CH395523A - Method for relieving manufacturing stresses in externally calibrated plastic pipes - Google Patents
Method for relieving manufacturing stresses in externally calibrated plastic pipesInfo
- Publication number
- CH395523A CH395523A CH1225662A CH1225662A CH395523A CH 395523 A CH395523 A CH 395523A CH 1225662 A CH1225662 A CH 1225662A CH 1225662 A CH1225662 A CH 1225662A CH 395523 A CH395523 A CH 395523A
- Authority
- CH
- Switzerland
- Prior art keywords
- pipe
- temperature
- plastic pipes
- heating
- stresses
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C71/00—After-treatment of articles without altering their shape; Apparatus therefor
- B29C71/02—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/90—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/90—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
- B29C48/901—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
- B29C48/903—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies externally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/91—Heating, e.g. for cross linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/91—Heating, e.g. for cross linking
- B29C48/9105—Heating, e.g. for cross linking of hollow articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/919—Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/90—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
- B29C48/908—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article characterised by calibrator surface, e.g. structure or holes for lubrication, cooling or venting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/911—Cooling
- B29C48/9115—Cooling of hollow articles
- B29C48/912—Cooling of hollow articles of tubular films
- B29C48/913—Cooling of hollow articles of tubular films externally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/911—Cooling
- B29C48/9135—Cooling of flat articles, e.g. using specially adapted supporting means
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Description
Verfahren zum Abbauen von Herstellungsspannungen in aussenkalibrierten
Kunststoffrohren Kunststoffrohre werden meistens nach dem Aussenkalibnerverfahren hergestellt. Dieses besteht darin, dass das in teigigem Zustand aus dem Werkzeug der Schneckenpresse austretende schlauchförmige Material durch eine gekühlte Metallhülse geführt und dabei an der Aussenfläche abgeschreckt wird. Innerer Überdruck oder äusserer Unterdruck sorgen für ein gutes Anliegen der schlauchförmigen Masse an die Innenfläche der gekühlten Metallhülse. Diese wird als Kalibrierwerkzeug bezeichnet, weil das durch sie bewirkte Erstarren der äussersten Materialschicht für das Fertigmass der Rohre ausschlaggebend ist.
Hinter dem Kalibrierwerkzeug folgen im allgemeinen Kühlbäder, dienen das Abführen des restlichen Wärmeinhaltes obliegt.
Das vorerst noch teigige rohrinnenseitige Material passt sich spannungslos der erstarrten Aussenschicht an, bis es sich unterhalb jene Temperatur abgekühlt hat, bei der der Werkstoff den Zustand einer festig keitslosen Masse verliert. Von da an bilden sich als Folge weiterer Abkühlung Zugspannungen, die ihrerseits in der bereits kalten Rohraussenfläche Druckspannungen bewirken.
Die genannte Temperaturgrenze ist bei Materialien mit ausgeprägtem Schmelzpunkt, also z. B. bei Polyolefinen (Polyäthylen, Polypropylen), identisch mit der Schmelztemperatur, während bei Werkstoffen ohne eindeutiges Temperaturkriterium, wie Hart Polyvinylchlorid, von einem Temperaturintervall ge sprochen werden muss. Beim Beispiel des Hart Polyvinylchlorids umfasst das Intervall den Temperaturbereich von etwa 80 bis 1500 C.
Dem fertigungsbedingten Spannungszustand über- lagern sich im Betrieb die vom Innendruck verursachten Zugspannungen, so dass an der durch den Betriebsdruck ohnehin am stärksten beanspruchten Rohrinnenfläche eine Spannungsaddition auftritt.
Demzufolge kann im Betrieb nicht die volle Materialfestigkeit ausgenutzt werden. Ausserdem haben Rohre, die mit Herstellungsspannungen behaftet sind, den Nachteil, dass sie sich nach dem Abschneiden gegen die Schnittfläche hin einziehen. Besonders deutlich ist dies an Hart-Polyäthylenrohren sichtbar, bei denen die Durchmesserverringerung etwa (0,1 bis 0,2) X Rohrdurchmesser vor der Schnittfläche beginnt und an der Rohrstirnseite bis zu 2% erreicht. Bei der Herstellung von Schweissmuffen, speziell Elektro-Schweissmuffen, müsste diesem Umstand Rechnung getragen werden, was extrem lange Muffen zur Folge hätte.
Die vorliegende Erfindung besteht in einem thermischen Nachbehandlungsverfahren, das die genannten Herstellungsspannungen abzubauen und damit die geschilderten Nachteile zu beheben erlaubt, indem spannungsbehaftete Kunststoffrohre durch kurzes, intensives Erwärmen an der Rohraussenfläche auf eine Temperatur gebracht werden, die mindestens nahe jener Temperatur ist, bei der der betreffende Werkstoff jede Festigkeit verliert, während'die Temperatur an der Rohrinnenfläche eindeutig unterhalb der genannten Temperaturgrenze zu liegen hat.
Dadurch wird die Rohraussenfläche, die die Kontraktion des rohrinnenseitigen Materiales verhindert, kurzzeitig ihrer Festigkeit'beraubt, so dass sich die Rohrinnenseite widerstandslos zusammenziehen kann.
Dank der nicht beeinträchtigten Tragfähigkeit des nur bescheiden erwärmten rohrinnenseitigen Materiales ist ein Einknicken des Rohrquerschnittes nicht zu befürchten. Die beschriebene Nachbehandlung führt zu einer Kürzung des Rohres und einem Durchmesserschrumpf. Bei Hart-Polyäthylenrohren konn ten Längenreduktionen in der Grössenordnung von 0,5 % und Durchmesserschrumpfungen von etwa 0, 25 S gemessen werden. Nachbehandelte Rohre zeigten beim Abschneiden kein Einziehen mehr.
Das thermische Nachbehandeln würde sich bei Rohren, die nach dem Innenkalibrierverfahren hergestellt sind, erübrigen, weil dabei Herstellungsspannungen auftreten, die an der kritischen Rohrinnenfläche den Betriebsspannungen entgegenwirken. Das Innenkalibrierverfahren bietet aber sonst gegenüber dem Aussenkalibrierverfahren so viele Nachteile, dass sich dieser Weg im allgemeinen nicht lohnt.
Nachbehandlungsverfahren, die auf dem beschriebenen Prinzip beruhen, sind dem Erfinder nicht bekannt. Dagegen ist allgemein bekannt, dass sich durch Erwärmen des ganzen Rohres über die kritische Temperatur bzw. über den kritischen Temperaturbereich die Herstellungsspannungen abbauen lassen. Dabei können aber Deformationen auftreten, weil das Rohr - im Gegensatz zu vorliegender Erfindung - über keine tragfähigen Partien mehr verfügt. Das Rohr müsste deshalb beispielsweise in eine Stützschale eingelegt und durch Fliehkraftwirkung, inneren Überdruck usw. gegen die Schale gepresst werden. Im weiteren ist ein Verfahren bekannt, das sich einer nachträglichen Rohrerwärmung bedient, um eine materialverfestigende Reckung des Rohrwerkstoffes in Umfangsrichtung zu erleichtern.
Die jenem Verfahren zugrunde liegende Idee hat jedoch nichts mit der vorliegenden Erfindung zu tun.
Beiliegende Zeichnung zeigt ein Ausführungsbeispiel des Erfindungsgedankens :
Der Raupenabzug 5 zieht das in teigigem Zustand aus dem Werkzeug 1 der Schneckenpresse austretende Rohr 3 durch die wassergekühlte Kalibrierdüse 2, in der die Rohraussenfläche zum Erstarren gebracht wird. Das Wasserbad 4 hat die restliche Wärme abzuführen. Bei der gewählten Darstellung ist angenommen, dass das Anliegen der schlauchförmigen Masse an die Kalibrierdüse 2 durch äusseren Unterdruck bewerkstelligt wird. Nach dem Raupenabzug 5 wird die Rohroberfläche beim Durchgang durch die Strahlungsheizung 6 in beschriebener Weise kurz erwärmt. Nach ausreichendem Wiederabkühlen erfolgt das Abschneiden mit Hilfe der Trennvorrichtung 7. Selbstverständlich könnte die thermische Nachbehandlung auch in einem separaten, von der eigentlichen Rohrfertigung unabhängigen Arbeitsgang erfolgen.
In diesem Fall wäre es möglich, das Rohr während des Durchganges durch die Heizung zusätzlich zu drehen, um eine gleichmässige Temperaturverteilung über den Umfang sicherzustellen.
Method for relieving manufacturing stresses in externally calibrated
Plastic pipes Plastic pipes are mostly manufactured using the external caliber method. This consists in that the tubular material emerging from the tool of the screw press in a doughy state is passed through a cooled metal sleeve and quenched on the outer surface. Internal overpressure or external negative pressure ensure that the tubular mass is in good contact with the inner surface of the cooled metal sleeve. This is known as a calibration tool because the solidification of the outermost layer of material caused by it is decisive for the finished size of the pipes.
Cooling baths generally follow behind the calibration tool and are used to dissipate the remaining heat.
The material on the inside of the pipe, which is initially doughy, adapts to the solidified outer layer without tension until it has cooled below the temperature at which the material loses its solidity-free mass. From then on, tensile stresses form as a result of further cooling, which in turn cause compressive stresses in the pipe's outer surface, which is already cold.
The temperature limit mentioned is for materials with a pronounced melting point, so z. B. in polyolefins (polyethylene, polypropylene), identical to the melting temperature, while in materials without a clear temperature criterion, such as hard polyvinyl chloride, ge of a temperature range must be spoken. In the example of hard polyvinyl chloride, the interval includes the temperature range from about 80 to 1500 C.
The tensile stresses caused by the internal pressure are superimposed on the production-related stress state during operation, so that an addition of stress occurs on the inner surface of the pipe, which is already most heavily stressed by the operating pressure.
As a result, the full material strength cannot be used during operation. In addition, pipes that are subject to manufacturing stresses have the disadvantage that they pull in towards the cut surface after being cut. This is particularly evident on hard polyethylene pipes, where the diameter reduction begins approximately (0.1 to 0.2) X pipe diameter in front of the cut surface and reaches up to 2% at the pipe face. When manufacturing welding sleeves, especially electric welding sleeves, this fact would have to be taken into account, which would result in extremely long sleeves.
The present invention consists in a thermal aftertreatment process that allows the manufacturing stresses mentioned to be reduced and thus the disadvantages described to be remedied by bringing stressed plastic pipes to a temperature that is at least close to the temperature at which the pipe outer surface is briefly and intensively heated The material in question loses all strength, while the temperature on the inner surface of the pipe must be clearly below the specified temperature limit.
As a result, the outer surface of the pipe, which prevents the material on the inside of the pipe from contracting, is temporarily deprived of its strength so that the inside of the pipe can contract without resistance.
Thanks to the unaffected load-bearing capacity of the only moderately heated material on the inside of the pipe, there is no risk of the pipe cross-section buckling. The post-treatment described leads to a shortening of the pipe and a shrinkage in diameter. In the case of hard polyethylene pipes, length reductions in the order of magnitude of 0.5% and diameter shrinkages of around 0.25 S could be measured. Post-treated pipes no longer showed any drawing in when they were cut.
Thermal post-treatment would be superfluous in the case of pipes manufactured using the internal calibration process, because manufacturing stresses occur that counteract the operating stresses on the critical inner pipe surface. The internal calibration process has so many disadvantages compared to the external calibration process that this approach is generally not worthwhile.
Post-treatment processes based on the principle described are not known to the inventor. In contrast, it is generally known that the manufacturing stresses can be relieved by heating the entire tube above the critical temperature or the critical temperature range. However, deformations can occur because the pipe - in contrast to the present invention - no longer has any load-bearing parts. The pipe would therefore have to be placed in a support shell, for example, and pressed against the shell by centrifugal force, internal overpressure, etc. In addition, a method is known which makes use of a subsequent pipe heating in order to facilitate a material-strengthening stretching of the pipe material in the circumferential direction.
The idea on which that method is based, however, has nothing to do with the present invention.
The accompanying drawing shows an embodiment of the inventive concept:
The caterpillar haul-off 5 pulls the pipe 3 emerging in a doughy state from the tool 1 of the screw press through the water-cooled calibration nozzle 2, in which the pipe outer surface is made to solidify. The water bath 4 has to dissipate the remaining heat. In the representation chosen, it is assumed that the tubular mass is in contact with the calibration nozzle 2 by external negative pressure. After the caterpillar haul-off 5, the pipe surface is briefly heated as it passes through the radiant heater 6 in the manner described. After sufficient re-cooling, the cutting takes place with the aid of the separating device 7. Of course, the thermal aftertreatment could also be carried out in a separate operation independent of the actual pipe production.
In this case it would be possible to additionally rotate the pipe during the passage through the heater in order to ensure an even temperature distribution over the circumference.
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1225662A CH395523A (en) | 1962-10-18 | 1962-10-18 | Method for relieving manufacturing stresses in externally calibrated plastic pipes |
DE19631479632 DE1479632A1 (en) | 1962-10-18 | 1963-10-15 | Method and device for relieving manufacturing stresses in externally calibrated plastic pipes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1225662A CH395523A (en) | 1962-10-18 | 1962-10-18 | Method for relieving manufacturing stresses in externally calibrated plastic pipes |
Publications (1)
Publication Number | Publication Date |
---|---|
CH395523A true CH395523A (en) | 1965-07-15 |
Family
ID=4381326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH1225662A CH395523A (en) | 1962-10-18 | 1962-10-18 | Method for relieving manufacturing stresses in externally calibrated plastic pipes |
Country Status (2)
Country | Link |
---|---|
CH (1) | CH395523A (en) |
DE (1) | DE1479632A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0829339A1 (en) * | 1996-09-13 | 1998-03-18 | Technoplast Kunststofftechnik Gesellschaft m.b.H. | Method for manufacturing plastic profiles |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL176804C (en) * | 1977-04-06 | 1985-06-03 | Wavin Bv | PLASTIC TUBE WITH LONG CHANNELS IN HIS WALL, AND METHOD FOR MANUFACTURING SUCH PLASTIC TUBE. |
-
1962
- 1962-10-18 CH CH1225662A patent/CH395523A/en unknown
-
1963
- 1963-10-15 DE DE19631479632 patent/DE1479632A1/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0829339A1 (en) * | 1996-09-13 | 1998-03-18 | Technoplast Kunststofftechnik Gesellschaft m.b.H. | Method for manufacturing plastic profiles |
Also Published As
Publication number | Publication date |
---|---|
DE1479632A1 (en) | 1969-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3440427C2 (en) | ||
DE3001371C2 (en) | Process for the production of a ceramic, binder-free hollow body | |
DE2104328A1 (en) | Metal fiber | |
DE1704124B1 (en) | METHOD AND DEVICE FOR SHAPING A FLOOR AT THE END OF A THERMOPLASTIC PLASTIC PIPE | |
DE2648877C3 (en) | Process for making pipes | |
DE1208477B (en) | Method and device for producing hollow strings from thermoplastic material | |
DE3424276C2 (en) | ||
AT398725B (en) | METHOD FOR PRODUCING EXHAUST SLEEVES ON PLASTIC PIPES | |
DE1458155A1 (en) | Device for continuous drawing of multicrystalline material | |
DE2520853A1 (en) | METHOD AND DEVICE FOR THE CONTINUOUS MANUFACTURING OF PIN HOSE OF ANY DIMENSIONS | |
DE1282425B (en) | Method of making seamless tubes | |
CH395523A (en) | Method for relieving manufacturing stresses in externally calibrated plastic pipes | |
DE69801642T2 (en) | Method and device for expanding and pot-like shaping of the end connection area of biaxially oriented pipes made of a thermoplastic | |
EP0003487A1 (en) | Method and apparatus for enlarging a hollow body serving as a muff coupling | |
DE1285721B (en) | Method and device for the production of pipes made of thermoplastic material | |
DE69017910T2 (en) | Device for producing finned tubes. | |
DE3216720A1 (en) | Process for extruding and calibrating plastic pipes | |
DE3318584A1 (en) | CONTROLLING DIFFERENTIAL GROWTH IN CORE REACTOR PARTS BY CONTROLLING METALLURGICAL CONDITIONS | |
DE2105891C3 (en) | Process for the production of hollow bodies from fiber-reinforced, thermosetting plastics | |
DE1960546A1 (en) | Electrical conductor with cooling duct | |
DE695503C (en) | Method and device for the production of multi-layer hollow bodies | |
EP0268909A2 (en) | Process for manufacturing channels in cast pieces for conducting temperature-influencing mediums, and cast pieces for use as a temperature-controlled component or tool | |
DE3152022C2 (en) | ||
DE957749C (en) | Method for changing the thickness of the wall and / or the diameter of the inner cross-section of a pipe | |
DE69522337T2 (en) | METHOD FOR extruding a superconducting rod |