 175 m long and 4 mm wide (inner diameter) capillary, which is located in an oil bath heated to 800. The pump speed is set so that there is a residence time of about 55 minutes. At the end of the reaction capillary there is an outlet valve set to 30-50 atin, through which the reaction mixture is depressurized to normal pressure.

  Under the conditions mentioned, 35% of the butadiene introduced is converted, and a reaction product (445 g) is obtained, which is composed as follows:
21.4 g = 4.8 S; Vinyl cyclohexene
12.6 g = 2.8% cyclooctadiene (1.5)
4.5 g = 1.0% of a C12 hydrocarbon of unknown constitution 315.0 g = 70.8 eO all-trans-cyclododecatriene- (1.5.9)
23.3 g = 5.2% trans, trans, cis -cyclododecatriene (1,5,9)
31.6 g = 7.1% cis, cis, trans -cyclododecatriene- (1,5,9)
37.0 g = 8.3% of distillable oligomers 83.1% of the converted butadiene are thus obtained as cyclododecatriene (1,5,9).



   Example 21
The procedure is as indicated in Example 20, but the reaction temperature chosen is 950. With a conversion of 88%, a reaction product (1139 g) is obtained which is composed as follows:
68.3 g = 6.0% vinylcyclohexene
48.5 g = 4.3% cyclooctadiene (1.5)
14.4g = 1.2X of a Cl2 hydrocarbon of unknown constitution 723.0 g = 63.5 X all-trans-cyclododecatriene- (1,5,9)
80.0 g = 7.0% trans, trans, cis-cyclododecatriene (1.5.9) 114 g = 10.0% cis, cis, 1 trans-cyclododecatriene (1; 5.9)
91.0 g = 8.0% of distillable oligomers 80.5 eo of the converted butadiene are thus obtained as cyclododecatriene (1,5,9).



   Example 22
The procedure is as indicated in Example 20, but the amount of catalyst indicated there is mixed with 2.6 kg of butadiene and the reaction is carried out with a residence time of 50 minutes at 1100. At a conversion of 75%, a reaction product (1829 g) of the following composition is obtained: 162 g = 8.9% vinylcyclohexene
99 g = 5.4% cyclooctadiene- (1,5) 1193 g = 65.3% all-trans-cyclododecatrieWn- (1,5,9)
133 g = 7.3% trans, trans, cis-cyclododecatriene 167 g = 9.1% cis, cis, trans-cyclododecatriene- (1,5,9)
75 g = 4.0% of distillable oligomers 81.7% of the converted butadiene are thus obtained as cyclododecatriene (1,5,9).



   Example 23
10 g of nickel acetylacetonate (0.039 mol) are reacted in 200 g of liquid butadiene at -5 with 12 g of mono äthoxydiäthylaluminium (0.093 mol). As in Example 20, the resulting solution is mixed with a further 3 kg of butadiene in the autoclave and then reacted in the reaction capillary at 1100.

 

  At a conversion of 65%, a reaction product (1941 g) is obtained which has the following composition: 174 g = 9% vinylcyclohexene
96 g = 4.9% cyclooctadiene (1.5)
24 g = 1.2% of a Cl2 hydrocarbon of unknown constitution
1306 g = 67.3% all-trans-cyclododecatriene- (1,5,9)
130 g = 6.7% trans, trans, cis-cyclododecatriene (1,5,9)
166 g = 8.6% cis, cis, trans -cyclododecatriene- (1,5,9)
45 g = 2.3% of distillable oligomers 82.6% of the converted butadiene are thus obtained as cyclododecatriene (1,5,9).

 

Claims (1)

PATENTANSPRUCH PATENT CLAIM Verfahren zur katalytischen Di- bzw. Trimerisation von 1,3-Diolefinen zu cyclischen Verbindungen bei normalem oder erhöhtem Druck und bei erhöhten Temperaturen in Gegenwart von Katalysatoren, die durch Mischen von kohlendioxydfreien Nickel-Verbindungen mit metallorganischen Verbindungen, oder Metallhydriden und mit Elektronendonatoren entstehen, dadurch gekennzeichnet, dass man als Elektronendonatoren offenkettige Verbindungen mit Kohlenstoff-Doppelbindungen oder cycloaliphatische Kohlenwasserstoffe mit mindestens 2 Doppelbindungen verwendet. Process for the catalytic dimerization or trimerization of 1,3-diolefins to cyclic compounds at normal or elevated pressure and at elevated temperatures in the presence of catalysts that are formed by mixing carbon dioxide-free nickel compounds with organometallic compounds or metal hydrides and with electron donors, characterized in that open-chain compounds with carbon double bonds or cycloaliphatic hydrocarbons with at least 2 double bonds are used as electron donors. UNTERANSPRÜCHE 1. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass man als Elektronendonatoren Diolefine, insbesondere die zu polymerisierenden 1,3-Diolefine selbst, beispielsweise Butadien, verwendet. SUBCLAIMS 1. The method according to claim, characterized in that the electron donors used are diolefins, in particular the 1,3-diolefins to be polymerized themselves, for example butadiene. 2. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass man als Elektronendonatoren cyclische Diolefine, insbesondere Cyclooctadien, verwendet. 2. The method according to claim, characterized in that cyclic diolefins, in particular cyclooctadiene, are used as electron donors. 3. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass man als Elektronendonatoren zusätzlich andere Lewis-Basen verwendet. 3. The method according to claim, characterized in that other Lewis bases are additionally used as electron donors. 4. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass man Verbindungen des Nickels verwendet, in denen das Metallatom an organische Reste gebunden ist. 4. The method according to claim, characterized in that compounds of nickel are used in which the metal atom is bonded to organic radicals. 5. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass als 1,3-Diolefin Butadien, Isopren oder Piperylen verwendet wird. 5. The method according to claim, characterized in that the 1,3-diolefin used is butadiene, isoprene or piperylene. 6. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass als metallorganische Verbindungen Metallalkyle, Metallaryle oder Grignard-Verbindungen verwendet werden. 6. The method according to claim, characterized in that metal alkyls, metal aryls or Grignard compounds are used as organometallic compounds. 7. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass man als metallorganische Verbindungen oder Metallhydride solche der I. bis III. Gruppe des Periodischen Systems verwendet. 7. The method according to claim, characterized in that the organometallic compounds or metal hydrides are those of I. to III. Group of the Periodic Table used. 8. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass man als Lösungsmittel aliphatische, aromatische oder halogenierte Kohlenwasserstoffe verwendet. 8. The method according to claim, characterized in that the solvent used is aliphatic, aromatic or halogenated hydrocarbons.
CH560163A 1959-12-22 1963-05-03 Cyclic dimers and trimers of 1 3-diolefines CH498061A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEST15930A DE1140569B (en) 1959-12-22 1959-12-22 Process for the catalytic dimerization or trimerization of 1,3-diolefins

Publications (1)

Publication Number Publication Date
CH498061A true CH498061A (en) 1970-10-31

Family

ID=7456876

Family Applications (1)

Application Number Title Priority Date Filing Date
CH560163A CH498061A (en) 1959-12-22 1963-05-03 Cyclic dimers and trimers of 1 3-diolefines

Country Status (5)

Country Link
CH (1) CH498061A (en)
DE (1) DE1140569B (en)
GB (1) GB917103A (en)
NL (3) NL153511B (en)
SE (1) SE302452B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3249641A (en) * 1962-06-14 1966-05-03 Columbian Carbon Catalyst and cycloolefin production
US3277099A (en) * 1962-07-28 1966-10-04 Basf Ag Production of open-chain oligomers of 1, 3-dienes
US3480685A (en) * 1963-03-20 1969-11-25 Nat Distillers Chem Corp Octatriene process
US3250817A (en) * 1963-06-17 1966-05-10 Chevron Res 1, 5-cyclooctadiene
US3284520A (en) * 1963-06-24 1966-11-08 Phillips Petroleum Co Oligomerization
US3392207A (en) * 1964-03-16 1968-07-09 Union Carbide Corp Process for making octatriene and polyunsaturated polymers
US3414629A (en) * 1965-05-13 1968-12-03 Eastman Kodak Co Cyclooligomerization
US3359337A (en) * 1965-06-11 1967-12-19 Union Carbide Corp Diene oligomerization
US3352931A (en) * 1965-08-16 1967-11-14 Phillips Petroleum Co Catalytic oligomerization of butadiene
US3439054A (en) * 1966-12-08 1969-04-15 Exxon Research Engineering Co Metal carbonyl catalyst and hydrogenation process therefor
DE1643063B1 (en) * 1967-04-08 1972-03-16 Studiengesellschaft Kohle Mbh Process for the cyclodimerization of 1,3-diolefins using nickel-containing catalysts
FR2021052A1 (en) * 1968-10-19 1970-07-17 Huels Chemische Werke Ag
GB1453911A (en) * 1973-12-27 1976-10-27 Takasago Perfumery Co Ltd Tricyclic hydrocarbons and production thereof
DE2638430C3 (en) 1976-08-26 1981-04-23 Studiengesellschaft Kohle mbH, 4330 Mülheim Process for the preparation of octatrienylated amines or octadienylated Schiff bases
US4189403A (en) 1977-01-19 1980-02-19 Shell Oil Company Catalyst for cyclodimerization of isoprene
WO1994008924A1 (en) * 1992-10-16 1994-04-28 Mitsubishi Kasei Corporation Process for dimerizing butene, butene dimer composition, and process for producing alcohol therefrom
DE102004054477A1 (en) * 2004-11-11 2006-05-24 Degussa Ag Process for the preparation of trimethylcyclododecatriene
DE102006022014A1 (en) 2006-05-10 2007-11-15 Degussa Gmbh Process for the preparation of cyclododecatriene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1086226B (en) * 1959-03-10 1960-08-04 Studiengesellschaft Kohle Mbh Process for the preparation of cyclododecatriene (1, 5, 9)

Also Published As

Publication number Publication date
NL153511B (en) 1977-06-15
NL7708079A (en) 1977-10-31
DE1140569B (en) 1962-12-06
GB917103A (en) 1963-01-30
SE302452B (en) 1968-07-22
NL259358A (en)

Similar Documents

Publication Publication Date Title
CH498061A (en) Cyclic dimers and trimers of 1 3-diolefines
DE2707830C3 (en) Methods of dimerization or codimerization of? - olefins
DE1420648A1 (en) Process and catalyst for making olefin polymers
DE10256926A1 (en) Improved catalytic composition and process for oligomerizing ethylene, especially to 1-hexene
DE2032140A1 (en) Catalyst and its use in the polymerization of unsaturated hydrocarbons
CH443275A (en) Process for the catalytic mixed oligomerization of unsaturated compounds with the use of diolefins
DE2101422A1 (en) Process for the production of ethylene polymers
DE1642947A1 (en) Process for the preparation of dimers of alpha-olefins, in particular of linear dimers
DE1520964C3 (en) Process for the oligomerization of olefins
AT232984B (en) Process for the catalytic dimerization or trimerization of 1,3-diolefins
DE2021523B2 (en) Process for the oligomerization or co-oligomerization of olefins
CH459185A (en) Process for the dimerization or trimerization of 1,3-diolefins
CH462148A (en) Process for the production of cyclododecatriene 1,5,9
DE1768213A1 (en) Process for the catalytic cyclo-dimerization of 1,3-diolefins
DE3027782A1 (en) Ethylene oligomerisation catalyst - contg. tri:carboxymethyl phosphine and nickel cpd. e.g. salt or complex with organic ligand
DE1468708A1 (en) Process for the preparation of cyclic di- or trimers of 1,3-diolefins
DE1643832C3 (en) Process for the preparation of nickel-containing cyclooligomerization catalysts
DE2400582C3 (en) Process for the production of butene- (l)
DE1468708C (en)
DE1965047A1 (en) Process for the production of triolefins
AT259221B (en) Process for the oligomerization and polymerization of olefins
DE1793788C3 (en) Adducts of n-allyl compounds of transition metals, Lewis bases and / or Lewis acids
US3594434A (en) Process for the catalytic preparation of divintlcyclobutane
DE1963072A1 (en) Process for the polymerization of ethylene
DE1643063C (en)

Legal Events

Date Code Title Description
PL Patent ceased