CH348710A - Process for the preparation of water-soluble derivatives of polyoxyflavones - Google Patents

Process for the preparation of water-soluble derivatives of polyoxyflavones

Info

Publication number
CH348710A
CH348710A CH348710DA CH348710A CH 348710 A CH348710 A CH 348710A CH 348710D A CH348710D A CH 348710DA CH 348710 A CH348710 A CH 348710A
Authority
CH
Switzerland
Prior art keywords
polyoxyflavones
water
preparation
soluble derivatives
group
Prior art date
Application number
Other languages
German (de)
Inventor
Bernhard Dr Joos
Original Assignee
Joos Bernhard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joos Bernhard filed Critical Joos Bernhard
Publication of CH348710A publication Critical patent/CH348710A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
    • C07D311/30Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only not hydrogenated in the hetero ring, e.g. flavones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/06Benzopyran radicals
    • C07H17/065Benzo[b]pyrans
    • C07H17/07Benzo[b]pyran-4-ones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pyrane Compounds (AREA)

Description

  

  
 



  Verfahren zur Herstellung wasserlöslicher Derivate von Polyoxyflavonen
Unter den Polyoxyflavonen finden sich zahlreiche Vertreter mit ausgeprägter pharmakologischer Wirksamkeit. Insbesondere trifft dies zu für die natürlich vorkommenden Glieder dieser Gruppe, die sogenannten Bioflavonoide in Form ihrer Glycoside und Aglykone. Erwähnt seien   2.    B. die 3-Oxyflavon-(Flavonol)-glycoside Rutin und Quercitrin und deren Aglykon Quercetin, oder die   2,2-Dihydro-flavon    (Flavonon)-glycoside Hesperidin und Neohesperidin. Die pharmakologische Aktivität äussert sich beispielsweise in der Hemmung und Herabsetzung der Kapillarfragilität und -permeabilität, ein Effekt, der vitaminartiger Natur sein und vor allem den Gliedern der Vitamin P-Gruppe zukommen soll; ferner in der Hemmung bzw. Verhinderung des experimentellen Histaminoder Peptonschocks.

   Die antiallergischen Eigenschaften, wie sie sich in der Verhütung des anaphylaktischen Schocks und in der günstigen Beeinflussung allergischer Krankheitsbilder zeigen, kommen besonders ausgeprägt in Kombination mit Proteinen zur Geltung. Der therapeutischen Anwendung der Polyoxyflavone sind jedoch wegen ihrer geringen Löslichkeit in Wasser Grenzen gesetzt. Es sind zwar schon verschiedene Verfahren zur Herstellung wässriger Lösungen von Polyoxyflavonen ausgearbeitet worden. Diese Verfahren beruhen teils auf der Verwendung von Lösungsvermittlern, teils auf der Abwandlung der phenolischen Hydroxylgruppen durch Salz-, Ester- oder Ätherbildung. Diese vorbekannten Verfahren sind jedoch nicht ohne Nachteile. So wirken die Lösungsvermittler als Ballaststoffe und sind nicht durchwegs frei von unerwünschten Nebenwirkungen.

   Die Abwandlung der Hydroxygruppen führt anderseits oft zu einer deutlichen Wirkungsverminderung.



   Es wurde nun gefunden, dass sich durch Einführung von mindestens einer Gruppe der Formel CH2 Am, worin Am eine primäre, sekundäre oder tertiäre Aminogruppe bedeutet, in den Kern des Polyoxyflavons, sei es in dessen einzelne Phenylgruppe oder das   Benzo-y-pyron-ringsystem,    mittels Formaldehyd und Ammoniak oder einer Verbindung der Formel H-Am, Derivate mit erhöhter Wasserlöslichkeit herstellen lassen. Das erfindungsgemässe Verfahren zur Herstellung wasserlöslicher Derivate von Polyoxyflavonen ist dadurch gekennzeichnet, dass man ein Polyoxyflavon zur Einführung mindestens einer Gruppe der Formel CH2-Am in den Flavon Kern mit Formaldehyd und Ammoniak oder einer Verbindung der Formel H-Am umsetzt.



   Als Ausgangsstoffe können verwendet werden: Flavone, die im einzelnen Benzolring, im Benzo-ypyron-ringsystem oder in beiden zusammen mindestens zwei phenolische Hydroxylgruppen aufweisen, insbesondere solche, die in 3-Stellung eine Hydroxygruppe tragen oder die in 2,3-Stellung hydriert sind. Von diesen letztern ist bekannt, dass sie in alkalischem Milieu in Form der isomeren o Oxy-chalkon-Form vorliegen können. Die phenolischen Hydroxylgruppen können frei oder teilweise bzw. ganz verestert oder veräthert sein, insbesondere auch Glycosidreste tragen. Bevorzugte Ausgangsstoffe sind die natürlich vorkommenden Polyoxyflavone, z. B. Rutin, Hesperidin oder Neohesperidin.



   Als Verbindung der Formel H-Am kann beispielsweise verwendet werden: Monoalkylamine, z. B.



     Methyl-Äthyl oder    Propylamin, Dialkylamine oder heterocyclische Stickstoffbasen,   2. B.    Morpholin, Piperidin oder Piperazin. Die Alkylgruppe der Monound Dialkylamine kann auch substituiert sein, beispielsweise durch Hydroxygruppen.



   Vor dem Umsatz wird das Polyoxyflavon zweckmässig vollständig gelöst. Es ist aber auch möglich, die Reaktion mit einem nur teilweise gelösten Flavon  beginnen zu lassen. Man kann z. B. das Polyoxyflavon in einer wässrigen Lösung der verwendeten Aminoverbindung, beispielsweise von Dimethylamin, lösen. Sofern die Aminoverbindungen Flüssigkeiten mit nicht allzu niedrigem Siedepunkt darstellen, kann man diese unverdünnt als Lösungsmittel gebrauchen, z. B. Morpholin.



   Der Formaldehyd wird zweckmässig in Form einer konzentrierten wässrigen Lösung eingesetzt. Es können auch formaldehydabspaltende Mittel verwendet werden.



   Man arbeitet vorteilhafterweise unter Ausschluss von atmosphärischem Sauerstoff, z. B. unter Stickstoff.



   Die erhaltenen Kondensationsprodukte können mit Säuren neutralisiert werden. Verfahrensprodukte mit tertiären Aminogruppen können quaternisiert werden.



   Die erfindungsgemäss erhaltenen wasserlöslichen Derivate sollen als Heilmittel verwendet werden.



   Beispiel
Man versetzt eine Lösung von 30,2 g Hesperetin unter Kühlen mit 5 g Dimethylamin. Zu diesem Gemisch lässt man in Stickstoffatmosphäre unter Rühren bei 15 bis 250 eine konzentrierte wässrige Lösung von 4,5 g Formaldehyd zutropfen. Nach anfänglicher Umsetzung bei Raumtemperatur wird noch 2 Stunden auf dem Dampfbad zum Sieden erhitzt. Nach dem Abkühlen wird das Reaktionsprodukt durch Zugabe von Wasser abgeschieden. Es kann mit Hilfe von Methylbromid in das Methobromid überführt werden.



   Analog kann die Reaktion mit Hesperidin durchgeführt werden.   



  
 



  Process for the preparation of water-soluble derivatives of polyoxyflavones
Among the polyoxyflavones there are numerous representatives with pronounced pharmacological effectiveness. This is particularly true for the naturally occurring members of this group, the so-called bioflavonoids in the form of their glycosides and aglycones. The 3-oxyflavone (flavonol) glycosides rutin and quercitrin and their aglycone quercetin, or the 2,2-dihydro-flavone (flavonone) glycosides hesperidin and neohesperidin, may be mentioned. The pharmacological activity manifests itself, for example, in the inhibition and reduction of capillary fragility and permeability, an effect that is of a vitamin-like nature and is said to be attributable above all to the members of the vitamin P group; also in the inhibition or prevention of the experimental histamine or peptone shock.

   The antiallergic properties, as shown in the prevention of anaphylactic shock and in the favorable influence on allergic clinical pictures, are particularly pronounced in combination with proteins. The therapeutic use of polyoxyflavones is, however, limited because of their low solubility in water. Various processes for the preparation of aqueous solutions of polyoxyflavones have already been worked out. These processes are based partly on the use of solubilizers and partly on the modification of the phenolic hydroxyl groups by salt, ester or ether formation. However, these previously known methods are not without their disadvantages. The solubilizers act as dietary fiber and are not entirely free from undesirable side effects.

   On the other hand, the modification of the hydroxyl groups often leads to a significant reduction in effectiveness.



   It has now been found that by introducing at least one group of the formula CH2 Am, where Am is a primary, secondary or tertiary amino group, into the nucleus of the polyoxyflavone, be it in its individual phenyl group or the benzo-y-pyrone ring system , using formaldehyde and ammonia or a compound of the formula H-Am, can produce derivatives with increased water solubility. The process according to the invention for preparing water-soluble derivatives of polyoxyflavones is characterized in that a polyoxyflavone is reacted with formaldehyde and ammonia or a compound of the formula H-Am to introduce at least one group of the formula CH2-Am into the flavone core.



   The following can be used as starting materials: Flavones which have at least two phenolic hydroxyl groups in the individual benzene ring, in the benzo-ypyron ring system or in both together, in particular those which have a hydroxyl group in the 3-position or which are hydrogenated in the 2,3-position . The latter is known to exist in an alkaline medium in the form of the isomeric oxy-chalcone form. The phenolic hydroxyl groups can be free or partially or completely esterified or etherified, and in particular also carry glycoside residues. Preferred starting materials are the naturally occurring polyoxyflavones, e.g. B. rutin, hesperidin or neohesperidin.



   As a compound of the formula H-Am, for example, can be used: Monoalkylamines, e.g. B.



     Methyl-ethyl or propylamine, dialkylamines or heterocyclic nitrogen bases, 2. B. morpholine, piperidine or piperazine. The alkyl group of the mono- and dialkylamines can also be substituted, for example by hydroxyl groups.



   The polyoxyflavone is expediently completely dissolved before the conversion. However, it is also possible to start the reaction with an only partially dissolved flavone. You can z. B. the polyoxyflavone in an aqueous solution of the amino compound used, for example of dimethylamine. If the amino compounds are liquids with a boiling point that is not too low, they can be used undiluted as a solvent, e.g. B. morpholine.



   The formaldehyde is expediently used in the form of a concentrated aqueous solution. Formaldehyde-releasing agents can also be used.



   It is advantageous to work with the exclusion of atmospheric oxygen, e.g. B. under nitrogen.



   The condensation products obtained can be neutralized with acids. Process products with tertiary amino groups can be quaternized.



   The water-soluble derivatives obtained according to the invention are intended to be used as medicinal products.



   example
A solution of 30.2 g of hesperetin is added with 5 g of dimethylamine while cooling. A concentrated aqueous solution of 4.5 g of formaldehyde is added dropwise to this mixture in a nitrogen atmosphere with stirring at 15 to 250. After the initial reaction at room temperature, the mixture is heated to boiling on the steam bath for a further 2 hours. After cooling, the reaction product is separated off by adding water. It can be converted into methobromide with the help of methyl bromide.



   The reaction with hesperidin can be carried out analogously.

 

Claims (1)

PATENTANSPRUCH Verfahren zur Herstellung wasserlöslicher Deri- vate von Polyoxyflavonen, dadurch gekennzeichnet, dass man ein Polyoxyflavon zur Einführung mindestens einer Gruppe der Formel CH2-Am, worin Am eine primäre, sekundäre oder tertiäre Aminogruppe bedeutet, in den Flavon-Kern mit Formaldehyd und Ammoniak oder einer Verbindung der Formel H-Am umsetzt. PATENT CLAIM Process for the preparation of water-soluble derivatives of polyoxyflavones, characterized in that a polyoxyflavone to introduce at least one group of the formula CH2-Am, in which Am is a primary, secondary or tertiary amino group, is added to the flavone core with formaldehyde and ammonia or a Reacts compound of the formula H-Am. UNTERANSPRUCH Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass als Polyoxyflavon Rutin, Hesperidin oder Neohesperidin verwendet wird. UNDER CLAIM Method according to claim, characterized in that rutin, hesperidin or neohesperidin is used as the polyoxyflavone.
CH348710D 1955-12-30 1955-12-30 Process for the preparation of water-soluble derivatives of polyoxyflavones CH348710A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH348710T 1955-12-30

Publications (1)

Publication Number Publication Date
CH348710A true CH348710A (en) 1960-09-15

Family

ID=4508468

Family Applications (1)

Application Number Title Priority Date Filing Date
CH348710D CH348710A (en) 1955-12-30 1955-12-30 Process for the preparation of water-soluble derivatives of polyoxyflavones

Country Status (1)

Country Link
CH (1) CH348710A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336198A (en) * 1964-02-14 1967-08-15 Ciba Geigy Corp Aminomethyl derivatives of rutin and process for the manufacture thereof
US3346559A (en) * 1965-12-28 1967-10-10 Hans Voigt Chem Pharm Fabrik D Alkylamino-alkyl-(rutin or hesperidin)-3, 4-dihydro-1, 2, 4-benzothiadiazine-1, 1-dioxides and method for making the same
US3441557A (en) * 1966-09-23 1969-04-29 Hans Voigt Chem Pharm Fabrik D Dialkylaminoalkyl-hesperidin containing compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336198A (en) * 1964-02-14 1967-08-15 Ciba Geigy Corp Aminomethyl derivatives of rutin and process for the manufacture thereof
US3346559A (en) * 1965-12-28 1967-10-10 Hans Voigt Chem Pharm Fabrik D Alkylamino-alkyl-(rutin or hesperidin)-3, 4-dihydro-1, 2, 4-benzothiadiazine-1, 1-dioxides and method for making the same
US3441557A (en) * 1966-09-23 1969-04-29 Hans Voigt Chem Pharm Fabrik D Dialkylaminoalkyl-hesperidin containing compounds

Similar Documents

Publication Publication Date Title
DE1170417B (en) Process for the production of a diphenyl-butylamine with the effect of expanding the coronary vessels
DE2627146A1 (en) ADRIAMYCINESTERS AND METHOD FOR PRODUCING THEREOF
DE3028148C2 (en) N-glycosyl derivatives of daunorubicin and adriamycin, processes for their preparation and medicaments containing these compounds
CH348710A (en) Process for the preparation of water-soluble derivatives of polyoxyflavones
DE2000030B2 (en) 3 alkoxy and 3 phenoxy 2 (diphenyl hydroxy) methyl propylamine and medicinal products containing them
DE1543769A1 (en) Process for the production of flavan derivatives
AT213878B (en) Process for the preparation of new base substituted diphenylalkane derivatives and their acid addition salts or quaternary ammonium salts
DE844448C (en) Process for the preparation of bactericidal ª-phenoxyethylammonium compounds
DE1118215B (en) Process for the preparation of 2, 5-dianilino-terephthalic acid esters
DE855119C (en) Process for the preparation of salts of the esters from N-substituted aminoalkanols and substituted or unsubstituted p-aminobenzoic acid
AT230882B (en) Process for the production of 6-aminochryses
AT228191B (en) Process for the preparation of new aryl glucosaminides
DE671841C (en) Process for the preparation of N-alkyl and N-aralkyl compounds of aminoethylphedrine
AT214930B (en) Process for the preparation of new thioxanthene derivatives
DE1468554C (en) 20 beta tert amino 3 alpha hydroxy (or acyloxy) 5 beta pregnane or its salts and processes for their manufacture
AT241455B (en) Process for the preparation of the new tertiary and quaternary salts of 2- [pyridyl- (3 ')] -thiazoline-Δ <2>
AT278008B (en) Process for the preparation of new 3-alkylflavanones and their esters, as well as both salts
AT157407B (en) Process for the preparation of amino alcohols.
DE2427382A1 (en) 3-BENZYLPYRIDO SQUARE CLAMP ON 3.4 SQUARE CLAMP FOR -AS-TRIAZINE AND METHOD OF MANUFACTURING THEREOF
DE1804392A1 (en) 9-0-Kalamycin derivatives and process for their preparation
DE964328C (en) Process for the production of crystallized vanillylamides
DE895454C (en) Process for the preparation of ª-dimethylaminoethyl benzhydryl ether
AT201584B (en) Process for the production of new anilides and their salts
DE661674C (en) Process for the preparation of oxyalkylaminonitrobenzenes
DE2337931A1 (en) 2-Amino-N-cyclohexyl-3,5-dibromo-N-methylbenzyl-amine prepn - by reacting benzylalcohol with N,N',N''-tricyclohexyl-N,N',N''-trimethyl-phosphoric acid triamide