CA3231677A1 - Methods and compositions for modulating a genome - Google Patents

Methods and compositions for modulating a genome Download PDF

Info

Publication number
CA3231677A1
CA3231677A1 CA3231677A CA3231677A CA3231677A1 CA 3231677 A1 CA3231677 A1 CA 3231677A1 CA 3231677 A CA3231677 A CA 3231677A CA 3231677 A CA3231677 A CA 3231677A CA 3231677 A1 CA3231677 A1 CA 3231677A1
Authority
CA
Canada
Prior art keywords
domain
sequence
cas
modifying polypeptide
identity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA3231677A
Other languages
French (fr)
Inventor
Robert Charles ALTSHULER
Anne Helen Bothmer
Cecilia Giovanna Silvia COTTA-RAMUSINO
Randi Michelle KOTLAR
Ananya RAY
Nathaniel Roquet
Carlos Sanchez
Barrett Ethan Steinberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flagship Pioneering Innovations VI Inc
Original Assignee
Flagship Pioneering Innovations VI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flagship Pioneering Innovations VI Inc filed Critical Flagship Pioneering Innovations VI Inc
Publication of CA3231677A1 publication Critical patent/CA3231677A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1082Preparation or screening gene libraries by chromosomal integration of polynucleotide sequences, HR-, site-specific-recombination, transposons, viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1276RNA-directed DNA polymerase (2.7.7.49), i.e. reverse transcriptase or telomerase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07049RNA-directed DNA polymerase (2.7.7.49), i.e. telomerase or reverse-transcriptase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3519Fusion with another nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The disclosure provides, e.g., compositions, systems, and methods for targeting, editing, modifying, or manipulating a host cell's genome at one or more locations in a DNA sequence in a cell, tissue, or subject.

Description

DEMANDE OU BREVET VOLUMINEUX
LA PRESENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND
PLUS D'UN TOME.

NOTE : Pour les tomes additionels, veuillez contacter le Bureau canadien des brevets JUMBO APPLICATIONS/PATENTS
THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE
VOLUME

NOTE: For additional volumes, please contact the Canadian Patent Office NOM DU FICHIER / FILE NAME:
NOTE POUR LE TOME / VOLUME NOTE:

METHODS AND COMPOSITIONS FOR MODULATING A GENOME
RELATED APPLICATIONS
This application claims priority to U.S. Serial No.: 63/241,953 filed September 8, 2021 and 63/373,444 filed August 24, 2022, the entire contents of each of which is incorporated herein by reference.
SEQUENCE LISTING
The instant application contains a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML
copy, created on August 23, 2022, is named V2065-7023W0 SL.xml and is 15,727,035 bytes in size.
BACKGROUND
Integration of a nucleic acid of interest into a genome occurs at low frequency and with little site specificity, in the absence of a specialized protein to promote the insertion event. Some existing approaches, like CRISPR/Cas9, are more suited for small edits that rely on host repair pathways, and are less effective at integrating longer sequences. Other existing approaches, like Cre/loxP, require a first step of inserting a loxP site into the genome and then a second step of inserting a sequence of interest into the loxP site. There is a need in the art for improved compositions (e.g., proteins and nucleic acids) and methods for inserting, altering, or deleting sequences of interest in a genome.
SUMMARY OF THE INVENTION
This disclosure relates to novel compositions, systems and methods for altering a genome at one or more locations in a host cell, tissue or subject, in vivo or in vitro. In particular, the invention features compositions, systems and methods for inserting, altering, or deleting sequences of interest in a host genome.
Features of the compositions or methods can include one or more of the following enumerated embodiments.
1. A gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence and a reverse transcriptase (RT) domain of Table 1, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto (e.g., to a sequence as listed for the RT domain in Table 6);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker has a sequence from the same row of Table 1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
2. The gene modifying polypeptide of embodiment 1, wherein the RT domain has a sequence with at least 90% identity to the RT domain of Table 1.
3. The gene modifying polypeptide of any of the preceding embodiments, wherein the RT domain has a sequence with at least 95% identity to the RT domain of Table 1.
4. The gene modifying polypeptide of any of the preceding embodiments, wherein the RT domain has a sequence with at least 98% identity to the RT domain of Table 1.
5. The gene modifying polypeptide of any of the preceding embodiments, wherein the RT domain has a sequence with at least 99% identity to the RT domain of Table 1.
6. The gene modifying polypeptide of any of the preceding embodiments, wherein the RT domain has a sequence with 100% identity to the RT domain of Table 1.
7. The gene modifying polypeptide of any of the preceding embodiments, wherein the linker has a sequence with at least 90% identity to the linker sequence from the same row of Table 1 as the RT
domain.
8. The gene modifying polypeptide of any of the preceding embodiments, wherein the linker has a sequence with at least 95% identity to the linker sequence from the same row of Table 1 as the RT
domain.
9. The gene modifying polypeptide of any of the preceding embodiments, wherein the linker has a sequence with at least 97% identity to the linker sequence from the same row of Table 1 as the RT
domain.
10. The gene modifying polypeptide of any of the preceding embodiments, wherein the linker has a sequence with 100% identity to the linker sequence from the same row of Table 1 as the RT domain.
11. The gene modifying polypeptide of any of the preceding embodiments, wherein the RT domain comprises a mutation as listed in Table 2.
12. The gene modifying polypeptide of any of the preceding embodiments, wherein the Cas domain comprises a sequence of Table 7 or 8, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identity thereto.
13. The gene modifying polypeptide of any of the preceding embodiments, wherein the Cas domain is a Cas nickase domain.
14. The gene modifying polypeptide of any of the preceding embodiments, wherein the Cas domain is a Cas9 nickase domain.
15. The gene modifying polypeptide of any of the preceding embodiments, wherein the Cas domain comprises an N863A mutation.
16. The gene modifying polypeptide of any of the preceding embodiments, which comprises an NLS, e.g., wherein the gene modifying polypeptide comprises two NLSs.
17. The gene modifying polypeptide of any of the preceding embodiments, which comprises an NLS
N-terminal of the Cas9 domain.
18. The gene modifying polypeptide of any of the preceding embodiments, which comprises an NLS
C-terminal of the RT domain.
19. The gene modifying polypeptide of any of the preceding embodiments, which comprises a first NLS which is N-terminal of the Cas9 domain and a second NLS which is C-terminal of the RT domain.
20. The gene modifying polypeptide of any of the preceding embodiments, which comprises a sequence of SEQ ID NO: 4000 which comprises the first NLS and the Cas domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identity thereto.
21. The gene modifying polypeptide of any of the preceding embodiments, which comprises a sequence of SEQ ID NO: 4001 which comprises the second NLS, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identity thereto.
22. The gene modifying polypeptide of any of the preceding embodiments, which comprises a GG
amino acid sequence between the Cas domain and the linker.
23. The gene modifying polypeptide of any of the preceding embodiments, which comprises an AG
amino acid sequence between the RT domain and the second NLS.
24. The gene modifying polypeptide of any of the preceding embodiments, which comprises a GG
amino acid sequence between the linker and the RT domain.
25. The gene modifying polypeptide of any of the preceding embodiments, which comprises an amino acid sequence according to any of SEQ ID NOs: 1-3332 in the sequence listing, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
26. The gene modifying polypeptide of any of the preceding embodiments, which comprises an amino acid sequence with at least 90% identity to any of SEQ ID NOs: 1-3332 in the sequence listing.
27. The gene modifying polypeptide of any of the preceding embodiments, which comprises an amino acid sequence with at least 95% identity to any of SEQ ID NOs: 1-3332 in the sequence listing.
28. The gene modifying polypeptide of any of the preceding embodiments, which comprises an amino acid sequence with at least 98% identity to any of SEQ ID NOs: 1-3332 in the sequence listing.
29. The gene modifying polypeptide of any of the preceding embodiments, which comprises an amino acid sequence with at least 99% identity to any of SEQ ID NOs: 1-3332 in the sequence listing.
30. The gene modifying polypeptide of any of the preceding embodiments, which comprises an amino acid sequence with 100% identity to any of SEQ ID NOs: 1-3332 in the sequence listing.
31. The gene modifying polypeptide of any of the preceding embodiments, which produces an increase in converted GFP+ of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, 1500%, 2000%, or 2500% relative to unsorted input cells in an assay of Example 2 using HEK cells (e.g., HEK293T cells) and g4 guide RNA.
32. The gene modifying polypeptide of any of the preceding embodiments, which produces an increase in converted GFP+ of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, 1500%, 2000%, or 2500% relative to unsorted input cells in an assay of Example 2 using U2-OS cells and g4 guide RNA.
33. The gene modifying polypeptide of any of the preceding embodiments, which produces an increase in converted GFP+ of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, 1500%, 2000%, or 2500% relative to unsorted input cells in an assay of Example 2 using HEK cells (e.g., HEK293T cells) and g10 guide RNA.
34. The gene modifying polypeptide of any of the preceding embodiments, which has an activity that is at least 50%, 60%, 70%, 80%, or 90% of the activity of a gene modifying polypeptide comprising, in an N-terminal to C-terminal direction:
a) an NLS and Cas domain sequence of SEQ ID NO: 4000;
b) a linker having the sequence EAAAKGSS;
c) an RT domain having the sequence of PERV_Q4VFZ2_3mutA_WS; and d) an NLS sequence of SEQ ID NO: 4001, in an assay of Example 1 using HEK cells and g4 guide RNA.
35. The gene modifying polypeptide of any of the preceding embodiments, which has an activity that is at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, 1500%, 2000%, or 2500%

greater than the activity of a gene modifying polypeptide comprising a sequence of SEQ ID NO: 4002 in an assay of Example 1, e.g., using HEK cells and g4 guide RNA.
36. A nucleic acid (e.g., DNA or RNA, e.g., mRNA) encoding the gene modifying polypeptide of any of the preceding embodiments.
37. A cell comprising the gene modifying polypeptide of any of embodiments 1-35 or the nucleic acid of embodiment 36.
38. A system comprising:
i) the gene modifying polypeptide of any of embodiments 1-35, and ii) a template RNA that comprises:
a) a gRNA spacer that is complementary to a portion a target nucleic acid sequence;
b) a gRNA scaffold that binds the Cas domain of the gene modifying polypeptide;
c) a heterologous object sequence; and d) a primer binding site sequence (PBS sequence).
39. A method for modifying a target nucleic acid in a cell (e.g., a human cell), the method comprising contacting the cell with the system of embodiment 38, or nucleic acid encoding the same, thereby modifying the target nucleic acid.
40. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain comprising the RT domain of a reference gene modifying polypeptide having the sequence of any one of SEQ ID NOs: 1-7743, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT
domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises the linker of said reference gene modifying polypeptide, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
41. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table 1.
42. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table Al.
43. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table A5.
44. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table Dl.
45. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table D2.
46. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table D3.
47. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table D4.
48. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table D5.
49. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table D6.
50. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table D7.
51. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table D8.
52. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table D9.
53. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table D10.
54. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table D11.
55. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table D12.
56. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table Ti.
57. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide has the amino acid sequence of a SEQ ID NO as listed in Table T2.
58. The gene modifying polypeptide of embodiment 40, wherein the reference gene modifying polypeptide is an AVIRE polypeptide (e.g., as described herein), and wherein the linker comprises an amino acid sequence as listed in Figure 11.
59. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table 1, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker has a sequence from the same row of Table 1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
60. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table Al, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table Al as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
61. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table A5, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
62. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table Tl, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
63. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table T2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
64. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);

a reverse transcriptase (RT) domain of Table DI, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table DI as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
65. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D2 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
66. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D3, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D3 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
67. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D4, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D4 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
68. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D5, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D5 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
69. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D6, or a sequence having at least
70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D6 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
70. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D7, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D7 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
71. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D8, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D8 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
72. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D9, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D9 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
73. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D10, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D10 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
74. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D11, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table Dll as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
75. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);

a reverse transcriptase (RT) domain of Table D12, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D12 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
76. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table Ti, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table Ti as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
77. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table T2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table T2 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
78. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
an AVIRE reverse transcriptase (RT) domain (e.g., as described herein), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence as listed in Figure 11, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
79. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an AVIRE RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identity thereto.
80. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an BAEVM RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%
identity thereto.
81. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an FFV RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identity thereto.
82. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an FLV RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identity thereto.
83. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an FOAMV RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%
identity thereto.
84. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an GALV RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identity thereto.
85. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an KORV RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identity thereto.
86. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an MLVAV RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%
identity thereto.
87. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an MLVBM RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%
identity thereto.
88. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an MLVCB RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%
identity thereto.
89. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an MLVFF RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identity thereto.
90. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an MLVMS RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%
identity thereto.
91. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an PERV RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identity thereto.
92. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an SFV1 RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identity thereto.
93. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an SFV3L RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identity thereto.
94. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an WMSV RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identity thereto.
95. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an XMRV6 RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%
identity thereto.
96. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of an MLVAV, MLVBM, BAEVM, FLV, FOAMY, GALV, KORV, AVIRE, MLVCB, MLVFF, MLVMS, SFV3L, WMSV, or XMRV6 RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%
identity thereto.
97. The gene modifying polypeptide of any one of embodiments 1-78, wherein the RT domain comprises an amino acid sequence of a gammaretroviral RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identity thereto.
98. The gene modifying polypeptide of embodiment 97, wherein the RT domain comprises an amino acid sequence of an GALV, MLVAV, MLVBM, BAEVM, FLV, AVIRE, KORV, MLVCB, MLVFF, WMSV, XMRV6, MLVMS, and PERV RT domain (e.g., as described in Table 6), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identity thereto.
99. The gene modifying polypeptide of any embodiment 40, wherein the RT
domain comprises an amino acid sequence of an RT domain as listed in any one of Tables 1, Al, AS, Dl-D12, Tl, or T2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99%
identity thereto.
100. The gene modifying polypeptide of embodiment 40, wherein the linker comprises an amino acid sequence of a linker as listed in any one of Tables 1, Al, AS, Dl-D12, Tl, or T2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
101. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an amino acid sequence of an RT domain as listed in any one of Tables 1, Al, AS, Dl-D12, Tl, or T2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto; and wherein the linker comprises an amino acid sequence of a linker as listed the same row of Table 1, Al, AS, Dl-D12, Tl, or T2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
102. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises one or more (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20) amino acid substitutions at a residue corresponding to position 200, 603, 330, 524, 562, 583, 51, 67, 67, 197, 204, 302, 309, 313, 435, 454, 594, 671, 69, or 653 of an MLVMS RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an MLVMS_reference sequence, e.g., SEQ ID NO: 8137, relative to a wildtype sequence of the RT domain.
103. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
-- domain comprising an amino acid sequence of an MLVMS RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an MLVMS reference sequence, e.g., SEQ ID
NO: 8137, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
104. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises one or more (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20) amino acid substitutions at a residue corresponding to position 200, 603, 330, 524, 562, 583, 51, 67, 67, 197, 204, 302, 309, 313, 435, 454, 594, 671, 69, or 653 of an MLVMS RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an MLVMS_P03355 sequence, e.g., SEQ ID NO: 8070, relative to a wildtype sequence of the RT domain.
105. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an MLVMS RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an MLVMS_P03355 sequence, e.g., SEQ ID NO:
8070, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
106. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an AVIRE RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an AVIRE_P03360 sequence, e.g., SEQ ID NO: 8001, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
107. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an BAEVM RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an BAEVM_P10272 sequence, e.g., SEQ ID NO: 8004, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
108. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an BLVAU RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an BLVAU_P25059 sequence, e.g., SEQ ID NO: 8007, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
109. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an BLVJ RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an BLVJ_P03361 sequence, e.g., SEQ ID NO: 8009, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
110. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an FFV RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an FFV_093209 sequence, e.g., SEQ ID NO: 8012, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
111. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an FLV RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an FLV_P10273 sequence, e.g., SEQ ID NO: 8019, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
112. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an FOAMY RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an FOAMV_P14350 sequence, e.g., SEQ ID NO: 8021, or a sequence having at .. least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
113. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an GALV RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an GALV_P21414 sequence, e.g., SEQ ID NO: 8027, or a sequence having at .. least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
114. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an HTL1A RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an HTL1A_P03362 sequence, e.g., SEQ ID NO: 8030, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
115. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an HTL1C RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an HTL1C_P14078 sequence, e.g., SEQ ID NO: 8033, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
116. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an HTL32 RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an HTL32_QOR5R2 sequence, e.g., SEQ ID NO: 8038, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
117. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an HTL3P RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an HTL3P_Q4U0X6 sequence, e.g., SEQ ID NO: 8041, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
118. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an JSRV RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an JSRV_P31623 sequence, e.g., SEQ ID NO: 8045, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
119. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an KORV RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an KORV_Q9TTC1 sequence, e.g., SEQ ID NO: 8047, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
120. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an MLVAV RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an MLVAV_P03356 sequence, e.g., SEQ ID NO:
8053, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
121. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an MLVBM RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an MLVBM_Q7SVK7 sequence, e.g., SEQ ID NO:
8056, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
122. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an MLVCB RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an MLVCB_P08361 sequence, e.g., SEQ ID NO: 8062, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
123. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an MLVF5 RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an MLVF5_P26810 sequence, e.g., SEQ ID NO: 8065, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
124. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an MLVRD RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an MLVRD_P11227 sequence, e.g., SEQ ID NO: 8078, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
125. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an MMTVB RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an MMTVB_P03365 sequence, e.g., SEQ ID NO:
8080, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
126. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an MPMV RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an MPMV_P07572 sequence, e.g., SEQ ID NO: 8097, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
127. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an PERV RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an PERV_Q4VFZ2 sequence, e.g., SEQ ID NO: 8099, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
128. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an SFV1 RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an SFV1_P23074 sequence, e.g., SEQ ID NO: 8105, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
129. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an SFV3L RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an 5FV3L_P27401 sequence, e.g., SEQ ID NO: 8111, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
130. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an SFVCP RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an SFVCP_Q87040 sequence, e.g., SEQ ID NO: 8117, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
131. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an SMRV RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an SMRVH_P03364 sequence, e.g., SEQ ID NO: 8123, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
132. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an SRV2 RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an SRV2_1351517 sequence, e.g., SEQ ID NO: 8126, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
133. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an WDSV RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an WDSV_092815 sequence, e.g., SEQ ID NO: 8128, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
134. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an WMSV RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an WMSV_P03359 sequence, e.g., SEQ ID NO: 8131, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
135. The gene modifying polypeptide of embodiment 40, wherein the RT domain comprises an RT
domain comprising an amino acid sequence of an XMRV6 RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an XMRV6_A1Z651 sequence, e.g., SEQ ID NO: 8134, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
136. The gene modifying polypeptide of any one of embodiments 40-135, wherein the RT domain comprises:
a) the amino acid asparagine (N) at position 200 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
b) the amino acid tryptophan (W) at position 603 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
c) the amino acid proline (P) at position 330 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
d) the amino acid glycine (G) at position 524 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
e) the amino acid glutamine (Q) at position 562 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
f) the amino acid asparagine (N) at position 583 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
g) the amino acid leucine (L) at position 51 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
h) the amino acid arginine (R) at position 67 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
i) the amino acid lysine (K) at position 67 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
j) the amino acid alanine (A) at position 197 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
k) the amino acid arginine (R) at position 204 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
1) the amino acid lysine (K) at position 302 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;

m) the amino acid asparagine (N) at position 309 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
n) the amino acid phenylalanine (F) at position 313 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
o) the amino acid glycine (G) at position 435 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
p) the amino acid lysine (K) at position 454 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
q) the amino acid glutamine (Q) at position 594 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
r) the amino acid proline (P) at position 671 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain;
s) the amino acid lysine (K) at position 69 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain; or t) the amino acid asparagine (N) at position 653 of SEQ ID NO: 8137 or at a corresponding position in a homologous RT domain.
137. The gene modifying polypeptide of embodiment 40, wherein the RT domain has a sequence with at least 90% identity to the RT domain of the reference gene modifying polypeptide.
138. The gene modifying polypeptide of any of the preceding embodiments, wherein the RT domain has a sequence with at least 95% identity to the RT domain of the reference gene modifying polypeptide.
139. The gene modifying polypeptide of any of the preceding embodiments, wherein the RT domain has a sequence with at least 98% identity to the RT domain of the reference gene modifying polypeptide.
140. The gene modifying polypeptide of any of the preceding embodiments, wherein the RT domain has a sequence with at least 99% identity to the RT domain of the reference gene modifying polypeptide.
141. The gene modifying polypeptide of any of the preceding embodiments, wherein the RT domain has a sequence with 100% identity to the RT domain of the reference gene modifying polypeptide.
142. The gene modifying polypeptide of any of the preceding embodiments, wherein the linker has a sequence with at least 90% identity to the linker sequence from the reference gene modifying polypeptide.
143. The gene modifying polypeptide of any of the preceding embodiments, wherein the linker has a sequence with at least 95% identity to the linker sequence from the reference gene modifying polypeptide.
144. The gene modifying polypeptide of any of the preceding embodiments, wherein the linker has a sequence with at least 97% identity to the linker sequence from the reference gene modifying polypeptide.
145. The gene modifying polypeptide of any of the preceding embodiments, wherein the linker has a sequence with 100% identity to the linker sequence from the reference gene modifying polypeptide.
146. The gene modifying polypeptide of any of the preceding embodiments, wherein the linker has an amino acid sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% identity to SEQ ID NO: 11,041.
147. The gene modifying polypeptide of any of the preceding embodiments, wherein the RT domain comprises a mutation as listed in Table 2.
148. The gene modifying polypeptide of any of the preceding embodiments, wherein the RT domain comprises one or more (e.g., 1, 2, 3, 4, 5, or 6) mutations as listed in any single row of Table 2.
149. The gene modifying polypeptide of any of the preceding embodiments, wherein the RT domain comprises all of the mutations listed in any single row of Table 2.
150. The gene modifying polypeptide of any of the preceding embodiments, wherein the Cas domain comprises a sequence of Table 7 or 8, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identity thereto.
151. The gene modifying polypeptide of any of the preceding embodiments, wherein the Cas domain comprises the amino acid sequence of a Cas domain comprised in the amino acid sequence of the reference gene modifying polypeptide, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identity thereto.
152. The gene modifying polypeptide of any of the preceding embodiments, wherein the Cas domain does not comprise the amino acid sequence of a Cas domain comprised in the amino acid sequence of the reference gene modifying polypeptide, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identity thereto.
153. The gene modifying polypeptide of any of the preceding embodiments, wherein the Cas domain is a Cas nickase domain.
154. The gene modifying polypeptide of any of the preceding embodiments, wherein the Cas domain is a Cas9 nickase domain.
155. The gene modifying polypeptide of any of the preceding embodiments, wherein the Cas domain comprises an N863A mutation.
156. The gene modifying polypeptide of any of the preceding embodiments, which comprises an NLS, e.g., wherein the gene modifying polypeptide comprises two NLSs.
157. The gene modifying polypeptide of any of the preceding embodiments, which comprises an NLS
N-terminal of the Cas9 domain.
158. The gene modifying polypeptide of any of the preceding embodiments, which comprises an NLS
C-terminal of the RT domain.
159. The gene modifying polypeptide of any of the preceding embodiments, which comprises a first NLS which is N-terminal of the Cas9 domain and a second NLS which is C-terminal of the RT domain.
160. The gene modifying polypeptide of any of the preceding embodiments, which comprises a sequence of SEQ ID NO: 4000 which comprises the first NLS and the Cas domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identity thereto.
161. The gene modifying polypeptide of any of the preceding embodiments, which comprises a sequence of SEQ ID NO: 4001 which comprises the second NLS, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identity thereto.
162. The gene modifying polypeptide of any of the preceding embodiments, which comprises a GG
amino acid sequence between the Cas domain and the linker.
163. The gene modifying polypeptide of any of the preceding embodiments, which comprises an AG
amino acid sequence between the RT domain and the second NLS.
164. The gene modifying polypeptide of any of the preceding embodiments, which comprises a GG
amino acid sequence between the linker and the RT domain.
165. The gene modifying polypeptide of any of the preceding embodiments, which produces an increase in converted GFP+ of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, 1500%, 2000%, or 2500% relative to unsorted input cells in an assay of Example 2 using HEK cells and g4 guide RNA.
166. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain comprising an amino acid sequence of an RT
domain provided in any one of SEQ ID NOs: 1-7743, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto; and a linker disposed between the RT domain and the Cas domain comprising an amino acid sequence of a linker as listed in Table 10, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the amino acid sequences of the RT domain and the linker are provided in the same amino acid sequence of any one of SEQ ID NOs: 1-7743, which produces an increase in converted GFP+ of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, 1500%, 2000%, or 2500% relative to unsorted input cells in an assay of Example 2 using HEK cells and g4 guide RNA.
167. The gene modifying polypeptide of any of the preceding embodiments, which has an activity that is at least 50%, 60%, 70%, 80%, or 90% of the activity of a reference gene modifying polypeptide comprising, in an N-terminal to C-terminal direction:
a) an NLS and Cas domain sequence of SEQ ID NO: 4000;
b) a linker having the sequence EAAAKGSS;
c) an RT domain having the sequence of PERV_Q4VFZ2_3mutA_WS; and d) an NLS sequence of SEQ ID NO: 4001, in an assay of Example 1 using HEK cells and g4 guide RNA.
168. The gene modifying polypeptide of any of the preceding embodiments, which has an activity that is at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, 1500%, 2000%, or 2500%
greater than the activity of a reference gene modifying polypeptide comprising a sequence of SEQ ID
NO: 4002, e.g., in an assay of Example 1 using HEK cells and g4 guide RNA.
169. A nucleic acid (e.g., DNA or RNA, e.g., mRNA) encoding the gene modifying polypeptide of any of the preceding embodiments.
170. A cell comprising the gene modifying polypeptide of any of embodiments 40-68 or the nucleic acid of embodiment 169.
171. A system comprising:
i) the gene modifying polypeptide of any of embodiments 40-68, and ii) a template RNA that comprises:
a) a gRNA spacer that is complementary to a portion a target nucleic acid sequence;
b) a gRNA scaffold that binds the Cas domain of the gene modifying polypeptide;
c) a heterologous object sequence; and d) a primer binding site sequence (PBS sequence).
172. A method for modifying a target nucleic acid in a cell (e.g., a human cell), the method comprising contacting the cell with the system of embodiment 171, or nucleic acid encoding the same, thereby modifying the target nucleic acid.
173. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain having one or more (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20) amino acid substitutions at a residue corresponding to (e.g., at a residue at a homologous position relative to) position 200, 603, 330, 524, 562, 583, 51, 67, 67, 197, 204, 302, 309, 313, 435, 454, 594, 671, 69, or 653 of an MLVMS RT domain sequence as described herein (e.g., as listed in Table 6), e.g., an MLVMS_reference sequence, e.g., SEQ ID
NO: 8137 relative to a wildtype sequence of the RT domain, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker has a sequence from the same row of Table 1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
174. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain of an AVIRE RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas domain;
and a linker disposed between the Cas nickase domain and the RT domain, wherein the linker comprises an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.
175. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain comprising the RT domain of a reference gene modifying polypeptide having sequence of any one of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 6076, 6143, 6200, 6254, 6274, 6315, 6328, 6337, 6403, 6420, 6440, 6513, 6552, 6613, 6671, 6822, 6840, 6884, 6907, 6970, 7025, 7052, 7078, 7243, 7253, 7318, 7379, 7486, 7524, 7668, 7680, 7720, 1137, 1138, 1139, 1140, .. 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 6015, 6029, 6045, 6077, 6129, 6144, 6164, 6201, 6227, 6244, 6250, 6264, 6289, 6304, 6316, 6384, 6421, 6441, 6492, 6514, 6530, 6569, 6584, 6621, 6651, 6659, 6683, 6703, 6727, 6732, 6745, 6755, 6784, 6817, 6823, 6841, 6871, 6885, 6898, 6908, 6933, 6971, 7009, 7018, 7045, 7053, 7068, 7079, 7096, 7104, 7122, 7151, 7163, 7181, 7244, 7273, 7319, 7336, .. 7380, 7402, 7462, 7487, 7525, 7569, 7626, 7689, 7707, 7721, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, .. 1447, 6001, 6030, 6078, 6108, 6130, 6165, 6265, 6275, 6305, 6329, 6370, 6385, 6404, 6531, 6585, 6622, 6652, 6733, 6756, 6765, 6798, 6824, 6972, 7046, 7054, 7069, 7080, 7105, 7123, 7143, 7152, 7204, 7320, 7351, 7381, 7403, 7438, 7488, 7500, 7526, 7588, 7612, 7627 or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas domain;
and a linker disposed between the Cas nickase domain and the RT domain, wherein the linker comprises the linker of said reference gene modifying polypeptide, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
176. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain having the sequence of SEQ ID NO: 8001, 8002, or 8003, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99%
identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas nickase domain; and a linker disposed between the RT domain and the Cas nickase domain, wherein the linker comprises an amino acid sequence of the linker of any of SEQ ID NOS: a reference gene modifying polypeptide having sequence of any one of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 6076, 6143, 6200, 6254, 6274, 6315, 6328, 6337, 6403, 6420, 6440, 6513, 6552, 6613, 6671, 6822, 6840, 6884, 6907, 6970, 7025, 7052, 7078, 7243, 7253, 7318, 7379, 7486, 7524, 7668, 7680, 7720, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 6015, 6029, 6045, 6077, 6129, 6144, 6164, 6201, 6227, 6244, 6250, 6264, 6289, 6304, 6316, 6384, 6421, 6441, 6492, 6514, 6530, 6569, 6584, 6621, 6651, 6659, 6683, 6703, 6727, 6732, 6745, 6755, 6784, 6817, 6823, 6841, 6871, 6885, 6898, 6908, 6933, 6971, 7009, 7018, 7045, 7053, 7068, 7079, 7096, 7104, 7122, 7151, 7163, 7181, 7244, 7273, 7319, 7336, 7380, 7402, 7462, 7487, 7525, 7569, 7626, 7689, 7707, 7721, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 6001, 6030, 6078, 6108, 6130, 6165, 6265, 6275, 6305, 6329, 6370, 6385, 6404, 6531, 6585, 6622, 6652, 6733, 6756, 6765, 6798, 6824, 6972, 7046, 7054, 7069, 7080, 7105, 7123, 7143, 7152, 7204, 7320, 7351, 7381, 7403, 7438, 7488, 7500, 7526, 7588, 7612, 7627, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
177. The gene modifying polypeptide of any of embodiments 174-176, wherein the RT domain comprises a mutation at one or more of positions 8, 51, 67, 69, 197, 200, 204, 302, 306, 309, 313, 330, 436, 455, 526, 564, 585, 596, 605, 655, 673 relative to a reference RT domain having sequence of SEQ ID
NO:8001.
178. The gene modifying polypeptide of any of embodiments 174-177, wherein the RT domain comprises one or more of the following mutations: Q51L, T67R, E67K, E69K, T197A, D200N, N204R, E302K, Y309N, W313F, G330P, T436G, N455K, D526G, E564Q, D585N, H596Q, L605W, D655N,
179. The gene modifying polypeptide of embodiment 178, wherein the RT domain comprises the following mutations: (a) D200N, G330P, and L605W or (b) D200N, G330P, L605W, T306K, and W313F .
180. The gene modifying polypeptide of any of embodiments 174-179, said polypeptide comprising a linker having a sequence of any one of SEQ ID NO: 11,041 - 11,050.
181. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain having the sequence of SEQ ID NO: 8,003, or a sequence having at least 95% identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas nickase domain; and a linker disposed between the RT domain and the Cas nickase domain, wherein the linker comprises an amino acid sequence according to SEQ ID NO: 5217 or 15,401.
182. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain having the sequence of SEQ ID NO: 8,020, or a sequence having at least 95% identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas nickase domain; and a linker disposed between the RT domain and the Cas nickase domain, wherein the linker comprises an amino acid sequence according to SEQ ID NO: 5217 or 15,402.
183. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain having the sequence of SEQ ID NO: 8,074, or a sequence having at least 95% identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas nickase domain; and a linker disposed between the RT domain and the Cas nickase domain, wherein the linker comprises an amino acid sequence according to SEQ ID NO: 15,403.
184. A gene modifying polypeptide comprising:

a reverse transcriptase (RT) domain having the sequence of SEQ ID NO: 8,113, or a sequence having at least 95% identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas nickase domain; and a linker disposed between the RT domain and the Cas nickase domain, wherein the linker comprises an amino acid sequence according to SEQ ID NO: 15,404.
185. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain comprising the RT domain of a reference gene modifying polypeptide having the sequence of any one of SEQ ID NOs: 1-7743,, and a Cas nickase domain, wherein the RT domain is C-terminal of the Cas nickase domain; and a linker disposed between the RT domain and the Cas nickase domain, wherein the linker comprises the linker of said reference gene modifying polypeptide.
186. The gene modifying polypeptide of any of embodiments 174-185, which comprises a nuclear localization signal (NLS).
187. The gene modifying polypeptide of any of embodiments 174-186, which comprises a first NLS
which is N-terminal of the Cas nickase domain.
188. The gene modifying polypeptide of any of embodiments 174-187, which comprises an NLS
which is C-terminal of the RT domain.
189. The gene modifying polypeptide of any of embodiments 174-188, which comprises a first NLS
which is N-terminal of the Cas nickase domain and a second NLS which is C-terminal of the RT domain.
190. The gene modifying polypeptide of any of embodiments 174-189, which comprises a first NLS
which is N-terminal of the Cas nickase domain, wherein the first NLS comprises an amino acid sequence of PAAKRVKLD (SEQ ID NO: 11,095).
191. The gene modifying polypeptide of any of embodiments 174-190, which comprises an NLS
which is C-terminal of the RT domain and has an amino acid sequence of KRTADGSEFE (SEQ ID NO:
4650).
192. The gene modifying polypeptide of any of embodiments 174-191, which comprises an NLS
which is C-terminal of the RT domain and has an amino acid sequence of KRTADGSEFESPKKKAKVE
(SEQ ID NO: 4651).
193. The gene modifying polypeptide of any of embodiments 174-192, which comprises a sequence of SEQ ID NO: 4000 which comprises the first NLS and the Cas nickase domain.
194. The gene modifying polypeptide of any of embodiments 174-193, which comprises a sequence of SEQ ID NO: 4001 which comprises the second NLS.
195. The gene modifying polypeptide of any of embodiments 174-194, which comprises a GG amino acid sequence between the Cas nickase domain and the linker.
196. The gene modifying polypeptide of any of embodiments 174-195, which comprises an AG amino acid sequence between the RT domain and the second NLS.
197. The gene modifying polypeptide of any of embodiments 174-196, which comprises a GG amino acid sequence between the linker and the RT domain.
198. The gene modifying polypeptide of any of embodiments 174-197, wherein the Cas nickase domain comprises a Cas9 nickase domain.
199. The gene modifying polypeptide of any of embodiments 174-198, wherein the Cas nickase domain comprises an N863A mutation.
200. The gene modifying polypeptide of any of embodiments 174-199, wherein the Cas nickase comprises a sequence of SEQ ID NO: 11,096.
201. The gene modifying polypeptide of any of embodiments 174-200, wherein the Cas nickase comprises a sequence of any of SEQ ID NO: 9,001-9,037, 11,096, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
202. The gene modifying polypeptide of any of embodiments 174-201, which comprises a methionine at the N-terminal position of the RT domain.
203. The gene modifying polypeptide of any of embodiments 174-202, which does not comprises a methionine at the N-terminal position of the RT domain.
204. The gene modifying polypeptide of any of embodiments 174-203, which comprises an amino acid sequence according to any of SEQ ID NOs: 1372, 1373, or 1410 or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.
205. The gene modifying polypeptide of any of embodiments 174-204, which comprises an amino acid sequence according to SEQ ID NO: 2784 or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.
206. The gene modifying polypeptide of any of embodiments 174-205, which comprises an amino acid sequence according to SEQ ID NO: 647 or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.
207. The gene modifying polypeptide of any of embodiments 174-206, which comprises an amino acid sequence according to SEQ ID NO: 1197 or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.
208. A nucleic acid molecule encoding the gene modifying polypeptide of any of embodiments 174-207.
209. The nucleic acid molecule of embodiment 208, which comprises RNA.
210. The nucleic acid molecule of embodiment 209, which comprises mRNA.
211. A cell comprising the gene modifying polypeptide of any of embodiments 174-207.
212. A cell comprising the nucleic acid molecule of any of embodiments 208-210.
213. A system comprising:
i) the gene modifying polypeptide of any of embodiments 174-207, or a nucleic acid molecule encoding the gene modifying polypeptide, and ii) a template RNA that comprises:
a) a gRNA spacer that is complementary to a portion a target nucleic acid sequence;
b) a gRNA scaffold that binds the Cas nickase domain of the gene modifying polypeptide;
c) a heterologous object sequence; and d) a primer binding site sequence.
214. A lipid nanoparticle formulation comprising the gene modifying polypeptide of any of embodiments 174-207, the nucleic acid of any of embodiments 208-210, or the system of embodiment 213.
215. A method for modifying a target nucleic acid molecule in a cell, the method comprising contacting the cell with the system of embodiment 213, thereby modifying the target nucleic acid molecule.
216. A method of using the gene modifying polypeptide of any of embodiments 174-207, the nucleic acid of any of embodiments 208-210, or the system of embodiment 213, to modify a target genome by target-primed reverse transcription, the method comprising contacting the target genome with the gene modifying polypeptide, nucleic acid, or system, thereby modifying the target nucleic acid molecule.
In one aspect, the disclosure relates to a system for modifying DNA, comprising (a) a nucleic acid encoding a gene modifying polypeptide capable of target primed reverse transcription, the polypeptide comprising (i) a reverse transcriptase domain and (ii) a Cas9 nickase that binds DNA and has endonuclease activity, and (b) a template RNA comprising (i) a gRNA spacer that is complementary to a first portion of a human gene, (ii) a gRNA scaffold that binds the polypeptide, (iii) a heterologous object sequence comprising a mutation region, and (iv) a primer binding site (PBS) sequence comprising at least 3, 4, 5, 6, 7, or 8 bases of 100% homology to a target DNA strand at the 3' end of the template RNA.
The gRNA spacer may comprise at least 15 bases of 100% homology to the target DNA at the 5' end of the template RNA. The template RNA may further comprise a PBS sequence comprising at least 5 bases of at least 80% homology to the target DNA strand. The template RNA may comprise one or more chemical modifications.
The domains of the gene modifying polypeptide may be joined by a peptide linker. The polypeptide may comprise one or more peptide linkers. The gene modifying polypeptide may further comprise a nuclear localization signal. The polypeptide may comprise more than one nuclear localization signal, e.g., multiple adjacent nuclear localization signals or one or more nuclear localization signals in different regions of the polypeptide, e.g., one or more nuclear localization signals in the N-terminus of the polypeptide and one or more nuclear localization signals in the C-terminus of the polypeptide. The nucleic acid encoding the gene modifying polypeptide may encode one or more intein domains.
Introduction of the system into a target cell may result in insertion of at least 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 500, or 1000 base pairs of exogenous DNA. Introduction of the system into a target cell may result in deletion, wherein the deletion is less than 2, 3, 4, 5, 10, 50, or 100 base pairs of genomic DNA upstream or downstream of the insertion.
Introduction of the system into a target cell may result in substitution, e.g., substitution of 1, 2, or 3 nucleotides, e.g., consecutive nucleotides.
The heterologous object sequence may be at least 5, 10, 25, 50, 100, 150, 200, 250, 300, 400, 500, 600, or 700 base pairs.
In one aspect, the disclosure relates to a pharmaceutical composition comprising the system described above and a pharmaceutically acceptable excipient or carrier, wherein the pharmaceutically acceptable excipient or carrier is selected from the group consisting of a plasmid vector, a viral vector, a vesicle, and a lipid nanoparticle. In one aspect, the disclosure relates to a pharmaceutical composition comprising the system described above and multiple pharmaceutically acceptable excipients or carriers, wherein the pharmaceutically acceptable excipients or carriers are selected from the group consisting of a -- plasmid vector, a viral vector, a vesicle, and a lipid nanoparticle, e.g., where the system described above is delivered by two distinct excipients or carriers, e.g., two lipid nanoparticles, two viral vectors, or one lipid nanoparticle and one viral vector. The viral vector may be an adeno-associated virus (AAV).
In one aspect, the disclosure relates to a host cell (e.g., a mammalian cell, e.g., a human cell) comprising the system described above.
The system may be introduced in vivo, in vitro, ex vivo, or in situ. The nucleic acid of (a) may be integrated into the genome of the host cell. In some embodiments, the nucleic acid of (a) is not integrated into the genome of the host cell. In some embodiments, the heterologous object sequence is inserted at only one target site in the host cell genome. The heterologous object sequence may be inserted at two or more target sites in the host cell genome, e.g., at the same corresponding site in two homologous chromosomes or at two different sites on the same or different chromosomes.
The heterologous object sequence may encode a mammalian polypeptide, or a fragment or a variant thereof The components of the system may be delivered on 1, 2, 3, 4, or more distinct nucleic acid molecules. The system may be introduced into a host cell by electroporation or by using at least one vehicle selected from a plasmid vector, a viral vector, a vesicle, and a lipid nanoparticle.

BRIEF DESCRIPTION OF THE DRAWINGS
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
FIG. 1 depicts a gene modifying system as described herein. The left hand diagram shows the gene modifying polypeptide, which comprises a Cas nickase domain (e.g., spCas9 N863A) and a reverse transcriptase domain (RT domain) which are linked by a linker. The right hand diagram shows the template RNA which comprises, from 5' to 3', a gRNA spacer, a gRNA scaffold, a heterologous object sequence, and a primer binding site sequence (PBS sequence). The heterologous object sequence can comprise a mutation region that comprises one or more sequence differences relative to the target site. The heterologous object sequence can also comprise a pre-edit homology region and a post-edit homology region, which flank the mutation region. Without wishing to be bound by theory, it is thought that the gRNA spacer of the template RNA binds to the second strand of a target site in the genome, and the gRNA scaffold of the template RNA binds to the gene modifying polypeptide, e.g., localizing the gene modifying polypeptide to the target site in the genome. It is thought that the Cas domain of the gene modifying polypeptide nicks the target site (e.g., the first strand of the target site), e.g., allowing the PBS
sequence to bind to a sequence adjacent to the site to be altered on the first strand of the target site. It is thought that the RT domain of the gene modifying polypeptide uses the first strand of the target site that is bound to the complementary sequence comprising the PBS sequence of the template RNA as a primer and the heterologous object sequence of the template RNA as a template to, e.g., polymerize a sequence complementary to the heterologous object sequence. Without wishing to be bound by theory, it is thought that reverse transcription can then proceed through the pre-edit homology region, then through the mutation region, and then through the post-edit homology region, thereby producing a DNA strand comprising a mutation specified by the heterologous object sequence.
FIGS. 2A-2B provide schematics of a gene modifying polypeptide candidate for a screening library and a description of the screening methodology. FIG. 2A is a schematic of the gene modifying polypeptide candidate, a fusion polypeptide comprising a nuclear localization signal (NLS), a S. pyogenes (Spy) Cas9 nickase containing an N863A mutation (Cas9n), a peptide linker selected from Table 10 (Linker), and a reverse transcriptase domain of retroviral origin selected from Table 6 (RT). FIG. 2B
provides a schematic of the screen conducted with the pooled elements from the library of gene modifying polypeptide candidates.
FIG. 3 provides a schematic of an assay for detecting gene editing, including the target reporter gene (BFP) in the test cell line and the three outcomes in the assay depending on whether there is no edit, an imperfect edit, or a perfect edit of a C to a T, resulting in expression and detecting of GFP rather than BFP.
FIGS. 4A-4C are a series of graphs depicting editing activity of two exemplary gene modifying polypeptides, MLVMS and MMTVB. FIG. 4A shows the editing activity of the two exemplary gene .. modifying polypeptides as assessed by percent of total cells converted to GFP-positive. FIG. 4B shows the editing activity of the two exemplary gene modifying polypeptides in the screen of Examples 2 and 3.
FIG. 4C shows violin plots of the editing activities of all the exemplary gene modifying polypeptides comprising RT domains of the MLVMS RT family and of the MMTVB RT family.
FIGS. 5A-5G provide violin plots showing enrichment of exemplary gene modifying polypeptides grouped by RT family. FIG. 5A shows violin plots of enrichment after HEK293T cells were treated with the gene modifying polypeptide and exemplary template RNA g4.
FIG. 5B shows violin plots of enrichment after U205 cells were treated with the gene modifying polypeptide and exemplary template RNA g4. FIG. 5C shows violin plots of enrichment after HEK293T cells were treated with the gene modifying polypeptide and exemplary template RNA g10. FIG. 5D shows violin plots of enrichment after U205 cells were treated with the gene modifying polypeptide and exemplary template RNA g10. FIG. 5E
shows data for an additional replicate of the data presented in FIG. 5A, where HEK293T cells were treated with the gene modifying polypeptide and exemplary template RNA g4.
FIG. 5F shows data for a further additional replicate of the data presented in FIG. 5A, where HEK293T
cells were treated with the gene modifying polypeptide and exemplary template RNA g4. FIG. 5G shows violin plots combining the data of FIGs. 5A, 5E, and 5F, where HEK293T cells were treated with the gene modifying polypeptide and exemplary template RNA g4.
FIG. 6 shows a graph of enrichment of exemplary gene modifying polypeptides when editing activity was tested in HEK293T cells (X-axis) or in U205 cells (Y-axis). A
linear regression line is plotted based upon the scatter plot data.
FIG. 7 shows a graph of enrichment of exemplary gene modifying polypeptides when editing activity was tested with exemplary template RNA g4 (X-axis) or with exemplary template RNA g10 (Y-axis). A linear regression line is plotted based upon the scatter plot data.
FIGS. 8A-8F provide violin plots showing enrichment of exemplary gene modifying polypeptides grouped by RT family (FIG. 8A MLVAV, FIG. 8B MLVBM, FIG. 8C BAEVM, FIG. 8D
FLV, FIG. 8E, FOAMY, FIG. 8F GALV), where the wild-type RT family gene modifying polypeptide is given at left, followed at right by gene modifying polypeptides comprising an increasing number of substitution mutations.
FIGS. 9A-9H provide violin plots showing enrichment of exemplary gene modifying polypeptides grouped by RT family (FIG. 9A KORV, FIG. 9B AVIRE, FIG. 9C MLVCB, FIG. 9D

MLVFF, FIG. 9E MLVMS, FIG. 9F SFV3L, FIG. 9G WMSV, FIG. 9H XMRV6), where the wild-type RT family gene modifying polypeptide is given at left, followed at right by gene modifying polypeptides comprising an increasing number of substitution mutations. For KORV and SFV3L
RT families, variants deleting/disabling the protease domain of the RT domain were also evaluated.
FIGS. 10A-10C provide violin plots showing enrichment of exemplary gene modifying polypeptides grouped by RT family (FIG. 10A PERV, FIG. 10B SFV1, FIG. 10C
FFV), where the wild-type RT family gene modifying polypeptide is given at left, followed at right by gene modifying polypeptides comprising an increasing number of substitution mutations. For SFV1 and FFV RT families, variants deleting/disabling the protease domain of the RT domain were also evaluated.
FIG. 11 provides box and whisker graphs of enrichment of a selection of exemplary gene modifying polypeptides grouped by linker, where the square dotted line indicates the average enrichment of gene modifying polypeptides comprising the top performing linker and the dashed dotted lines indicate the standard error of the mean around said average enrichment.
FIGS. 12A-12D show graphs of editing activity of exemplary gene modifying polypeptides when editing is targeted to a genomic landing pad BFP gene in U205 cells (FIG.
12A), when editing is targeted to HEK3 in U205 cells (FIG. 12B), when editing is targeted to murine Fah in primary murine hepatocytes (FIG. 12C), and when editing is targeted to murine Fah in the liver of Fah5981SB model mice (FIG. 12D).
FIG. 13 shows a graph of enrichment of a selection of exemplary gene modifying polypeptides after being provided to cells as a plasmid (DNA) or as mRNA.
FIG. 14 is a graph showing the Z-scores of a library of gene modifying polypeptide candidates in each of three conditions.
FIG. 15 is a diagram showing a workflow for arrayed screening of gene modifying polypeptides using flow cytometry.
FIG. 16 is a series of graphs showing the percentage of cells undergoing to a successful rewriting event and exhibiting GFP fluorescence after introduction of a gene modifying polypeptide and a plasmid according to the workflow shown in FIG. 15.
FIG. 17 is a series of graphs showing the result of testing of arrayed lead candidates compared to the results from screening pooled RT candidates.
DETAILED DESCRIPTION
Definitions The term "expression cassette," as used herein, refers to a nucleic acid construct comprising nucleic acid elements sufficient for the expression of the nucleic acid molecule of the instant invention.

A "gRNA spacer," as used herein, refers to a portion of a nucleic acid that has complementarity to a target nucleic acid and can, together with a gRNA scaffold, target a Cas protein to the target nucleic acid.
A "gRNA scaffold," as used herein, refers to a portion of a nucleic acid that can bind a Cas protein and can, together with a gRNA spacer, target the Cas protein to the target nucleic acid. In some embodiments, the gRNA scaffold comprises a crRNA sequence, tetraloop, and tracrRNA sequence.
A "gene modifying polypeptide," as used herein, refers to a polypeptide comprising a retroviral reverse transcriptase, or a polypeptide comprising an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% amino acid sequence identity to a retroviral reverse transcriptase, which is capable of integrating a nucleic acid sequence (e.g., a sequence provided on a template nucleic acid) into a target DNA molecule (e.g., in a mammalian host cell, such as a genomic DNA molecule in the host cell). In some embodiments, the gene modifying polypeptide is capable of integrating the sequence substantially without relying on host machinery. In some embodiments, the gene modifying polypeptide integrates a sequence into a random position in a genome, and in some embodiments, the gene modifying polypeptide integrates a sequence into a specific target site. In some embodiments, a gene modifying polypeptide includes one or more domains that, collectively, facilitate 1) binding the template nucleic acid, 2) binding the target DNA molecule, and 3) facilitate integration of the at least a portion of the template nucleic acid into the target DNA. Gene modifying polypeptides include both naturally occurring polypeptides as well as engineered variants of the foregoing, e.g., having one or more amino acid substitutions to the naturally occurring sequence. Gene modifying polypeptides also include heterologous constructs, e.g., where one or more of the domains recited above are heterologous to each other, whether through a heterologous fusion (or other conjugate) of otherwise wild-type domains, as well as fusions of modified domains, e.g., by way of replacement or fusion of a heterologous sub-domain or other substituted domain. Exemplary gene modifying polypeptides, and systems comprising them and methods of using them, that can be used in the methods provided herein are described, e.g., in PCT/US2021/020948, which is incorporated herein by reference with respect to gene modifying polypeptides that comprise a retroviral reverse transcriptase domain. In some embodiments, a gene modifying polypeptide integrates a sequence into a gene. In some embodiments, a gene modifying polypeptide integrates a sequence into a sequence outside of a gene. A "gene modifying system," as used herein, refers to a system comprising a gene modifying polypeptide and a template nucleic acid.
The term "domain" as used herein refers to a structure of a biomolecule that contributes to a specified function of the biomolecule. A domain may comprise a contiguous region (e.g., a contiguous sequence) or distinct, non-contiguous regions (e.g., non-contiguous sequences) of a biomolecule.
Examples of protein domains include, but are not limited to, an endonuclease domain, a DNA binding domain, a reverse transcription domain; an example of a domain of a nucleic acid is a regulatory domain, such as a transcription factor binding domain. In some embodiments, a domain (e.g., a Cas domain) can comprise two or more smaller domains (e.g., a DNA binding domain and an endonuclease domain).
As used herein, the term "exogenous," when used with reference to a biomolecule (such as a nucleic acid sequence or polypeptide) means that the biomolecule was introduced into a host genome, cell or organism by the hand of man. For example, a nucleic acid that is as added into an existing genome, cell, tissue or subject using recombinant DNA techniques or other methods is exogenous to the existing nucleic acid sequence, cell, tissue or subject.
As used herein, "first strand" and "second strand," as used to describe the individual DNA strands of target DNA, distinguish the two DNA strands based upon which strand the reverse transcriptase domain initiates polymerization, e.g., based upon where target primed synthesis initiates. The first strand refers to the strand of the target DNA upon which the reverse transcriptase domain initiates polymerization, e.g., where target primed synthesis initiates. The second strand refers to the other strand of the target DNA. First and second strand designations do not describe the target site DNA strands in other respects; for example, in some embodiments the first and second strands are nicked by a polypeptide described herein, but the designations 'first' and 'second' strand have no bearing on the order in which such nicks occur.
A "genomic safe harbor site" (GSH site) is a site in a host genome that is able to accommodate the integration of new genetic material, e.g., such that the inserted genetic element does not cause significant alterations of the host genome posing a risk to the host cell or organism. A GSH site generally meets 1, 2, 3, 4, 5, 6, 7, 8 or 9 of the following criteria: (i) is located >300kb from a cancer-related gene;
(ii) is >300kb from a miRNA/other functional small RNA; (iii) is >50kb from a 5' gene end; (iv) is >50kb from a replication origin; (v) is >50kb away from any ultraconservered element; (vi) has low transcriptional activity (i.e. no mRNA +/- 25 kb); (vii) is not in a copy number variable region; (viii) is in open chromatin; and/or (ix) is unique, with 1 copy in the human genome.
Examples of GSH sites in the human genome that meet some or all of these criteria include (i) the adeno-associated virus site 1 (AAVS1), a naturally occurring site of integration of AAV virus on chromosome 19; (ii) the chemokine (C-C motif) receptor 5 (CCR5) gene, a chemokine receptor gene known as an HIV-1 coreceptor; (iii) the human ortholog of the mouse Rosa26 locus; (iv) the ribosomal DNA ("rDNA") locus. Additional GSH
sites are known and described, e.g., in Pellenz et al. epub August 20, 2018 (https://doi.org/10.1101/396390).
The term "heterologous," as used herein to describe a first element in reference to a second element means that the first element and second element do not exist in nature disposed as described. For example, a heterologous polypeptide, nucleic acid molecule, construct or sequence refers to (a) a polypeptide, nucleic acid molecule or portion of a polypeptide or nucleic acid molecule sequence that is not native to a cell in which it is expressed, (b) a polypeptide or nucleic acid molecule or portion of a polypeptide or nucleic acid molecule that has been altered or mutated relative to its native state, or (c) a polypeptide or nucleic acid molecule with an altered expression as compared to the native expression -- levels under similar conditions. For example, a heterologous regulatory sequence (e.g., promoter, enhancer) may be used to regulate expression of a gene or a nucleic acid molecule in a way that is different than the gene or a nucleic acid molecule is normally expressed in nature. In another example, a heterologous domain of a polypeptide or nucleic acid sequence (e.g., a DNA
binding domain of a polypeptide or nucleic acid encoding a DNA binding domain of a polypeptide) may be disposed relative to other domains or may be a different sequence or from a different source, relative to other domains or portions of a polypeptide or its encoding nucleic acid. In certain embodiments, a heterologous nucleic acid molecule may exist in a native host cell genome, but may have an altered expression level or have a different sequence or both. In other embodiments, heterologous nucleic acid molecules may not be endogenous to a host cell or host genome but instead may have been introduced into a host cell by transformation (e.g., transfection, electroporation), wherein the added molecule may integrate into the host genome or can exist as extra-chromosomal genetic material either transiently (e.g., mRNA) or semi-stably for more than one generation (e.g., episomal viral vector, plasmid or other self-replicating vector).
As used herein, "insertion" of a sequence into a target site refers to the net addition of DNA
sequence at the target site, e.g., where there are new nucleotides in the heterologous object sequence with .. no cognate positions in the unedited target site. In some embodiments, a nucleotide alignment of the PBS
sequence and heterologous object sequence to the target nucleic acid sequence would result in an alignment gap in the target nucleic acid sequence.
As used herein, a "deletion" generated by a heterologous object sequence in a target site refers to the net deletion of DNA sequence at the target site, e.g., where there are nucleotides in the unedited target site with no cognate positions in the heterologous object sequence. In some embodiments, a nucleotide alignment of the PBS sequence and heterologous object sequence to the target nucleic acid sequence would result in an alignment gap in the molecule comprising the PBS sequence and heterologous object sequence.
The term "inverted terminal repeats" or "ITRs" as used herein refers to AAV
viral cis-elements named so because of their symmetry. These elements promote efficient multiplication of an AAV
genome. It is hypothesized that the minimal elements for ITR function are a Rep-binding site (RBS; 5"-GCGCGCTCGCTCGCTC-3" for AAV2; SEQ ID NO: 4601) and a terminal resolution site (TRS; 5"-AGTTGG-3" for AAV2; SEQ ID NO: 4602) plus a variable palindromic sequence allowing for hairpin formation. According to the present invention, an ITR comprises at least these three elements (RBS, TRS, and sequences allowing the formation of a hairpin). In addition, in the present invention, the term "ITR" refers to ITRs of known natural AAV serotypes (e.g. ITR of a serotype 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 AAV), to chimeric ITRs formed by the fusion of ITR elements derived from different serotypes, and to functional variants thereof. "Functional variant" refers to a sequence presenting a sequence identity of at least 80%, 85%, 90%, preferably of at least 95% with a known ITR and allowing multiplication of the sequence that includes said ITR in the presence of Rep proteins.
The term "mutation region," as used herein, refers to a region in a template RNA having one or more sequence difference relative to the corresponding sequence in a target nucleic acid. The sequence difference may comprise, for example, a substitution, insertion, frameshift, or deletion.
The term "mutated" when applied to nucleic acid sequences means that nucleotides in a nucleic acid sequence are inserted, deleted, or changed compared to a reference (e.g., native) nucleic acid sequence. A single alteration may be made at a locus (a point mutation), or multiple nucleotides may be inserted, deleted, or changed at a single locus. In addition, one or more alterations may be made at any number of loci within a nucleic acid sequence. A nucleic acid sequence may be mutated by any method known in the art.
"Nucleic acid molecule" refers to both RNA and DNA molecules including, without limitation, complementary DNA ("cDNA"), genomic DNA ("gDNA"), and messenger RNA ("mRNA"), and also includes synthetic nucleic acid molecules, such as those that are chemically synthesized or recombinantly produced, such as RNA templates, as described herein. The nucleic acid molecule can be double-stranded or single-stranded, circular, or linear. If single-stranded, the nucleic acid molecule can be the sense strand or the antisense strand. Unless otherwise indicated, and as an example for all sequences described herein under the general format "SEQ ID NO:," "nucleic acid comprising SEQ ID NO:1"
refers to a nucleic acid, at least a portion which has either (i) the sequence of SEQ ID NO:1, or (ii) a sequence complimentary to SEQ ID NO: 1. The choice between the two is dictated by the context in which SEQ ID
NO:1 is used. For instance, if the nucleic acid is used as a probe, the choice between the two is dictated by the requirement that the probe be complementary to the desired target.
Nucleic acid sequences of the present disclosure may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more naturally occurring nucleotides with an analog, inter-nucleotide modifications such as uncharged linkages (for example, methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (for example, phosphorothioates, phosphorodithioates, etc.), pendant moieties, (for example, polypeptides), intercalators (for example, acridine, psoralen, etc.), chelators, alkylators, and modified linkages (for example, alpha anomeric nucleic acids, etc.). Also included are chemically modified bases (see, for example, Table 13, infra), backbones (see, for example, Table 14, infra), and modified caps (see, for example, Table 15, infra). Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of a molecule, e.g., peptide nucleic acids (PNAs). Other modifications can include, for example, analogs in which the ribose ring contains a bridging moiety or other structure such as modifications found in "locked" nucleic acids (LNAs). In various embodiments, the nucleic acids are in operative association with additional genetic elements, such as tissue-specific expression-control sequence(s) (e.g., tissue-specific promoters and tissue-specific microRNA recognition sequences), as well as additional elements, such as inverted repeats (e.g., inverted terminal repeats, such as elements from or derived from viruses, e.g., AAV ITRs) and tandem repeats, inverted repeats/direct repeats, homology regions (segments with various degrees of homology to a target DNA), untranslated regions (UTRs) (5', 3', or both 5' and 3' UTRs), and various combinations of the foregoing. The nucleic acid elements of the systems provided by the invention can be provided in a variety of topologies, including single-stranded, double-stranded, circular, linear, linear with open ends, linear with closed ends, and particular versions of these, such as doggybone DNA
(dbDNA), closed-ended DNA (ceDNA).
As used herein, a "gene expression unit" is a nucleic acid sequence comprising at least one regulatory nucleic acid sequence operably linked to at least one effector sequence. A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if the promoter or enhancer affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be contiguous or non-contiguous. Where necessary to join two protein-coding regions, operably linked sequences may be in the same reading frame.
The terms "host genome" or "host cell," as used herein, refer to a cell and/or its genome into which protein and/or genetic material has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell and/or genome, but to the progeny of such a cell and/or the genome of the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein. A
host genome or host cell may be an isolated cell or cell line grown in culture, or genomic material isolated from such a cell or cell line, or may be a host cell or host genome which composing living tissue or an organism. In some instances, a host cell may be an animal cell or a plant cell, e.g., as described herein.
In certain instances, a host cell may be a mammalian cell, a human cell, avian cell, reptilian cell, bovine cell, horse cell, pig cell, goat cell, sheep cell, chicken cell, or turkey cell. In certain instances, a host cell may be a corn cell, soy cell, wheat cell, or rice cell.
As used herein, "operative association" describes a functional relationship between two nucleic acid sequences, such as a 1) promoter and 2) a heterologous object sequence, and means, in such example, the promoter and heterologous object sequence (e.g., a gene of interest) are oriented such that, under suitable conditions, the promoter drives expression of the heterologous object sequence. For instance, a template nucleic acid carrying a promoter and a heterologous object sequence may be single-stranded, e.g., either the (+) or (-) orientation. An "operative association"
between the promoter and the heterologous object sequence in this template means that, regardless of whether the template nucleic acid will be transcribed in a particular state, when it is in the suitable state (e.g., is in the (+) orientation, in the presence of required catalytic factors, and NTPs, etc.), it is accurately transcribed. Operative association applies analogously to other pairs of nucleic acids, including other tissue-specific expression control sequences (such as enhancers, repressors and microRNA recognition sequences), IR/DR, ITRs, UTRs, or homology regions and heterologous object sequences or sequences encoding a retroviral RT domain.
As used herein, a "stem-loop sequence" refers to a nucleic acid sequence (e.g., RNA sequence) with sufficient self-complementarity to form a stem-loop, e.g., having a stem comprising at least two (e.g., 3, 4, 5, 6, 7, 8, 9, or 10) base pairs, and a loop with at least three (e.g., four) base pairs. The stem may comprise mismatches or bulges.
As used herein, a "tissue-specific expression-control sequence" means nucleic acid elements that increase or decrease the level of a transcript comprising the heterologous object sequence in a target tissue in a tissue-specific manner, e.g., preferentially in on-target tissue(s), relative to off-target tissue(s).
In some embodiments, a tissue-specific expression-control sequence preferentially drives or represses transcription, activity, or the half-life of a transcript comprising the heterologous object sequence in the target tissue in a tissue-specific manner, e.g., preferentially in an on-target tissue(s), relative to an off-target tissue(s). Exemplary tissue-specific expression-control sequences include tissue-specific promoters, repressors, enhancers, or combinations thereof, as well as tissue-specific microRNA
recognition sequences. Tissue specificity refers to on-target (tissue(s) where expression or activity of the template nucleic acid is desired or tolerable) and off-target (tissue(s) where expression or activity of the template nucleic acid is not desired or is not tolerable). For example, a tissue-specific promoter drives expression preferentially in on-target tissues, relative to off-target tissues. In contrast, a microRNA that binds the tissue-specific microRNA recognition sequences is preferentially expressed in off-target tissues, relative to on-target tissues, thereby reducing expression of a template nucleic acid in off-target tissues.
Accordingly, a promoter and a microRNA recognition sequence that are specific for the same tissue, such as the target tissue, have contrasting functions (promote and repress, respectively, with concordant expression levels, i.e., high levels of the microRNA in off-target tissues and low levels in on-target tissues, while promoters drive high expression in on-target tissues and low expression in off-target tissues) with regard to the transcription, activity, or half-life of an associated sequence in that tissue.
Table of Contents 1) Introduction 2) Gene modifying systems a) Polypeptide components of gene modifying systems i) Writing domain ii) Endonuclease domains and DNA binding domains (1) Gene modifying polypeptides comprising Cas domains (2) TAL Effectors and Zinc Finger Nucleases iii) Linkers iv) Localization sequences for gene modifying systems v) Evolved Variants of Gene Modifying Polypeptides and Systems vi) Inteins vii) Additional domains b) Template nucleic acids i) gRNA spacer and gRNA scaffold ii) Heterologous object sequence iii) PBS sequence iv) Exemplary Template Sequences c) gRNAs with inducible activity d) Circular RNAs and Ribozymes in Gene Modifying Systems e) Target Nucleic Acid Site f) Second strand nicking 3) Production of Compositions and Systems 4) Therapeutic Applications 5) Administration and Delivery a) Tissue Specific Activity/Administration i) Promoters ii) microRNAs b) Viral vectors and components thereof c) AAV Administration d) Lipid Nanoparticles 6) Kits, Articles of Manufacture, and Pharmaceutical Compositions 7) Chemistry, Manufacturing, and Controls (CMC) Introduction This disclosure relates to methods compositions for targeting, editing, modifying or manipulating a DNA sequence (e.g., inserting a heterologous object sequence into a target site of a mammalian genome) at one or more locations in a DNA sequence in a cell, tissue or subject, e.g., in vivo or in vitro.
The heterologous object DNA sequence may include, e.g., a substitution, a deletion, an insertion, e.g., a coding sequence, a regulatory sequence, or a gene expression unit.
The disclosure also provides methods for treating disease using reverse transcriptase-based systems for altering a genomic DNA sequence of interest, e.g., by inserting, deleting, or substituting one or more nucleotides into/from the sequence of interest.
The disclosure provides, in part, methods for treating disease using a gene modifying system comprising a gene modifying polypeptide component and a template nucleic acid (e.g., template RNA) component. In some embodiments, a gene modifying system can be used to introduce an alteration into a target site in a genome. In some embodiments, the gene modifying polypeptide component comprises a writing domain (e.g., a reverse transcriptase domain), a DNA-binding domain, and an endonuclease domain (e.g., nickase domain). In some embodiments, the template nucleic acid (e.g., template RNA) comprises a sequence (e.g., a gRNA spacer) that binds a target site in the genome (e.g., that binds to a second strand of the target site), a sequence (e.g., a gRNA scaffold) that binds the gene modifying polypeptide component, a heterologous object sequence, and a PBS sequence.
Without wishing to be bound by theory, it is thought that the template nucleic acid (e.g., template RNA) binds to the second strand of a target site in the genome, and binds to the gene modifying polypeptide component (e.g., localizing the polypeptide component to the target site in the genome). It is thought that the endonuclease (e.g., nickase) of the gene modifying polypeptide component cuts the target site (e.g., the first strand of the target site), e.g., allowing the PBS sequence to bind to a sequence adjacent to the site to be altered on the first strand of the target site. It is thought that the writing domain (e.g., reverse transcriptase domain) of the polypeptide component uses the first strand of the target site that is bound to the complementary sequence comprising the PBS sequence of the template nucleic acid as a primer and the heterologous object sequence of the template nucleic acid as a template to, e.g., polymerize a sequence complementary to the heterologous object sequence. Without wishing to be bound by theory, it is thought that selection of an appropriate heterologous object sequence can result in substitution, deletion, and/or insertion of one or more nucleotides at the target site.
Gene modifying systems In some embodiments, a gene modifying system described herein comprises: (A) a gene modifying polypeptide or a nucleic acid encoding the gene modifying polypeptide, wherein the gene modifying polypeptide comprises (i) a reverse transcriptase domain, and either (x) an endonuclease domain that contains DNA binding functionality or (y) an endonuclease domain and separate DNA
binding domain; and (B) a template RNA. A gene modifying polypeptide, in some embodiments, acts as a substantially autonomous protein machine capable of integrating a template nucleic acid sequence into a target DNA molecule (e.g., in a mammalian host cell, such as a genomic DNA
molecule in the host cell), substantially without relying on host machinery. For example, the gene modifying protein may comprise a DNA-binding domain, a reverse transcriptase domain, and an endonuclease domain. In some embodiments, the DNA-binding function may involve an RNA component that directs the protein to a DNA sequence, e.g., a gRNA spacer. In other embodiments, the gene modifying polypeptide may comprise a reverse transcriptase domain and an endonuclease domain. The RNA
template element of a gene modifying system is typically heterologous to the gene modifying polypeptide element and provides an object sequence to be inserted (reverse transcribed) into the host genome.
In some embodiments, the gene modifying polypeptide is capable of target primed reverse transcription.
In some embodiments, the gene modifying polypeptide is capable of second-strand synthesis.
In some embodiments the gene modifying system is combined with a second polypeptide. In some embodiments, the second polypeptide may comprise an endonuclease domain.
In some embodiments, the second polypeptide may comprise a polymerase domain, e.g., a reverse transcriptase domain. In some embodiments, the second polypeptide may comprise a DNA-dependent DNA
polymerase domain. In some embodiments, the second polypeptide aids in completion of the genome edit, e.g., by contributing to second-strand synthesis or DNA repair resolution.
A functional gene modifying polypeptide can be made up of unrelated DNA
binding, reverse transcription, and endonuclease domains. This modular structure allows combining of functional domains, e.g., dCas9 (DNA binding), MMLV reverse transcriptase (reverse transcription), FokI
(endonuclease). In some embodiments, multiple functional domains may arise from a single protein, e.g., Cas9 or Cas9 nickase (DNA binding, endonuclease).
In some embodiments, a gene modifying polypeptide includes one or more domains that, collectively, facilitate 1) binding the template nucleic acid, 2) binding the target DNA molecule, and 3) facilitate integration of the at least a portion of the template nucleic acid into the target DNA. In some embodiments, the gene modifying polypeptide is an engineered polypeptide that comprises one or more amino acid substitutions to a corresponding naturally occurring sequence. In some embodiments, the gene modifying polypeptide comprises two or more domains that are heterologous relative to each other, e.g., through a heterologous fusion (or other conjugate) of otherwise wild-type domains, or well as fusions of modified domains, e.g., by way of replacement or fusion of a heterologous sub-domain or other substituted domain. For instance, in some embodiments, one or more of: the RT
domain is heterologous to the DBD; the DBD is heterologous to the endonuclease domain; or the RT
domain is heterologous to the endonuclease domain.
In some embodiments, a template RNA molecule for use in the system comprises, from 5' to 3' (1) a gRNA spacer; (2) a gRNA scaffold; (3) heterologous object sequence (4) a primer binding site (PBS) sequence. In some embodiments:
(1) Is a gRNA spacer of ¨18-22 nt, e.g., is 20 nt (2) Is a gRNA scaffold comprising one or more hairpin loops, e.g., 1, 2, of 3 loops for associating the template with a Cas domain, e.g., a nickase Cas9 domain. In some embodiments, the gRNA
scaffold comprises the sequence, from 5' to 3', GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAA
AGTGGGACCGAGTCGGTCC (SEQ ID NO: 5008).
(3) In some embodiments, the heterologous object sequence is, e.g., 7-74, e.g., 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, or 70-80 nt or, 80-90 nt in length. In some embodiments, the first (most 5') base of the sequence is not C.
(4) In some embodiments, the PBS sequence that binds the target priming sequence after nicking occurs is e.g., 3-20 nt, e.g., 7-15 nt, e.g., 12-14 nt. In some embodiments, the PBS sequence has 40-60% GC content.
In some embodiments, a second gRNA associated with the system may help drive complete integration. In some embodiments, the second gRNA may target a location that is 0-200 nt away from the first-strand nick, e.g., 0-50, 50-100, 100-200 nt away from the first-strand nick. In some embodiments, the second gRNA can only bind its target sequence after the edit is made, e.g., the gRNA binds a sequence present in the heterologous object sequence, but not in the initial target sequence.
In some embodiments, a gene modifying system described herein is used to make an edit in HEK293, K562, U205, or HeLa cells. In some embodiment, a gene modifying system is used to make an edit in primary cells, e.g., primary cortical neurons from E18.5 mice.
In some embodiments, a gene modifying polypeptide as described herein comprises a reverse transcriptase or RT domain (e.g., as described herein) that comprises a MoMLV
RT sequence or variant thereof In embodiments, the MoMLV RT sequence comprises one or more mutations selected from D200N, L603W, T330P, T306K, W313F, D524G, E562Q, D583N, P51L, S67R, E67K, T197A, H204R, E302K, F309N, L435G, N454K, H594Q, D653N, R1 10S, and K103L. In embodiments, the MoMLV RT
sequence comprises a combination of mutations, such as D200N, L603W, and T330P, optionally further including T306K and/or W313F.
In some embodiments, an endonuclease domain (e.g., as described herein) comprises nCAS9, e.g., comprising the H840A mutation.
In some embodiments, the heterologous object sequence (e.g., of a system as described herein) is about 1-50, 50-100, 100-200, 200-300, 300-400, 400-500, 500-600, 600-700, 700-800, 800-900, 900-1000, or more, nucleotides in length.
In some embodiments, the RT and endonuclease domains are joined by a flexible linker, e.g., comprising the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSS (SEQ ID
NO:
5006).
In some embodiments, the endonuclease domain is N-terminal relative to the RT
domain. In some embodiments, the endonuclease domain is C-terminal relative to the RT
domain.
In some embodiments, the system incorporates a heterologous object sequence into a target site by TPRT, e.g., as described herein.
In some embodiments, a gene modifying polypeptide comprises a DNA binding domain. In some embodiments, a gene modifying polypeptide comprises an RNA binding domain. In some embodiments, the RNA binding domain comprises an RNA binding domain of B-box protein, M52 coat protein, dCas, or an element of a sequence of a table herein. In some embodiments, the RNA
binding domain is capable of binding to a template RNA with greater affinity than a reference RNA
binding domain.
In some embodiments, a gene modifying system is capable of producing an insertion into the target site of at least 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 nucleotides (and optionally no more than 500, 400, 300, 200, or 100 nucleotides). In some embodiments, a gene modifying system is capable of producing an insertion into the target site of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 nucleotides (and optionally no more than 500, 400, 300, 200, or 100 nucleotides). In some embodiments, a gene modifying system is capable of producing an insertion into the target site of at least 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 or 10 kilobases (and optionally no more than 1, 5, 10, or 20 kilobases). In some embodiments, a gene modifying system is capable of producing a deletion of at least 81, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200 nucleotides (and optionally no more than 500, 400, 300, or 200 nucleotides). In some embodiments, a gene modifying system is capable of producing a deletion of at least 81, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200 nucleotides (and optionally no more than 500, 400, 300, or 200 nucleotides). In some embodiments, a gene modifying system is capable of producing a deletion of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200 nucleotides (and optionally no more than 500, 400, 300, or 200 nucleotides).
In some embodiments, a gene modifying system is capable of producing a deletion of at least 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 or 10 kilobases (and optionally no more than 1, 5, 10, or 20 kilobases). In some embodiments, a gene modifying system is capable of producing a substitution into the target site of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, or 100 or more nucleotides. In some embodiments, a gene modifying system is capable of producing a substitution in the target site of 1-2, 2-3, 3-4, 4-5, 5-10, 10-15, 15-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, or 90-100 nucleotides.
In some embodiments, the substitution is a transition mutation. In some embodiments, the substitution is a transversion mutation. In some embodiments, the substitution converts an adenine to a thymine, an adenine to a guanine, an adenine to a cytosine, a guanine to a thymine, a guanine to a cytosine, a guanine to an adenine, a thymine to a cytosine, a thymine to an adenine, a thymine to a guanine, a cytosine to an adenine, a cytosine to a guanine, or a cytosine to a thymine.
In some embodiments, an insertion, deletion, substitution, or combination thereof, increases or decreases expression (e.g. transcription or translation) of a gene. In some embodiments, an insertion, deletion, substitution, or combination thereof, increases or decreases expression (e.g. transcription or translation) of a gene by altering, adding, or deleting sequences in a promoter or enhancer, e.g. sequences that bind transcription factors. In some embodiments, an insertion, deletion, substitution, or combination thereof alters translation of a gene (e.g. alters an amino acid sequence), inserts or deletes a start or stop codon, alters or fixes the translation frame of a gene. In some embodiments, an insertion, deletion, substitution, or combination thereof alters splicing of a gene, e.g. by inserting, deleting, or altering a splice acceptor or donor site. In some embodiments, an insertion, deletion, substitution, or combination thereof alters transcript or protein half-life. In some embodiments, an insertion, deletion, substitution, or combination thereof alters protein localization in the cell (e.g. from the cytoplasm to a mitochondria, from the cytoplasm into the extracellular space (e.g. adds a secretion tag)). In some embodiments, an insertion, deletion, substitution, or combination thereof alters (e.g. improves) protein folding (e.g. to prevent accumulation of misfolded proteins). In some embodiments, an insertion, deletion, substitution, or combination thereof, alters, increases, decreases the activity of a gene, e.g.
a protein encoded by the gene.

Exemplary gene modifying polypeptides, and systems comprising them and methods of using them are described, e.g., in PCT/US2021/020948, which is incorporated herein by reference with respect to retroviral RT domains, including the amino acid and nucleic acid sequences therein.
Exemplary gene modifying polypeptides and retroviral RT domain sequences are also described, e.g., in International Application No. PCT/US21/20948 filed March 4, 2021, e.g., at Table 30, Table 31, and Table 44 therein; the entire application is incorporated by reference herein with respect to retroviral RTs, e.g., in said sequences and tables. Accordingly, a gene modifying polypeptide described herein may comprise an amino acid sequence according to any of the Tables mentioned in this paragraph, or a domain thereof (e.g., a retroviral RT domain), or a functional fragment or variant of any of the foregoing, or an amino acid sequence having at least 70%, 80%, 85%, 90%, 95%, or 99% identity thereto.
In some embodiments, a polypeptide for use in any of the systems described herein can be a molecular reconstruction or ancestral reconstruction based upon the aligned polypeptide sequence of multiple homologous proteins. In some embodiments, a reverse transcriptase domain for use in any of the systems described herein can be a molecular reconstruction or an ancestral reconstruction, or can be modified at particular residues, based upon alignments of reverse transcriptase domains from the same or different sources. A skilled artisan can, based on the Accession numbers provided herein, align polypeptides or nucleic acid sequences, e.g., by using routine sequence analysis tools as Basic Local Alignment Search Tool (BLAST) or CD-Search for conserved domain analysis.
Molecular reconstructions can be created based upon sequence consensus, e.g. using approaches described in Ivics et al., Cell 1997, 501 ¨ 510; Wagstaff et al., Molecular Biology and Evolution 2013, 88-99.
Polypeptide components of gene modifying systems In some embodiments, the gene modifying polypeptide possesses the functions of DNA target site binding, template nucleic acid (e.g., RNA) binding, DNA target site cleavage, and template nucleic acid (e.g., RNA) writing, e.g., reverse transcription. In some embodiments, each function is contained within a distinct domain. In some embodiments, a function may be attributed to two or more domains (e.g., two or more domains, together, exhibit the functionality). In some embodiments, two or more domains may have the same or similar function (e.g., two or more domains each independently have DNA-binding functionality, e.g., for two different DNA sequences). In other embodiments, one or more domains may be capable of enabling one or more functions, e.g., a Cas9 domain enabling both DNA binding and target site cleavage. In some embodiments, the domains are all located within a single polypeptide. In some embodiments, a first domain is in one polypeptide and a second domain is in a second polypeptide. For example, in some embodiments, the sequences may be split between a first polypeptide and a second polypeptide, e.g., wherein the first polypeptide comprises a reverse transcriptase (RT) domain and wherein the second polypeptide comprises a DNA-binding domain and an endonuclease domain, e.g., a nickase domain. As a further example, in some embodiments, the first polypeptide and the second polypeptide each comprise a DNA binding domain (e.g., a first DNA binding domain and a second DNA
binding domain). In some embodiments, the first and second polypeptide may be brought together post-translationally via a split-intein to form a single gene modifying polypeptide.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an AVIRE RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an BAEVM RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an FFV RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);

wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an FLV RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an FOAMV RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an GALV RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:

a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an KORV RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an MLVAV RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an MLVBM RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an MLVCB RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an MLVFF RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an MLVMS RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an PERV RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);

wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an SFV1 RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an SFV3L RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an WMSV RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:

a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an XMRV6 RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an BLVAU RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an BLVJ RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an HTL1A RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an HTL1C RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an HTL1L RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an HTL32 RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);

wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an HTL3P RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an HTLV2 RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an JSRV RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:

a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an MLVF5 RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an MLVRD RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an MMTVB RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an MPMV RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an SFVCP RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an SMRVH RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an SRV1 RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);

wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an SRV2 RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
In an aspect, the disclosure provides a gene modifying polypeptide comprising:
a DNA binding domain (DBD) that binds to a target nucleic acid sequence, the RT domain of an WDSV RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto, and a linker disposed between the DBD and the RT domain (e.g., a linker comprising an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto);
wherein the DBD is heterologous to the RT domain (e.g., a Cas domain, e.g., a Cas nickase domain, e.g., a Cas9 nickase domain); optionally wherein the RT domain is C-terminal of the Cas domain.
Gene modifying domain (RT Domain) In certain aspects of the present invention, the gene modifying domain of the gene modifying system possesses reverse transcriptase activity and is also referred to as a reverse transcriptase domain (an RT domain). In some embodiments, the RT domain comprises an RT catalytic portion and RNA-binding region (e.g., a region that binds the template RNA).
In some embodiments, a nucleic acid encoding the reverse transcriptase is altered from its natural sequence to have altered codon usage, e.g. improved for human cells. In some embodiments the reverse transcriptase domain is a heterologous reverse transcriptase from a retrovirus. In some embodiments, the RT domain comprising a gene modifying polypeptide has been mutated from its original amino acid sequence, e.g., has at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 substitutions. In some embodiments, the RT domain is derived from the RT of a retrovirus, e.g., HIV-1 RT, Moloney Murine Leukemia Virus (MMLV) RT, avian myeloblastosis virus (AMV) RT, or Rous Sarcoma Virus (RSV) RT.
In some embodiments, the retroviral reverse transcriptase (RT) domain exhibits enhanced stringency of target-primed reverse transcription (TPRT) initiation, e.g., relative to an endogenous RT
domain. In some embodiments, the RT domain initiates TPRT when the 3 nt in the target site immediately upstream of the first strand nick, e.g., the genomic DNA priming the RNA template, have at least 66% or 100% complementarity to the 3 nt of homology in the RNA template.
In some embodiments, the RT domain initiates TPRT when there are less than 5 nt mismatched (e.g., less than 1, 2, 3, 4, or 5 nt mismatched) between the template RNA homology and the target DNA priming reverse transcription. In some embodiments, the RT domain is modified such that the stringency for mismatches in priming the TPRT reaction is increased, e.g., wherein the RT domain does not tolerate any mismatches or tolerates fewer mismatches in the priming region relative to a wild-type (e.g., unmodified) RT domain. In some embodiments, the RT domain comprises a HIV-1 RT domain. In embodiments, the HIV-1 RT domain initiates lower levels of synthesis even with three nucleotide mismatches relative to an alternative RT
domain (e.g., as described by Jamburuthugoda and Eickbush J Mol Biol 407(5):661-672 (2011);
incorporated herein by reference in its entirety). In some embodiments, the RT
domain forms a dimer (e.g., a heterodimer or homodimer). In some embodiments, the RT domain is monomeric. In some embodiments, an RT domain, naturally functions as a monomer or as a dimer (e.g., heterodimer or homodimer). In some embodiments, an RT domain naturally functions as a monomer, e.g., is derived from a virus wherein it functions as a monomer. In embodiments, the RT domain is selected from an RT
domain from murine leukemia virus (MLV; sometimes referred to as MoMLV) (e.g., P03355), porcine endogenous retrovirus (PERV) (e.g., UniProt Q4VFZ2), mouse mammary tumor virus (MMTV) (e.g., UniProt P03365), Mason-Pfizer monkey virus (MPMV) (e.g., UniProt P07572), bovine leukemia virus (BLV) (e.g., UniProt P03361), human T-cell leukemia virus-1 (HTLV-1) (e.g., UniProt P03362), human foamy virus (HFV) (e.g., UniProt P14350), simian foamy virus (SFV) (e.g., UniProt P23074), or bovine foamy/syncytial virus (BFV/BSV) (e.g., UniProt 041894), or a functional fragment or variant thereof (e.g., an amino acid sequence having at least 70%, 80%, 90%, 95%, or 99%
identity thereto). In some embodiments, an RT domain is dimeric in its natural functioning. In some embodiments, the RT domain is derived from a virus wherein it functions as a dimer. In embodiments, the RT domain is selected from an RT domain from avian sarcoma/leukemia virus (ASLV) (e.g., UniProt A0A142BKH1), Rous sarcoma virus (RSV) (e.g., UniProt P03354), avian myeloblastosis virus (AMV) (e.g., UniProt Q83133), human immunodeficiency virus type I (HIV-1) (e.g., UniProt P03369), human immunodeficiency virus type II
(HIV-2) (e.g., UniProt P15833), simian immunodeficiency virus (SIV) (e.g., UniProt P05896), bovine immunodeficiency virus (BIV) (e.g., UniProt P19560), equine infectious anemia virus (EIAV) (e.g., UniProt P03371), or feline immunodeficiency virus (FIV) (e.g., UniProt P16088) (Herschhorn and Hizi Cell Mol Life Sci 67(16):2717-2747 (2010)), or a functional fragment or variant thereof (e.g., an amino acid sequence having at least 70%, 80%, 90%, 95%, or 99% identity thereto).
Naturally heterodimeric RT domains may, in some embodiments, also be functional as homodimers. In some embodiments, dimeric RT domains are expressed as fusion proteins, e.g., as homodimeric fusion proteins or heterodimeric fusion proteins. In some embodiments, the RT function of the system is fulfilled by multiple RT domains (e.g., as described herein). In further embodiments, the multiple RT domains are fused or separate, e.g., may be on the same polypeptide or on different polypeptides.
In some embodiments, a gene modifying system described herein comprises an integrase domain, e.g., wherein the integrase domain may be part of the RT domain. In some embodiments, an RT domain (e.g., as described herein) comprises an integrase domain. In some embodiments, an RT domain (e.g., as described herein) lacks an integrase domain, or comprises an integrase domain that has been inactivated by mutation or deleted. In some embodiment, a gene modifying system described herein comprises an RNase H domain, e.g., wherein the RNase H domain may be part of the RT domain.
In some embodiments, the RNase H domain is not part of the RT domain and is covalently linked via a flexible linker. In some embodiments, an RT domain (e.g., as described herein) comprises an RNase H domain, e.g., an endogenous RNAse H domain or a heterologous RNase H domain. In some embodiments, an RT
domain (e.g., as described herein) lacks an RNase H domain. In some embodiments, an RT domain (e.g., as described herein) comprises an RNase H domain that has been added, deleted, mutated, or swapped for a heterologous RNase H domain. In some embodiments, the polypeptide comprises an inactivated endogenous RNase H domain. In some embodiments, an endogenous RNase H domain from one of the other domains of the polypeptide is genetically removed such that it is not included in the polypeptide, e.g., the endogenous RNase H domain is partially or completely truncated from the comprising domain.
In some embodiments, mutation of an RNase H domain yields a polypeptide exhibiting lower RNase activity, e.g., as determined by the methods described in Kotewicz et al.
Nucleic Acids Res 16(1):265-277 (1988) (incorporated herein by reference in its entirety), e.g., lower by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% compared to an otherwise similar domain without the mutation. In some embodiments, RNase H activity is abolished.
In some embodiments, an RT domain is mutated to increase fidelity compared to an otherwise similar domain without the mutation. For instance, in some embodiments, a YADD
or YMDD motif in an RT domain (e.g., in a reverse transcriptase) is replaced with YVDD. In embodiments, replacement of the YADD or YMDD or YVDD results in higher fidelity in retroviral reverse transcriptase activity (e.g., as described in Jamburuthugoda and Eickbush J Mol Biol 2011; incorporated herein by reference in its entirety).
In some embodiments, a gene modifying polypeptide described herein comprises an RT domain having an amino acid sequence according to Table 6, or a sequence having at least 70%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto. In some embodiments, a nucleic acid described herein encodes an RT domain having an amino acid sequence according to Table 6, or a sequence having at least 70%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
Table 6: Exemplary reverse transcriptase domains from retroviruses RT SEQ ID
RT amino acid sequence Name NO:
TAPLEEEYRLFLEAPIQNVTLLEQWKREIPKVWAEINPPGLASTQAPIHVQLLSTALPVRVRQYPITLEAKRSLRETIR
KFRAAGILRPVHSPWNTPLLPV
RKSGTSEYRMVQDLREVNKRVETIHPTVPNPYTLLSLLPPDRIINYSVLDLKDAFFCIPLAPESQLIFAFEWADAEEGE
SGQLTWTRLPQGFKNSPTLFD
AVIRE
EALNRDLQGFRLDHPSVSLLQYVDDLLIAADTQAACLSATRDLLMTLAELGYRVSGKKAQLCQEEVTYLGFKIHKGSRS
LSNSRTQAILQIPVPKTKRQV
_P0336 REFLGTIGYCRLWIPGFAELAQPLYAATRGGNDPLVVVGEKEEEAFQSLKLALTQPPALALPSLDKPFQLFVEETSGAA
KGVLTQALGPWKRPVAYLSK

RLDPVAAGWPRCLRAIAAAALLTREASKLTFGQDIEITSSHNLESLLRSPPDKWLTNARITQYQVLLLDPPRVRFKQTA
ALNPATLLPETDDTLPIHHCLD
TLDSLTSTRPDLTDQPLAQAEATLFTDGSSYIRDGKRYAGAAVVTLDSVIWAEPLPIGTSAQKAELIALTKALEWSKDK
SVNIYTDSRYAFATLHVHGMIY
8,001 RERGLLTAGGKAIKNAPEILALLTAVWLPKRVAVMHCKGHQKDDAPTSTGNRRADEVAREVAIRPLSTQATIS
TAPLEEEYRLFLEAPIQNVTLLEQWKREIPKVWAEINPPGLASTQAPIHVQLLSTALPVRVRQYPITLEAKRSLRETIR
KFRAAGILRPVHSPWNTPLLPV
RKSGTSEYRMVQDLREVNKRVETIHPTVPNPYTLLSLLPPDRIINYSVLDLKDAFFCIPLAPESQLIFAFEWADAEEGE
SGQLTWTRLPQGFKNSPTLFN
AVIRE
EALNRDLQGFRLDHPSVSLLQYVDDLLIAADTQAACLSATRDLLMTLAELGYRVSGKKAQLCQEEVTYLGFKIHKGSRS
LSNSRTQAILQIPVPKTKRQV
_P0336 REFLGTIGYCRLWIPGFAELAQPLYAATRPGNDPLVVVGEKEEEAFQSLKLALTQPPALALPSLDKPFQLFVEETSGAA
KGVLTQALGPWKRPVAYLSK
0_3mu1 RLDPVAAGWPRCLRAIAAAALLTREASKLTFGQDIEITSSHNLESLLRSPPDKWLTNARITQYQVLLLDPPRVRFKQTA
ALNPATLLPETDDTLPIHHCLD
TLDSLTSTRPDLTDQPLAQAEATLFTDGSSYIRDGKRYAGAAVVTLDSVIWAEPLPIGTSAQKAELIALTKALEWSKDK
SVNIYTDSRYAFATLHVHGMIY
8,002 RERGWLTAGGKAIKNAPEILALLTAVWLPKRVAVMHCKGHQKDDAPTSTGNRRADEVAREVAIRPLSTQATIS
TAPLEEEYRLFLEAPIQNVTLLEQWKREIPKVWAEINPPGLASTQAPIHVQLLSTALPVRVRQYPITLEAKRSLRETIR
KFRAAGILRPVHSPWNTPLLPV
RKSGTSEYRMVQDLREVNKRVETIHPTVPNPYTLLSLLPPDRIINYSVLDLKDAFFCIPLAPESQLIFAFEWADAEEGE
SGQLTWTRLPQGFKNSPTLFN
AVIRE
EALNRDLQGFRLDHPSVSLLQYVDDLLIAADTQAACLSATRDLLMTLAELGYRVSGKKAQLCQEEVTYLGFKIHKGSRS
LSNSRTQAILQIPVPKTKRQV
_P0336 REFLGKIGYCRLFIPGFAELAQPLYAATRPGNDPLVWGEKEEEAFQSLKLALTQPPALALPSLDKPFQLFVEETSGAAK
GVLTQALGPWKRPVAYLSKR
0_3mut LDPVAAGWPRCLRAIAAAALLTREASKLTFGQDIEITSSHNLESLLRSPPDKWLTNARITQYQVLLLDPPRVRFKQTAA
LNPATLLPETDDTLPIHHCLDT
A
LDSLTSTRPDLTDQPLAQAEATLFTDGSSYIRDGKRYAGAA\NTLDSVIWAEPLPIGTSAQKAELIALTKALEWSKDKS
VNIYTDSRYAFATLHVHGMIY
8,003 RERGWLTAGGKAIKNAPEILALLTAVWLPKRVAVMHCKGHQKDDAPTSTGNRRADEVAREVAIRPLSTQATIS
TVSLQDEHRLFDIPVTTSLPD\NVLQDFPQAWAETGGLGRAKCQAPIIIDLKPTAVPVSIKQYPMSLEAHMGIRQH11K
FLELGVLRPCRSPWNTPLLPVK
KPGTQDYRPVQDLREINKRTVDIHPTVPNPYNLLSTLKPDYSINYTVLDLKDAFFCLPLAPQSQELFAFEWKDPERGIS
GQLTWTRLPQGFKNSPTLFD
BAEVM
EALHRDLTDFRTQHPEVTLLQYVDDLLLAAPTKKACTQGTRHLLQELGEKGYRASAKKAQICQTKVTYLGYILSEGKRW
LTPGRIETVARIPPPRNPRE
_P1027 VREFLGTAGFCRLWIPGFAELAAPLYALTKESTPFTWQTEHQLAFEALKKALLSAPALGLPDTSKPFTLFLDERQGIAK
GVLTQKLGPWKRPVAYLSKK

LDPVAAGWPPCLRIMAATAMLVKDSAKLTLGQPLTVITPHTLEAIVRQPPDRWITNARLTHYQALLLDTDRVQFGPPVT
LNPATLLPVPENQPSPHDCR
QVLAETHGTREDLKDQELPDADHTINYTDGSSYLDSGTRRAGAAVVDGHNTIWAQSLPPGTSAQKAELIALTKALELSK
GKKANIYTDSRYAFATAHTH
8,004 GSIYERRGLLTSEGKEIKNKAEIIALLKALFLPQEVAIIHCPGHQKGQDPVAVGNRQADRVARQAAMAEVLTLATEPDN
TSHIT
TVSLQDEHRLFDIPVTTSLPD\NVLQDFPQAWAETGGLGRAKCQAPIIIDLKPTAVPVSIKQYPMSLEAHMGIRQH11K
FLELGVLRPCRSPWNTPLLPVK
KPGTQDYRPVQDLREINKRTVDIHPTVPNPYNLLSTLKPDYSINYTVLDLKDAFFCLPLAPQSQELFAFEWKDPERGIS
GQLTWTRLPQGFKNSPTLFN
BAEVM
EALHRDLTDFRTQHPEVTLLQYVDDLLLAAPTKKACTQGTRHLLQELGEKGYRASAKKAQICQTKVTYLGYILSEGKRW
LTPGRIETVARIPPPRNPRE
_P1027 VREFLGTAGFCRLWIPGFAELAAPLYALTKPSTPFTWQTEHQLAFEALKKALLSAPALGLPDTSKPFTLFLDERQGIAK
GVLTQKLGPWKRPVAYLSKK
2_3mu1 LDPVAAGWPPCLRIMAATAMLVKDSAKLTLGQPLTVITPHTLEAIVRQPPDRWITNARLTHYQALLLDTDRVQFGPPVT
LNPATLLPVPENQPSPHDCR
QVLAETHGTREDLKDQELPDADHTINYTDGSSYLDSGTRRAGAAVVDGHNTIWAQSLPPGTSAQKAELIALTKALELSK
GKKANIYTDSRYAFATAHTH
8,005 GSIYERRGWLTSEGKEIKNKAEIIALLKALFLPQEVAIIHCPGHQKGQDPVAVGNRQADRVARQAAMAEVLTLATEPDN
TSHIT
TVSLQDEHRLFDIPVTTSLPD\NVLQDFPQAWAETGGLGRAKCQAPIIIDLKPTAVPVSIKQYPMSLEAHMGIRQH11K
FLELGVLRPCRSPWNTPLLPVK
KPGTQDYRPVQDLREINKRTVDIHPTVPNPYNLLSTLKPDYSINYTVLDLKDAFFCLPLAPQSQELFAFEWKDPERGIS
GQLTWTRLPQGFKNSPTLFN
BAEVM
EALHRDLTDFRTQHPEVTLLQYVDDLLLAAPTKKACTQGTRHLLQELGEKGYRASAKKAQICQTKVTYLGYILSEGKRW
LTPGRIETVARIPPPRNPRE
_P1027 VREFLGKAGFCRLFIPGFAELAAPLYALTKPSTPFTWQTEHQLAFEALKKALLSAPALGLPDTSKPFTLFLDERQGIAK
GVLTQKLGPWKRPVAYLSKKL
2_3mut DPVAAGWPPCLRIMAATAMLVKDSAKLTLGQPLTVITPHTLEAIVRQPPDRWITNARLTHYQALLLDTDRVQFGPPVTL
NPATLLPVPENQPSPHDCRQ
A
VLAETHGTREDLKDQELPDADHTWYTDGSSYLDSGTRRAGAPANDGHNTIWAQSLPPGTSAQKAELIALTKALELSKGK
KANIYTDSRYAFATAHTHG
8,006 SIYERRGWLTSEGKEIKNKAEIIALLKALFLPQEVAIIHCPGHQKGQDPVAVGNRQADRVARQAAMAEVLTLATEPDNT
SHIT
GVLDAPPSHIGLEHLPPPPEVPQFPLNLERLQALQDLVHRSLEAGYISPWDGPGNNPVFPVRKPNGAWRFVHDLRVTNA
LTKPIPALSPGPPDLTAIPT
HLPHIICLDLKDAFFQIPVEDRFRSYFAFTLPTPGGLQPHRRFAWRVLPQGFINSPALFERALQEPLRQVSAAFSQSLL
VSYMDDILYVSPTEEQRLQCY
BLVAU
QTMAAHLRDLGFQVASEKTRQTPSPVPFLGQMVHERMVTYQSLPTLQISSPISLHQLQTVLGDLQVVVSRGTPTTRRPL
QLLYSSLKGIDDPRAIIHLSP
_P2505 EQQQGIAELRQALSHNARSRYNEQEPLLAYVHLTRAGSTLVLFQKGAQFPLAYFQTPLTDNQASPWGLLLLLGCQYLQA
QALSSYAKTILKYYHNLPK

TSLDNWIQSSEDPRVQELLQLWPQISSQGIQPPGPWKTLVTRAEVFLTPQFSPEPIPAALCLFSDGAARRGAYCLWKDH
LLDFQAVPAPESAQKGELA
8,007 GLLAGLAAAPPEPLNIVVVDSKYLYSLLRTLVLGAWLQPDPVPSYALLYKSLLRHPAIFVGHVRSHSSASHPIASLNNY
VDQL

RI SEQ ID
RI amino acid sequence Name NO:
GVLDAPPSHIGLEHLPPPPEVPQFPLNLERLQALQDLVHRSLEAGYISPWDGPGNNPVFPVRKPNGAWRFVHDLRVTNA
LTKPIPALSPGPPDLTAIPT
HLPHIICLDLKDAFFQIPVEDRFRSYFAFTLPTPGGLQPHRRFAWRVLPQGFINSPALFQRALQEPLRQVSAAFSQSLL
VSYMDDILYVSPTEEQRLQCY
BLVAU
QTMAAHLRDLGFQVASEKTRQTPSPVPFLGQMVHERMVTYQSLPTLQISSPISLHQLQTVLGDLQVVVSRGTPTTRRPL
QLLYSSLKPIDDPRAIIHLSP
_P2505 EQQQGIAELRQALSHNARSRYNEQEPLLAYVHLTRAGSTLVLFQKGAQFPLAYFQTPLTDNQASPWGLLLLLGCQYLQA
QALSSYAKTILKYYHNLPK
9_2mut TSLDNWIQSSEDPRVQELLQLWPQISSQGIQPPGPWKTLVTRAEVFLTPQFSPEPIPAALCLFSDGAARRGAYCLWKDH
LLDFQAVPAPESAQKGELA
8,008 GLLAGLAAAPPEPLNIVVVDSKYLYSLLRTLVLGAWLQPDPVPSYALLYKSLLRHPAIFVGHVRSHSSASHPIASLNNY
VDQL
GVLDTPPSHIGLEHLPPPPEVPQFPLNLERLQALQDLVHRSLEAGYISPWDGPGNNPVFPVRKPNGAWRFVHDLRATNA
LTKPIPALSPGPPDLTAIPT
HPPHIICLDLKDAFFQIPVEDRFRFYLSFTLPSPGGLQPHRRFAWRVLPQGFINSPALFERALQEPLRQVSAAFSQSLL
VSYMDDILYASPTEEQRSQCY
BLVJ_ QALAARLRDLGFQVASEKTSQTPSPVPFLGQMVHEQIVTYQSLPTLQISSPISLHQLQAVLGDLQVVVSRGTPTTRRPL
QLLYSSLKRHHDPRAIIQLSPE

QLQGIAELRQALSHNARSRYNEQEPLLAYVHLTRAGSTLVLFQKGAQFPLAYFQTPLTDNQASPWGLLLLLGCQYLQTQ
ALSSYAKPILKYYHNLPKTS
LDNWIQSSEDPRVQELLQLWPQISSQGIQPPGPWKTLITRAEVFLTPQFSPDPIPAALCLFSDGATGRGAYCLWKDHLL
DFQAVPAPESAQKGELAGL
8,009 LAGLAAAPPEPVNIVVVDSKYLYSLLRTLVLGAWLQPDPVPSYALLYKSLLRHPAIVVGHVRSHSSASHPIASLNNYVD
QL
GVLDTPPSHIGLEHLPPPPEVPQFPLNLERLQALQDLVHRSLEAGYISPWDGPGNNPVFPVRKPNGAWRFVHDLRATNA
LTKPIPALSPGPPDLTAIPT
HPPHIICLDLKDAFFQIPVEDRFRFYLSFTLPSPGGLQPHRRFAWRVLPQGFINSPALFNRALQEPLRQVSAAFSQSLL
VSYMDDILYASPTEEQRSQCY
BLVJ_ QALAARLRDLGFQVASEKTSQTPSPVPFLGQMVHEQIVTYQSLPTLQISSPISLHQLQAVLGDLQVVVSRGTPTTRRPL
QLLYSSLKRHHDPRAIIQLSPE

QLQGIAELRQALSHNARSRYNEQEPLLAYVHLTRAGSTLVLFQKGAQFPLAYFQTPLTDNQASPWGLLLLLGCQYLQTQ
ALSSYAKPILKYYHNLPKTS
_2mut LDNWIQSSEDPRVQELLQLWPQISSQGIQPPGPWKTLITRAEVFLTPQFSPDPIPAALCLFSDGATGRGAYCLWKDHLL
DFQAVPAPESAQKGELAGL
8,010 LAGLAAAPPEPVNIVVVDSKYLYSLLRTWVLGAWLQPDPVPSYALLYKSLLRHPAIVVGHVRSHSSASHPIASLNNYVD
QL
GVLDTPPSHIGLEHLPPPPEVPQFPLNLERLQALQDLVHRSLEAGYISPWDGPGNNPVFPVRKPNGAWRFVHDLRATNA
LTKPIPALSPGPPDLTAPP
THPPHIICLDLKDAFFQIPVEDRFRFYLSFTLPSPGGLQPHRRFAWRVLPQGFINSPALFQRALQEPLRQVSAAFSQSL
LVSYMDDILYASPTEEQRSQC
BLVJ_ YQALAARLRDLGFQVASEKTSQTPSPVPFLGQMVHEQIVTYQSLPTLQISSPISLHQLQAVLGDLQVVVSRGTPTTRRP
LQLLYSSLKRHHDPRAIIQLSP

EQLQGIAELRQALSHNARSRYNEQEPLLAYVHLTRAGSTLVLFQKGAQFPLAYFQTPLTDNQASPWGLLLLLGCQYLQT
QALSSYAKPILKYYHNLPKT
_2mutB
SLDNWIQSSEDPRVQELLQLWPQISSQGIQPPGPWKTLITRAEVFLTPQFSPDPIPAALCLFSDGATGRGAYCLWKDHL
LDFQAVPAPESAQKGELAG
8,011 LLAGLAAAPPEPVNIVVVDSKYLYSLLRTWVLGAWLQPDPVPSYALLYKSLLRHPAIVVGHVRSHSSASHPIASLNNYV
DQL
MDLLKPLTVERKGVKIKGYVVNSQADITCVPKDLLQGEEPVRQQNVTTIHGTQEGDVYYVNLKIDGRRINTEVIGTTLD
YAIITPGDVPWILKKPLELTIKLD
LEEQQGTLLNNSILSKKGKEELKQLFEKYSALWQSWENQVGHRRIRPHKIATGTVKPTPQKQYHINPKAKPDIQIVIND
LLKQGVLIQKESTMNTPVYPV
PKPNGRWRMVLDYRAVNKVTPLIAVQNQHSYGILGSLFKGRYKTTIDLSNGFWAHPIVPEDYVVITAFTWQGKQYCWTV
LPQGFLNSPGLFTGDWDL
FFV_O
LQGIPNVEVYVDDVYISHDSEKEHLEYLDILFNRLKEAGYIISLKKSNIANSIVDFLGFQITNEGRGLTDTFKEKLENI
TAPTTLKQLQSILGLLNFARNFIPD

FTELIAPLYALIPKSTKNYVPWQIEHSTTLETLITKLNGAEYLQGRKGDKTLIMKVNASYTTGYIRYYNEGEKKPISYV
SIVFSKTELKFTELEKLLTTVHKG
LLKALDLSMGQNIHVYSPIVSMQNIQKTPQTAKKALASRWLSWLSYLEDPRIRFFYDPQMPALKDLPAVDTGKDNKKHP
SNFQHIFYTDGSAITSPTKE
GHLNAGMGIVYFINKDGNLQKQQEWSISLGNHTAQFAEIAAFEFALKKCLPLGGNIL\NTDSNYVAKAYNEELDVVVAS
NGFVNNRKKPLKHISKWKSV
8,012 ADLKRLRPDVVVTHEPGHQKLDSSPHAYGNNLADQLATQASFKVH
MDLLKPLTVERKGVKIKGYVVNSQADITCVPKDLLQGEEPVRQQNVTTIHGTQEGDVYYVNLKIDGRRINTEVIGTTLD
YAIITPGDVPWILKKPLELTIKLD
LEEQQGTLLNNSILSKKGKEELKQLFEKYSALWQSWENQVGHRRIRPHKIATGTVKPTPQKQYHINPKAKPDIQIVIND
LLKQGVLIQKESTMNTPVYPV
PKPNGRWRMVLDYRAVNKVTPLIAVQNQHSYGILGSLFKGRYKTTIDLSNGFWAHPIVPEDYVVITAFTWQGKQYCWTV
LPQGFLNSPGLFNGDWDL
FFV_O
LQGIPNVEVYVDDVYISHDSEKEHLEYLDILFNRLKEAGYIISLKKSNIANSIVDFLGFQITNEGRGLTDTFKEKLENI
TAPTTLKQLQSILGLLNFARNFIPD
93209_ FTELIAPLYALIPKSPKNYVPWQIEHSTTLETLITKLNGAEYLQGRKGDKTLIMKVNASYTTGYIRYYNEGEKKPISYV
SIVFSKTELKFTELEKLLTTVHKG
2mut LLKALDLSMGQNIHVYSPIVSMQNIQKTPQTAKKALASRWLSWLSYLEDPRIRFFYDPQMPALKDLPAVDTGKDNKKHP
SNFQHIFYTDGSAITSPTKE
GHLNAGMGIVYFINKDGNLQKQQEWSISLGNHTAQFAEIAAFEFALKKCLPLGGNIL\NTDSNYVAKAYNEELDVVVAS
NGFVNNRKKPLKHISKWKSV
8,013 ADLKRLRPDVVVTHEPGHQKLDSSPHAYGNNLADQLATQASFKVH
MDLLKPLTVERKGVKIKGYVVNSQADITCVPKDLLQGEEPVRQQNVTTIHGTQEGDVYYVNLKIDGRRINTEVIGTTLD
YAIITPGDVPWILKKPLELTIKLD
LEEQQGTLLNNSILSKKGKEELKQLFEKYSALWQSWENQVGHRRIRPHKIATGTVKPTPQKQYHINPKAKPDIQIVIND
LLKQGVLIQKESTMNTPVYPV
PKPNGRWRMVLDYRAVNKVTPLIAVQNQHSYGILGSLFKGRYKTTIDLSNGFWAHPIVPEDYVVITAFTWQGKQYCWTV
LPQGFLNSPGLFNGDWDL
FFV_O
LQGIPNVEVYVDDVYISHDSEKEHLEYLDILFNRLKEAGYIISLKKSNIANSIVDFLGFQITNEGRGLTDTFKEKLENI
TAPTTLKQLQSILGKLNFARNFIPD
93209_ FTELIAPLYALIPKSPKNYVPWQIEHSTTLETLITKLNGAEYLQGRKGDKTLIMKVNASYTTGYIRYYNEGEKKPISYV
SIVFSKTELKFTELEKLLTTVHKG
2mutA
LLKALDLSMGQNIHVYSPIVSMQNIQKTPQTAKKALASRWLSWLSYLEDPRIRFFYDPQMPALKDLPAVDTGKDNKKHP
SNFQHIFYTDGSAITSPTKE
GHLNAGMGIVYFINKDGNLQKQQEWSISLGNHTAQFAEIAAFEFALKKCLPLGGNIL\NTDSNYVAKAYNEELDVVVAS
NGFVNNRKKPLKHISKWKSV
8,014 ADLKRLRPDVVVTHEPGHQKLDSSPHAYGNNLADQLATQASFKVH
VPWILKKPLELTIKLDLEEQQGTLLNNSILSKKGKEELKQLFEKYSALWQSWENQVGHRRIRPHKIATGTVKPTPQKQY
HINPKAKPDIQIVINDLLKQGV
LIQKESTMNTPVYPVPKPNGRWRMVLDYRAVNKVTPLIAVQNQHSYGILGSLFKGRYKTTIDLSNGFWAHPIVPEDYVV
ITAFTWQGKQYCWTVLPQGF
FFV_O
LNSPGLFTGDWDLLQGIPNVEVYVDDVYISHDSEKEHLEYLDILFNRLKEAGYIISLKKSNIANSIVDFLGFQITNEGR
GLTDTFKEKLENITAPTTLKQLQ

SILGLLNFARNFIPDFTELIAPLYALIPKSTKNYVPWQIEHSTTLETLITKLNGAEYLQGRKGDKTLIMKVNASYTTGY
IRYYNEGEKKPISYVSIVFSKTELK
Pro FTELEKLLTTVHKGLLKALDLSMGQNIHVYSPIVSMQNIQKTPQTAKKALASRWLSWLSYLEDPRIRFFYDPQMPALKD
LPAVDTGKDNKKHPSNFQHI
FYTDGSAITSPTKEGHLNAGMGIVYFINKDGNLQKQQEWSISLGNHTAQFAEIAAFEFALKKCLPLGGNIL\NTDSNYV
AKAYNEELDVVVASNGFVNNR
8,015 KKPLKHISKWKSVADLKRLRPDVWTHEPGHQKLDSSPHAYGNNLADQLATQASFKVH
VPWILKKPLELTIKLDLEEQQGTLLNNSILSKKGKEELKQLFEKYSALWQSWENQVGHRRIRPHKIATGTVKPTPQKQY
HINPKAKPDIQIVINDLLKQGV
LIQKESTMNTPVYPVPKPNGRWRMVLDYRAVNKVTPLIAVQNQHSYGILGSLFKGRYKTTIDLSNGFWAHPIVPEDYVV
ITAFTWQGKQYCWTVLPQGF
FFV_O
LNSPGLFNGDWDLLQGIPNVEVYVDDVYISHDSEKEHLEYLDILFNRLKEAGYIISLKKSNIANSIVDFLGFQITNEGR
GLTDTFKEKLENITAPTTLKQLQ

SILGLLNFARNFIPDFTELIAPLYALIPKSPKNYVPWQIEHSTTLETLITKLNGAEYLQGRKGDKTLIMKVNASYTTGY
IRYYNEGEKKPISYVSIVFSKTELK
Pro_2m FTELEKLLTTVHKGLLKALDLSMGQNIHVYSPIVSMQNIQKTPQTAKKALASRWLSWLSYLEDPRIRFFYDPQMPALKD
LPAVDTGKDNKKHPSNFQHI
ut FYTDGSAITSPTKEGHLNAGMGIVYFINKDGNLQKQQEWSISLGNHTAQFAEIAAFEFALKKCLPLGGNIL\NTDSNYV
AKAYNEELDVVVASNGFVNNR
8,016 KKPLKHISKWKSVADLKRLRPDVWTHEPGHQKLDSSPHAYGNNLADQLATQASFKVH
VPWILKKPLELTIKLDLEEQQGTLLNNSILSKKGKEELKQLFEKYSALWQSWENQVGHRRIRPHKIATGTVKPTPQKQY
HINPKAKPDIQIVINDLLKQGV
FFV_O
LIQKESTMNTPVYPVPKPNGRWRMVLDYRAVNKVTPLIAVQNQHSYGILGSLFKGRYKTTIDLSNGFWAHPIVPEDYVV
ITAFTWQGKQYCWTVLPQGF

LNSPGLFNGDWDLLQGIPNVEVYVDDVYISHDSEKEHLEYLDILFNRLKEAGYIISLKKSNIANSIVDFLGFQITNEGR
GLTDTFKEKLENITAPTTLKQLQ
Pro_2m SILGKLNFARNFIPDFTELIAPLYALIPKSPKNYVPWQIEHSTTLETLITKLNGAEYLQGRKGDKTLIMKVNASYTTGY
IRYYNEGEKKPISYVSIVFSKTELK
utA
8,017 FTELEKLLTTVHKGLLKALDLSMGQNIHVYSPIVSMQNIQKTPQTAKKALASRWLSWLSYLEDPRIRFFYDPQMPALKD
LPAVDTGKDNKKHPSNFQHI

RI SEQ ID
RI amino acid sequence Name NO:
FYTDGSAITSPTKEGHLNAGMGIVYFINKDGNLQKQQEWSISLGNHTAQFAEIAAFEFALKKCLPLGGNILVVTDSNYV
AKAYNEELDVVVASNGFVNNR
KKPLKHISKWKSVADLKRLRPDVWTHEPGHQKLDSSPHAYGNNLADQLATQASFKVH
TLQLEEEYRLFEPESTQKQEMDIWLKNFPQAWAETGGMGTAHCQAPVLIQLKATATPISIRQYPMPHEAYQGIKPHIRR
MLDQGILKPCQSPWNTPLLP
VKKPGTEDYRPVQDLREVNKRVEDIHPTVPNPYNLLSTLPPSHPVVYTVLDLKDAFFCLRLHSESQLLFAFEWRDPEIG
LSGQLTWTRLPQGFKNSPTL
FDEALHSDLADFRVRYPALVLLQYVDDLLLAAATRTECLEGTKALLETLGNKGYRASAKKAQICLQEVTYLGYSLKDGQ
RWLTKARKEAILSIPVPKNSR
FLV_P
QVREFLGTAGYCRLWIPGFAELAAPLYPLTRPGTLFQWGTEQQLAFEDIKKALLSSPALGLPDITKPFELFIDENSGFA
KGVLVQKLGPWKRPVAYLSK

KLDTVASGWPPCLRMVAAIAILVKDAGKLTLGQPLTILTSHPVEALVRQPPNKWLSNARMTHYQAMLLDAERVHFGPTV
SLNPATLLPLPSGGNHHDC
LQILAETHGTRPDLTDQPLPDADLTWYTDGSSFIRNGEREAGAAVTTESEVIWAAPLPPGTSAQRAELIALTQALKMAE
GKKLTVYTDSRYAFATTHVH
8,018 GEIYRRRGLLTSEGKEIKNKNEILALLEALFLPKRLSIIHCPGHQKGDSPQAKGNRLADDTAKKAATETHSSLTVLP
TLQLEEEYRLFEPESTQKQEMDIWLKNFPQAWAETGGMGTAHCQAPVLIQLKATATPISIRQYPMPHEAYQGIKPHIRR
MLDQGILKPCQSPWNTPLLP
VKKPGTEDYRPVQDLREVNKRVEDIHPTVPNPYNLLSTLPPSHPVVYTVLDLKDAFFCLRLHSESQLLFAFEWRDPEIG
LSGQLTWTRLPQGFKNSPTL
FLV_P
FNEALHSDLADFRVRYPALVLLQYVDDLLLAAATRTECLEGTKALLETLGNKGYRASAKKAQICLQEVTYLGYSLKDGQ
RWLTKARKEAILSIPVPKNSR
10273_ QVREFLGTAGYCRLWIPGFAELAAPLYPLTRPGTLFQWGTEQQLAFEDIKKALLSSPALGLPDITKPFELFIDENSGFA
KGVLVQKLGPWKRPVAYLSK
3mu1 KLDTVASGWPPCLRMVAAIAILVKDAGKLTLGQPLTILTSHPVEALVRQPPNKWLSNARMTHYQAMLLDAERVHFGPTV
SLNPATLLPLPSGGNHHDC
LQILAETHGTRPDLTDQPLPDADLTWYTDGSSFIRNGEREAGAAVTTESEVIWAAPLPPGTSAQRAELIALTQALKMAE
GKKLTVYTDSRYAFATTHVH
8,019 GEIYRRRGWLTSEGKEIKNKNEILALLEALFLPKRLSIIHCPGHQKGDSPQAKGNRLADDTAKKAATETHSSLTVLP
TLQLEEEYRLFEPESTQKQEMDIWLKNFPQAWAETGGMGTAHCQAPVLIQLKATATPISIRQYPMPHEAYQGIKPHIRR
MLDQGILKPCQSPWNTPLLP
VKKPGTEDYRPVQDLREVNKRVEDIHPTVPNPYNLLSTLPPSHPVVYTVLDLKDAFFCLRLHSESQLLFAFEWRDPEIG
LSGQLTWTRLPQGFKNSPTL
FLV_P
FNEALHSDLADFRVRYPALVLLQYVDDLLLAAATRTECLEGTKALLETLGNKGYRASAKKAQICLQEVTYLGYSLKDGQ
RWLTKARKEAILSIPVPKNSR
10273_ QVREFLGKAGYCRLFIPGFAELAAPLYPLTRPGTLFQWGTEQQLAFEDIKKALLSSPALGLPDITKPFELFIDENSGFA
KGVLVQKLGPWKRPVAYLSKK
3mutA
LDTVASGWPPCLRMVAAIAILVKDAGKLTLGQPLTILTSHPVEALVRQPPNKWLSNARMTHYQAMLLDAERVHFGPTVS
LNPATLLPLPSGGNHHDCL
QILAETHGTRPDLTDQPLPDADLTINYTDGSSFIRNGEREAGAAVTTESEVIWAAPLPPGTSAQRAELIALTQALKMAE
GKKLTVYTDSRYAFATTHVHG
8,020 ElYRRRGWLTSEGKEIKNKNEILALLEALFLPKRLSIIHCPGHQKGDSPQAKGNRLADDTAKKAATETHSSLTVLP
MNPLQLLQPLPAEIKGTKLLAHWNSGATITCIPESFLEDEQPIKKTLIKTINGEKQQNVYYVTFKVKGRKVEAEVIASP
YEYILLSPTDVPWLTQQPLQLTIL
VPLQEYQEKILSKTALPEDQKQQLKTLFVKYDNLWQHWENQVGHRKIRPHNIATGDYPPRPQKQYPINPKAKPSIQIVI
DDLLKQGVLTPQNSTMNTPV
YPVPKPDGRWRMVLDYREVNKTIPLTAAQNQHSAGILATIVRQKYKTTLDLANGFWAHPITPESYVVLTAFTWQGKQYC
WTRLPQGFLNSPALFTADV
FOAM
VDLLKEIPNVQVYVDDIYLSHDDPKEHVQQLEKVFQILLQAGY\A/SLKKSEIGQKTVEFLGFNITKEGRGLTDTFKTK
LLNITPPKDLKQLQSILGLLNFAR
V_P14 NFIPNFAELVQPLYNLIASAKGKYIEWSEENTKQLNMVIEALNTASNLEERLPEQRLVIKVNTSPSAGYVRYYNETGKK
PIMYLNYVFSKAELKFSMLEKL

LTTMHKALIKAMDLAMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMTYLEDPRIQFHYDKTLPELKHIPDVYTS
SQSPVKHPSQYEGVFYTDGSAI
KSPDPTKSNNAGMGIVHATYKPEYQVLNQWSIPLGNHTAQMAEIAAVEFACKKALKIPGPVLVITDSFYVAESANKELP
YVVKSNGFVNNKKKPLKHISK
8,021 WKSIAECLSMKPDITIQHEKGISLQIPVFILKGNALADKLATQGSYVVN
MNPLQLLQPLPAEIKGTKLLAHWNSGATITCIPESFLEDEQPIKKTLIKTINGEKQQNVYYVTFKVKGRKVEAEVIASP
YEYILLSPTDVPWLTQQPLQLTIL
VPLQEYQEKILSKTALPEDQKQQLKTLFVKYDNLWQHWENQVGHRKIRPHNIATGDYPPRPQKQYPINPKAKPSIQIVI
DDLLKQGVLTPQNSTMNTPV
FOAM
YPVPKPDGRWRMVLDYREVNKTIPLTAAQNQHSAGILATIVRQKYKTTLDLANGFWAHPITPESYVVLTAFTWQGKQYC
WTRLPQGFLNSPALFNADV
V_P14 VDLLKEIPNVQVYVDDIYLSHDDPKEHVQQLEKVFQILLQAGY\A/SLKKSEIGQKTVEFLGFNITKEGRGLTDTFKTK
LLNITPPKDLKQLQSILGLLNFAR
350_2 NFIPNFAELVQPLYNLIAPAKGKYIEWSEENTKQLNMVIEALNTASNLEERLPEQRLVIKVNTSPSAGYVRYYNETGKK
PIMYLNYVFSKAELKFSMLEKL
mut LTTMHKALIKAMDLAMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMTYLEDPRIQFHYDKTLPELKHIPDVYTS
SQSPVKHPSQYEGVFYTDGSAI
KSPDPTKSNNAGMGIVHATYKPEYQVLNQWSIPLGNHTAQMAEIAAVEFACKKALKIPGPVLVITDSFYVAESANKELP
YVVKSNGFVNNKKKPLKHISK
8,022 WKSIAECLSMKPDITIQHEKGISLQIPVFILKGNALADKLATQGSYVVN
MNPLQLLQPLPAEIKGTKLLAHWNSGATITCIPESFLEDEQPIKKTLIKTINGEKQQNVYYVTFKVKGRKVEAEVIASP
YEYILLSPTDVPWLTQQPLQLTIL
VPLQEYQEKILSKTALPEDQKQQLKTLFVKYDNLWQHWENQVGHRKIRPHNIATGDYPPRPQKQYPINPKAKPSIQIVI
DDLLKQGVLTPQNSTMNTPV
FOAM
YPVPKPDGRWRMVLDYREVNKTIPLTAAQNQHSAGILATIVRQKYKTTLDLANGFWAHPITPESYVVLTAFTWQGKQYC
WTRLPQGFLNSPALFNADV
V_P14 VDLLKEIPNVQVYVDDIYLSHDDPKEHVQQLEKVFQILLQAGY\A/SLKKSEIGQKTVEFLGFNITKEGRGLTDTFKTK
LLNITPPKDLKQLQSILGKLNFAR
350_2 NFIPNFAELVQPLYNLIAPAKGKYIEWSEENTKQLNMVIEALNTASNLEERLPEQRLVIKVNTSPSAGYVRYYNETGKK
PIMYLNYVFSKAELKFSMLEKL
mutA
LTTMHKALIKAMDLAMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMTYLEDPRIQFHYDKTLPELKHIPDVYTS
SQSPVKHPSQYEGVFYTDGSAI
KSPDPTKSNNAGMGIVHATYKPEYQVLNQWSIPLGNHTAQMAEIAAVEFACKKALKIPGPVLVITDSFYVAESANKELP
YVVKSNGFVNNKKKPLKHISK
8,023 WKSIAECLSMKPDITIQHEKGISLQIPVFILKGNALADKLATQGSYVVN
VPWLTQQPLQLTILVPLQEYQEKILSKTALPEDQKQQLKTLFVKYDNLWQHWENQVGHRKIRPHNIATGDYPPRPQKQY
PINPKAKPSIQIVIDDLLKQG
VLTPQNSTMNTPVYPVPKPDGRWRMVLDYREVNKTIPLTAAQNQHSAGILATIVRQKYKTTLDLANGFWAHPITPESYV
VLTAFTWQGKQYCWTRLPQ
FOAM
GFLNSPALFTADVVDLLKEIPNVQVYVDDIYLSHDDPKEHVQQLEKVFQILLQAGYVVSLKKSEIGQKTVEFLGFNITK
EGRGLTDTFKTKLLNITPPKDLK
V_P14 QLQSILGLLNFARNFIPNFAELVQPLYNLIASAKGKYIEWSEENTKQLNMVIEALNTASNLEERLPEQRLVIKVNTSPS
AGYVRYYNETGKKPIMYLNYVF

SKAELKFSMLEKLLTTMHKALIKAMDLAMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMTYLEDPRIQFHYDKT
LPELKHIPDVYTSSQSPVKHPS
Pro QYEGVFYTDGSAIKSPDPTKSNNAGMGIVHATYKPEYQVLNQWSIPLGNHTAQMAEIAAVEFACKKALKIPGPVLVITD
SFYVAESANKELPYVVKSNGF
8,024 VNNKKKPLKHISKWKSIAECLSMKPDITIQHEKGISLQIPVFILKGNALADKLATQGSYVVN
VPWLTQQPLQLTILVPLQEYQEKILSKTALPEDQKQQLKTLFVKYDNLWQHWENQVGHRKIRPHNIATGDYPPRPQKQY
PINPKAKPSIQIVIDDLLKQG
FOAM
VLTPQNSTMNTPVYPVPKPDGRWRMVLDYREVNKTIPLTAAQNQHSAGILATIVRQKYKTTLDLANGFWAHPITPESYV
VLTAFTWQGKQYCWTRLPQ
V_P14 GFLNSPALFNADVVDLLKEIPNVQVYVDDIYLSHDDPKEHVQQLEKVFQILLQAGYVVSLKKSEIGQKTVEFLGFNITK
EGRGLTDTFKTKLLNITPPKDL

KQLQSILGLLNFARNFIPNFAELVQPLYNLIAPAKGKYIEWSEENTKQLNMVIEALNTASNLEERLPEQRLVIKVNTSP
SAGYVRYYNETGKKPIMYLNYV
Pro_2m FSKAELKFSMLEKLLTTMHKALIKAMDLAMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMTYLEDPRIQFHYDK
TLPELKHIPDVYTSSQSPVKHP
ut SQYEGVFYTDGSAIKSPDPTKSNNAGMGIVHATYKPEYQVLNQWSIPLGNHTAQMAEIAAVEFACKKALKIPGPVLVIT
DSFYVAESANKELPYVVKSNG
8,025 FVNNKKKPLKHISKWKSIAECLSMKPDITIQHEKGISLQIPVFILKGNALADKLATQGSYVVN
FOAM
VPWLTQQPLQLTILVPLQEYQEKILSKTALPEDQKQQLKTLFVKYDNLWQHWENQVGHRKIRPHNIATGDYPPRPQKQY
PINPKAKPSIQIVIDDLLKQG
V_P14 VLTPQNSTMNTPVYPVPKPDGRWRMVLDYREVNKTIPLTAAQNQHSAGILATIVRQKYKTTLDLANGFWAHPITPESYV
VLTAFTWQGKQYCWTRLPQ

GFLNSPALFNADVVDLLKEIPNVQVYVDDIYLSHDDPKEHVQQLEKVFQILLQAGYVVSLKKSEIGQKTVEFLGFNITK
EGRGLTDTFKTKLLNITPPKDL
Pro_2m KQLQSILGKLNFARNFIPNFAELVQPLYNLIAPAKGKYIEWSEENTKQLNMVIEALNTASNLEERLPEQRLVIKVNTSP
SAGYVRYYNETGKKPIMYLNYV
utA 8,026 FSKAELKFSMLEKLLTTMHKALIKAMDLAMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMTYLEDPRIQFHYDK
TLPELKHIPDVYTSSQSPVKHP

RI SEQ ID
RI amino acid sequence Name NO:
SQYEGVFYTDGSAIKSPDPTKSNNAGMGIVHATYKPEYQVLNQWSIPLGNHTAQMAEIAAVEFACKKALKIPGPVLVIT
DSFYVAESANKELPYVVKSNG
FVNNKKKPLKHISKWKSIAECLSMKPDITIQHEKGISLQIPVFILKGNALADKLATQGSYVVN
VLNLEEEYRLHEKPVPSSIDPSWLQLFPTVWAERAGMGLANQVPPVVVELRSGASPVAVRQYPMSKEAREGIRPHIQKF
LDLGVLVPCRSPWNTPLL

NTGQLTWTRLPQGFKNSP
TLFDEALHRDLAPFRALNPQ
WLLQYVDDLLVAAPTYEDCKKGTQKLLQELSKLGYRVSAKKAQLCQREVTYLGYLLKEGKRWLTPARKATVMKIPVP
GALV_ TTPRQVREFLGTAGFCRLWIPGFASLAAPLYPLTKESIPFIWTEEHQQAFDHIK
KALLSAPALALPDLTKPFTLYIDERAGVARGVLTQTLGPWRRPVAY

LSKKLDPVASGWPTCLKAVAAVALLLKDADKLTLGQNVTVIASHSLESIVRQPPDRWMTNARMTHYQSLLLNERVSFAP
PAVLNPATLLPVESEATPVH
RCSEILAEETGTRRDLEDQPLPGVPTINYTDGSSFITEGKRRAGAPIVDGKRTVVVASSLPEGTSAQKAELVALTQALR
LAEGKNINIYTDSRYAFATAHIH
8,027 GAIYKQRGLLTSAGKDIKNKEEILALLEAIHLPRRVAIIHCPGHQRGSNPVATGNRRADEAAKQAALSTRVLAGTTKP

VLNLEEEYRLHEKPVPSSIDPSWLQLFPTVWAERAGMGLANQVPPVVVELRSGASPVAVRQYPMSKEAREGIRPHIQKF
LDLGVLVPCRSPWNTPLL

NTGQLTWTRLPQGFKNSP
GALV_ TLFNEALHRDLAPFRALNPQ
WLLQYVDDLLVAAPTYEDCKKGTQKLLQELSKLGYRVSAKKAQLCQREVTYLGYLLKEGKRWLTPARKATVMKIPVP

KALLSAPALALPDLTKPFTLYIDERAGVARGVLTQTLGPWRRPVAY
_3mu1 LSKKLDPVASGWPTCLKAVAAVALLLKDADKLTLGQNVTVIASHSLESIVRQPPDRWMTNARMTHYQSLLLNERVSFAP
PAVLNPATLLPVESEATPVH
RCSEILAEETGTRRDLEDQPLPGVPTINYTDGSSFITEGKRRAGAPIVDGKRTVVVASSLPEGTSAQKAELVALTQALR
LAEGKNINIYTDSRYAFATAHIH
8,028 GAIYKQRGWLTSAGKDIKNKEEILALLEAIHLPRRVAIIHCPGHQRGSNPVATGNRRADEAAKQAALSTRVLAGTTKP

VLNLEEEYRLHEKPVPSSIDPSWLQLFPTVWAERAGMGLANQVPPVVVELRSGASPVAVRQYPMSKEAREGIRPHIQKF
LDLGVLVPCRSPWNTPLL

NTGQLTWTRLPQGFKNSP
GALV_ TLFNEALHRDLAPFRALNPQ
WLLQYVDDLLVAAPTYEDCKKGTQKLLQELSKLGYRVSAKKAQLCQREVTYLGYLLKEGKRWLTPARKATVMKIPVP

LSAPALAL PDLTK PFTLYI DERAGVARGVLTQTLGPWRRPVAYL
_3mutA
SKKLDPVASGWPTCLKAVAAVALLLKDADKLTLGQNVTVIASHSLESIVRQPPDRWMTNARMTHYQSLLLNERVSFAPP
AVLNPATLLPVESEATPVH
RCSEILAEETGTRRDLEDQPLPGVPTINYTDGSSFITEGKRRAGAPIVDGKRTVVVASSLPEGTSAQKAELVALTQALR
LAEGKNINIYTDSRYAFATAHIH
8,029 GAIYKQRGWLTSAGKDIKNKEEILALLEAIHLPRRVAIIHCPGHQRGSNPVATGNRRADEAAKQAALSTRVLAGTTKP

AVLGLEHLPRPPQISQFPLNPERLQALQHLVRKALEAGHIEPYTGPGNNPVFPVK
KANGTWRFIHDLRATNSLTIDLSSSSPGPPDLSSLPTTLAHLQTI
DLRDAFFQIPLPKQFQPYFAFTVPQQCNYGPGTRYAWKVLPQGFKNSPTLFEMQLAHILQPIRQAFPQCTILQYMDDIL
LASPSHEDLLLLSEATMASLI

SHGLPVSENKTQQTPGTIKFLGQIISPNHLTYDAVPTVPIRSRWALPELQALLGEIQVVVSKGTPTLRQPLHSLYCALQ
RHTDPRDQIYLNPSQVQSLVQL
_P0336 RQALSQNCRSRLVQTLPLLGAIMLTLTGTTTVVFQSKEQWPLVVVLHAPLPHTSQCPWGQLLASAVLLLDKYTLQSYGL

DHPSVPILLHHSHRFKNLGAQTGELWNTFLKTAAPLAPVKALMPVFTLSPVIINTAPCLFSDGSTSRAAYILWDKQILS
QRSFPLPPPHKSAQRAELLGLL
8,030 HGLSSARSWRCLNIFLDSKYLYHYLRTLALGTFQGRSSQAPFQALLPRLLSRKVVYLHHVRSHTNLPDPISRLNALTDA
LLITPVLQL
AVLGLEHLPRPPQISQFPLNPERLQALQHLVRKALEAGHIEPYTGPGNNPVFPVK
KANGTWRFIHDLRATNSLTIDLSSSSPGPPDLSSLPTTLAHLQTI
DLRDAFFQIPLPKQFQPYFAFTVPQQCNYGPGTRYAWKVLPQGFKNSPTLFQMQLAHILQPIRQAFPQCTILQYMDDIL
LASPSHEDLLLLSEATMASLI

SHGLPVSENKTQQTPGTIKFLGQIISPNHLTYDAVPTVPIRSRWALPELQALLGEIQVVVSKGTPTLRQPLHSLYCALQ
PHTDPRDQIYLNPSQVQSLVQL
_P0336 RQALSQNCRSRLVQTLPLLGAIMLTLTGTTTVVFQSKEQWPLVVVLHAPLPHTSQCPWGQLLASAVLLLDKYTLQSYGL

2_2mut DHPSVPILLHHSHRFKNLGAQTGELWNTFLKTAAPLAPVKALMPVFTLSPVIINTAPCLFSDGSTSRAAYILWDKQILS
QRSFPLPPPHKSAQRAELLGLL
8,031 HGLSSARSWRCLNIFLDSKYLYHYLRTLALGTFQGRSSQAPFQALLPRLLSRKVVYLHHVRSHTNLPDPISRLNALTDA
LLITPVLQL
AVLGLEHLPRPPQISQFPLNPERLQALQHLVRKALEAGHIEPYTGPGNNPVFPVK
KANGTWRFIHDLRATNSLTIDLSSSSPGPPDLSSPPTTLAHLQTI

DLRDAFFQIPLPKQFQPYFAFTVPQQCNYGPGTRYAWKVLPQGFKNSPTLFQMQLAHILQPIRQAFPQCTILQYMDDIL
LASPSHEDLLLLSEATMASLI
_P0336 SHGLPVSENKTQQTPGTIKFLGQIISPNHLTYDAVPTVPIRSRWALPELQALLGEIQVVVSKGTPTLRQPLHSLYCALQ
PHTDPRDQIYLNPSQVQSLVQL
2_2mu1 RQALSQNCRSRLVQTLPLLGAIMLTLTGTTTVVFQSKEQWPLVVVLHAPLPHTSQCPWGQLLASAVLLLDKYTLQSYGL

B
DHPSVPILLHHSHRFKNLGAQTGELWNTFLKTAAPLAPVKALMPVFTLSPVIINTAPCLFSDGSTSRAAYILWDKQILS
QRSFPLPPPHKSAQRAELLGLL
8,032 HGLSSARSWRCLNIFLDSKYLYHYLRTLALGTFQGRSSQAPFQALLPRLLSRKVVYLHHVRSHTNLPDPISRLNALTDA
LLITPVLQL
AVLGLEHLPRPPEISQFPLNPERLQALQHLVRKALEAGHIEPYTGPGNNPVFPVKKANGTWRFIHDLRATNSLTIDLSS

DLKDAFFQIPLPK
QFQPYFAFTVPQQCNYGPGTRYAWRVLPQGFKNSPTLFEMQLAHILQPIRQAFPQCTILQYMDDILLASPSHADLQLLS
EATMASLI

SHGLPVSENKTQQTPGTIKFLGQIISPNHLTYDAVPKVPIRSRWALPELQALLGEIQVVVSKGTPTLRQPLHSLYCALQ
RHTDPRDQIYLNPSQVQSLVQL
_P1407 RQALSQNCRSRLVQTLPLLGAIMLTLTGTTTVVFQSKQQWPLVVVLHAPLPHTSQCPWGQLLASAVLLLDKYTLQSYGL

DHPSVPILLHHSHRFKNLGAQTGELWNTFLKTTAPLAPVKALMPVFTLSPVIINTAPCLFSDGSTSQAAYILWDKHILS
QRSFPLPPPHKSAQRAELLGLL
8,033 HGLSSARSWRCLNIFLDSKYLYHYLRTLALGTFQGRSSQAPFQALLPRLLSRKVVYLHHVRSHTNLPDPISRLNALTDA
LLITPVLQL
AVLGLEHLPRPPEISQFPLNPERLQALQHLVRKALEAGHIEPYTGPGNNPVFPVKKANGTWRFIHDLRATNSLTIDLSS

DLKDAFFQIPLPK
QFQPYFAFTVPQQCNYGPGTRYAWRVLPQGFKNSPTLFQMQLAHILQPIRQAFPQCTILQYMDDILLASPSHADLQLLS
EATMASLI

SHGLPVSENKTQQTPGTIKFLGQIISPNHLTYDAVPKVPIRSRWALPELQALLGEIQVVVSKGTPTLRQPLHSLYCALQ
PHTDPRDQIYLNPSQVQSLVQL
_P1407 RQALSQNCRSRLVQTLPLLGAIMLTLTGTTTVVFQSKQQWPLVVVLHAPLPHTSQCPWGQLLASAVLLLDKYTLQSYGL

8_2mut DHPSVPILLHHSHRFKNLGAQTGELWNTFLKTTAPLAPVKALMPVFTLSPVIINTAPCLFSDGSTSQAAYILWDKHILS
QRSFPLPPPHKSAQRAELLGLL
8,034 HGLSSARSWRCLNIFLDSKYLYHYLRTLALGTFQGRSSQAPFQALLPRLLSRKVVYLHHVRSHTNLPDPISRLNALTDA
LLITPVLQL
GLEHLPRPPEISQFPLNPERLQALQHLVRKALEAGHIEPYTGPGNNPVFPVKKANGTWRFIHDLRATNSLTVDLSSSSP
GPPDLSSLPTTLAHLQTIDLK
DAFFQIPLPKQFQPYFAFTVPQQCNYGPGTRYAWKVLPQGFKNSPTLFEMQLASILQPIRQAFPQCVILQYMDDILLAS
PSPEDLQQLSEATMASLISH

GLPVSQDKTQQTPGTIKFLGQIISPNHITYDAVPTVPIRSRWALPELQALLGEIQVVVSKGTPTLRQPLHSLYCALQGH
TDPRDQIYLNPSQVQSLMQLQ
_POC2 QALSQNCRSRLAQTLPLLGAIMLTLTGTTTVVFQSKQQWPLVWLHAPLPHTSQCPWGQLLASAVLLLDKYTLQSYGLLC
QTIHHNISIQTFNQFIQTSD

HPSVPILLHHSHRFKNLGAQTGELWNTFLKTAAPLAPVKALTPVFTLSPIIINTAPCLFSDGSTSQAAYILWDKHILSQ
RSFPLPPPHKSAQQAELLGLLH
8,035 GLSSARSWHCLNIFLDSKYLYHYLRTLALGTFQGKSSQAPFQALLPRLLAHKVIYLHHVRSHTNLPDPISKLNALTDAL
LITPIL
GLEHLPRPPEISQFPLNPERLQALQHLVRKALEAGHIEPYTGPGNNPVFPVKKANGTWRFIHDLRATNSLTVDLSSSSP
GPPDLSSLPTTLAHLQTIDLK

DAFFQIPLPKQFQPYFAFTVPQQCNYGPGTRYAWKVLPQGFKNSPTLFQMQLASILQPIRQAFPQCVILQYMDDILLAS
PSPEDLQQLSEATMASLISH
_POC2 GLPVSQDKTQQTPGTIKFLGQIISPNHITYDAVPTVPIRSRWALPELQALLGEIQVVVSKGTPTLRQPLHSLYCALQGH
TDPRDQIYLNPSQVQSLMQLQ
11_2m QALSQNCRSRLAQTLPLLGAIMLTLTGTTTVVFQSKQQWPLVWLHAPLPHTSQCPWGQLLASAVLLLDKYTLQSYGLLC
QTIHHNISIQTFNQFIQTSD
ut HPSVPILLHHSHRFKNLGAQTGELWNTFLKTAAPLAPVKALTPVFTLSPIIINTAPCLFSDGSTSQAAYILWDKHILSQ
RSFPLPPPHKSAQQAELLGLLH
8,036 GLSSARSWHCLNIFLDSKYLYHYLRTLAWGTFQGKSSQAPFQALLPRLLAHKVIYLHHVRSHTNLPDPISKLNALTDAL
LITPIL

GLEHLPRPPEISQFPLNPERLQALQHLVRKALEAGHIEPYTGPGNNPVFPVKKANGTWRFIHDLRATNSLTVDLSSSSP
GPPDLSSPPTTLAHLQTIDLK
_POC2 8,037 DAFFQIPLPKQFQPYFAFTVPQQCNYGPGTRYAWKVLPQGFKNSPTLFQMQLASILQPIRQAFPQCVILQYMDDILLAS
PSPEDLQQLSEATMASLISH

RI SEQ ID
RI amino acid sequence Name NO:
11_2m GLPVSQDKTQQTPGTIKFLGQIISPNHITYDAVPTVPIRSRWALPELQALLGEIQVVVSKGTPTLRQPLHSLYCALQGH
TDPRDQIYLNPSQVQSLMQLQ
utB
QALSQNCRSRLAQTLPLLGAIMLTLTGTTTVVFQSKQQWPLVWLHAPLPHTSQCPWGQLLASAVLLLDKYTLQSYGLLC
QTIHHNISIQTFNQFIQTSD
HPSVPILLHHSHRFKNLGAQTGELWNTFLKTAAPLAPVKALTPVFTLSPIIINTAPCLFSDGSTSQAAYILWDKHILSQ
RSFPLPPPHKSAQQAELLGLLH
GLSSARSWHCLNIFLDSKYLYHYLRTLAWGTFQGKSSQAPFQALLPRLLAHKVIYLHHVRSHTNLPDPISKLNALTDAL
LITPIL
GLEHLPPPPEVSQFPLNPERLQALTDLVSRALEAKHIEPYQGPGNNPIFPVKKPNGKWRFIHDLRATNSVTRDLASPSP
GPPDLTSLPQGLPHLRTIDLT
DAFFQIPLPTIFQPYFAFTLPQPNNYGPGTRYSWRVLPQGFKNSPTLFEQQLSHILTPVRKTFPNSLIIQYMDDILLAS
PAPGELAALTDKVTNALTKEGL

PLSPEKTQATPGPIHFLGQVISQDCITYETLPSINVKSTWSLAELQSMLGELQVVVSKGTPVLRSSLHQLYLALRGHRD
PRDTIKLTSIQVQALRTIQKALT
_QOR5 LNCRSRLVNQLPILALIMLRPTGTTAVLFQTKQKWPLVVVLHTPHPATSLRPWGQLLANAVIILDKYSLQHYGQVCKSF
HHNISNQALTYYLHTSDQSSV

AILLQHSHRFHNLGAQPSGPWRSLLQMPQIFQNIDVLRPPFTISPVVINHAPCLFSDGSASKAAFIIWDRQVIHQQVLS
LPSTCSAQAGELFGLLAGLQK
8,038 SQPVVVALNIFLDSKFLIGHLRRMALGAFPGPSTQCELHTQLLPLLQGKTVYVHHVRSHTLLQDPISRLNEATDALMLA
PLLPL
GLEHLPPPPEVSQFPLNPERLQALTDLVSRALEAKHIEPYQGPGNNPIFPVKKPNGKWRFIHDLRATNSVTRDLASPSP
GPPDLTSLPQGLPHLRTIDLT

DAFFQIPLPTIFQPYFAFTLPQPNNYGPGTRYSWRVLPQGFKNSPTLFQQQLSHILTPVRKTFPNSLIIQYMDDILLAS
PAPGELAALTDKVTNALTKEGL
_QOR5 PLSPEKTQATPGPIHFLGQVISQDCITYETLPSINVKSTWSLAELQSMLGELQVVVSKGTPVLRSSLHQLYLALRGHRD
PRDTIKLTSIQVQALRTIQKALT
R2_2m LNCRSRLVNQLPILALIMLRPTGTTAVLFQTKQKWPLVVVLHTPHPATSLRPWGQLLANAVIILDKYSLQHYGQVCKSF
HHNISNQALTYYLHTSDQSSV
ut AILLQHSHRFHNLGAQPSGPWRSLLQMPQIFQNIDVLRPPFTISPVVINHAPCLFSDGSASKAAFIIWDRQVIHQQVLS
LPSTCSAQAGELFGLLAGLQK
8,039 SQPVVVALNIFLDSKFLIGHLRRMAWGAFPGPSTQCELHTQLLPLLQGKTVYVHHVRSHTLLQDPISRLNEATDALMLA
PLLPL
GLEHLPPPPEVSQFPLNPERLQALTDLVSRALEAKHIEPYQGPGNNPIFPVKKPNGKWRFIHDLRATNSVTRDLASPSP
GPPDLTSPPQGLPHLRTIDL

TDAFFQIPLPTIFQPYFAFTLPQPNNYGPGTRYSWRVLPQGFKNSPTLFQQQLSHILTPVRKTFPNSLIIQYMDDILLA
SPAPGELAALTDKVTNALTKEG
_QOR5 LPLSPEKTQATPGPIHFLGQVISQDCITYETLPSINVKSTWSLAELQSMLGELQVVVSKGTPVLRSSLHQLYLALRGHR
DPRDTIKLTSIQVQALRTIQKAL
R2_2m TLNCRSRLVNQLPILALIMLRPTGTTAVLFQTKQKWPLVVVLHTPHPATSLRPWGQLLANAVIILDKYSLQHYGQVCKS
FHHNISNQALTYYLHTSDQSS
utB
VAILLQHSHRFHNLGAQPSGPWRSLLQMPQIFQNIDVLRPPFTISPVVINHAPCLFSDGSASKAAFIIWDRQVIHQQVL
SLPSTCSAQAGELFGLLAGLQ
8,040 KSQPVVVALNIFLDSKFLIGHLRRMAWGAFPGPSTQCELHTQLLPLLQGKTVYVHHVRSHTLLQDPISRLNEATDALML
APLLPL
GLEHLPPPPEVSQFPLNPERLQALTDLVSRALEAKHIEPYQGPGNNPIFPVKKPNGKWRFIHDLRATNSLTRDLASPSP
GPPDLTSLPQDLPHLRTIDLT
DAFFQIPLPAVFQPYFAFTLPQPNNHGPGTRYSWRVLPQGFKNSPTLFEQQLSHILAPVRKAFPNSLIIQYMDDILLAS
PALRELTALTDKVTNALTKEGL

PMSLEKTQATPGSIHFLGQVISPDCITYETLPSIHVKSIWSLAELQSMLGELQVVVSKGTPVLRSSLHQLYLALRGHRD
PRDTIELTSTQVQALKTIQKALA
_Q4U0 LNCRSRLVSQLPILALIILRPTGTTAVLFQTKQKWPLVWLHTPHPATSLRPWGQLLANAIITLDKYSLQHYGQICKSFH
HNISNQALTYYLHTSDQSSVAIL

LQHSHRFHNLGAQPSGPWRSLLQVPQIFQNIDVLRPPFIISPVVIDHAPCLFSDGATSKAAFILWDKQVIHQQVLPLPS
TCSAQAGELFGLLAGLQKSKP
8,041 WPALNIFLDSKFLIGHLRRMALGAFLGPSTQCDLHARLFPLLQGKTVYVHHVRSHTLLQDPISRLNEATDALMLAPLLP
L
GLEHLPPPPEVSQFPLNPERLQALTDLVSRALEAKHIEPYQGPGNNPIFPVKKPNGKWRFIHDLRATNSLTRDLASPSP
GPPDLTSLPQDLPHLRTIDLT

DAFFQIPLPAVFQPYFAFTLPQPNNHGPGTRYSWRVLPQGFKNSPTLFQQQLSHILAPVRKAFPNSLIIQYMDDILLAS
PALRELTALTDKVTNALTKEG
_Q4U0 LPMSLEKTQATPGSIHFLGQVISPDCITYETLPSIHVKSIWSLAELQSMLGELQVVVSKGTPVLRSSLHQLYLALRGHR
DPRDTIELTSTQVQALKTIQKAL
X6_2m ALNCRSRLVSQLPILALIILRPTGTTAVLFQTKQKWPLVWLHTPHPATSLRPWGQLLANAIITLDKYSLQHYGQICKSF
HHNISNQALTYYLHTSDQSSVAI
ut LLQHSHRFHNLGAQPSGPWRSLLQVPQIFQNIDVLRPPFIISPVVIDHAPCLFSDGATSKAAFILWDKQVIHQQVLPLP
STCSAQAGELFGLLAGLQKSK
8,042 PWPALNIFLDSKFLIGHLRRMAWGAFLGPSTQCDLHARLFPLLQGKTVYVHHVRSHTLLQDPISRLNEATDALMLAPLL
PL
GLEHLPPPPEVSQFPLNPERLQALTDLVSRALEAKHIEPYQGPGNNPIFPVKKPNGKWRFIHDLRATNSLTRDLASPSP
GPPDLTSPPQDLPHLRTIDLT

DAFFQIPLPAVFQPYFAFTLPQPNNHGPGTRYSWRVLPQGFKNSPTLFQQQLSHILAPVRKAFPNSLIIQYMDDILLAS
PALRELTALTDKVTNALTKEG
_Q4U0 LPMSLEKTQATPGSIHFLGQVISPDCITYETLPSIHVKSIWSLAELQSMLGELQVVVSKGTPVLRSSLHQLYLALRGHR
DPRDTIELTSTQVQALKTIQKAL
X6_2m ALNCRSRLVSQLPILALIILRPTGTTAVLFQTKQKWPLVWLHTPHPATSLRPWGQLLANAIITLDKYSLQHYGQICKSF
HHNISNQALTYYLHTSDQSSVAI
utB
LLQHSHRFHNLGAQPSGPWRSLLQVPQIFQNIDVLRPPFIISPVVIDHAPCLFSDGATSKAAFILWDKQVIHQQVLPLP
STCSAQAGELFGLLAGLQKSK
8,043 PWPALNIFLDSKFLIGHLRRMAWGAFLGPSTQCDLHARLFPLLQGKTVYVHHVRSHTLLQDPISRLNEATDALMLAPLL
PL
HLPPPPQVDQFPLNLPERLQALNDLVSKALEAGHIEPYSGPGNNPVFPVKKPNGKWRFIHDLRATNAITTTLTSPSPGP
PDLTSLPTALPHLQTIDLTDA
FFQIPLPKQYQPYFAFTIPQPCNYGPGTRYAWTVLPQGFKNSPTLFQQQLAAVLNPMRKMFPTSTIVQYMDDILLASPT
NEELQQLSQLTLQALTTHGL

PISQEKTQQTPGQIRFLGQVISPNHITYESTPTIPIKSQWTLTELQVILGEIQVVVSKGTPILRKHLQSLYSALHPYRD
PRACITLTPQQLHALHAIQQALQH
_P0336 NCRGRLNPALPLLGLISLSTSGTTSVIFQPKQNWPLAWLHTPHPPTSLCPWGHLLACTILTLDKYTLQHYGQLCQSFHH
NMSKQALCDFLRNSPHPSV
3_2mut GILIHHMGRFHNLGSQPSGPWKTLLHLPTLLQEPRLLRPIFTLSPVVLDTAPCLFSDGSPQKAAYVLWDQTILQQDITP
LPSHETHSAQKGELLALICGLR
8,044 AAKPWPSLNIFLDSKYLIKYLHSLAIGAFLGTSAHQTLQAALPPLLQGKTIYLHHVRSHTNLPDPISTFNEYTDSLILA
PLVPL
PLGTSDSPVTHADPIDWKSEEPVVVVDQWPLTQEKLSAAQQLVQEQLRLGHIEPSTSAWNSPIFVIKKKSGKWRLLQDL
RKVNETMMHMGALQPGLPT
PSAIPDKSYIIVIDLKDCFYTIPLAPQDCKRFAFSLPSVNFKEPMQRYQWRVLPQGMTNSPTLCQKFVATAIAPVRQRF
PQLYLVHYMDDILLAHTDEHLL
JSRV_ YQAFSILKQHLSLNGLVIADEKIQTHFPYNYLGFSLYPRVYNTQLVKLQTDHLKTLNDFQKLLGDINWIRPYLKLPTYT
LQPLFDILKGDSDPASPRTLSLE

GRTALQSIEEAIRQQQITYCDYQRSWGLYILPTPRAPTGVLYQDKPLRWIYLSATPTKHLLPYYELVAKIIAKGRHEAI
QYFGMEPPFICVPYALEQQDWL
FQFSDNWSIAFANYPGQITHHYPSDKLLQFASSHAFIFPKIVRRQPIPEATLIFTDGSSNGTAALIINHQTYYAQTSFS
SAQVVELFAVHQALLTVPTSFNL
8,045 FTDSSYVVGALQMIETVPIIGTTSPEVLNLFTLIQQVLHCRQHPCFFGHIRAHSTLPGALVQGNHTADVLTKQVFFQS

PLGTSDSPVTHADPIDWKSEEPVVVVDQWPLTQEKLSAAQQLVQEQLRLGHIEPSTSAWNSPIFVIKKKSGKWRLLQDL
RKVNETMMHMGALQPGLPT
PSPIPDKSYIIVIDLKDCFYTIPLAPQDCKRFAFSLPSVNFKEPMQRYQWRVLPQGMTNSPTLCQKFVATAIAPVRQRF
PQLYLVHYMDDILLAHTDEHLL
JSRV_ YQAFSILKQHLSLNGLVIADEKIQTHFPYNYLGFSLYPRVYNTQLVKLQTDHLKTLNDFQKLLGDINWIRPYLKLPTYT
LQPLFDILKGDSDPASPRTLSLE

GRTALQSIEEAIRQQQITYCDYQRSWGLYILPTPRAPTGVLYQDKPLRWIYLSATPTKHLLPYYELVAKIIAKGRHEAI
QYFGMEPPFICVPYALEQQDWL
_2mutB
FQFSDNWSIAFANYPGQITHHYPSDKLLQFASSHAFIFPKIVRRQPIPEATLIFTDGSSNGTAALIINHQTYYAQTSFS
SAQVVELFAVHQALLTVPTSFNL
8,046 FTDSSYVVGALQMIETVPIIGTTSPEVLNLFTLIQQVLHCRQHPCFFGHIRAHSTLPGALVQGNHTADVLTKQVFFQS

TLGDQGSRGSDPLPEPRVTLTVEGIPTEFLVNTGAEHSVLTKPMGKMGSKRTVVAGATGSKVYPWTTKRLLKIGQKQVT
HSFLVIPECPAPLLGRDLLT
KLKAQIQFSTEGPQVTWEDRPAMCLVLNLEEEYRLHEKPVPPSIDPSWLQLFPMVWAEKAGMGLANQVPPVVVELKSDA
SPVAVRQYPMSKEAREGI
RPHIQRFLDLGILVPCQSPWNTPLLPVKKPGTNDYRPVQDLREVNKRVQDIHPTVPNPYNLLSSLPPSHTWYSVLDLKD
AFFCLKLHPNSQPLFAFEW
KORV_ RDPEKGNTGQLTWTRLPQGFKNSPTLFDEALHRDLASFRALNPQVVMLQYVDDLLVAAPTYRDCKEGTRRLLQELSKLG
YRVSAKKAQLCREEVTYL

GYLLKGGKRWLTPARKATVMKIPTPTTPRQVREFLGTAGFCRLWIPGFASLAAPLYPLTREKVPFTWTEAHQEAFGRIK
EALLSAPALALPDLTKPFAL

YVDEKEGVARGVLTQTLGPWRRPVAYLSKKLDPVASGWPTCLKAIAAVALLLKDADKLTLGQNVLVIAPHNLESIVRQP
PDRWMTNARMTHYQSLLLN
ERVSFAPPAILNPATLLPVESDDTPIHICSEILAEETGTRPDLRDQPLPGVPAINYTDGSSFIMDGRRQAGAAIVDNKR
TVVVASNLPEGTSAQKAELIALT
QALRLAEGKSINIYTDSRYAFATAHVHGAIYKQRGLLTSAGKDIKNKEEILALLEAIHLPKRVAIIHCPGHQRGTDPVA
TGNRKADEAAKQAAQSTRILTET
8,047 TKN

RI SEQ ID
RI amino acid sequence Name NO:
TLGDQGSRGSDPLPEPRVTLTVEGIPTEFLVNTGAEHSVLTKPMGKMGSKRTVVAGATGSKVYPWTTKRLLKIGQKQVT
HSFLVIPECPAPLLGRDLLT
KLKAQIQFSTEGPQVTWEDRPAMCLVLNLEEEYRLHEKPVPPSIDPSWLQLFPMVWAEKAGMGLANQVPPVVVELKSDA
SPVAVRQYPMSKEAREGI
RPHIQRFLDLGILVPCQSPWNTPLLPVKKPGTNDYRPVQDLREVNKRVQDIHPTVPNPYNLLSSLPPSHTWYSVLDLKD
AFFCLKLHPNSQPLFAFEW
KORV_ RDPEKGNTGQLTWTRLPQGFKNSPTLFNEALHRDLASFRALNPQVVMLQYVDDLLVAAPTYRDCKEGTRRLLQELSKLG
YRVSAKKAQLCREEVTYL

GYLLKGGKRWLTPARKATVMKIPTPTTPRQVREFLGTAGFCRLWIPGFASLAAPLYPLTRPKVPFTWTEAHQEAFGRIK
EALLSAPALALPDLTKPFAL
1_3mu1 YVDEKEGVARGVLTQTLGPWRRPVAYLSKKLDPVASGWPTCLKAIAAVALLLKDADKLTLGQNVLVIAPHNLESIVRQP
PDRWMTNARMTHYQSLLLN
ERVSFAPPAILNPATLLPVESDDTPIHICSEILAEETGTRPDLRDQPLPGVPAINYTDGSSFIMDGRRQAGAAIVDNKR
TVWASNLPEGTSAQKAELIALT
QALRLAEGKSINIYTDSRYAFATAHVHGAIYKQRGWLTSAGKDIKNKEEILALLEAIHLPKRVAIIHCPGHQRGTDPVA
TGNRKADEAAKQAAQSTRILTE
8,048 TTKN
TLGDQGSRGSDPLPEPRVTLTVEGIPTEFLVNTGAEHSVLTKPMGKMGSKRTVVAGATGSKVYPWTTKRLLKIGQKQVT
HSFLVIPECPAPLLGRDLLT
KLKAQIQFSTEGPQVTWEDRPAMCLVLNLEEEYRLHEKPVPPSIDPSWLQLFPMVWAEKAGMGLANQVPPVVVELKSDA
SPVAVRQYPMSKEAREGI
RPHIQRFLDLGILVPCQSPWNTPLLPVKKPGTNDYRPVQDLREVNKRVQDIHPTVPNPYNLLSSLPPSHTWYSVLDLKD
AFFCLKLHPNSQPLFAFEW
KORV_ RDPEKGNTGQLTWTRLPQGFKNSPTLFNEALHRDLASFRALNPQVVMLQYVDDLLVAAPTYRDCKEGTRRLLQELSKLG
YRVSAKKAQLCREEVTYL

GYLLKGGKRWLTPARKATVMKIPTPTTPRQVREFLGKAGFCRLFIPGFASLAAPLYPLTRPKVPFTWTEAHQEAFGRIK
EALLSAPALALPDLTKPFALY
1_3mut VDEKEGVARGVLTQTLGPWRRPVAYLSKKLDPVASGWPTCLKAIAAVALLLKDADKLTLGQNVLVIAPHNLESIVRQPP
DRWMTNARMTHYQSLLLNE
A
RVSFAPPAILNPATLLPVESDDTPIHICSEILAEETGTRPDLRDQPLPGVPAINYTDGSSFIMDGRRQAGAAIVDNKRT
VWASNLPEGTSAQKAELIALTQ
ALRLAEGKSINIYTDSRYAFATAHVHGAIYKQRGWLTSAGKDIKNKEEILALLEAIHLPKRVAIIHCPGHQRGTDPVAT
GNRKADEAAKQAAQSTRILTET
8,049 TKN
LLGRDLLTKLKAQIQFSTEGPQVTWEDRPAMCLVLNLEEEYRLHEKPVPPSIDPSWLQLFPMVWAEKAGMGLANQVPPV
VVELKSDASPVAVRQYPM
SKEAREGIRPHIQRFLDLGILVPCQSPWNTPLLPVKKPGTNDYRPVQDLREVNKRVQDIHPTVPNPYNLLSSLPPSHTW
YSVLDLKDAFFCLKLHPNSQ
PLFAFEWRDPEKGNTGQLTWTRLPQGFKNSPTLFDEALHRDLASFRALNPQ\NMLQYVDDLLVAAPTYRDCKEGTRRLL
QELSKLGYRVSAKKAQLC
KORV_ REEVTYLGYLLKGGKRWLTPARKATVMKIPTPTTPRQVREFLGTAGFCRLWIPGFASLAAPLYPLTREKVPFTWTEAHQ
EAFGRIKEALLSAPALALPD

LTKPFALYVDEKEGVARGVLTQTLGPWRRPVAYLSKKLDPVASGWPTCLKAIAAVALLLKDADKLTLGQNVLVIAPHNL
ESIVRQPPDRWMTNARMTH
1-Pro YQSLLLNERVSFAPPAILNPATLLPVESDDTPIHICSEILAEETGTRPDLRDQPLPGVPAINYTDGSSFIMDGRRQAGA
AIVDNKRTVWASNLPEGTSAQ
KAELIALTQALRLAEGKSINIYTDSRYAFATAHVHGAIYKQRGLLTSAGKDIKNKEEILALLEAIHLPKRVAIIHCPGH
QRGTDPVATGNRKADEAAKQAAQ
8,050 STRILTETTKN
LLGRDLLTKLKAQIQFSTEGPQVTWEDRPAMCLVLNLEEEYRLHEKPVPPSIDPSWLQLFPMVWAEKAGMGLANQVPPV
VVELKSDASPVAVRQYPM
SKEAREGIRPHIQRFLDLGILVPCQSPWNTPLLPVKKPGTNDYRPVQDLREVNKRVQDIHPTVPNPYNLLSSLPPSHTW
YSVLDLKDAFFCLKLHPNSQ
KORV_ PLFAFEWRDPEKGNTGQLTWTRLPQGFKNSPTLFNEALHRDLASFRALNPQ\NMLQYVDDLLVAAPTYRDCKEGTRRLL
QELSKLGYRVSAKKAQLC

REEVTYLGYLLKGGKRWLTPARKATVMKIPTPTTPRQVREFLGTAGFCRLWIPGFASLAAPLYPLTRPKVPFTWTEAHQ
EAFGRIKEALLSAPALALPD

LTKPFALYVDEKEGVARGVLTQTLGPWRRPVAYLSKKLDPVASGWPTCLKAIAAVALLLKDADKLTLGQNVLVIAPHNL
ESIVRQPPDRWMTNARMTH
Pro_3m YQSLLLNERVSFAPPAILNPATLLPVESDDTPIHICSEILAEETGTRPDLRDQPLPGVPAINYTDGSSFIMDGRRQAGA
AIVDNKRTVWASNLPEGTSAQ
ut KAELIALTQALRLAEGKSINIYTDSRYAFATAHVHGAIYKQRGWLTSAGKDIKNKEEILALLEAIHLPKRVAIIHCPGH
QRGTDPVATGNRKADEAAKQAA
8,051 QSTRILTETTKN
LLGRDLLTKLKAQIQFSTEGPQVTWEDRPAMCLVLNLEEEYRLHEKPVPPSIDPSWLQLFPMVWAEKAGMGLANQVPPV
VVELKSDASPVAVRQYPM
SKEAREGIRPHIQRFLDLGILVPCQSPWNTPLLPVKKPGTNDYRPVQDLREVNKRVQDIHPTVPNPYNLLSSLPPSHTW
YSVLDLKDAFFCLKLHPNSQ
KORV_ PLFAFEWRDPEKGNTGQLTWTRLPQGFKNSPTLFNEALHRDLASFRALNPQ\NMLQYVDDLLVAAPTYRDCKEGTRRLL
QELSKLGYRVSAKKAQLC

REEVTYLGYLLKGGKRWLTPARKATVMKIPTPTTPRQVREFLGKAGFCRLFIPGFASLAAPLYPLTRPKVPFTWTEAHQ
EAFGRIKEALLSAPALALPDL

TKPFALYVDEKEGVARGVLTQTLGPWRRPVAYLSKKLDPVASGWPTCLKAIAAVALLLKDADKLTLGQNVLVIAPHNLE
SIVRQPPDRWMTNARMTHY
Pro_3m QSLLLNERVSFAPPAILNPATLLPVESDDTPIHICSEILAEETGTRPDLRDQPLPGVPAINYTDGSSFIMDGRRQAGAA
IVDNKRTVWASNLPEGTSAQK
utA
AELIALTQALRLAEGKSINIYTDSRYAFATAHVHGAIYKQRGWLTSAGKDIKNKEEILALLEAIHLPKRVAIIHCPGHQ
RGTDPVATGNRKADEAAKQAAQ
8,052 STRILTETTKN
TLNLEDEYRLYETSAEPEVSPGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEAKLGIKPHIQ
RLLDQGILVPCQSPWNTPLL
PVKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHRINYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGM
GISGQLTWTRLPQGFKNSP
MLVAV
TLFDEALHRDLADFRIQHPDLILLQYVDDILLAATSELDCQQGTRALLLTLGNLGYRASAKKAQLCQKQVKYLGYLLKE
GQRWLTEARKETVMGQPTPK
_P0335 TPRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQ
GYAKGVLTQKLGPWRRPVA

YLSKKLDPVAAGWPPCLRMVAAIAVLRKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQF
GPVVALNPATLLPLPEEG
APHDCLEILAETHGTRPDLTDQPIPDADHTINYTDGSSFLQEGQRKAGAAVTTETEVIWARALPAGTSAQRAELIALTQ
ALKMAEGKRLNVYTDSRYAF
8,053 ATAHIHGEIYRRRGLLTSEGREIKNKSEILALLKALFLPKRLSIIHCLGHQKGDSAEARGNRLADQAAREAAIKTPPDT
STLL
TLNLEDEYRLYETSAEPEVSPGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEAKLGIKPHIQ
RLLDQGILVPCQSPWNTPLL
PVKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHRINYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGM
GISGQLTWTRLPQGFKNSP
MLVAV
TLFNEALHRDLADFRIQHPDLILLQYVDDILLAATSELDCQQGTRALLLTLGNLGYRASAKKAQLCQKQVKYLGYLLKE
GQRWLTEARKETVMGQPTPK
_P0335 TPRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQ
GYAKGVLTQKLGPWRRPV
6_3mut AYLSKKLDPVAAGWPPCLRMVAAIAVLRKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQ
FGPVVALNPATLLPLPEE
GAPHDCLEILAETHGTRPDLTDQPIPDADHTINYTDGSSFLQEGQRKAGAAVTTETEVIWARALPAGTSAQRAELIALT
QALKMAEGKRLNVYTDSRYA
8,054 FATAHIHGEIYRRRGWLTSEGREIKNKSEILALLKALFLPKRLSIIHCLGHQKGDSAEARGNRLADQAAREAAIKTPPD
TSTLL
TLNLEDEYRLYETSAEPEVSPGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEAKLGIKPHIQ
RLLDQGILVPCQSPWNTPLL
PVKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHRINYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGM
GISGQLTWTRLPQGFKNSP
MLVAV
TLFNEALHRDLADFRIQHPDLILLQYVDDILLAATSELDCQQGTRALLLTLGNLGYRASAKKAQLCQKQVKYLGYLLKE
GQRWLTEARKETVMGQPTPK
_P0335 TPRQLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQ
GYAKGVLTQKLGPWRRPVA
6_3mut YLSKKLDPVAAGWPPCLRMVAAIAVLRKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQF
GPVVALNPATLLPLPEEG
A
APHDCLEILAETHGTRPDLTDQPIPDADHTINYTDGSSFLQEGQRKAGAAVTTETEVIWARALPAGTSAQRAELIALTQ
ALKMAEGKRLNVYTDSRYAF
8,055 ATAHIHGEIYRRRGWLTSEGREIKNKSEILALLKALFLPKRLSIIHCLGHQKGDSAEARGNRLADQAAREAAIKTPPDT
STLL
TLGIEDEYRLHETSTEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIQQYPMSHEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
MLVB
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGMG
ISGQLTWTRLPQGFKNSPT
M_Q7S
LFDEALHRDLADFRIQHPDLILLQYVDDILLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLREG
QRWLTEARKETVMGQPVPKT
VK7 8,056 PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTKTGTLFSWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY

RI SEQ ID
RI amino acid sequence Name NO:
LSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQFG
PVVALNPATLLPLPEEGAP
HDCLEILAETHGTRPDLTDQPIPDADHTWYTDGSSFLQEGQRKAGAAVTTETEVIWAGALPAGTSAQRAELIALTQALK
MAEGKRLNVYTDSRYAFAT
AHIHGEIYRRRGLLTSEGREIKNKSEILALLKALFLPKRLSIIHCLGHQKGDSAEARGNRLADQAAREAAIKTPPDTST
LL
TLGIEDEYRLHETSTEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIQQYPMSHEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGMG
ISGQLTWTRLPQGFKNSPT
MLVB
LFDEALHRDLADFRIQHPDLILLQYVDDILLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLREG
QRWLTEARKETVMGQPVPKT
M_Q7S
PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTKTGTLFSWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY

LSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQFG
PVVALNPATLLPLPEEGAP
HDCLEILAETHGTRPDLTDQPIPDADHTWYTDGSSFLQEGQRKAGAAVTTETEVIWAGALPAGTSAQRAELIALTQALK
MAEGKRLNVYTDSRYAFAT
8,057 AHIHGEIYRRRGLLTSEGREIKNKSEILALLKALFLPKRLSIIHCLGHQKGDSAEARGNRLADQAAREAAIKTPPDTST
LL
TLGIEDEYRLHETSTEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIQQYPMSHEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGMG
ISGQLTWTRLPQGFKNSPT
MLVB
LFNEALHRDLADFRIQHPDLILLQYVDDILLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLREG
QRWLTEARKETVMGQPVPKT
M_Q7S
PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTKPGTLFSWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVA
VK7_3 YLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQF
GPVVALNPATLLPLPEEGA
mut PHDCLEILAETHGTRPDLTDQPIPDADHTVVYTDGSSFLQEGQRKAGAAVTTETEVIWAGALPAGTSAQRAELIALTQA
LKMAEGKRLNVYTDSRYAFA
8,058 TAHIHGEIYRRRGWLTSEGREIKNKSEILALLKALFLPKRLSIIHCLGHQKGDSAEARGNRLADQAAREAAIKTPPDTS
TLL
TLGIEDEYRLHETSTEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIQQYPMSHEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGMG
ISGQLTWTRLPQGFKNSPT
MLVB
LFNEALHRDLADFRIQHPDLILLQYVDDILLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLREG
QRWLTEARKETVMGQPVPKT
M_Q7S
PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTKPGTLFSWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVA
VK7_3 YLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQF
GPVVALNPATLLPLPEEGA
mut PHDCLEILAETHGTRPDLTDQPIPDADHTVVYTDGSSFLQEGQRKAGAAVTTETEVIWAGALPAGTSAQRAELIALTQA
LKMAEGKRLNVYTDSRYAFA
8,059 TAHIHGEIYRRRGWLTSEGREIKNKSEILALLKALFLPKRLSIIHCLGHQKGDSAEARGNRLADQAAREAAIKTPPDTS
TLL
LGIEDEYRLHETSTEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIQQYPMSHEARLGIKPHIQR
LLDQGILVPCQSPWNTPLLPV
MLVB
KKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGMGI
SGQLTWTRLPQGFKNSPTL
M_Q7S
FNEALHRDLADFRIQHPDLILLQYVDDILLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLREGQ
RWLTEARKETVMGQPVPKTP
VK7_3 RQLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFSWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQGY
AKGVLTQKLGPWRRPVAYL
mutA_ SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQFGP
VVALNPATLLPLPEEGAP
WS
HDCLEILAETHGTRPDLTDQPIPDADHTWYTDGSSFLQEGQRKAGAAVTTETEVIWAGALPAGTSAQRAELIALTQALK
MAEGKRLNVYTDSRYAFAT
8,060 AHIHGEIYRRRGWLTSEGREIKNKSEILALLKALFLPKRLSIIHCLGHQKGDSAEARGNRLADQAAREAAIKTPPDTST
LLI
LGIEDEYRLHETSTEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIQQYPMSHEARLGIKPHIQR
LLDQGILVPCQSPWNTPLLPV
MLVB
KKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGMGI
SGQLTWTRLPQGFKNSPTL
M_Q7S
FNEALHRDLADFRIQHPDLILLQYVDDILLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLREGQ
RWLTEARKETVMGQPVPKTP
VK7_3 RQLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFSWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQGY
AKGVLTQKLGPWRRPVAYL
mutA_ SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQFGP
VVALNPATLLPLPEEGAP
WS
HDCLEILAETHGTRPDLTDQPIPDADHTWYTDGSSFLQEGQRKAGAAVTTETEVIWAGALPAGTSAQRAELIALTQALK
MAEGKRLNVYTDSRYAFAT
8,061 AHIHGEIYRRRGWLTSEGREIKNKSEILALLKALFLPKRLSIIHCLGHQKGDSAEARGNRLADQAAREAAIKTPPDTST
LLI
TLNIEDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
MLVCB
LFDEALHRDLAGFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPIPKT
_P0836 PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTKTGTLFNWGPDQQKAFQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY

LSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQFG
PVVALNPATLLPLPEEGLQ
HDCLDILAEAHGTRSDLMDQPLPDADHTINYTDGSSFLQEGQRKAGAAVTTETEVIWARALPAGTSAQRAELIALTQAL
KMAEGKKLNVYTDSRYAFAT
8,062 AHIHGEIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGNSAEARGNRMADQAAREVATRETPETST
LL
TLNIEDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
MLVCB
LFNEALHRDLAGFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPIPKT
_P0836 PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAFQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVA
1_3mu1 YLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQF
GPVVALNPATLLPLPEEGL
QHDCLDILAEAHGTRSDLMDQPLPDADHTINYTDGSSFLQEGQRKAGAAVTTETEVIWARALPAGTSAQRAELIALTQA
LKMAEGKKLNVYTDSRYAF
8,063 ATAHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGNSAEARGNRMADQAAREVATRETPET
STLL
TLNIEDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
MLVCB
LFNEALHRDLAGFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPIPKT
_P0836 PRQLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAFQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY
1_3mut LSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQFG
PVVALNPATLLPLPEEGLQ
A
HDCLDILAEAHGTRSDLMDQPLPDADHTINYTDGSSFLQEGQRKAGAAVTTETEVIWARALPAGTSAQRAELIALTQAL
KMAEGKKLNVYTDSRYAFAT
8,064 AHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGNSAEARGNRMADQAAREVATRETPETST
LL
TLNIEDEYRLHETSKGPDVPLGSTWLSDFPQAWAETGGMGLAFRQAPLIISLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQSLFAFEWKDPEMG
ISGQLTWTRLPQGFKNSPT

LFDEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT
_P2681 PRQLREFLGTAGLCRLWIPGFAEMAAPLYPLTKTGTLFKWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY

LSKKLDPVAAGWPPCLRMVAAIAVLTKDVGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQFG
PIVALNPATLLPLPEEGLQ
HDCLDILAEAHGTRPDLTDQPLPDADHTINYTDGSSFLQEGQRRAGAAVTTETEVIWAKALPAGTSAQRAELIALTQAL
KMAAGKKLNVYTDSRYAFAT
8,065 AHIHGEIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGNHAEARGNRMADQAAREVATRETPETST
LL

RI SEQ ID
RI amino acid sequence Name NO:
TLNIEDEYRLHETSKGPDVPLGSTWLSDFPQAWAETGGMGLAFRQAPLIISLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQSLFAFEWKDPEMG
ISGQLTWTRLPQGFKNSPT

LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT

PRQLREFLGTAGLCRLWIPGFAEMAAPLYPLTKPGTLFKWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY
0_3mu1 LSKKLDPVAAGWPPCLRMVAAIAVLTKDVGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQFG
PIVALNPATLLPLPEEGLQ
HDCLDILAEAHGTRPDLTDQPLPDADHTINYTDGSSFLQEGQRRAGAAVTTETEVIWAKALPAGTSAQRAELIALTQAL
KMAAGKKLNVYTDSRYAFAT
8,066 AHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGNHAEARGNRMADQAAREVATRETPETST
LL
TLNIEDEYRLHETSKGPDVPLGSTWLSDFPQAWAETGGMGLAFRQAPLIISLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQSLFAFEWKDPEMG
ISGQLTWTRLPQGFKNSPT

LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT

PRQLREFLGKAGLCRLFIPGFAEMAAPLYPLTKPGTLFKWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY
0 3mut LSKKLDPVAAGWPPCLRMVAAIAVLTKDVGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQFG
PIVALNPATLLPLPEEGLQ
A
HDCLDILAEAHGTRPDLTDQPLPDADHTINYTDGSSFLQEGQRRAGAAVTTETEVIWAKALPAGTSAQRAELIALTQAL
KMAAGKKLNVYTDSRYAFAT
8,067 AHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGNHAEARGNRMADQAAREVATRETPETST
LL
TLNIEDEYRLHETSKGPDVPLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQSLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
MLVFF
LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT
P2680 PRQ LRE FL GTAGFCRLWI PGFAE MAAPLYPLT K PGTLFEWGPD QQ KAYQ El KQALLTAPALGLPDLTK PFELFVDEKQGYAKGVLTQKLGPWRRPVA
9_3mu1 YLSK KLDPVAAGWPPCLRMVAAIAVLTKDAGK LTMGQPLVILAPHAVEALVK QPPDRWL
SNARMTHYQAL LLDTDRVQFGPIVALNPATLLPLPEEGL Q
HDCLDILAEAHGTRPDLTDQPLPDADHTINYTDGSSFLQEGQRKAGAAVTTETEVVVVAKALPAGTSAQRAELIALTQA
LKMAEGKKLNVYTDSRYAFA
8,068 TAHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGNRAEARGNRMADQAAREVATRETPETS
TLL
TLNIEDEYRLHETSKGPDVPLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQSLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
MLVFF
LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGDLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT

PRQLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFEWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY
9 3mut LSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQFG
PIVALNPATLLPLPEEGLQ
A
HDCLDILAEAHGTRPDLTDQPLPDADHTINYTDGSSFLQEGQRKAGAAVTTETEVVVVAKALPAGTSAQRAELIALTQA
LKMAEGKKLNVYTDSRYAFA
8,069 TAHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGNRAEARGNRMADQAAREVATRETPETS
TLL
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
MLVM
LFDEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT
S PO3 PRQ LREFL GTAGFCRLWI PGFAEMAAPLYPLTKTGTLFNWGPDQQKAYQ El K
QALLTAPALGLPDLTK PFELFVDEKQGYAKGVLTQKLGPWRRPVA

YLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQF
GPVVALNPATLLPLPEEGL
QHNCLDILAEANGTRPDLTDQPLPDADHTWYTDGSSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQAL
KMAEGKKLNVYTDSRYAFA
8,070 TAHIHGEIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEARGNRMADQAARKAAITETPDTS
TLL
TLNIEDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
MLVM
LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT
S_refer PRQLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY
ence LSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQFG
PVVALNPATLLPLPEEGLQ
HNCLDILAEAHGTRPDLTDQPLPDADHTINYTDGSSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQAL
KMAEGKKLNVYTDSRYAFAT
8,137 AHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEARGNRMADQAARKAAITETPDTST
LLIENSSP
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
MLVM
LFDEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT
S PO3 PRQ LREFL GTAGFCRLWI PGFAEMAAPLYPLTKTGTLFNWGPDQQKAYQ El K
QALLTAPALGLPDLTK PFELFVDEKQGYAKGVLTQKLGPWRRPVA

YLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQF
GPVVALNPATLLPLPEEGL
QHNCLDILAEANGTRPDLTDQPLPDADHTWYTDGSSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQAL
KMAEGKKLNVYTDSRYAFA
8,071 TAHIHGEIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEARGNRMADQAARKAAITETPDTS
TLL
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
MLVM
LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT

PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVA
355_3 YLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQF
GPVVALNPATLLPLPEEGL
mut QHNCLDILAEANGTRPDLTDQPLPDADHTWYTDGSSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQAL
KMAEGKKLNVYTDSRYAFA
8,072 TAHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEARGNRMADQAARKAAITETPDTS
TLL
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
MLVM
LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT

PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVA
355_3 YLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQF
GPVVALNPATLLPLPEEGL
mut QHNCLDILAEANGTRPDLTDQPLPDADHTWYTDGSSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQAL
KMAEGKKLNVYTDSRYAFA
8,073 TAHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEARGNRMADQAARKAAITETPDTS
TLL
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
MLVM
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT

LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT

- - ¨ 8,074 PRQLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY

RI SEQ ID
RI amino acid sequence Name NO:
mutA_ LSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQFG
PVVALNPATLLPLPEEGLQ
WS
HNCLDILAEAHGTRPDLTDQPLPDADHTINYTDGSSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQAL
KMAEGKKLNVYTDSRYAFAT
AHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEARGNRMADQAARKAAITETPDTST
LL
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
MLVM
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
S_P03 LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT
355_3 PRQLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY
mutA_ LSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQFG
PVVALNPATLLPLPEEGLQ
WS
HNCLDILAEAHGTRPDLTDQPLPDADHTINYTDGSSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQAL
KMAEGKKLNVYTDSRYAFAT
8,075 AHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEARGNRMADQAARKAAITETPDTST
LL
TLNIEDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
MLVM
LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT
S_P03 PRQLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY
355_PL
LSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQFG
PVVALNPATLLPLPEEGLQ

HNCLDILAEAHGTRPDLTDQPLPDADHTINYTDGSSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQAL
KMAEGKKLNVYTDSRYAFAT
AHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEARGNRMADQAARKAAITETPDTST
LLIENSSPSGGSKRTADGSEF
8,076 E
TLNIEDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT
MLVM
LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPKT
S_P03 PRQLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY
355_PL
LSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDRVQFG
PVVALNPATLLPLPEEGLQ

HNCLDILAEAHGTRPDLTDQPLPDADHTINYTDGSSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQAL
KMAEGKKLNVYTDSRYAFAT
AHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEARGNRMADQAARKAAITETPDTST
LLIENSSPSGGSKRTADGSEF
8,077 E
TLNIEDEYRLHEISTEPDVSPGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEAKLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQGLREVNKRVEDIHPTVPNPYNLLSGLPTSHRINYTVLDLKDAFFCLRLHPTSQPLFASEWRDPGMG
ISGQLTWTRLPQGFKNSPT
MLVRD
LFDEALHRGLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLKTLGNLGYRASAKKAQICQKQVKYLGYLLREG
QRWLTEARKETVMGQPTPKT
_P1122 PRQLREFLGTAGFCRLWIPRFAEMAAPLYPLTKTGTLFNWGPDQQKAYHEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY

LSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQFG
PVVALNPATLLPLPEEGAP
HDCLEILAETHGTEPDLTDQPIPDADHTINYTDGSSFLQEGQRKAGAAVTTETEVIWARALPAGTSAQRAELIALTQAL
KMAEGKRLNVYTDSRYAFATA
8,078 HINGEIYKRRGLLTSEGREIKNKSEILALLKALFLPKRLSIIHCLGHQKGDSAEARGNRLADQAAREAAIKTPPDTSTL
L
TLNIEDEYRLHEISTEPDVSPGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEAKLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQGLREVNKRVEDIHPTVPNPYNLLSGLPTSHRINYTVLDLKDAFFCLRLHPTSQPLFASEWRDPGMG
ISGQLTWTRLPQGFKNSPT
MLVRD
LFNEALHRGLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLKTLGNLGYRASAKKAQICQKQVKYLGYLLREG
QRWLTEARKETVMGQPTPKT
_P1122 PRQLREFLGTAGFCRLWIPRFAEMAAPLYPLTKPGTLFNWGPDQQKAYHEIKQALLTAPALGLPDLTKPFELFVDEKQG
YAKGVLTQKLGPWRRPVAY
7_3mu1 LSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQFG
PVVALNPATLLPLPEEGAP
HDCLEILAETHGTEPDLTDQPIPDADHTINYTDGSSFLQEGQRKAGAAVTTETEVIWARALPAGTSAQRAELIALTQAL
KMAEGKRLNVYTDSRYAFATA
8,079 HINGEIYKRRGWLTSEGREIKNKSEILALLKALFLPKRLSIIHCLGHQKGDSAEARGNRLADQAAREAAIKTPPDTSTL
L
VVVQEISDSRPMLHIYLNGRRFLGLLNTGADKTCIAGRDWPANWPIHQTESSLQGLGMACGVARSSQPLRWQHEDKSGI
IHPFVIPTLPFTLWGRDIMK
DIKVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNSPWNTPV
FVIKKKSGKWRLLQDLRAV
MMTV
NATMHDMGALQPGLPSPVAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGMKNSPTL
CQKFVDKAILTVRDKYQDS
B_P03 YIVHYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLRTLNDFQ
KLLGNINWIRPFLKLTTGELKPLF

EILNGDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPHISPKVIT
PYDIFCTQLIIKGRHRSKELFSK
DPDYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFTDGSANGR
SVTYIQGREPIIKENTQNTAQQA
8,080 EIVAVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLPGPLAQG
NAYADSLTRILT
VVVQEISDSRPMLHIYLNGRRFLGLLNTGADKTCIAGRDWPANWPIHQTESSLQGLGMACGVARSSQPLRWQHEDKSGI
IHPFVIPTLPFTLWGRDIMK
DIKVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNSPWNTPV
FVIKKKSGKWRLLQDLRAV
MMTV
NATMHDMGALQPGLPSPVAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGMKNSPTL
CQKFVDKAILTVRDKYQDS
B_P03 YIVHYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLRTLNDFQ
KLLGNINWIRPFLKLTTGELKPLF

EILNGDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPHISPKVIT
PYDIFCTQLIIKGRHRSKELFSK
DPDYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFTDGSANGR
SVTYIQGREPIIKENTQNTAQQA
8,081 EIVAVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLPGPLAQG
NAYADSLTRILT
VVVQEISDSRPMLHIYLNGRRFLGLLNTGADKTCIAGRDWPANWPIHQTESSLQGLGMACGVARSSQPLRWQHEDKSGI
IHPFVIPTLPFTLWGRDIMK
DIKVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNSPWNTPV
FVIKKKSGKWRLLQDLRAV
MMTV
NATMHDMGALQPGLPSPVAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGMKNSPTL
CQKFVDKAILTVRDKYQDS
B_PO3 YIVHYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLRTLNDFQ
KLLGNINWIRPFLKLTTGELKPLF
365_2 EILNPDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPHISPKVIT
PYDIFCTQLIIKGRHRSKELFSK
mut DPDYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFTDGSANGR
SVTYIQGREPIIKENTQNTAQQA
8,082 EIVAVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLPGPLAQG
NAYADSLTRILT
MMTV
VQEISDSRPMLHIYLNGRRFLGLLDTGADKTCIAGRDWPANWPIHQTESSLQGLGMACGVARSSQPLRWQHEDKSGIIH
PFVIPTLPFTLWGRDIMKDI
B_P03 KVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNSPWNTPVFV
IKKKSGKWRLLQDLRAVNA
365_2 TMHDMGALQPGLPSPVAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGMKNSPTLCQ
KFVDKAILTVRDKYQDSYIV
mut_W
HYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLRTLNDFQKLL
GNINWIRPFLKLTTGELKPLFEIL
S 8,083 NPDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPHISPKVITPYD
IFCTQLIIKGRHRSKELFSKDP

RI SEQ ID
RI amino acid sequence Name NO:
DYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFTDGSANGRSV
TYIQGREPIIKENTQNTAQQAEIV
AVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLPGPLAQGNAY
ADSLTRILTA
VQEISDSRPMLHIYLNGRRFLGLLDTGADKTCIAGRDWPANWPIHQTESSLQGLGMACGVARSSQPLRWQHEDKSGIIH
PFVIPTLPFTLWGRDIMKDI
MMTV
KVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNSPWNTPVFV
IKKKSGKWRLLQDLRAVNA
B_P03 TMHDMGALQPGLPSPVAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGMKNSPTLCQ
KFVDKAILTVRDKYQDSYIV
365_2 HYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLRTLNDFQKLL
GNINWIRPFLKLTTGELKPLFEIL
mut_W
NPDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPHISPKVITPYD
IFCTQLIIKGRHRSKELFSKDP
S
DYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFTDGSANGRSV
TYIQGREPIIKENTQNTAQQAEIV
8,084 AVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLPGPLAQGNAY
ADSLTRILTA
VVVQEISDSRPMLHIYLNGRRFLGLLNTGADKTCIAGRDWPANWPIHQTESSLQGLGMACGVARSSQPLRWQHEDKSGI
IHPFVIPTLPFTLWGRDIMK
DIKVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNSPWNTPV
FVIKKKSGKWRLLQDLRAV
MMTV
NATMHDMGALQPGLPSPVAPPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGMKNSPTL
CQKFVDKAILTVRDKYQDS
B_PO3 YIVHYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLRTLNDFQ
KLLGNINWIRPFLKLTTGELKPLF
365_2 EILNPDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPHISPKVIT
PYDIFCTQLIIKGRHRSKELFSK
mutB
DPDYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFTDGSANGR
SVTYIQGREPIIKENTQNTAQQA
8,085 EIVAVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLPGPLAQG
NAYADSLTRILT
VVVQEISDSRPMLHIYLNGRRFLGLLNTGADKTCIAGRDWPANWPIHQTESSLQGLGMACGVARSSQPLRWQHEDKSGI
IHPFVIPTLPFTLWGRDIMK
DIKVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNSPWNTPV
FVIKKKSGKWRLLQDLRAV
MMTV
NATMHDMGALQPGLPSPVAPPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGMKNSPTL
CQKFVDKAILTVRDKYQDS
B_PO3 YIVHYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLRTLNDFQ
KLLGNINWIRPFLKLTTGELKPLF
365_2 EILNPDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPHISPKVIT
PYDIFCTQLIIKGRHRSKELFSK
mutB
DPDYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFTDGSANGR
SVTYIQGREPIIKENTQNTAQQA
8,086 EIVAVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLPGPLAQG
NAYADSLTRILT
VQEISDSRPMLHIYLNGRRFLGLLDTGADKTCIAGRDWPANWPIHQTESSLQGLGMACGVARSSQPLRWQHEDKSGIIH
PFVIPTLPFTLWGRDIMKDI
MMTV
KVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNSPWNTPVFV
IKKKSGKWRLLQDLRAVNA
B_P03 TMHDMGALQPGLPSPPAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGMKNSPTLCQ
KFVDKAILTVRDKYQDSYIV
365_2 HYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLRTLNDFQKLL
GNINWIRPFLKLTTGELKPLFEIL
mutB_ NPDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPHISPKVITPYD
IFCTQLIIKGRHRSKELFSKDP
WS
DYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFTDGSANGRSV
TYIQGREPIIKENTQNTAQQAEIV
8,087 AVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLPGPLAQGNAY
ADSLTRILTA
VQEISDSRPMLHIYLNGRRFLGLLDTGADKTCIAGRDWPANWPIHQTESSLQGLGMACGVARSSQPLRWQHEDKSGIIH
PFVIPTLPFTLWGRDIMKDI
MMTV
KVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNSPWNTPVFV
IKKKSGKWRLLQDLRAVNA
B_P03 TMHDMGALQPGLPSPPAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGMKNSPTLCQ
KFVDKAILTVRDKYQDSYIV
365_2 HYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLRTLNDFQKLL
GNINWIRPFLKLTTGELKPLFEIL
mutB_ NPDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPHISPKVITPYD
IFCTQLIIKGRHRSKELFSKDP
WS
DYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFTDGSANGRSV
TYIQGREPIIKENTQNTAQQAEIV
8,088 AVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLPGPLAQGNAY
ADSLTRILTA
VQEISDSRPMLHIYLNGRRFLGLLDTGADKTCIAGRDWPANWPIHQTESSLQGLGMACGVARSSQPLRWQHEDKSGIIH
PFVIPTLPFTLWGRDIMKDI
KVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNSPWNTPVFV
IKKKSGKWRLLQDLRAVNA
MMTV
TMHDMGALQPGLPSPVAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGMKNSPTLCQ
KFVDKAILTVRDKYQDSYIV
B_PO3 HYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLRTLNDFQKLL
GNINWIRPFLKLTTGELKPLFEIL
365_W
NGDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPHISPKVITPYD
IFCTQLIIKGRHRSKELFSKDP
S
DYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFTDGSANGRSV
TYIQGREPIIKENTQNTAQQAEIV
8,089 AVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLPGPLAQGNAY
ADSLTRILTA
VQEISDSRPMLHIYLNGRRFLGLLDTGADKTCIAGRDWPANWPIHQTESSLQGLGMACGVARSSQPLRWQHEDKSGIIH
PFVIPTLPFTLWGRDIMKDI
KVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNSPWNTPVFV
IKKKSGKWRLLQDLRAVNA
MMTV
TMHDMGALQPGLPSPVAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGMKNSPTLCQ
KFVDKAILTVRDKYQDSYIV
B_PO3 HYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLRTLNDFQKLL
GNINWIRPFLKLTTGELKPLFEIL
365_W
NGDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPHISPKVITPYD
IFCTQLIIKGRHRSKELFSKDP
S
DYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFTDGSANGRSV
TYIQGREPIIKENTQNTAQQAEIV
8,090 AVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLPGPLAQGNAY
ADSLTRILTA
GRDIMKDIKVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNS
PWNTPVFVIKKKSGKWRLL
MMTV
QDLRAVNATMHDMGALQPGLPSPVAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGM
KNSPTLCQKFVDKAILTVR
B_PO3 DKYQDSYIVHYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLR
TLNDFQKLLGNINWIRPFLKLTT

GELKPLFEILNGDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPH
ISPKVITPYDIFCTQLIIKGRHR
Pro SKELFSKDPDYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFT
DGSANGRSVTYIQGREPIIKENTQ
8,091 NTAQQAEIVAVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLP
GPLAQGNAYADSLTRILT
GRDIMKDIKVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNS
PWNTPVFVIKKKSGKWRLL
MMTV
QDLRAVNATMHDMGALQPGLPSPVAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGM
KNSPTLCQKFVDKAILTVR
B_PO3 DKYQDSYIVHYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLR
TLNDFQKLLGNINWIRPFLKLTT

GELKPLFEILNGDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPH
ISPKVITPYDIFCTQLIIKGRHR
Pro SKELFSKDPDYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFT
DGSANGRSVTYIQGREPIIKENTQ
8,092 NTAQQAEIVAVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLP
GPLAQGNAYADSLTRILT
GRDIMKDIKVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNS
PWNTPVFVIKKKSGKWRLL
MMTV
QDLRAVNATMHDMGALQPGLPSPVAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGM
KNSPTLCQKFVDKAILTVR
B_PO3 DKYQDSYIVHYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLR
TLNDFQKLLGNINWIRPFLKLTT
365- . ,-,,,, 0/,-,3 GELKPLFEILNPDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPH
ISPKVITPYDIFCTQLIIKGRHR

RI SEQ ID
RI amino acid sequence Name NO:
Pro_2m SKELFSKDPDYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFT
DGSANGRSVTYIQGREPIIKENTQ
ut NTAQQAEIVAVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLP
GPLAQGNAYADSLTRILT
GRDIMKDIKVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNS
PWNTPVFVIKKKSGKWRLL
MMTV
QDLRAVNATMHDMGALQPGLPSPVAVPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGM
KNSPTLCQKFVDKAILTVR
B_PO3 DKYQDSYIVHYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLR
TLNDFQKLLGNINWIRPFLKLTT

GELKPLFEILNPDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPH
ISPKVITPYDIFCTQLIIKGRHR
Pro_2m SKELFSKDPDYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFT
DGSANGRSVTYIQGREPIIKENTQ
ut 8,094 NTAQQAEIVAVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLP
GPLAQGNAYADSLTRILT
GRDIMKDIKVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNS
PWNTPVFVIKKKSGKWRLL
MMTV
QDLRAVNATMHDMGALQPGLPSPVAPPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGM
KNSPTLCQKFVDKAILTVR
B_PO3 DKYQDSYIVHYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLR
TLNDFQKLLGNINWIRPFLKLTT

GELKPLFEILNPDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPH
ISPKVITPYDIFCTQLIIKGRHR
Pro_2m SKELFSKDPDYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFT
DGSANGRSVTYIQGREPIIKENTQ
utB
8,095 NTAQQAEIVAVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLP
GPLAQGNAYADSLTRILT
GRDIMKDIKVRLMTDSPDDSQDLMIGAIESNLFADQISWKSDQP\NVLNQWPLKQEKLQALQQLVTEQLQLGHLEESNS
PWNTPVFVIKKKSGKWRLL
MMTV
QDLRAVNATMHDMGALQPGLPSPVAPPKGWEIIIIDLQDCFFNIKLHPEDCKRFAFSVPSPNFKRPYQRFQWKVLPQGM
KNSPTLCQKFVDKAILTVR
B_PO3 DKYQDSYIVHYMDDILLAHPSRSIVDEILTSMIQALNKHGL\NSTEKIQKYDNLKYLGTHIQGDSVSYQKLQIRTDKLR
TLNDFQKLLGNINWIRPFLKLTT

GELKPLFEILNPDSNPISTRKLTPEACKALQLMNERLSTARVKRLDLSQPWSLCILKTEYTPTACLWQDGVVEWIHLPH
ISPKVITPYDIFCTQLIIKGRHR
Pro_2m SKELFSKDPDYIVVPYTKVQFDLLLQEKEDWPISLLGFLGEVHFHLPKDPLLTFTLQTAIIFPHMTSTTPLEKGIVIFT
DGSANGRSVTYIQGREPIIKENTQ
utB
8,096 NTAQQAEIVAVITAFEEVSQPFNLYTDSKYVTGLFPEIETATLSPRTKIYTELKHLQRLIHKRQEKFYIGHIRGHTGLP
GPLAQGNAYADSLTRILT
LTAAIDILAPQQCAEPITWKSDEP\A/VVDQWPLTNDKLAAAQQLVQEQLEAGHITESSSPWNTPIFVIKKKSGKWRLL
QDLRAVNATMVLMGALQPGLP
SPVAIPQGYLKIIIDLKDCFFSIPLHPSDQKRFAFSLPSTNFKEPMQRFQWKVLPQGMANSPTLCQKYVATAIHKVRHA
WKQMYIIHYMDDILIAGKDGQ
MPMV
QVLQCFDQLKQELTAAGLHIAPEKVQLQDPYTYLGFELNGPKITNQKAVIRKDKLQTLNDFQKLLGDINWLRPYLKLTT
GDLKPLFDTLKGDSDPNSHR
_P0757 SLSKEALASLEKVETAIAEQFVTHINYSLPLIFLIFNTALTPTGLFWQDNPIMWIHLPASPKKVLLPYYDAIADLIILG
RDHSK KYFGIEPSTIIQPYSKSQIDW

LMQNTEMWPIACASFVGILDNHYPPNKLIQFCKLHTFVFPQIISKTPLNNALLVFTDGSSTGMAAYTLTDTTIKFQTNL
NSAQLVELQALIAVLSAFPNQPL
8,097 NlYTDSAYLAHSIPLLETVAQIKHISETAKLFLQCQQLIYNRSIPFYIGHVRAHSGLPGPIAQGNQRADLATKIVASNI
NT
LTAAIDILAPQQCAEPITWKSDEP\A/VVDQWPLTNDKLAAAQQLVQEQLEAGHITESSSPWNTPIFVIKKKSGKWRLL
QDLRAVNATMVLMGALQPGLP
MPMV
SPVAPPQGYLKIIIDLKDCFFSIPLHPSDQKRFAFSLPSTNFKEPMQRFQWKVLPQGMANSPTLCQKYVATAIHKVRHA
WKQMYIIHYMDDILIAGKDGQ
_P0757 QVLQCFDQLKQELTAAGLHIAPEKVQLQDPYTYLGFELNGPKITNQKAVIRKDKLQTLNDFQKLLGDINWLRPYLKLTT
GDLKPLFDTLKPDSDPNSHRS
2_2mut LSKEALASLEKVETAIAEQFVTHINYSLPLIFLIFNTALTPTGLFWQDNPIMWIHLPASPKKVLLPYYDAIADLIILGR
DHSK KYFGIEPSTIIQPYSKSQIDWL
B
MQNTEMWPIACASFVGILDNHYPPNKLIQFCKLHTFVFPQIISKTPLNNALLVFTDGSSTGMAAYTLTDTTIKFQTNLN
SAQLVELQALIAVLSAFPNQPL
8,098 NlYTDSAYLAHSIPLLETVAQIKHISETAKLFLQCQQLIYNRSIPFYIGHVRAHSGLPGPIAQGNQRADLATKIVASNI
NT
TLQLDDEYRLYSPLVKPDQNIQFWLEQFPQAWAETAGMGLAKQVPPQVIQLKASATPVSVRQYPLSKEAQEGIRPHVQR
LIQQGILVPVQSPWNTPLL
PVRKPGTNDYRPVQDLREVNKRVQDIHPTVPNPYNLLCALPPQRSINYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGT
GRTGQLTWTRLPQGFKNS
PERV_ PTIFDEALHRDLANFRIQHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQICRREVTYLGYSLR
DGQRWLTEARKKTVVQIPAPT

TAKQVREFLGTAGFCRLWIPGFATLAAPLYPLTKEKGEFSWAPEHQKAFDAIKKALLSAPALALPDVTKPFTLYVDERK
GVARGVLTQTLGPWRRPVA

YLSKKLDPVASGWPVCLKAIAAVAILVKDADKLTLGQNITVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFA
PPAALNPATLLPEETDEPVTH
DCHQLLIEETGVRKDLTDIPLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRTIWASSLPEGTSAQKAELMALTQALRL
AEGKSINIYTDSRYAFATAH
8,099 VHGAIYKQRGLLTSAGREIKNKEEILSLLEALHLPKRLAIIHCPGHQKAKDPISRGNQMADRVAKQAAQGVNLL
TLQLDDEYRLYSPLVKPDQNIQFWLEQFPQAWAETAGMGLAKQVPPQVIQLKASATPVSVRQYPLSKEAQEGIRPHVQR
LIQQGILVPVQSPWNTPLL
PVRKPGTNDYRPVQDLREVNKRVQDIHPTVPNPYNLLCALPPQRSINYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGT
GRTGQLTWTRLPQGFKNS
PERV_ PTIFDEALHRDLANFRIQHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQICRREVTYLGYSLR
DGQRWLTEARKKTVVQIPAPT

TAKQVREFLGTAGFCRLWIPGFATLAAPLYPLTKEKGEFSWAPEHQKAFDAIKKALLSAPALALPDVTKPFTLYVDERK
GVARGVLTQTLGPWRRPVA

YLSKKLDPVASGWPVCLKAIAAVAILVKDADKLTLGQNITVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFA
PPAALNPATLLPEETDEPVTH
DCHQLLIEETGVRKDLTDIPLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRTIWASSLPEGTSAQKAELMALTQALRL
AEGKSINIYTDSRYAFATAH
8,100 VHGAIYKQRGLLTSAGREIKNKEEILSLLEALHLPKRLAIIHCPGHQKAKDPISRGNQMADRVAKQAAQGVNLL
TLQLDDEYRLYSPLVKPDQNIQFWLEQFPQAWAETAGMGLAKQVPPQVIQLKASATPVSVRQYPLSKEAQEGIRPHVQR
LIQQGILVPVQSPWNTPLL
PVRKPGTNDYRPVQDLREVNKRVQDIHPTVPNPYNLLCALPPQRSINYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGT
GRTGQLTWTRLPQGFKNS
PERV_ PTIFNEALHRDLANFRIQHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQICRREVTYLGYSLR
DGQRWLTEARKKTVVQIPAPT

TAKQVREFLGTAGFCRLWIPGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAIKKALLSAPALALPDVTKPFTLYVDERK
GVARGVLTQTLGPWRRPVA
2_3mut YLSKKLDPVASGWPVCLKAIAAVAILVKDADKLTLGQNITVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFA
PPAALNPATLLPEETDEPVTH
DCHQLLIEETGVRKDLTDIPLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRTIWASSLPEGTSAQKAELMALTQALRL
AEGKSINIYTDSRYAFATAH
8,101 VHGAIYKQRGWLTSAGREIKNKEEILSLLEALHLPKRLAIIHCPGHQKAKDPISRGNQMADRVAKQAAQGVNLL
TLQLDDEYRLYSPLVKPDQNIQFWLEQFPQAWAETAGMGLAKQVPPQVIQLKASATPVSVRQYPLSKEAQEGIRPHVQR
LIQQGILVPVQSPWNTPLL
PVRKPGTNDYRPVQDLREVNKRVQDIHPTVPNPYNLLCALPPQRSINYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGT
GRTGQLTWTRLPQGFKNS
PERV_ PTIFNEALHRDLANFRIQHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQICRREVTYLGYSLR
DGQRWLTEARKKTVVQIPAPT

TAKQVREFLGTAGFCRLWIPGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAIKKALLSAPALALPDVTKPFTLYVDERK
GVARGVLTQTLGPWRRPVA
2_3mut YLSKKLDPVASGWPVCLKAIAAVAILVKDADKLTLGQNITVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFA
PPAALNPATLLPEETDEPVTH
DCHQLLIEETGVRKDLTDIPLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRTIWASSLPEGTSAQKAELMALTQALRL
AEGKSINIYTDSRYAFATAH
8,102 VHGAIYKQRGWLTSAGREIKNKEEILSLLEALHLPKRLAIIHCPGHQKAKDPISRGNQMADRVAKQAAQGVNLL
LDDEYRLYSPLVKPDQNIQFWLEQFPQAWAETAGMGLAKQVPPQVIQLKASATPVSVRQYPLSKEAQEGIRPHVQRLIQ
QGILVPVQSPWNTPLLPVR
KPGTNDYRPVQDLREVNKRVQDIHPTVPNPYNLLCALPPQRSINYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGTGRT
GQLTWTRLPQGFKNSPTIF
PERV_ NEALHRDLANFRIQHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQICRREVTYLGYSLRDGQR

QVREFLGKAGFCRLFIPGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAIKKALLSAPALALPDVTKPFTLYVDERKGVA
RGVLTQTLGPWRRPVAYLSK
2_3mut KLDPVASGWPVCLKAIAAVAILVKDADKLTLGQNITVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAA
LNPATLLPEETDEPVTHDCHQ
A_WS
LLIEETGVRKDLTDIPLTGEVLTWFTDGSSYVVEGKRMAGAAWDGTRTIWASSLPEGTSAQKAELMALTQALRLAEGKS
INIYTDSRYAFATAHVHGAI
8,103 YKQRGWLTSAGREIKNKEEILSLLEALHLPKRLAIIHCPGHQKAKDPISRGNQMADRVAKQAAQGVNLLP

RI SEQ ID
RI amino acid sequence Name NO:
LDDEYRLYSPLVKPDQNIQFWLEQFPQAWAETAGMGLAKQVPPQVIQLKASATPVSVRQYPLSKEAQEGIRPHVQRLIQ
QGILVPVQSPWNTPLLPVR
KPGTNDYRPVQDLREVNKRVQDIHPTVPNPYNLLCALPPQRSINYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGTGRT
GQLTWTRLPQGFKNSPTIF
PERV
NEALHRDLANFRIQHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQICRREVTYLGYSLRDGQR

QVREFLGKAGFCRLFIPGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAIKKALLSAPALALPDVTKPFTLYVDERKGVA
RGVLTQTLGPWRRPVAYLSK
2 3mut KLDPVASGWPVCLKAIAAVAILVKDADKLTLGQNITVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAA
LNPATLLPEETDEPVTHDCHQ
A_WS
LLIEETGVRKDLTDIPLTGEVLTWFTDGSSYVVEGKRMAGAAWDGTRTIWASSLPEGTSAQKAELMALTQALRLAEGKS
INIYTDSRYAFATAHVHGAI
8,104 YKQRGWLTSAGREIKNKEEILSLLEALHLPKRLAIIHCPGHQKAKDPISRGNQMADRVAKQAAQGVNLLP
MDPLQLLQPLEAEIKGTKLKAHWNSGATITCVPEAFLEDERPIQTMLIKTIHGEKQQDVYYLTFKVQGRKVEAEVLASP
YDYILLNPSDVPWLMKKPLQL
TVLVPLHEYQERLLQQTALPKEQKELLQKLFLKYDALWQHWENQVGHRRIKPHNIATGTLAPRPQKQYPINPKAKPSIQ
IVIDDLLKQGVLIQQNSTMNT
PVYPVPKPDGKWRMVLDYREVNKTIPLIAAQNQHSAGILSSIYRGKYKTTLDLTNGFWAHPITPESYVVLTAFTWQGKQ
YCWTRLPQGFLNSPALFTAD

\NDLLKEIPNVQAYVDDIYISHDDPQEHLEQLEKIFSILLNAGYVVSLKKSEIAQREVEFLGFNITKEGRGLTDTFKQK
LLNITPPKDLKQLQSILGLLNFAR

NFIPNYSELVKPLYTIVANANGKFISWTEDNSNQLQHIISVLNQADNLEERNPETRLIIKVNSSPSAGYIRYYNEGSKR
PIMYVNYIFSKAEAKFTQTEKLL
TTMHKGLIKAMDLAMGQEILVYSPIVSMTKIQRTPLPERKALPVRWITWMTYLEDPRIQFHYDKSLPELQQIPNVTEDV
IAKTKHPSEFAMVFYTDGSAIK
HPDVNKSHSAGMGIAQVQFIPEYKIVHQWSIPLGDHTAQLAEIAAVEFACKKALKISGPVLIVTDSFYVAESANKELPY
WKSNGFLNNKKKPLRHVSKW
8,105 KSIAECLQLKPDIIIMHEKGHQQPMTTLHTEGNNLADKLATQGSYVVH
MDPLQLLQPLEAEIKGTKLKAHWNSGATITCVPEAFLEDERPIQTMLIKTIHGEKQQDVYYLTFKVQGRKVEAEVLASP
YDYILLNPSDVPWLMKKPLQL
TVLVPLHEYQERLLQQTALPKEQKELLQKLFLKYDALWQHWENQVGHRRIKPHNIATGTLAPRPQKQYPINPKAKPSIQ
IVIDDLLKQGVLIQQNSTMNT
PVYPVPKPDGKWRMVLDYREVNKTIPLIAAQNQHSAGILSSIYRGKYKTTLDLTNGFWAHPITPESYWLTAFTWQGKQY
CWTRLPQGFLNSPALFNAD

\NDLLKEIPNVQAYVDDIYISHDDPQEHLEQLEKIFSILLNAGYVVSLKKSEIAQREVEFLGFNITKEGRGLTDTFKQK
LLNITPPKDLKQLQSILGLLNFAR

NFIPNYSELVKPLYTIVAPANGKFISWTEDNSNQLQHIISVLNQADNLEERNPETRLIIKVNSSPSAGYIRYYNEGSKR
PIMYVNYIFSKAEAKFTQTEKLLT
_2mut TMHKGLIKAMDLAMGQEILVYSPIVSMTKIQRTPLPERKALPVRWITWMTYLEDPRIQFHYDKSLPELQQIPNVTEDVI
AKTKHPSEFAMVFYTDGSAIKH
PDVNKSHSAGMGIAQVQFIPEYKIVHQWSIPLGDHTAQLAEIAAVEFACKKALKISGPVLIVTDSFYVAESANKELPYV
VKSNGFLNNKKKPLRHVSKWK
8,106 SIAECLQLKPDIIIMHEKGHQQPMTTLHTEGNNLADKLATQGSYVVH
MDPLQLLQPLEAEIKGTKLKAHWNSGATITCVPEAFLEDERPIQTMLIKTIHGEKQQDVYYLTFKVQGRKVEAEVLASP
YDYILLNPSDVPWLMKKPLQL
TVLVPLHEYQERLLQQTALPKEQKELLQKLFLKYDALWQHWENQVGHRRIKPHNIATGTLAPRPQKQYPINPKAKPSIQ
IVIDDLLKQGVLIQQNSTMNT
PVYPVPKPDGKWRMVLDYREVNKTIPLIAAQNQHSAGILSSIYRGKYKTTLDLTNGFWAHPITPESYWLTAFTWQGKQY
CWTRLPQGFLNSPALFNAD

\NDLLKEIPNVQAYVDDIYISHDDPQEHLEQLEKIFSILLNAGYVVSLKKSEIAQREVEFLGFNITKEGRGLTDTFKQK
LLNITPPKDLKQLQSILGKLNFAR

NFIPNYSELVKPLYTIVAPANGKFISWTEDNSNQLQHIISVLNQADNLEERNPETRLIIKVNSSPSAGYIRYYNEGSKR
PIMYVNYIFSKAEAKFTQTEKLLT
_2mutA
TMHKGLIKAMDLAMGQEILVYSPIVSMTKIQRTPLPERKALPVRWITWMTYLEDPRIQFHYDKSLPELQQIPNVTEDVI
AKTKHPSEFAMVFYTDGSAIKH
PDVNKSHSAGMGIAQVQFIPEYKIVHQWSIPLGDHTAQLAEIAAVEFACKKALKISGPVLIVTDSFYVAESANKELPYV
VKSNGFLNNKKKPLRHVSKWK
8,107 SIAECLQLKPDIIIMHEKGHQQPMTTLHTEGNNLADKLATQGSYVVH
VPWLMKKPLQLTVLVPLHEYQERLLQQTALPKEQKELLQKLFLKYDALWQHWENQVGHRRIKPHNIATGTLAPRPQKQY
PINPKAKPSIQIVIDDLLKQ
GVLIQQNSTMNTPVYPVPKPDGKWRMVLDYREVNKTIPLIAAQNQHSAGILSSIYRGKYKTTLDLTNGFWAHPITPESY
VVLTAFTWQGKQYCWTRLPQ

GFLNSPALFTADVVDLLKEIPNVQAYVDDIYISHDDPQEHLEQLEKIFSILLNAGYVVSLKKSEIAQREVEFLGFNITK
EGRGLTDTFKQKLLNITPPKDLKQ

LQSILGLLNFARNFIPNYSELVKPLYTIVANANGKFISWTEDNSNQLQHIISVLNQADNLEERNPETRLIIKVNSSPSA
GYIRYYNEGSKRPIMYVNYIFSKA
-Pro EAKFTQTEKLLTTMHKGLIKAMDLAMGQEILVYSPIVSMTKIQRTPLPERKALPVRWITWMTYLEDPRIQFHYDKSLPE
LQQIPNVTEDVIAKTKHPSEFA
MVFYTDGSAIKHPDVNKSHSAGMGIAQVQFIPEYKIVHQWSIPLGDHTAQLAEIAAVEFACKKALKISGPVLIVTDSFY
VAESANKELPYWKSNGFLNNK
8,108 KKPLRHVSKWKSIAECLQLKPDIIIMHEKGHQQPMTTLHTEGNNLADKLATQGSYVVH
VPWLMKKPLQLTVLVPLHEYQERLLQQTALPKEQKELLQKLFLKYDALWQHWENQVGHRRIKPHNIATGTLAPRPQKQY
PINPKAKPSIQIVIDDLLKQ

GVLIQQNSTMNTPVYPVPKPDGKWRMVLDYREVNKTIPLIAAQNQHSAGILSSIYRGKYKTTLDLTNGFWAHPITPESY
VVLTAFTWQGKQYCWTRLPQ

GFLNSPALFNADVVDLLKEIPNVQAYVDDIYISHDDPQEHLEQLEKIFSILLNAGYVVSLKKSEIAQREVEFLGFNITK
EGRGLTDTFKQKLLNITPPKDLK
-QLQSILGLLNFARNFIPNYSELVKPLYTIVAPANGKFISWTEDNSNQLQHIISVLNQADNLEERNPETRLIIKVNSSPS
AGYIRYYNEGSKRPIMYVNYIFSK
Pro_2m AEAKFTQTEKLLTTMHKGLIKAMDLAMGQEILVYSPIVSMTKIQRTPLPERKALPVRWITWMTYLEDPRIQFHYDKSLP
ELQQIPNVTEDVIAKTKHPSEF
ut AMVFYTDGSAIKHPDVNKSHSAGMGIAQVQFIPEYKIVHQWSIPLGDHTAQLAEIAAVEFACKKALKISGPVLIVTDSF
YVAESANKELPYWKSNGFLNN
8,109 KKKPLRHVSKWKSIAECLQLKPDIIIMHEKGHQQPMTTLHTEGNNLADKLATQGSYVVH
VPWLMKKPLQLTVLVPLHEYQERLLQQTALPKEQKELLQKLFLKYDALWQHWENQVGHRRIKPHNIATGTLAPRPQKQY
PINPKAKPSIQIVIDDLLKQ

GVLIQQNSTMNTPVYPVPKPDGKWRMVLDYREVNKTIPLIAAQNQHSAGILSSIYRGKYKTTLDLTNGFWAHPITPESY
VVLTAFTWQGKQYCWTRLPQ

GFLNSPALFNADVVDLLKEIPNVQAYVDDIYISHDDPQEHLEQLEKIFSILLNAGYVVSLKKSEIAQREVEFLGFNITK
EGRGLTDTFKQKLLNITPPKDLK
-QLQSILGKLNFARNFIPNYSELVKPLYTIVAPANGKFISWTEDNSNQLQHIISVLNQADNLEERNPETRLIIKVNSSPS
AGYIRYYNEGSKRPIMYVNYIFSK
Pro_2m AEAKFTQTEKLLTTMHKGLIKAMDLAMGQEILVYSPIVSMTKIQRTPLPERKALPVRWITWMTYLEDPRIQFHYDKSLP
ELQQIPNVTEDVIAKTKHPSEF
utA
AMVFYTDGSAIKHPDVNKSHSAGMGIAQVQFIPEYKIVHQWSIPLGDHTAQLAEIAAVEFACKKALKISGPVLIVTDSF
YVAESANKELPYWKSNGFLNN
8,110 KKKPLRHVSKWKSIAECLQLKPDIIIMHEKGHQQPMTTLHTEGNNLADKLATQGSYVVH
MDPLQLLQPLEAEIKGTKLKAHWNSGATITCVPQAFLEEEVPIKNIWIKTIHGEKEQPVYYLTFKIQGRKVEAEVISSP
YDYILVSPSDIPWLMKKPLQLTT
LVPLQEYEERLLKQTMLTGSYKEKLQSLFLKYDALWQHWENQVGHRRIKPHHIATGTVNPRPQKQYPINPKAKASIQTV
INDLLKQGVLIQQNSIMNTP
VYPVPKPDGKWRMVLDYREVNKTIPLIAAQNQHSAGILSSIFRGKYKTTLDLSNGFWAHSITPESYVVLTAFTWLGQQY
CWTRLPQGFLNSPALFTADV

VDLLKEVPNVQVYVDDIYISHDDPREHLEQLEKVFSLLLNAGYVVSLKKSEIAQHEVEFLGFNITKEGRGLTETFKQKL
LNITPPRDLKQLQSILGLLNFAR

NFIPNFSELVKPLYNIIATANGKYITWUDNSQQLQNIISMLNSAENLEERNPEVRLIMKVNTSPSAGYIRFYNEFAKRP
IMYLNYVYTKAEVKFTNTEKLL

TTIHKGLIKALDLGMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMSYLEDPRIQFHYDKTLPELQQVPTVTDDI
IAKIKHPSEFSMVFYTDGSAIKHP
NVNKSHNAGMGIAQVQFKPEFTVINTWSIPLGDHTAQLAEVAAVEFACKKALKIDGPVLIVTDSFYVAESVNKELPYVV
QSNGFFNNKKKPLKHVSKWK
8,111 SIADCIQLKPDIIIIHEKGHQPTASTFHTEGNNLADKLATQGSYVVN
MDPLQLLQPLEAEIKGTKLKAHWNSGATITCVPQAFLEEEVPIKNIWIKTIHGEKEQPVYYLTFKIQGRKVEAEVISSP
YDYILVSPSDIPWLMKKPLQLTT
LVPLQEYEERLLKQTMLTGSYKEKLQSLFLKYDALWQHWENQVGHRRIKPHHIATGTVNPRPQKQYPINPKAKASIQTV
INDLLKQGVLIQQNSIMNTP

PVPKPDGKWRMVLDYREVNKTIPLIAAQNQHSAGILSSIFRGKYKTTLDLSNGFWAHSITPESYVVLTAFTWLGQQYCW
TRLPQGFLNSPALFNADV

VDLLKEVPNVQVYVDDIYISHDDPREHLEQLEKVFSLLLNAGYVVSLKKSEIAQHEVEFLGFNITKEGRGLTETFKQKL
LNITPPRDLKQLQSILGLLNFAR
1_2mut NFIPNFSELVKPLYNIIATAPGKYITWTTDNSQQLQNIISMLNSAENLEERNPEVRLIMKVNTSPSAGYIRFYNEFAKR
PIMYLNYVYTKAEVKFTNTEKLL
8,112 TTIHKGLIKALDLGMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMSYLEDPRIQFHYDKTLPELQQVPTVTDDI
IAKIKHPSEFSMVFYTDGSAIKHP

RI SEQ ID
RI amino acid sequence Name NO:
NVNKSHNAGMGIAQVQFKPEFTVINTWSIPLGDHTAQLAEVAAVEFACKKALKIDGPVLIVTDSFYVAESVNKELPYVV
QSNGFFNNKKKPLKHVSKWK
SIADCIQLKPDIIIIHEKGHQPTASTFHTEGNNLADKLATQGSYVVN
MDPLQLLQPLEAEIKGTKLKAHWNSGATITCVPQAFLEEEVPIKNIWIKTINGEKEQPVYYLTFKIQGRKVEAEVISSP
YDYILVSPSDIPWLMKKPLQLTT
LVPLQEYEERLLKQTMLTGSYKEKLQSLFLKYDALWQHWENQVGHRRIKPHHIATGTVNPRPQKQYPINPKAKASIQTV
INDLLKQGVLIQQNSIMNTP

VYPVPKPDGKWRMVLDYREVNKTIPLIAAQNQHSAGILSSIFRGKYKTTLDLSNGFWAHSITPESYVVLTAFTWLGQQY
CWTRLPQGFLNSPALFNADV
_P2740 VDLLKEVPNVQVYVDDIYISHDDPREHLEQLEKVFSLLLNAGYVVSLKKSEIAQHEVEFLGFNITKEGRGLTETFKQKL
LNITPPRDLKQLQSILGKLNFA
1_2mu1 RNFIPNFSELVKPLYNIIATAPGKYITWTTDNSQQLQNIISMLNSAENLEERNPEVRLIMKVNTSPSAGYIRFYNEFAK
RPIMYLNYVYTKAEVKFTNTEKL
A
LTTIHKGLIKALDLGMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMSYLEDPRIQFHYDKTLPELQQVPTVTDD
IIAKIKHPSEFSMVFYTDGSAIKH
PNVNKSHNAGMGIAQVQFKPEFTVINTWSIPLGDHTAQLAEVAAVEFACKKALKIDGPVLIVTDSFYVAESVNKELPYV
VQSNGFFNNKKKPLKHVSKW
8,113 KSIADCIQLKPDIIIIHEKGHQPTASTFHTEGNNLADKLATQGSYVVN
IPWLMKKPLQLTTLVPLQEYEERLLKQTMLTGSYKEKLQSLFLKYDALWQHWENQVGHRRIKPHHIATGTVNPRPQKQY
PINPKAKASIQTVINDLLKQ
GVLIQQNSIMNTPVYPVPKPDGKWRMVLDYREVNKTIPLIAAQNQHSAGILSSIFRGKYKTTLDLSNGFWAHSITPESY
VVLTAFTWLGQQYCWTRLPQ

GFLNSPALFTADVVDLLKEVPNVQVYVDDIYISHDDPREHLEQLEKVFSLLLNAGYVVSLKKSEIAQHEVEFLGFNITK
EGRGLTETFKQKLLNITPPRDL
_P2740 KQLQSILGLLNFARNFIPNFSELVKPLYNIIATANGKYITWTTDNSQQLQNIISMLNSAENLEERNPEVRLIMKVNTSP
SAGYIRFYNEFAKRPIMYLNYVY
1-Pro TKAEVKFTNTEKLLTTIHKGLIKALDLGMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMSYLEDPRIQFHYDKT
LPELQQVPTVTDDIIAKIKHPSEF
SMVFYTDGSAIKHPNVNKSHNAGMGIAQVQFKPEFTVINTWSIPLGDHTAQLAEVAAVEFACKKALKIDGPVLIVTDSF
YVAESVNKELPYVVQSNGFFN
8,114 NKKKPLKHVSKWKSIADCIQLKPDIIIIHEKGHQPTASTFHTEGNNLADKLATQGSYVVN
IPWLMKKPLQLTTLVPLQEYEERLLKQTMLTGSYKEKLQSLFLKYDALWQHWENQVGHRRIKPHHIATGTVNPRPQKQY
PINPKAKASIQTVINDLLKQ

GVLIQQNSIMNTPVYPVPKPDGKWRMVLDYREVNKTIPLIAAQNQHSAGILSSIFRGKYKTTLDLSNGFWAHSITPESY
VVLTAFTWLGQQYCWTRLPQ
_P2740 GFLNSPALFNADVVDLLKEVPNVQVYVDDIYISHDDPREHLEQLEKVFSLLLNAGYVVSLKKSEIAQHEVEFLGFNITK
EGRGLTETFKQKLLNITPPRDL

KQLQSILGLLNFARNFIPNFSELVKPLYNIIATAPGKYITWTTDNSQQLQNIISMLNSAENLEERNPEVRLIMKVNTSP
SAGYIRFYNEFAKRPIMYLNYVY
Pro_2m TKAEVKFTNTEKLLTTIHKGLIKALDLGMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMSYLEDPRIQFHYDKT
LPELQQVPTVTDDIIAKIKHPSEF
ut SMVFYTDGSAIKHPNVNKSHNAGMGIAQVQFKPEFTVINTWSIPLGDHTAQLAEVAAVEFACKKALKIDGPVLIVTDSF
YVAESVNKELPYVVQSNGFFN
8,115 NKKKPLKHVSKWKSIADCIQLKPDIIIIHEKGHQPTASTFHTEGNNLADKLATQGSYVVN
IPWLMKKPLQLTTLVPLQEYEERLLKQTMLTGSYKEKLQSLFLKYDALWQHWENQVGHRRIKPHHIATGTVNPRPQKQY
PINPKAKASIQTVINDLLKQ

GVLIQQNSIMNTPVYPVPKPDGKWRMVLDYREVNKTIPLIAAQNQHSAGILSSIFRGKYKTTLDLSNGFWAHSITPESY
VVLTAFTWLGQQYCWTRLPQ
_P2740 GFLNSPALFNADVVDLLKEVPNVQVYVDDIYISHDDPREHLEQLEKVFSLLLNAGYVVSLKKSEIAQHEVEFLGFNITK
EGRGLTETFKQKLLNITPPRDL

KQLQSILGKLNFARNFIPNFSELVKPLYNIIATAPGKYITWTTDNSQQLQNIISMLNSAENLEERNPEVRLIMKVNTSP
SAGYIRFYNEFAKRPIMYLNYVY
Pro_2m TKAEVKFTNTEKLLTTIHKGLIKALDLGMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMSYLEDPRIQFHYDKT
LPELQQVPTVTDDIIAKIKHPSEF
utA
SMVFYTDGSAIKHPNVNKSHNAGMGIAQVQFKPEFTVINTWSIPLGDHTAQLAEVAAVEFACKKALKIDGPVLIVTDSF
YVAESVNKELPYVVQSNGFFN
8,116 NKKKPLKHVSKWKSIADCIQLKPDIIIIHEKGHQPTASTFHTEGNNLADKLATQGSYVVN
MNPLQLLQPLPAEVKGTKLLAHWNSGATITCIPESFLEDEQPIKQTLIKTINGEKQQNVYYLTFKVKGRKVEAEVIASP
YEYILLSPTDVPWLTQQPLQLTI
LVPLQEYQDRILNKTALPEEQKQQLKALFTKYDNLWQHWENQVGHRKIRPHNIATGDYPPRPQKQYPINPKAKPSIQIV
IDDLLKQGVLTPQNSTMNTP
VYPVPKPDGRWRMVLDYREVNKTIPLTAAQNQHSAGILATIVRQKYKTTLDLANGFWAHPITPDSYVVLTAFTWQGKQY
CWTRLPQGFLNSPALFTAD
SFVCP
AVDLLKEVPNVQVYVDDIYLSHDNPHEHIQQLEKVFQILLQAGYVVSLKKSEIGQRTVEFLGFNITKEGRGLTDTFKTK
LLNVTPPKDLKQLQSILGLLNF
_Q870 ARNFIPNFAELVQTLYNLIASSKGKYIEWTEDNTKQLNKVIEALNTASNLEERLPDQRLVIKVNTSPSAGYVRYYNESG
KKPIMYLNYVFSKAELKFSMLE
KLLTTMHKALIKAMDLAMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMTYLEDPRIQFHYDKTLPELKHIPDVY
TSSIPPLKHPSQYEGVFCTDGSA
IKSPDPTKSNNAGMGIVHAIYNPEYKILNQWSIPLGHHTAQMAEIAAVEFACKKALKVPGPVLVITDSFYVAESANKEL
PYVVKSNGFVNNKKEPLKHISK
8,117 WKSIAECLSIKPDITIQHEKGHQPINTSIHTEGNALADKLATQGSYVVN
MNPLQLLQPLPAEVKGTKLLAHWNSGATITCIPESFLEDEQPIKQTLIKTINGEKQQNVYYLTFKVKGRKVEAEVIASP
YEYILLSPTDVPWLTQQPLQLTI
LVPLQEYQDRILNKTALPEEQKQQLKALFTKYDNLWQHWENQVGHRKIRPHNIATGDYPPRPQKQYPINPKAKPSIQIV
IDDLLKQGVLTPQNSTMNTP
SFVCP
VYPVPKPDGRWRMVLDYREVNKTIPLTAAQNQHSAGILATIVRQKYKTTLDLANGFWAHPITPDSYVVLTAFTWQGKQY
CWTRLPQGFLNSPALFNAD
_Q870 AVDLLKEVPNVQVYVDDIYLSHDNPHEHIQQLEKVFQILLQAGYVVSLKKSEIGQRTVEFLGFNITKEGRGLTDTFKTK
LLNVTPPKDLKQLQSILGLLNF
40_2m ARNFIPNFAELVQTLYNLIASSPGKYIEWTEDNTKQLNKVIEALNTASNLEERLPDQRLVIKVNTSPSAGYVRYYNESG
KKPIMYLNYVFSKAELKFSMLE
ut KLLTTMHKALIKAMDLAMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMTYLEDPRIQFHYDKTLPELKHIPDVY
TSSIPPLKHPSQYEGVFCTDGSA
IKSPDPTKSNNAGMGIVHAIYNPEYKILNQWSIPLGHHTAQMAEIAAVEFACKKALKVPGPVLVITDSFYVAESANKEL
PYVVKSNGFVNNKKEPLKHISK
8,118 WKSIAECLSIKPDITIQHEKGHQPINTSIHTEGNALADKLATQGSYVVN
MNPLQLLQPLPAEVKGTKLLAHWNSGATITCIPESFLEDEQPIKQTLIKTINGEKQQNVYYLTFKVKGRKVEAEVIASP
YEYILLSPTDVPWLTQQPLQLTI
LVPLQEYQDRILNKTALPEEQKQQLKALFTKYDNLWQHWENQVGHRKIRPHNIATGDYPPRPQKQYPINPKAKPSIQIV
IDDLLKQGVLTPQNSTMNTP
SFVCP
VYPVPKPDGRWRMVLDYREVNKTIPLTAAQNQHSAGILATIVRQKYKTTLDLANGFWAHPITPDSYVVLTAFTWQGKQY
CWTRLPQGFLNSPALFNAD
_Q870 AVDLLKEVPNVQVYVDDIYLSHDNPHEHIQQLEKVFQILLQAGYVVSLKKSEIGQRTVEFLGFNITKEGRGLTDTFKTK
LLNVTPPKDLKQLQSILGKLNF
40_2m ARNFIPNFAELVQTLYNLIASSPGKYIEWTEDNTKQLNKVIEALNTASNLEERLPDQRLVIKVNTSPSAGYVRYYNESG
KKPIMYLNYVFSKAELKFSMLE
utA
KLLTTMHKALIKAMDLAMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMTYLEDPRIQFHYDKTLPELKHIPDVY
TSSIPPLKHPSQYEGVFCTDGSA
IKSPDPTKSNNAGMGIVHAIYNPEYKILNQWSIPLGHHTAQMAEIAAVEFACKKALKVPGPVLVITDSFYVAESANKEL
PYVVKSNGFVNNKKEPLKHISK
8,119 WKSIAECLSIKPDITIQHEKGHQPINTSIHTEGNALADKLATQGSYVVN
VPWLTQQPLQLTILVPLQEYQDRILNKTALPEEQKQQLKALFTKYDNLWQHWENQVGHRKIRPHNIATGDYPPRPQKQY
PINPKAKPSIQIVIDDLLKQG
VLTPQNSTMNTPVYPVPKPDGRWRMVLDYREVNKTIPLTAAQNQHSAGILATIVRQKYKTTLDLANGFWAHPITPDSYW
LTAFTWQGKQYCWTRLPQ
SFVCP
GFLNSPALFTADAVDLLKEVPNVQVYVDDIYLSHDNPHEHIQQLEKVFQILLQAGYVVSLKKSEIGQRTVEFLGFNITK
EGRGLTDTFKTKLLNVTPPKDL
_Q870 KQLQSILGLLNFARNFIPNFAELVQTLYNLIASSKGKYIEWTEDNTKQLNKVIEALNTASNLEERLPDQRLVIKVNTSP
SAGYVRYYNESGKKPIMYLNYV
40-Pro FSKAELKFSMLEKLLTTMHKALIKAMDLAMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMTYLEDPRIQFHYDK
TLPELKHIPDVYTSSIPPLKHPS
QYEGVFCTDGSAIKSPDPTKSNNAGMGIVHAIYNPEYKILNQWSIPLGHHTAQMAEIAAVEFACKKALKVPGPVLVITD
SFYVAESANKELPYVVKSNGF
8,120 VNNKKEPLKHISKWKSIAECLSIKPDITIQHEKGHQPINTSIHTEGNALADKLATQGSYVVN
SFVCP
VPWLTQQPLQLTILVPLQEYQDRILNKTALPEEQKQQLKALFTKYDNLWQHWENQVGHRKIRPHNIATGDYPPRPQKQY
PINPKAKPSIQIVIDDLLKQG
_Q870 VLTPQNSTMNTPVYPVPKPDGRWRMVLDYREVNKTIPLTAAQNQHSAGILATIVRQKYKTTLDLANGFWAHPITPDSYW
LTAFTWQGKQYCWTRLPQ

GFLNSPALFNADAVDLLKEVPNVQVYVDDIYLSHDNPHEHIQQLEKVFQILLQAGYVVSLKKSEIGQRTVEFLGFNITK
EGRGLTDTFKTKLLNVTPPKDL
Pro_2m KQLQSILGLLNFARNFIPNFAELVQTLYNLIASSPGKYIEWTEDNTKQLNKVIEALNTASNLEERLPDQRLVIKVNTSP
SAGYVRYYNESGKKPIMYLNYV
ut 8,121 FSKAELKFSMLEKLLTTMHKALIKAMDLAMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMTYLEDPRIQFHYDK
TLPELKHIPDVYTSSIPPLKHPS

RI SEQ ID
RI amino acid sequence Name NO:
QYEGVFCTDGSAIKSPDPTKSNNAGMGIVHAIYNPEYKILNQWSIPLGHHTAQMAEIAAVEFACKKALKVPGPVLVITD
SFYVAESANKELPYVVKSNGF
VNNKKEPLKHISKWKSIAECLSIKPDITIQHEKGHQPINTSIHTEGNALADKLATQGSYVVN
VPWLTQQPLQLTILVPLQEYQDRILNKTALPEEQKQQLKALFTKYDNLWQHWENQVGHRKIRPHNIATGDYPPRPQKQY
PINPKAKPSIQIVIDDLLKQG
SFVCP
VLTPQNSTMNTPVYPVPKPDGRWRMVLDYREVNKTIPLTAAQNQHSAGILATIVRQKYKTTLDLANGFWAHPITPDSYW
LTAFTWQGKQYCWTRLPQ
_Q870 GFLNSPALFNADAVDLLKEVPNVQVYVDDIYLSHDNPHEHIQQLEKVFQILLQAGYVVSLKKSEIGQRTVEFLGFNITK
EGRGLTDTFKTKLLNVTPPKDL

KQLQSILGKLNFARNFIPNFAELVQTLYNLIASSPGKYIEWTEDNTKQLNKVIEALNTASNLEERLPDQRLVIKVNTSP
SAGYVRYYNESGKKPIMYLNYV
Pro_2m FSKAELKFSMLEKLLTTMHKALIKAMDLAMGQEILVYSPIVSMTKIQKTPLPERKALPIRWITWMTYLEDPRIQFHYDK
TLPELKHIPDVYTSSIPPLKHPS
utA
QYEGVFCTDGSAIKSPDPTKSNNAGMGIVHAIYNPEYKILNQWSIPLGHHTAQMAEIAAVEFACKKALKVPGPVLVITD
SFYVAESANKELPYVVKSNGF
8,122 VNNKKEPLKHISKWKSIAECLSIKPDITIQHEKGHQPINTSIHTEGNALADKLATQGSYVVN
PRSRAIDIPVPHADKISWKITDPVVVVDQWPLTYEKTLAAIALVQEQLAAGHIEPTNSPWNTPIFIIKKKSGSWRLLQD
LRAVNKVMVPMGALQPGLPSPV
AIPLNYHKIVIDLKDCFFTIPLHPEDRPYFAFSVPQINFQSPMPRYQWKVLPQGMANSPTLCQKFVAAAIAPVRSQWPE
AYILHYMDDILLACDSAEAAK
SMRV
ACYAHIISCLTSYGLKIAPDKVQVSEPFSYLGFELHHQQVFTPRVCLKTDHLKTLNDFQKLLGDIQWLRPYLKLPTSAL
VPLNNILKGDPNPLSVRALTPE
H_PO3 AKQSLALINKAIQNQSVQQISYNLPLVLLLLPTPHTPTAVFWQPNGTDPTKNGSPLLWLHLPASPSKVLLTYPSLLAML
IIKGRYTGRQLFGRDPHSIIIPY

TQDQLTWLLQTSDEWAIALSSFTGDIDNHYPSDPVIQFAKLHQFIFPKITKCAPIPQATLVFTDGSSNGIAAYVIDNQP
ISIKSPYLSAQLVELYAILQVFTV
8,123 LAHQPFNLYTDSAYIAQSVPLLETVPFIKSSTNATPLFSKLQQLILNRQHPFFIGHLRAHLNLPGPLAEGNALADAATQ
IFPIISD
PRSRAIDIPVPHADKISWKITDPVVVVDQWPLTYEKTLAAIALVQEQLAAGHIEPTNSPWNTPIFIIKKKSGSWRLLQD
LRAVNKVMVPMGALQPGLPSPV
SMRV
AIPLNYHKIVIDLKDCFFTIPLHPEDRPYFAFSVPQINFQSPMPRYQWKVLPQGMANSPTLCQKFVAAAIAPVRSQWPE
AYILHYMDDILLACDSAEAAK
H_P03 ACYAHIISCLTSYGLKIAPDKVQVSEPFSYLGFELHHQQVFTPRVCLKTDHLKTLNDFQKLLGDIQWLRPYLKLPTSAL
VPLNNILKPDPNPLSVRALTPE
364_2 AKQSLALINKAIQNQSVQQISYNLPLVLLLLPTPHTPTAVFWQPNGTDPTKNGSPLLWLHLPASPSKVLLTYPSLLAML
IIKGRYTGRQLFGRDPHSIIIPY
mut TQDQLTWLLQTSDEWAIALSSFTGDIDNHYPSDPVIQFAKLHQFIFPKITKCAPIPQATLVFTDGSSNGIAAYVIDNQP
ISIKSPYLSAQLVELYAILQVFTV
8,124 LAHQPFNLYTDSAYIAQSVPLLETVPFIKSSTNATPLFSKLQQLILNRQHPFFIGHLRAHLNLPGPLAEGNALADAATQ
IFPIISD
PRSRAIDIPVPHADKISWKITDPVVVVDQWPLTYEKTLAAIALVQEQLAAGHIEPTNSPWNTPIFIIKKKSGSWRLLQD
LRAVNKVMVPMGALQPGLPSPV
SMRV
APPLNYHKIVIDLKDCFFTIPLHPEDRPYFAFSVPQINFQSPMPRYQWKVLPQGMANSPTLCQKFVAAAIAPVRSQWPE
AYILHYMDDILLACDSAEAAK
H_P03 ACYAHIISCLTSYGLKIAPDKVQVSEPFSYLGFELHHQQVFTPRVCLKTDHLKTLNDFQKLLGDIQWLRPYLKLPTSAL
VPLNNILKPDPNPLSVRALTPE
364_2 AKQSLALINKAIQNQSVQQISYNLPLVLLLLPTPHTPTAVFWQPNGTDPTKNGSPLLWLHLPASPSKVLLTYPSLLAML
IIKGRYTGRQLFGRDPHSIIIPY
mutB
TQDQLTWLLQTSDEWAIALSSFTGDIDNHYPSDPVIQFAKLHQFIFPKITKCAPIPQATLVFTDGSSNGIAAYVIDNQP
ISIKSPYLSAQLVELYAILQVFTV
8,125 LAHQPFNLYTDSAYIAQSVPLLETVPFIKSSTNATPLFSKLQQLILNRQHPFFIGHLRAHLNLPGPLAEGNALADAATQ
IFPIISD
LATAVDILAPQRYADPITWKSDEPVVVVDQWPLTQEKLAAAQQLVQEQLQAGHIIESNSPWNTPIFVIKKKSGKWRLLQ
DLRAVNATMVLMGALQPGLP
SPVAIPQGYFKIVIDLKDCFFTIPLQPVDQKRFAFSLPSTNFKQPMKRYQWKVLPQGMANSPTLCQKYVAAAIEPVRKS
WAQMYIIHYMDDILIAGKLGE
SRV2_ QVLQCFAQLKQALTTTGLQIAPEKVQLQDPYTYLGFQINGPKITNQKAVIRRDKLQTLNDFQKLLGDINWLRPYLHLTT
GDLKPLFDILKGDSNPNSPRS

LSEAALASLQKVETAIAEQFVTQIDYTQPLTFLIFNTTLTPTGLFWQNNPVMVVVHLPASPKKVLLPYYDAIADLIILG
RDNSKKYFGLEPSTIIQPYSKSQIH
WLMQNTETWPIACASYAGNIDNHYPPNKLIQFCKLHAVVFPRIISKTPLDNALLVFTDGSSTGIAAYTFEKTTVRFKTS
HTSAQLVELQALIAVLSAFPHR
8,126 ALNVYTDSAYLAHSIPLLETVSHIKHISDTAKFFLQCQQLIYNRSIPFYLGHIRAHSGLPGPLSQGNHITDLATKVVAT
TLTT
LATAVDILAPQRYADPITWKSDEPVVVVDQWPLTQEKLAAAQQLVQEQLQAGHIIESNSPWNTPIFVIKKKSGKWRLLQ
DLRAVNATMVLMGALQPGLP
SPVAPPQGYFKIVIDLKDCFFTIPLQPVDQKRFAFSLPSTNFKQPMKRYQWKVLPQGMANSPTLCQKYVAAAIEPVRKS
WAQMYIIHYMDDILIAGKLGE
SRV2_ QVLQCFAQLKQALTTTGLQIAPEKVQLQDPYTYLGFQINGPKITNQKAVIRRDKLQTLNDFQKLLGDINWLRPYLHLTT
GDLKPLFDILKGDSNPNSPRS

LSEAALASLQKVETAIAEQFVTQIDYTQPLTFLIFNTTLTPTGLFWQNNPVMVVVHLPASPKKVLLPYYDAIADLIILG
RDNSKKYFGLEPSTIIQPYSKSQIH
_2mutB
WLMQNTETWPIACASYAGNIDNHYPPNKLIQFCKLHAVVFPRIISKTPLDNALLVFTDGSSTGIAAYTFEKTTVRFKTS
HTSAQLVELQALIAVLSAFPHR
8,127 ALNVYTDSAYLAHSIPLLETVSHIKHISDTAKFFLQCQQLIYNRSIPFYLGHIRAHSGLPGPLSQGNHITDLATKVVAT
TLTT
SCQTKNTLNIDEYLLQFPDQLWASLPTDIGRMLVPPITIKIKDNASLPSIRQYPLPKDKTEGLRPLISSLENQGILIKC
HSPCNTPIFPIKKAGRDEYRMIHD
LRAINNIVAPLTAVVASPTTVLSNLAPSLHWFTVIDLSNAFFSVPIHKDSQYLFAFTFEGHQYTWTVLPQGFIHSPTLF
SQALYQSLHKIKFKISSEICIYMD
WDSV
DVLIASKDRDTNLKDTAVMLQHLASEGHKVSKKKLQLCQQE\NYLGQLLTPEGRKILPDRKVTVSQFQQPTTIRQIRAF
LGLVGYCRHWIPEFSIHSKFL
_0928 EKQLKKDTAEPFQLDDQQVEAFNKLKHAITTAPVLVVPDPAKPFQLYTSHSEHASIAVLTQKHAGRTRPIAFLSSKFDA
IESGLPPCLKACASIHRSLTQA

DSFILGAPLIIYTTHAICTLLQRDRSQLVTASRFSKWEADLLRPELTFVACSAVSPAHLYMQSCENNIPPHDCVLLTHT
ISRPRPDLSDLPIPDPDMTLFSD
GSYTTGRGGAAVVMHRPVTDDFIIIHQQPGGASAQTAELLALAAACHLATDKTVNIYTDSRYAYGVVHDFGHLWMHRGF
VTSAGTPIKNHKEIEYLLKQ
8,128 I MKPKQVSVIKIEAHTKGVSMEVRGNAAADEAAKNAVFLVQR
SCQTKNTLNIDEYLLQFPDQLWASLPTDIGRMLVPPITIKIKDNASLPSIRQYPLPKDKTEGLRPLISSLENQGILIKC
HSPCNTPIFPIKKAGRDEYRMIHD
LRAINNIVAPLTAVVASPTTVLSNLAPSLHWFTVIDLSNAFFSVPIHKDSQYLFAFTFEGHQYTWTVLPQGFIHSPTLF
NQALYQSLHKIKFKISSEICIYMD
WDSV
DVLIASKDRDTNLKDTAVMLQHLASEGHKVSKKKLQLCQQE\NYLGQLLTPEGRKILPDRKVTVSQFQQPTTIRQIRAF
LGLVGYCRHWIPEFSIHSKFL
_0928 EKQLKPDTAEPFQLDDQQVEAFNKLKHAITTAPVLVVPDPAKPFQLYTSHSEHASIAVLTQKHAGRTRPIAFLSSKFDA
IESGLPPCLKACASIHRSLTQA
15_2m DSFILGAPLIIYTTHAICTLLQRDRSQLVTASRFSKWEADLLRPELTFVACSAVSPAHLYMQSCENNIPPHDCVLLTHT
ISRPRPDLSDLPIPDPDMTLFSD
ut GSYTTGRGGAAVVMHRPVTDDFIIIHQQPGGASAQTAELLALAAACHLATDKTVNIYTDSRYAYGVVHDFGHLWMHRGF
VTSAGTPIKNHKEIEYLLKQ
8,129 I MKPKQVSVIKIEAHTKGVSMEVRGNAAADEAAKNAVFLVQR
SCQTKNTLNIDEYLLQFPDQLWASLPTDIGRMLVPPITIKIKDNASLPSIRQYPLPKDKTEGLRPLISSLENQGILIKC
HSPCNTPIFPIKKAGRDEYRMIHD
LRAINNIVAPLTAVVASPTTVLSNLAPSLHWFTVIDLSNAFFSVPIHKDSQYLFAFTFEGHQYTWTVLPQGFIHSPTLF
NQALYQSLHKIKFKISSEICIYMD
WDSV
DVLIASKDRDTNLKDTAVMLQHLASEGHKVSKKKLQLCQQE\NYLGQLLTPEGRKILPDRKVTVSQFQQPTTIRQIRAF
LGKVGYCRHFIPEFSIHSKFL
_0928 EKQLKPDTAEPFQLDDQQVEAFNKLKHAITTAPVLVVPDPAKPFQLYTSHSEHASIAVLTQKHAGRTRPIAFLSSKFDA
IESGLPPCLKACASIHRSLTQA
15_2m DSFILGAPLIIYTTHAICTLLQRDRSQLVTASRFSKWEADLLRPELTFVACSAVSPAHLYMQSCENNIPPHDCVLLTHT
ISRPRPDLSDLPIPDPDMTLFSD
utA
GSYTTGRGGAAVVMHRPVTDDFIIIHQQPGGASAQTAELLALAAACHLATDKTVNIYTDSRYAYGVVHDFGHLWMHRGF
VTSAGTPIKNHKEIEYLLKQ
8,130 I MKPKQVSVIKIEAHTKGVSMEVRGNAAADEAAKNAVFLVQR
VLNLEEEYRLHEKPVPSSIDPSWLQLFPTVWAERAGMGLANQVPPVVVELRSGASPVAVRQYPMSKEAREGIRPHIQRF
LDLGVLVPCQSPWNTPLL
PVKKPGTNDYRPVQDLREINKRVQDIHPTVPNPYNLLSSLPPSHTINYSVLDLKDAFFCLKLHPNSQPLFAFEWRDPEK
GNTGQLTWTRLPQGFKNSP
WMSV
TLFDEALHRDLAPFRALNPQ\NLLQYVDDLLVAAPTYRDCKEGTQKLLQELSKLGYRVSAKKAQLCQKEVTYLGYLLKE
GKRWLTPARKATVMKIPPP
_P0335 TTPRQVREFLGTAGFCRLWIPGFASLAAPLYPLTKESIPFIWTEEHQKAFDRIKEALLSAPALALPDLTKPFTLYVDER
AGVARGVLTQTLGPWRRPVAY

LSKKLDPVASGWPTCLKAVAAVALLLKDADKLTLGQNVTVIASHSLESIVRQPPDRWMTNARMTHYQSLLLNERVSFAP
PAVLNPATLLPVESEATPVH
RCSEILAEETGTRRDLKDQPLPGVPAVVYTDGSSFIAEGKRRAGAAIVDGKRTVVVASSLPEGTSAQKAELVALTQALR
LAEGKDINIYTDSRYAFATAHI
8,131 HGAIYKQRGLLTSAGKDIKNKEEILALLEAIHLPKRVAIIHCPGHQKGNDPVATGNRRADEAAKQAALSTRVLAETTKP

RI SEQ ID
RI amino acid sequence Name NO:
VLNLEEEYRLHEKPVPSSIDPSWLQLFPTVWAERAGMGLANQVPPVVVELRSGASPVAVRQYPMSKEAREGIRPHIQRF
LDLGVLVPCQSPWNTPLL
PVKKPGTNDYRPVQDLREINKRVQDIHPTVPNPYNLLSSLPPSHTINYSVLDLKDAFFCLKLHPNSQPLFAFEWRDPEK
GNTGQLTWTRLPQGFKNSP
WMSV
TLFNEALHRDLAPFRALNPQ\NLLQYVDDLLVAAPTYRDCKEGTQKLLQELSKLGYRVSAKKAQLCQKEVTYLGYLLKE
GKRWLTPARKATVMKIPPP
_P0335 TTPRQVREFLGTAGFCRLWIPGFASLAAPLYPLTKPSIPFIWTEEHQKAFDRIKEALLSAPALALPDLTKPFTLYVDER
AGVARGVLTQTLGPWRRPVAY
9_3mu1 LSKKLDPVASGWPTCLKAVAAVALLLKDADKLTLGQNVTVIASHSLESIVRQPPDRWMTNARMTHYQSLLLNERVSFAP
PAVLNPATLLPVESEATPVH
RCSEILAEETGTRRDLKDQPLPGVPAVVYTDGSSFIAEGKRRAGAAIVDGKRTVVVASSLPEGTSAQKAELVALTQALR
LAEGKDINIYTDSRYAFATAHI
8,132 HGAIYKQRGWLTSAGKDIKNKEEILALLEAIHLPKRVAIIHCPGHQKGNDPVATGNRRADEAAKQAALSTRVLAETTKP

VLNLEEEYRLHEKPVPSSIDPSWLQLFPTVWAERAGMGLANQVPPVVVELRSGASPVAVRQYPMSKEAREGIRPHIQRF
LDLGVLVPCQSPWNTPLL
PVKKPGTNDYRPVQDLREINKRVQDIHPTVPNPYNLLSSLPPSHTINYSVLDLKDAFFCLKLHPNSQPLFAFEWRDPEK
GNTGQLTWTRLPQGFKNSP
WMSV
TLFNEALHRDLAPFRALNPQ\NLLQYVDDLLVAAPTYRDCKEGTQKLLQELSKLGYRVSAKKAQLCQKEVTYLGYLLKE
GKRWLTPARKATVMKIPPP
_P0335 TTPRQVREFLGKAGFCRLFIPGFASLAAPLYPLTKPSIPFIWTEEHQKAFDRIKEALLSAPALALPDLTKPFTLYVDER
AGVARGVLTQTLGPWRRPVAY
9_3mut LSKKLDPVASGWPTCLKAVAAVALLLKDADKLTLGQNVTVIASHSLESIVRQPPDRWMTNARMTHYQSLLLNERVSFAP
PAVLNPATLLPVESEATPVH
A
RCSEILAEETGTRRDLKDQPLPGVPAVVYTDGSSFIAEGKRRAGAAIVDGKRTVVVASSLPEGTSAQKAELVALTQALR
LAEGKDINIYTDSRYAFATAHI
8,133 HGAIYKQRGWLTSAGKDIKNKEEILALLEAIHLPKRVAIIHCPGHQKGNDPVATGNRRADEAAKQAALSTRVLAETTKP

TLNIEDEYRLHETSKEPDVPLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT

LFDEALHRDLADFRIQHPDLILLQYVDDLLLAATSEQDCQRGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPK
_A1Z65 TPRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQ
GYAKGVLTQKLGPWRRPVA

YLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQF
GPVVALNPATLLPLPEKEA
PHDCLEILAETHGTRPDLTDQPIPDADYTINYTDGSSFLQEGQRRAGAAVTTETEVIWARALPAGTSAQRAELIALTQA
LKMAEGKKLNVYTDSRYAFAT
8,134 AHVHGEIYRRRGLLTSEGREIKNKNEILALLKALFLPKRLSIIHCPGHQKGNSAEARGNRMADQAAREAAMKAVLETST
LL
TLNIEDEYRLHETSKEPDVPLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT

LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSEQDCQRGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPK
_A1Z65 TPRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQ
GYAKGVLTQKLGPWRRPV
1_3mu1 AYLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQ
FGPVVALNPATLLPLPEKE
APHDCLEILAETHGTRPDLTDQPIPDADYTINYTDGSSFLQEGQRRAGAAVTTETEVIWARALPAGTSAQRAELIALTQ
ALKMAEGKKLNVYTDSRYAF
8,135 ATAHVHGEIYRRRGWLTSEGREIKNKNEILALLKALFLPKRLSIIHCPGHQKGNSAEARGNRMADQAAREAAMKAVLET
STLL
TLNIEDEYRLHETSKEPDVPLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKPHIQ
RLLDQGILVPCQSPWNTPLLP
VKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPPSHQVVYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMG
ISGQLTWTRLPQGFKNSPT

LFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSEQDCQRGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEG
QRWLTEARKETVMGQPTPK
_A1Z65 TPRQLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQ
GYAKGVLTQKLGPWRRPVA
1_3mut YLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQAMLLDTDRVQF
GPVVALNPATLLPLPEKEA
A
PHDCLEILAETHGTRPDLTDQPIPDADYTINYTDGSSFLQEGQRRAGAAVTTETEVIWARALPAGTSAQRAELIALTQA
LKMAEGKKLNVYTDSRYAFAT
8,136 AHVHGEIYRRRGWLTSEGREIKNKNEILALLKALFLPKRLSIIHCPGHQKGNSAEARGNRMADQAAREAAMKAVLETST
LL
In some embodiments, reverse transcriptase domains are modified, for example by site-specific mutation. In some embodiments, reverse transcriptase domains are engineered to have improved properties, e.g. SuperScript IV (SSIV) reverse transcriptase derived from the MMLV RT. In some embodiments, the reverse transcriptase domain may be engineered to have lower error rates, e.g., as described in W02001068895, incorporated herein by reference. In some embodiments, the reverse transcriptase domain may be engineered to be more thermostable. In some embodiments, the reverse transcriptase domain may be engineered to be more processive. In some embodiments, the reverse transcriptase domain may be engineered to have tolerance to inhibitors. In some embodiments, the reverse transcriptase domain may be engineered to be faster. In some embodiments, the reverse transcriptase domain may be engineered to better tolerate modified nucleotides in the RNA template. In some embodiments, the reverse transcriptase domain may be engineered to insert modified DNA
nucleotides. In some embodiments, the reverse transcriptase domain is engineered to bind a template RNA. In some embodiments, one or more mutations are chosen from D200N, L603W, T330P, D524G, E562Q, D583N, P51L, S67R, E67K, T197A, H204R, E302K, F309N, W313F, L435G, N454K, H594Q, L671P, E69K, H8Y, T306K, or D653N in the RT domain of murine leukemia virus reverse transcriptase or a corresponding mutation at a corresponding position of another RT domain.
In some embodiments, an RT domain (e.g., as listed in Table 6) comprises one or more mutations as listed in Table 2 below. In some embodiment, an RT domain as listed in Table 6 comprises one, two, three, four, five, or six of the mutations listed in the corresponding row of Table 2 below.
Table 2. Exemplary RT domain mutations (relative to corresponding wild-type sequences as listed in the corresponding row of Table 6) RT Domain Name Mutation(s) AVIRE P03360 3mut D200N G330P L605W
AVIRE P03360 3mutA D200N G330P L605W T306K W313F

BAEVM P10272 3mut D198N E328P L602W
BAEVM P10272 3mutA D198N E328P L602W T304K W311F

BLVAU P25059 2mut E1590. G286P

BLVJ P03361 2mut E1590. L524W
BLVJ P03361 2mutB E1590. L524W I97P

FFV 093209 2mut D21N T293N T419P
FFV 093209 2mutA D21N T293N T419P L393K
FFV 093209-Pro FFV 093209-Pro 2mut T207N T333P
FFV 093209-Pro 2mutA T207N T333P L307K

FLV P10273 3mut D199N L602W
FLV P10273 3mutA D199N L602W T305K W312F

FOAMV P14350 2mut D24N T296N 5420P
FOAMV P14350 2mutA D24N T296N 5420P L396K
FOAMV P14350-Pro FOAMV P14350-Pro 2mut T207N 5331P
FOAMV P14350-Pro 2mutA T207N 5331P L307K

GALV P21414 3mut D198N E328P L600W
GALV P21414 3mutA D198N E328P L600W T304K W311F

HTL1A P03362 2mut E1520. R279P
HTL1A P03362 2mutB E1520. R279P L9OP

HTL1C P14078 2mut E1520. R279P

HTL1L POC211 2mut E1490. L527W
HTL1L POC211 2mutB E1490. L527W L87P
HTL32_Q0R5R2 HTL32_00R5R2_2mut E1490. L526W
HTL32_00R5R2_2mutB E1490. L526W L87P
HTL3P_Q4U0X6 HTL3P_Q4U0X6_2mut E1490. L526W
HTL3P_Q4U0X6_2mutB E1490. L526W L87P
HTLV2 P03363 2mut E1470. G274P

JSRV P31623 2mutB A100P
KORV_Q9TTC1 D32N
KORV_Q9TTC1_3mut D32N D322N E452P L724W
KORV_Q9TTC1_3mutA D32N D322N E452P L724W T428K W435F
KORV_Q9TTC1-Pro KORV_Q9TTC1-Pro_3mut D231N E361P L633W
KORV_Q9TTC1-Pro_3mutA D231N E361P L633W T337K W344F

MLVAV P03356 3mut D200N T330P L603W
MLVAV P03356 3mutA D200N T330P L603W T306K W313F
MLVBM_Q75VK7 MLVBM_Q75VK7 MLVBM_Q7SVK7_3mut D200N T330P L603W
MLVBM_Q7SVK7_3mut D200N T330P L603W
MLVBM_Q7SVK7_3mutA_WS D199N T329P L602W T305K W312F
MLVBM_Q7SVK7_3mutA_WS D199N T329P L602W T305K W312F

MLVCB P08361 3mut D200N T330P L603W
MLVCB P08361 3mutA D200N T330P L603W T306K W313F

MLVF5 P26810 3mut D200N T330P L603W
MLVF5 P26810 3mutA D200N T330P L603W T306K W313F
MLVFF P26809 3mut D200N T330P L603W

MLVFF P26809 3mutA D200N T330P L603W T306K W313F

MLVMS P03355 3mut D200N T330P L603W
MLVMS P03355 3mut D200N T330P L603W
MLVMS P03355 3mutA WS D200N T330P L603W T306K W313F
MLVMS P03355 3mutA WS D200N T330P L603W T306K W313F

MLVRD P11227 3mut D200N T330P L603W

MMTVB P03365 2mut D26N G401P
MMTVB P03365 2mut WS G400P
MMTVB P03365 2mut WS G400P
MMTVB P03365 2mutB D26N G401P V215P
MMTVB P03365 2mutB D26N G401P V215P
MMTVB P03365 2mutB WS G400P V212P
MMTVB P03365 2mutB WS G400P V212P

MMTVB P03365-Pro MMTVB P03365-Pro MMTVB P03365-Pro 2mut G309P
MMTVB P03365-Pro 2mut G309P
MMTVB P03365-Pro 2mutB G309P V123P
MMTVB P03365-Pro 2mutB G309P V123P

MPMV P07572 2mutB G289P 1103P
PERV_Q4VFZ2 PERV_Q4VFZ2 PERV_Q4VFZ2_3mut D199N E329P L602W
PERV_Q4VFZ2_3mut D199N E329P L602W
PERV_Q4VFZ2_3mutA_WS D196N E326P L599W T302K W309F
PERV_Q4VFZ2_3mutA_WS D196N E326P L599W T302K W309F

SFV1 P23074 2mut D24N T296N N420P
SFV1 P23074 2mutA D24N T296N N420P L396K

SF Vi P23074-Pro SFV1 P23074-Pro 2mut T207N N331P
SFV1 P23074-Pro 2mutA T207N N331P L307K

SFV3L P27401 2mut D24N T296N N422P
SFV3L P27401 2mutA D24N T296N N422P L396K
SFV3L P27401-Pro SFV3L P27401-Pro 2mut T307N N333P
SFV3L P27401-Pro 2mutA T307N N333P L307K
SFVCP_Q87040 D24N
SFVCP_087040_2mut D24N T296N K422P
SFVCP_087040_2mutA D24N T296N K422P L396K
SFVCP_Q87040-Pro SFVCP_Q87040-Pro_2mut T207N K333P
SFVCP_Q87040-Pro_2mutA T207N K333P L307K

SMRVH P03364 2mut G288P
SMRVH P03364 2mutB G288P 1102P

SRV2 P51517 2mutB 1103P

WDSV 092815 2mut S183N K312P
WDSV 092815 2mutA S183N K312P L288K W295F

WMSV P03359 3mut D198N E328P L600W
WMSV P03359 3mutA D198N E328P L600W T304K W311F

XMRV6 A1Z651 3mut D200N T330P L603W
XMRV6 A1Z651 3mutA D200N T330P L603W T306K W313F
In some embodiments, a gene modifying polypeptide comprises the RT domain from a retroviral reverse transcriptase, e.g., a wild-type M-MLV RT, e.g., comprising the following sequence:
M-MLV (WT):
TLNIEDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP
MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPLLPVKKPGTNDYRPVQDLREVNKRVEDIHPTVP
NPYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMGISGQLTWTRLPQGFKN

SPTLFDEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKA
QICQKQVKYLGYLLKEGQRWLTEARKETVMGQPTPKTPRQLREFLGTAGFCRLWIPGFAEMAA
PLYPLTKTGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKLG
PWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPD
RWLSNARMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEGLQHNCLDILAEAHGTRPDLTDQP
LPDADHTWYTDGSSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQALKMAEGK
KLNVYTDSRYAFATAHIHGEIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGH
SAEARGNRMADQAARKAAITETPDTSTLLI (SEQ ID NO: 5002) In some embodiments, a gene modifying polypeptide comprises the RT domain from a retroviral reverse transcriptase, e.g., an M-MLV RT, e.g., comprising the following sequence:
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP
MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPLLPVKKPGTNDYRPVQDLREVNKRVEDIHPTVP
NPYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMGISGQLTWTRLPQGFKN
SPTLFDEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKA
QICQKQVKYLGYLLKEGQRWLTEARKETVMGQPTPKTPRQLREFLGTAGFCRLWIPGFAEMAA
PLYPLTKTGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKLG
PWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPD
RWLSNARMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEGLQHNCLDILAEAHGTRPDLTDQP
LPDADHTWYTDGSSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQALKMAEGK
KLNVYTDSRYAFATAHIHGEIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGH
SAEARGNRMADQAARKAAITETPDTSTLL (SEQ ID NO: 5003) In some embodiments, a gene modifying polypeptide comprises the RT domain from a retroviral reverse transcriptase comprising the sequence of amino acids 659-1329 of NP_057933. In embodiments, the gene modifying polypeptide further comprises one additional amino acid at the N-terminus of the sequence of amino acids 659-1329 of NP 057933, e.g., as shown below:
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP
MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPLLPVKI(PGTNDYRPVQDLREVNKRVEDIHPT
VPNPYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMGISGQLTWTRLP
QGFKNSPTLFDEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNL
GYRASAKKAQICQKQVKYLGYLLKEGQRWLTEARKETVMGQPTPKTPRQLREFLGTAGFCRL
WIPGFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQGY
AKGVLTQKLGPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPH
AVEALVKQPPDRWLSNARMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEGLQHNCLDILAE
AHGTRPDLTDQPLPDADHTWYTDGS SLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELI

ALTQALKMAEGKKLNVYTDSRYAFATAHIHGEIYRRRGLLTSEGKEIKNKDEILALLKALFLPKR
LSIIHCPGHQKGHSAEARGNRMADQAARKAA (SEQ ID NO: 5004) Core RT (bold), annotated per above RNAseH (underlined), annotated per above In embodiments, the gene modifying polypeptide further comprises one additional amino acid at the C-terminus of the sequence of amino acids 659-1329 of NP_057933. In embodiments, the gene modifying polypeptide comprises an RNaseHl domain (e.g., amino acids 1178-1318 of NP_057933).
In some embodiments, a retroviral reverse transcriptase domain, e.g., M-MLV
RT, may comprise one or more mutations from a wild-type sequence that may improve features of the RT, e.g., thermostability, processivity, and/or template binding. In some embodiments, an M-MLV RT domain comprises, relative to the M-MLV (WT) sequence above, one or more mutations, e.g., selected from D200N, L603W, T330P, T306K, W313F, D524G, E562Q, D583N, P51L, 567R, E67K, T197A, H204R, E302K, F309N, L435G, N454K, H594Q, D653N, R1 10S, K103L, e.g., a combination of mutations, such as D200N, L603W, and T330P, optionally further including T306K and W313F. In some embodiments, an M-MLV RT used herein comprises the mutations D200N, L603W, T330P, T306K and W313F. In embodiments, the mutant M-MLV RT comprises the following amino acid sequence:
M-MLV (PE2):
TLNIEDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP
MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPLLPVKKPGTNDYRPVQDLREVNKRVEDIHPTVP
NPYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMGISGQLTWTRLPQGFKN
SPTLFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKA
QICQKQVKYLGYLLKEGQRWLTEARKETVMGQPTPKTPRQLREFLGKAGFCRLFIPGFAEMAAP
LYPLTKPGTLFNWGPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKLGP
WRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDR
WLSNARMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEGLQHNCLDILAEAHGTRPDLTDQPL
PDADHTWYTDGSSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQALKMAEGKK
LNVYTDSRYAFATAHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHS
AEARGNRMADQAARKAAITETPDTSTLLI (SEQ ID NO: 5005) In some embodiments, a writing domain (e.g., RT domain) comprises an RNA-binding domain, e.g., that specifically binds to an RNA sequence. In some embodiments, a template RNA comprises an RNA sequence that is specifically bound by the RNA-binding domain of the writing domain.

In some embodiments, the reverse transcription domain only recognizes and reverse transcribes a specific template, e.g., a template RNA of the system. In some embodiments, the template comprises a sequence or structure that enables recognition and reverse transcription by a reverse transcription domain.
In some embodiments, the template comprises a sequence or structure that enables association with an RNA-binding domain of a polypeptide component of a genome engineering system described herein. In some embodiments, the genome engineering system reverse preferably transcribes a template comprising an association sequence over a template lacking an association sequence.
The writing domain may also comprise DNA-dependent DNA polymerase activity, e.g., comprise enzymatic activity capable of writing DNA into the genome from a template DNA
sequence. In some embodiments, DNA-dependent DNA polymerization is employed to complete second-strand synthesis of a target site edit. In some embodiments, the DNA-dependent DNA polymerase activity is provided by a DNA polymerase domain in the polypeptide. In some embodiments, the DNA-dependent DNA
polymerase activity is provided by a reverse transcriptase domain that is also capable of DNA-dependent DNA polymerization, e.g., second-strand synthesis. In some embodiments, the DNA-dependent DNA
polymerase activity is provided by a second polypeptide of the system. In some embodiments, the DNA-dependent DNA polymerase activity is provided by an endogenous host cell polymerase that is optionally recruited to the target site by a component of the genome engineering system.
In some embodiments, the reverse transcriptase domain has a lower probability of premature termination rate (Poff) in vitro relative to a reference reverse transcriptase domain. In some embodiments, the reference reverse transcriptase domain is a viral reverse transcriptase domain, e.g., the RT domain from M-MLV.
In some embodiments, the reverse transcriptase domain has a lower probability of premature termination rate (Poff) in vitro of less than about 5 x 10-3/nt, 5 x 10-4/nt, or 5 x 10-6/nt, e.g., as measured on a 1094 nt RNA. In embodiments, the in vitro premature termination rate is determined as described in Bibillo and Eickbush (2002) J Biol Chem 277(38):34836-34845 (incorporated by reference herein its entirety).
In some embodiments, the reverse transcriptase domain is able to complete at least about 30% or 50% of integrations in cells. The percent of complete integrations can be measured by dividing the number of substantially full-length integration events (e.g., genomic sites that comprise at least 98% of the expected integrated sequence) by the number of total (including substantially full-length and partial) integration events in a population of cells. In embodiments, the integrations in cells is determined (e.g., across the integration site) using long-read amplicon sequencing, e.g., as described in Karst et al. (2020) bioRxiv doi.org/10.1101/645903 (incorporated by reference herein in its entirety).

In embodiments, quantifying integrations in cells comprises counting the fraction of integrations that contain at least about 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% of the DNA
sequence corresponding to the template RNA (e.g., a template RNA having a length of at least 0.05, 0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 3, 4, or 5 kb, e.g., a length between 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 1.0-1.2, 1.2-1.4, 1.4-1.6, 1.6-1.8, 1.8-2.0, 2-3, 3-4, or 4-5 kb).
In some embodiments, the reverse transcriptase domain is capable of polymerizing dNTPs in vitro. In embodiments, the reverse transcriptase domain is capable of polymerizing dNTPs in vitro at a rate between 0.1 ¨ 50 nt/sec (e.g., between 0.1-1, 1-10, or 10-50 nt/sec). In embodiments, polymerization of dNTPs by the reverse transcriptase domain is measured by a single-molecule assay, e.g., as described in Schwartz and Quake (2009) PNAS 106(48):20294-20299 (incorporated by reference in its entirety).
In some embodiments, the reverse transcriptase domain has an in vitro error rate (e.g., misincorporation of nucleotides) of between 1 x 10r3 ¨ 1 x 10-4 or 1 x 10-4¨ 1 x 10-5 substitutions/nt , e.g., as described in Yasukawa et al. (2017) Biochem Biophys Res Commun 492(2):147-153 (incorporated herein by reference in its entirety). In some embodiments, the reverse transcriptase domain has an error rate (e.g., misincorporation of nucleotides) in cells (e.g., HEK293T cells) of between 1 x 10-3¨ 1 x 10-4 or 1 x 10-4¨ 1 x 10-5 substitutions/nt, e.g., by long-read amplicon sequencing, e.g., as described in Karst et al. (2020) bioRxiv doi.org/10.1101/645903 (incorporated by reference herein in its entirety).
In some embodiments, the reverse transcriptase domain is capable of performing reverse transcription of a target RNA in vitro. In some embodiments, the reverse transcriptase requires a primer of at least 3 nucleotides to initiate reverse transcription of a template. In some embodiments, reverse transcription of the target RNA is determined by detection of cDNA from the target RNA (e.g., when provided with a ssDNA primer, e.g., which anneals to the target with at least 3, 4, 5, 6, 7, 8, 9, or 10 nt at the 3' end), e.g., as described in Bibillo and Eickbush (2002) J Biol Chem 277(38):34836-34845 (incorporated herein by reference in its entirety).
In some embodiments, the reverse transcriptase domain performs reverse transcription at least 5 or 10 times more efficiently (e.g., by cDNA production), e.g., when converting its RNA template to cDNA, for example, as compared to an RNA template lacking the protein binding motif (e.g., a 3' UTR).
In embodiments, efficiency of reverse transcription is measured as described in Yasukawa et al. (2017) Biochem Biophys Res Commun 492(2):147-153 (incorporated by reference herein in its entirety).
In some embodiments, the reverse transcriptase domain specifically binds a specific RNA
template with higher frequency (e.g., about 5 or 10-fold higher frequency) than any endogenous cellular RNA, e.g., when expressed in cells (e.g., HEK293T cells). In embodiments, frequency of specific binding between the reverse transcriptase domain and the template RNA are measured by CLIP-seq, e.g., as described in Lin and Miles (2019) Nucleic Acids Res 47(11):5490-5501 (incorporated herein by reference in its entirety).
Template nucleic acid binding domain The gene modifying polypeptide typically contains regions capable of associating with the template nucleic acid (e.g., template RNA). In some embodiments, the template nucleic acid binding domain is an RNA binding domain. In some embodiments, the RNA binding domain is a modular domain that can associate with RNA molecules containing specific signatures, e.g., structural motifs. In other embodiments, the template nucleic acid binding domain (e.g., RNA binding domain) is contained within the reverse transcription domain, e.g., the reverse transcriptase-derived component has a known signature for RNA preference.
In other embodiments, the template nucleic acid binding domain (e.g., RNA
binding domain) is contained within the target DNA binding domain. For example, in some embodiments, the DNA binding domain is a CRISPR-associated protein that recognizes the structure of a template nucleic acid (e.g., template RNA) comprising a gRNA. In some embodiments, a gene modifying polypeptide comprises a DNA-binding domain comprising a CRISPR-associated protein that associates with a gRNA scaffold that allows the DNA-binding domain to bind a target genomic DNA sequence. In some embodiments, the gRNA scaffold and gRNA spacer is comprised within the template nucleic acid (e.g., template RNA), thus the DNA-binding domain is also the template nucleic acid binding domain.
In some embodiments, the polypeptide possesses RNA binding function in multiple domains, e.g., can bind a gRNA structure in a CRISPR-associated DNA binding domain and an additional sequence or structure in a reverse transcriptase domain.
In some embodiments, the RNA binding domain is capable of binding to a template RNA with greater affinity than a reference RNA binding domain. In some embodiments, the reference RNA binding domain is an RNA binding domain from Cas9 of S. pyogenes. In some embodiments, the RNA binding domain is capable of binding to a template RNA with an affinity between 100 pM
¨ 10 nM (e.g., between 100 pM-1 nM or 1 nM ¨ 10 nM). In some embodiments, the affinity of a RNA
binding domain for its template RNA is measured in vitro, e.g., by thermophoresis, e.g., as described in Asmari et al. Methods 146:107-119 (2018) (incorporated by reference herein in its entirety). In some embodiments, the affinity of a RNA binding domain for its template RNA is measured in cells (e.g., by FRET or CLIP-Seq).
In some embodiments, the RNA binding domain is associated with the template RNA in vitro at a frequency at least about 5-fold or 10-fold higher than with a scrambled RNA.
In some embodiments, the frequency of association between the RNA binding domain and the template RNA
or scrambled RNA is measured by CLIP-seq, e.g., as described in Lin and Miles (2019) Nucleic Acids Res 47(11):5490-5501 (incorporated by reference herein in its entirety). In some embodiments, the RNA binding domain is associated with the template RNA in cells (e.g., in HEK293T cells) at a frequency at least about 5-fold or 10-fold higher than with a scrambled RNA. In some embodiments, the frequency of association between the RNA binding domain and the template RNA or scrambled RNA is measured by CLIP-seq, e.g., as described in Lin and Miles (2019), supra.
Endonuclease domains and DNA binding domains In some embodiments, a gene modifying polypeptide possesses the function of DNA target site cleavage via an endonuclease domain. In some embodiments, a gene modifying polypeptide comprises a DNA binding domain, e.g., for binding to a target nucleic acid. In some embodiments, a domain (e.g., a Cas domain) of the gene modifying polypeptide comprises two or more smaller domains, e.g., a DNA
binding domain and an endonuclease domain. It is understood that when a DNA
binding domain (e.g., a Cas domain) is said to bind to a target nucleic acid sequence, in some embodiments, the binding is mediated by a gRNA.
In some embodiments, a domain has two functions. For example, in some embodiments, the endonuclease domain is also a DNA-binding domain. In some embodiments, the endonuclease domain is also a template nucleic acid (e.g., template RNA) binding domain. For example, in some embodiments, a polypeptide comprises a CRISPR-associated endonuclease domain that binds a template RNA comprising a gRNA, binds a target DNA sequence (e.g., with complementarity to a portion of the gRNA), and cuts the target DNA sequence. In some embodiments, an endonuclease domain or endonuclease/DNA-binding domain from a heterologous source can be used or can be modified (e.g., by insertion, deletion, or substitution of one or more residues) in a gene modifying system described herein.
In some embodiments, a nucleic acid encoding the endonuclease domain or endonuclease/DNA
binding domain is altered from its natural sequence to have altered codon usage, e.g. improved for human cells. In some embodiments, the endonuclease element is a heterologous endonuclease element, such as a Cas endonuclease (e.g., Cas9), a type-II restriction endonuclease (e.g., Fokl), a meganuclease (e.g., I-SceI), or other endonuclease domain.
In certain aspects, the DNA-binding domain of a gene modifying polypeptide described herein is selected, designed, or constructed for binding to a desired host DNA target sequence. In certain embodiments, the DNA-binding domain of the polypeptide is a heterologous DNA-binding element. In some embodiments the heterologous DNA binding element is a zinc-finger element or a TAL effector element, e.g., a zinc-finger or TAL polypeptide or functional fragment thereof In some embodiments the heterologous DNA binding element is a sequence-guided DNA binding element, such as Cas9, Cpfl, or other CRISPR-related protein that has been altered to have no endonuclease activity. In some embodiments the heterologous DNA binding element retains endonuclease activity. In some embodiments, the heterologous DNA binding element retains partial endonuclease activity to cleave ssDNA, e.g., possesses nickase activity. In specific embodiments, the heterologous DNA-binding domain can be any one or more of Cas9, TAL domain, ZF domain, Myb domain, combinations thereof, or multiples thereof.
In some embodiments, DNA-binding domains are modified, for example by site-specific mutation, increasing or decreasing DNA-binding elements (for example, number and/or specificity of zinc fingers), etc., to alter DNA-binding specificity and affinity. In some embodiments a nucleic acid sequence encoding the DNA binding domain is altered from its natural sequence to have altered codon usage, e.g. improved for human cells. In embodiments, the DNA binding domain comprises one or more modifications relative to a wild-type DNA binding domain, e.g., a modification via directed evolution, e.g., phage-assisted continuous evolution (PACE).
In some embodiments, the DNA binding domain comprises a meganuclease domain (e.g., as described herein, e.g., in the endonuclease domain section), or a functional fragment thereof. In some embodiments, the meganuclease domain possesses endonuclease activity, e.g., double-strand cleavage and/or nickase activity. In other embodiments, the meganuclease domain has reduced activity, e.g., lacks endonuclease activity, e.g., the meganuclease is catalytically inactive. In some embodiments, a catalytically inactive meganuclease is used as a DNA binding domain, e.g., as described in Fonfara et al.
Nucleic Acids Res 40(2):847-860 (2012), incorporated herein by reference in its entirety.
In some embodiments, a gene modifying polypeptide comprises a modification to a DNA-binding domain, e.g., relative to the wild-type polypeptide. In some embodiments, the DNA-binding domain comprises an addition, deletion, replacement, or modification to the amino acid sequence of the original DNA-binding domain. In some embodiments, the DNA-binding domain is modified to include a heterologous functional domain that binds specifically to a target nucleic acid (e.g., DNA) sequence of interest. In some embodiments, the functional domain replaces at least a portion (e.g., the entirety of) the prior DNA-binding domain of the polypeptide. In some embodiments, the functional domain comprises a zinc finger (e.g., a zinc finger that specifically binds to the target nucleic acid (e.g., DNA) sequence of interest. In some embodiments, the functional domain comprises a Cas domain (e.g., a Cas domain that specifically binds to the target nucleic acid (e.g., DNA) sequence of interest. In some embodiments, the Cas domain comprises a Cas9 or a mutant or variant thereof (e.g., as described herein). In embodiments, the Cas domain is associated with a guide RNA (gRNA), e.g., as described herein. In embodiments, the Cas domain is directed to a target nucleic acid (e.g., DNA) sequence of interest by the gRNA. In embodiments, the Cas domain is encoded in the same nucleic acid (e.g., RNA) molecule as the gRNA. In embodiments, the Cas domain is encoded in a different nucleic acid (e.g., RNA) molecule from the gRNA.
In some embodiments, the DNA binding domain is capable of binding to a target sequence (e.g., a dsDNA target sequence) with greater affinity than a reference DNA binding domain. In some embodiments, the reference DNA binding domain is a DNA binding domain from Cas9 of S. pyogenes.
In some embodiments, the DNA binding domain is capable of binding to a target sequence (e.g., a dsDNA target sequence) with an affinity between 100 pM ¨ 10 nM (e.g., between 100 pM-1 nM or 1 nM
¨ 10 nM).
In some embodiments, the affinity of a DNA binding domain for its target sequence (e.g., dsDNA
target sequence) is measured in vitro, e.g., by thermophoresis, e.g., as described in Asmari et al. Methods 146:107-119 (2018) (incorporated by reference herein in its entirety).
In embodiments, the DNA binding domain is capable of binding to its target sequence (e.g., dsDNA target sequence), e.g, with an affinity between 100 pM ¨ 10 nM (e.g., between 100 pM-1 nM or 1 nM ¨ 10 nM) in the presence of a molar excess of scrambled sequence competitor dsDNA, e.g., of about 100-fold molar excess.
In some embodiments, the DNA binding domain is found associated with its target sequence (e.g., dsDNA target sequence) more frequently than any other sequence in the genome of a target cell, e.g., human target cell, e.g., as measured by ChIP-seq (e.g., in HEK293T
cells), e.g., as described in He and Pu (2010) Curr. Protoc Mol Blot Chapter 21 (incorporated herein by reference in its entirety). In some embodiments, the DNA binding domain is found associated with its target sequence (e.g., dsDNA
target sequence) at least about 5-fold or 10-fold, more frequently than any other sequence in the genome of a target cell, e.g., as measured by ChIP-seq (e.g., in HEK293T cells), e.g., as described in He and Pu (2010), supra.
In some embodiments, the endonuclease domain has nickase activity and cleaves one strand of a target DNA. In some embodiments, nickase activity reduces the formation of double-stranded breaks at the target site. In some embodiments, the endonuclease domain creates a staggered nick structure in the first and second strands of a target DNA. In some embodiments, a staggered nick structure generates free 3' overhangs at the target site. In some embodiments, free 3' overhangs at the target site improve editing efficiency, e.g., by enhancing access and annealing of a 3' homology region of a template nucleic acid. In some embodiments, a staggered nick structure reduces the formation of double-stranded breaks at the target site.
In some embodiments, the endonuclease domain cleaves both strands of a target DNA, e.g., results in blunt-end cleavage of a target with no ssDNA overhangs on either side of the cut-site. The amino acid sequence of an endonuclease domain of a gene modifying system described herein may be at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identical to the amino acid sequence of an endonuclease domain described herein, e.g., an endonuclease domain as described herein.
In certain embodiments, the heterologous endonuclease is Fokl or a functional fragment thereof.
In certain embodiments, the heterologous endonuclease is a Holliday junction resolvase or homolog thereof, such as the Holliday junction resolving enzyme from Sulfolobus solfataricus--Ssol Hje (Govindaraju et al., Nucleic Acids Research 44:7, 2016). In certain embodiments, the heterologous endonuclease is the endonuclease of the large fragment of a spliceosomal protein, such as Prp8 (Mahbub et al., Mobile DNA 8:16, 2017). In certain embodiments, the heterologous endonuclease is derived from a CRISPR-associated protein, e.g., Cas9. In certain embodiments, the heterologous endonuclease is engineered to have only ssDNA cleavage activity, e.g., only nickase activity, e.g., be a Cas9 nickase, e.g., SpCas9 with DlOA, H840A, or N863A mutations. Table 8 provides exemplary Cas proteins and mutations associated with nickase activity. In still other embodiments, homologous endonuclease domains are modified, for example by site-specific mutation, to alter DNA
endonuclease activity. In still other embodiments, endonuclease domains are modified to reduce DNA-sequence specificity, e.g., by truncation to remove domains that confer DNA-sequence specificity or mutation to inactivate regions conferring DNA-sequence specificity.
In some embodiments, the endonuclease domain has nickase activity and does not form double-stranded breaks. In some embodiments, the endonuclease domain forms single-stranded breaks at a higher frequency than double-stranded breaks, e.g., at least 90%, 95%, 96%, 97%, 98%, or 99% of the breaks are single-stranded breaks, or less than 10%, 5%, 4%, 3%, 2%, or 1% of the breaks are double-stranded breaks. In some embodiments, the endonuclease forms substantially no double-stranded breaks.
In some embodiments, the endonuclease does not form detectable levels of double-stranded breaks.
In some embodiments, the endonuclease domain has nickase activity that nicks the target site DNA of the first strand; e.g., in some embodiments, the endonuclease domain cuts the genomic DNA of the target site near to the site of alteration on the strand that will be extended by the writing domain. In some embodiments, the endonuclease domain has nickase activity that nicks the target site DNA of the first strand and does not nick the target site DNA of the second strand. For example, when a polypeptide comprises a CRISPR-associated endonuclease domain having nickase activity, in some embodiments, said CRISPR-associated endonuclease domain nicks the target site DNA strand containing the PAM site (e.g., and does not nick the target site DNA strand that does not contain the PAM site). As a further example, when a polypeptide comprises a CRISPR-associated endonuclease domain having nickase activity, in some embodiments, said CRISPR-associated endonuclease domain nicks the target site DNA
strand not containing the PAM site (e.g., and does not nick the target site DNA strand that contains the PAM site).
In some other embodiments, the endonuclease domain has nickase activity that nicks the target site DNA of the first strand and the second strand. Without wishing to be bound by theory, after a writing domain (e.g., RT domain) of a polypeptide described herein polymerizes (e.g., reverse transcribes) from the heterologous object sequence of a template nucleic acid (e.g., template RNA), the cellular DNA repair machinery must repair the nick on the first DNA strand. The target site DNA
now contains two different sequences for the first DNA strand: one corresponding to the original genomic DNA (e.g., having a free 5' end) and a second corresponding to that polymerized from the heterologous object sequence (e.g., having a free 3' end). It is thought that the two different sequences equilibrate with one another, first one hybridizing the second strand, then the other, and which sequence the cellular DNA repair apparatus incorporates into its repaired target site may be a stochastic process.
Without wishing to be bound by theory, it is thought that introducing an additional nick to the second-strand may bias the cellular DNA
repair machinery to adopt the heterologous object sequence-based sequence more frequently than the original genomic sequence (Anzalone et al. Nature 576:149-157 (2019)). In some embodiments, the additional nick is positioned at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 150 nucleotides 5' or 3' of the target site modification (e.g., the insertion, deletion, or substitution) or to the nick on the first strand.
Alternatively, or additionally, without wishing to be bound by theory, it is thought that an additional nick to the second strand may promote second-strand synthesis. In some embodiments, where the gene modifying system has inserted or substituted a portion of the first strand, synthesis of a new sequence corresponding to the insertion/substitution in the second strand is necessary.
In some embodiments, the polypeptide comprises a single domain having endonuclease activity (e.g., a single endonuclease domain) and said domain nicks both the first strand and the second strand.
For example, in such an embodiment the endonuclease domain may be a CRISPR-associated endonuclease domain, and the template nucleic acid (e.g., template RNA) comprises a gRNA spacer that directs nicking of the first strand and an additional gRNA spacer that directs nicking of the second strand.
In some embodiments, the polypeptide comprises a plurality of domains having endonuclease activity, and a first endonuclease domain nicks the first strand and a second endonuclease domain nicks the second strand (optionally, the first endonuclease domain does not (e.g., cannot) nick the second strand and the second endonuclease domain does not (e.g., cannot) nick the first strand).
In some embodiments, the endonuclease domain is capable of nicking a first strand and a second strand. In some embodiments, the first and second strand nicks occur at the same position in the target site but on opposite strands. In some embodiments, the second strand nick occurs in a staggered location, e.g., upstream or downstream, from the first nick. In some embodiments, the endonuclease domain generates a target site deletion if the second strand nick is upstream of the first strand nick. In some embodiments, the endonuclease domain generates a target site duplication if the second strand nick is downstream of the first strand nick. In some embodiments, the endonuclease domain generates no duplication and/or deletion if the first and second strand nicks occur in the same position of the target site.
In some embodiments, the endonuclease domain has altered activity depending on protein conformation or RNA-binding status, e.g., which promotes the nicking of the first or second strand (e.g., as described in Christensen et al. PNAS 2006; incorporated by reference herein in its entirety).
In some embodiments, the endonuclease domain comprises a meganuclease, or a functional fragment thereof In some embodiments, the endonuclease domain comprises a homing endonuclease, or a functional fragment thereof. In some embodiments, the endonuclease domain comprises a meganuclease from the LAGLIDADG, GIY-YIG, HNH, His-Cys Box, or PD-(D/E) XK
families, or a functional fragment or variant thereof, e.g., which possess conserved amino acid motifs, e.g., as indicated in the family names. In some embodiments, the endonuclease domain comprises a meganuclease, or fragment thereof, chosen from, e.g., I-SmaMI (Uniprot F7WD42), I-SceI (Uniprot P03882), 1-Anil (Uniprot P03880), I-DmoI (Uniprot P21505), I-CreI (Uniprot P05725), I-TevI
(Uniprot P13299), I-OnuI
(Uniprot Q4VWW5), or I-BmoI (Uniprot Q9ANR6). In some embodiments, the meganuclease is naturally monomeric, e.g., I-SceI, I-TevI, or dimeric, e.g., I-CreI, in its functional form. For example, the LAGLIDADG meganucleases with a single copy of the LAGLIDADG motif generally form homodimers, whereas members with two copies of the LAGLIDADG motif are generally found as monomers. In some embodiments, a meganuclease that normally forms as a dimer is expressed as a fusion, e.g., the two subunits are expressed as a single ORF and, optionally, connected by a linker, e.g., an I-CreI dimer fusion (Rodriguez-Fornes et al. Gene Therapy 2020; incorporated by reference herein in its entirety). In some embodiments, a meganuclease, or a functional fragment thereof, is altered to favor nickase activity for one strand of a double-stranded DNA molecule, e.g., I-SceI (K1221 and/or K223I) (Niu et al. J Mol Biol 2008), 1-Anil (K227M) (McConnell Smith et al. PNAS 2009), I-DmoI (Q42A and/or K120M) (Molina et al. J Biol Chem 2015). In some embodiments, a meganuclease or functional fragment thereof possessing this preference for single-strand cleavage is used as an endonuclease domain, e.g., with nickase activity.
In some embodiments, an endonuclease domain comprises a meganuclease, or a functional fragment thereof, which naturally targets or is engineered to target a safe harbor site, e.g., an I-CreI targeting 5H6 site (Rodriguez-Fornes et al., supra). In some embodiments, an endonuclease domain comprises a meganuclease, or a functional fragment thereof, with a sequence tolerant catalytic domain, e.g., I-TevI
recognizing the minimal motif CNNNG (Kleinstiver et al. PNAS 2012). In some embodiments, a target sequence tolerant catalytic domain is fused to a DNA binding domain, e.g., to direct activity, e.g., by fusing I-TevI to: (i) zinc fingers to create Tev-ZFEs (Kleinstiver et al. PNAS
2012), (ii) other meganucleases to create MegaTevs (Wolfs etal. Nucleic Acids Res 2014), and/or (iii) Cas9 to create TevCas9 (Wolfs etal. PNAS 2016).
In some embodiments, the endonuclease domain comprises a restriction enzyme, e.g., a Type ITS
or Type TIP restriction enzyme. In some embodiments, the endonuclease domain comprises a Type ITS
restriction enzyme, e.g., FokI, or a fragment or variant thereof In some embodiments, the endonuclease domain comprises a Type TIP restriction enzyme, e.g., PvuII, or a fragment or variant thereof In some embodiments, a dimeric restriction enzyme is expressed as a fusion such that it functions as a single chain, e.g., a FokI dimer fusion (Minczuk et al. Nucleic Acids Res 36(12):3926-3938 (2008)).
The use of additional endonuclease domains is described, for example, in Guha and Edge!! Int J
Mol Sci 18(22):2565 (2017), which is incorporated herein by reference in its entirety.
In some embodiments, a gene modifying polypeptide comprises a modification to an endonuclease domain, e.g., relative to a wild-type Cas protein. In some embodiments, the endonuclease domain comprises an addition, deletion, replacement, or modification to the amino acid sequence of the wild-type Cas protein. In some embodiments, the endonuclease domain is modified to include a heterologous functional domain that binds specifically to and/or induces endonuclease cleavage of a target nucleic acid (e.g., DNA) sequence of interest. In some embodiments, the endonuclease domain comprises a zinc finger. In embodiments, the endonuclease domain comprising the Cas domain is associated with a guide RNA (gRNA), e.g., as described herein. In some embodiments, the endonuclease domain is modified to include a functional domain that does not target a specific target nucleic acid (e.g., DNA) sequence. In embodiments, the endonuclease domain comprises a Fokl domain.
In some embodiments, the endonuclease domain is associated with the target dsDNA in vitro at a frequency at least about 5-fold or 10-fold higher than with a scrambled dsDNA.
In some embodiments, the endonuclease domain is associated with the target dsDNA in vitro at a frequency at least about 5-fold or 10-fold higher than with a scrambled dsDNA, e.g., in a cell (e.g., a HEK293T cell). In some embodiments, the frequency of association between the endonuclease domain and the target DNA or scrambled DNA is measured by ChIP-seq, e.g., as described in He and Pu (2010) Curr. Protoc Mol Biol Chapter 21 (incorporated by reference herein in its entirety).
In some embodiments, the endonuclease domain can catalyze the formation of a nick at a target sequence, e.g., to an increase of at least about 5-fold or 10-fold relative to a non-target sequence (e.g., relative to any other genomic sequence in the genome of the target cell). In some embodiments, the level of nick formation is determined using NickSeq, e.g., as described in Elacqua etal. (2019) bioRxiv doi.org/10.1101/867937 (incorporated herein by reference in its entirety).

In some embodiments, the endonuclease domain is capable of nicking DNA in vitro. In embodiments, the nick results in an exposed base. In embodiments, the exposed base can be detected using a nuclease sensitivity assay, e.g., as described in Chaudhry and Weinfeld (1995) Nucleic Acids Res 23(19):3805-3809 (incorporated by reference herein in its entirety). In embodiments, the level of exposed bases (e.g., detected by the nuclease sensitivity assay) is increased by at least 10%, 50%, or more relative to a reference endonuclease domain. In some embodiments, the reference endonuclease domain is an endonuclease domain from Cas9 of S. pyogenes.
In some embodiments, the endonuclease domain is capable of nicking DNA in a cell. In embodiments, the endonuclease domain is capable of nicking DNA in a HEK293T
cell. In embodiments, an unrepaired nick that undergoes replication in the absence of Rad51 results in increased NHEJ rates at the site of the nick, which can be detected, e.g., by using a Rad51 inhibition assay, e.g., as described in Bothmer et al. (2017) Nat Commun 8:13905 (incorporated by reference herein in its entirety). In embodiments, NHEJ rates are increased above 0-5%. In embodiments, NHEJ rates are increased to 20-70% (e.g., between 30%-60% or 40-50%), e.g., upon Rad51 inhibition.
In some embodiments, the endonuclease domain releases the target after cleavage. In some embodiments, release of the target is indicated indirectly by assessing for multiple turnovers by the enzyme, e.g., as described in Yourik at al. RNA 25(1):35-44 (2019) (incorporated herein by reference in its entirety) and shown in FIG. 2. In some embodiments, the kexp of an endonuclease domain is 1 x 10-3 ¨
1 x 10-5 min-1 as measured by such methods.
In some embodiments, the endonuclease domain has a catalytic efficiency (1ceat/Km) greater than about 1 x 108 s-1 M-1 in vitro. In embodiments, the endonuclease domain has a catalytic efficiency greater than about 1 x 105, 1 x 106, 1 x 107, or 1 x 108, s-1 M-1 in vitro. In embodiments, catalytic efficiency is determined as described in Chen et al. (2018) Science 360(6387):436-439 (incorporated herein by reference in its entirety). In some embodiments, the endonuclease domain has a catalytic efficiency (1ceat/Km) greater than about 1 x 108 s-1 M-1 in cells. In embodiments, the endonuclease domain has a catalytic efficiency greater than about 1 x 105, 1 x 106, 1 x 107, or 1 x 108 s-1 M-1 in cells.
Gene modifying polypeptides comprising Cas domains In some embodiments, a gene modifying polypeptide described herein comprises a Cas domain.
In some embodiments, the Cas domain can direct the gene modifying polypeptide to a target site specified by a gRNA spacer, thereby modifying a target nucleic acid sequence in "cis".
In some embodiments, a gene modifying polypeptide is fused to a Cas domain. In some embodiments, a gene modifying polypeptide comprises a CRISPR/Cas domain (also referred to herein as a CRISPR-associated protein). In some embodiments, a CRISPR/Cas domain comprises a protein involved in the clustered regulatory interspaced short palindromic repeat (CRISPR) system, e.g., a Cas protein, and optionally binds a guide RNA, e.g., single guide RNA (sgRNA).
CRISPR systems are adaptive defense systems originally discovered in bacteria and archaea.
CRISPR systems use RNA-guided nucleases termed CRISPR-associated or "Cos"
endonucleases (e. g., Cas9 or Cpfl) to cleave foreign DNA. For example, in a typical CRISPR-Cas system, an endonuclease is directed to a target nucleotide sequence (e. g., a site in the genome that is to be sequence-edited) by sequence-specific, non-coding "guide RNAs" that target single- or double-stranded DNA sequences.
Three classes (I-III) of CRISPR systems have been identified. The class II
CRISPR systems use a single Cas endonuclease (rather than multiple Cas proteins). One class II CRISPR
system includes a type II Cas endonuclease such as Cas9, a CRISPR RNA ("crRNA"), and a trans-activating crRNA ("tracrRNA").
The crRNA contains a "spacer" sequence, a typically about 20-nucleotide RNA
sequence that corresponds to a target DNA sequence ("protospacer"). In the wild-type system, and in some engineered systems, crRNA also contains a region that binds to the tracrRNA to form a partially double-stranded structure that is cleaved by RNase III, resulting in a crRNA/tracrRNA hybrid molecule. A
.. crRNA/tracrRNA hybrid then directs the Cas endonuclease to recognize and cleave a target DNA
sequence. A target DNA sequence is generally adjacent to a "protospacer adjacent motif' ("PAM") that is specific for a given Cas endonuclease and required for cleavage activity at a target site matching the spacer of the crRNA. CRISPR endonucleases identified from various prokaryotic species have unique PAM sequence requirements, e.g., as listed for exemplary Cas enzymes in Table 7; examples of PAM
.. sequences include 5"-NGG (Streptococcus pyogenes; SEQ ID NO: 11,019), 5"-NNAGAA (Streptococcus thermophilus CRISPR1; SEQ ID NO: 11,020), 5"-NGGNG (Streptococcus thermophilus CRISPR3; SEQ
ID NO: 11,021), and 5"-NNNGATT (Neisseria meningiditis; SEQ ID NO: 11,022).
Some endonucleases, e.g., Cas9 endonucleases, are associated with G-rich PAM sites, e.g., 5"-NGG
(SEQ ID NO: 11,023), and perform blunt-end cleaving of the target DNA at a location 3 nucleotides upstream from (5' from) the .. PAM site. Another class II CRISPR system includes the type V endonuclease Cpfl, which is smaller than Cas9; examples include AsCpfl (from Acidaminococcus sp.) and LbCpfl (from Lachnospiraceae sp.). Cpfl-associated CRISPR arrays are processed into mature crRNAs without the requirement of a tracrRNA; in other words, a Cpfl system, in some embodiments, comprises only Cpfl nuclease and a crRNA to cleave a target DNA sequence. Cpfl endonucleases, are typically associated with T-rich PAM
sites, e. g., 5"-TTN. Cpfl can also recognize a 5"-CTA PAM motif. Cpfl typically cleaves a target DNA
by introducing an offset or staggered double-strand break with a 4- or 5-nucleotide 5' overhang, for example, cleaving a target DNA with a 5-nucleotide offset or staggered cut located 18 nucleotides downstream from (3' from) from a PAM site on the coding strand and 23 nucleotides downstream from the PAM site on the complimentary strand; the 5-nucleotide overhang that results from such offset cleavage allows more precise genome editing by DNA insertion by homologous recombination than by insertion at blunt-end cleaved DNA. See, e.g., Zetsche et al. (2015) Cell, 163:759 - 771.
A variety of CRISPR associated (Cas) genes or proteins can be used in the technologies provided by the present disclosure and the choice of Cas protein will depend upon the particular conditions of the method. Specific examples of Cas proteins include class II systems including Casl, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Cpfl, C2C1, or C2C3. In some embodiments, a Cas protein, e.g., a Cas9 protein, may be from any of a variety of prokaryotic species. In some embodiments a particular Cas protein, e.g., a particular Cas9 protein, is selected to recognize a particular protospacer-adjacent motif (PAM) sequence. In some embodiments, a DNA-binding domain or endonuclease domain includes a sequence targeting polypeptide, such as a Cas protein, e.g., Cas9. In certain embodiments a Cas protein, e.g., a Cas9 protein, may be obtained from a bacteria or archaea or synthesized using known methods. In certain embodiments, a Cas protein may be from a gram-positive bacteria or a gram-negative bacteria. In certain embodiments, a Cas protein may be from a Streptococcus (e.g., a S.
pyogenes, or a S.
thermophilus), a Francisella (e.g., an F. novicida), a Staphylococcus (e.g., an S. aureus), an Acidaminococcus (e.g., an Acidaminococcus sp. BV3L6), a Neisseria (e.g., an N.
meningitidis), a Cryptococcus, a Corynebacterium, a Haemophilus, a Eubacterium, a Pasteurella, a Prevotella, a Veillonella, or a Marinobacter.
In some embodiments, a gene modifying polypeptide may comprise the amino acid sequence of SEQ ID NO: 4000 below, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identity thereto. In embodiments, the amino acid sequence of SEQ ID
NO: 4000 below, or the sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%
identity thereto, is positioned at the N-terminal end of the gene modifying polypeptide. In embodiments, the amino acid sequence of SEQ ID NO: 4000 below, or the sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identity thereto, is positioned within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, or 30 amino acids of the N-terminal end of the gene modifying polypeptide.
Exemplary N-terminal NLS-Cas9 domain MPAAKRVKLDGGDKKYS I GLD I GTNSVGWAVI TDEYKVPSKKFKVLGNTDRHS I KKNL I GALLF
DSGETAEATRLKRTARRRYTRRKNRI CYLQE I FSNEMAKVDDS FFHRLEES FLVEEDKKHERHP
I FGNI VDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHMI KFRGHFL I EGDLNPDNSDV
DKLF I QLVQTYNQLFEENP I NASGVDAKAI LSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS
LGLTPNFKSNFDLAEDAKLQLS KDTYDDDLDNLLAQ I GDQYADLFLAAKNLSDAI LLSD I LRVN
TE I TKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKE I FFDQS KNGYAGYI DGGASQEE FY
KF I KP I LEKMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ I HLGELHAI LRRQEDFYPFLKDNR
EKI EKI LTFRI PYYVGPLARGNSRFAWMTRKS EET I TPWNFEEVVDKGASAQS F I ERMTNFDKN
LPNEKVLPKHS LLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAI VDLLFKTNRKVTVKQLK

EDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENEDI LEDIVLTLTLFEDR
EMI EERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKL I NGI RDKQSGKT I LDFLKSDGFANRNF
MQL I HDDS LTFKED I QKAQVSGQGDSLHEHIANLAGS PAI KKGI LQTVKVVDELVKVMGRHKPE
NI VI EMARENQTTQKGQKNSRERMKRI EEGI KELGSQ I LKEHPVENTQLQNEKLYLYYLQNGRD
MYVDQELD I NRLSDYDVDH I VPQS FLKDDS I DNKVLTRSDKARGKSDNVP S EEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLS ELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL
I REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL I KKYPKLESEFVYGDY
KVYDVRKMIAKSEQE I GKATAKYFFYSNI MNFFKTE I TLANGE I RKRPL I ETNGETGE I VWDKG
RDFATVRKVLSMPQVNIVKKTEVQTGGFSKES I LPKRNSDKLIARKKDWDPKKYGGFDSPTVAY
SVLVVAKVEKGKSKKLKSVKELLGI TIMERS S FEKNP I DFLEAKGYKEVKKDL I I KLPKYSLFE
LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGS PEDNEQKQLFVEQHKHYLDE I
I EQ I S E FS KRVI LADANLDKVLSAYNKHRDKP I REQAENI I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATLIHQS I TGLYETRIDLSQLGGDGG (SEQ ID NO: 4000) In some embodiments, a gene modifying polypeptide may comprise the amino acid sequence of SEQ ID NO: 4001 below, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identity thereto. In embodiments, the amino acid sequence of SEQ ID
NO: 4001 below, or the sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%
identity thereto, is positioned at the C-terminal end of the gene modifying polypeptide. In embodiments, the amino acid sequence of SEQ ID NO: 4001 below, or the sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identity thereto, is positioned within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, or 30 amino acids of the C-terminal end of the gene modifying polypeptide.
Exemplary C-terminal sequence comprising an NLS
AGKRTADGSEFEKRTADGSEFESPKKKAKVE (SEQ ID NO: 4001) Exemplary benchmarking sequence MPAAKRVKLDGGDKKYS I GLD I GTNSVGWAVI TDEYKVPSKKFKVLGNTDRHS I KKNL I GALLF
DSGETAEATRLKRTARRRYTRRKNRI CYLQE I FSNEMAKVDDSFFHRLEESFLVEEDKKHERHP
I FGNI VDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHMI KFRGHFL I EGDLNPDNSDV
DKLF I QLVQTYNQLFEENP I NASGVDAKAI LSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS
LGLTPNFKSNFDLAEDAKLQLS KDTYDDDLDNLLAQ I GDQYADLFLAAKNLSDAI LLSD I LRVN
TE I TKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKE I FFDQS KNGYAGYI DGGASQEE FY
KF I KP I LEKMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ I HLGELHAI LRRQEDFYPFLKDNR
EKI EKI LTFRI PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQS F I ERMTNFDKN
LPNEKVLPKHS LLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAI VDLLFKTNRKVTVKQLK
EDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENEDI LEDIVLTLTLFEDR

EMI EERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKL I NGI RDKQSGKT I LDFLKSDGFANRNF
MQL I HDDS LTFKED I QKAQVSGQGDSLHEHIANLAGSPAI KKGI LQTVKVVDELVKVMGRHKPE
NI VI EMARENQTTQKGQKNSRERMKRI EEGI KELGSQ I LKEHPVENTQLQNEKLYLYYLQNGRD
MYVDQELD I NRLSDYDVDH I VPQS FLKDDS I DNKVLTRSDKARGKSDNVP S EEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLS ELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL
I REVKVI TLKS KLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL I KKYPKLESEFVYGDY
KVYDVRKMIAKS EQE I GKATAKYFFYSNI MNFFKTE I TLANGE I RKRPL I ETNGETGE I VWDKG
RDFATVRKVLSMPQVNIVKKTEVQTGGFSKES I LPKRNSDKLIARKKDWDPKKYGGFDSPTVAY
SVLVVAKVEKGKSKKLKSVKELLGI TIMERS SFEKNP I DFLEAKGYKEVKKDL I I KLPKYSLFE
.. LENGRKRMLASAGELQKGNELALP S KYVNFLYLASHYEKLKGS PEDNEQKQLFVEQHKHYLDE I
I EQ I S E FS KRVI LADANLDKVLSAYNKHRDKP I REQAENI I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATLIHQS I TGLYETRIDLSQLGGDGGSGGSSGGSSGSETPGTSESATPESSGG
SSGGSSGGTLNI EDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPL I I PLKATS
TPVS I KQYPMSQEARLGI KPH I QRLLDQGI LVPCQSPWNTPLLPVKKPGTNDYRPVQDLREVNK
RVEDIHPTVPNPYNLLSGLP P SHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPEMGI SGQLT
WTRLPQGFKNSPTLFNEALHRDLADFRI QHPDL I LLQYVDDLLLAATSELDCQQGTRALLQTLG
NLGYRASAKKAQ I CQKQVKYLGYLLKEGQRWLTEARKETVMGQPTPKTPRQLREFLGKAGFCRL
Fl PGFAEMAAPLYPLTKPGTLFNWGPDQQKAYQE I KQALLTAPALGLPDLTKPFELFVDEKQGY
AKGVLTQKLGPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVI LAPHAV
EALVKQP PDRWLSNARMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEGLQHNCLD I LAEAHG
TRPDLTDQPLPDADHTWYTDGS SLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQ
ALKMAEGKKLNVYTDSRYAFATAH I HGE I YRRRGWLTS EGKE I KNKDE I LALLKALFLPKRLS I
I HCPGHQKGHSAEARGNRMADQAARKAAI TETPDTSTLL I ENS SPSGGSKRTADGSEFEAGKRT
ADGSEFEKRTADGSEFESPKKKAKVE (SEQ ID NO: 4002) In some embodiments, a gene modifying polypeptide may comprise a Cas domain as listed in Table 7 or 8, or a functional fragment thereof, or a sequence haying at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identity thereto.
Table 7. CRISPR/Cas Proteins, Species, and Mutations # of SEQ ID Mutations to alter PAM
Mutations to make Name Enzyme Species PAM
AAs NO: recognition catalytically dead FnCas9 Cas9 Francisella 1629 5'-NGG-3' 11,024 Wt D11A/H969A/N995A
novicida FnCas9 Francisella Cas9 1629 5'-YG-3' 11,025 El 369R/E1449H/R1556A

RHA novicida Staphylococcus 5'-NNGRRT-SaCas9 Cas9 1053 11,026 Wt D10A/H557A
aureus 3' SaCas9 Staphylococcus 5'-NNNRRT-Cas9 1053 11,027 E782K/N968K/R1015H

KKH aureus 3' Streptococcus D10A/D839A/H840A/N
SpCas9 Cas9 1368 5'-NGG-3' 11,028 Wt pyo genes 863A
SpCas9 Streptococcus D10A/D839A/H840A/N
Cas9 1368 5'-NGA-3' 11,029 D1135V/R1335Q/T1337R
VQR pyo genes 863A
AsCp fl Acidaminococcus Cpfl 1307 5'-TYCV-3' 11,030 S542R/K607R E993A
RR sp. BV3L6 AsCp fl , Acidaminococcus RVR 'P' ' sp. BV3L6 1307 5'-TATV-3' 11,031 S542R/K548V/N552R

Francisella D917A/E1006A/D1255 FnCpfl Cpf 1 1300 5'-NTTN-3' 11,032 Wt novicida A
5'-Neisseria D16A/D587A/H588A/N
NmCas9 Cas9 1082 NNNGATT- 11,033 Wt meningitidis 611A
3' Table 8. Amino Acid Sequences of CRISPR/Cas Proteins, Species, and Mutations SEQ ID Nickase Nickase Nickase Parental Variant Protein Sequence NO:
Host(s) (HNH) (HNH) (RuvC) Nme2Cas9 Neisseria MAAFKPNPINYILGLDIGIASVGWAMVEIDEEENPIRLIDLGVRVFERAEVPK
9,001 N611A H588A D16A
meningitidis TGDSLAMARRLARSVRRLTRRRAHRLLRARRLLKREGVLQAADFDENGLIKS
LPNTPWQLRAAALDRKLTPLEWSAVLLHLIKHRGYLSQRKNEGETADKELG
ALLKGVANNAHALQTGDFRTPAELALNKFEKESGHIRNQRGDYSHTFSRKD
LQAELILLFEKQKEFGNPHVSGGLKEGIETLLMTQRPALSGDAVQKMLGHCT
FEPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDTERATLMDEPYRK
SKLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRALEKEG
LKDKKSPLNLSSELQDEIGTAFSLFKTDEDITGRLKDRVQPEILEALLKHISFDKF
VQISLKALRRIVPLMEQGKRYDEACAEIYGDHYGKKNTEEKIYLPPIPADEIRN
PVVLRALSQARKVINGVVRRYGSPARIHIETAREVGKSFKDRKEIEKRQEENR
KDREKAAAKFREYFPNFVGEPKSKDILKLRLYEQQHGKCLYSGKEINLVRLNE
KGYVEIDHALPFSRTWDDSFNNKVLVLGSENQNKGNQTPYEYFNGKDNSR
EWQEFKARVETSRFPRSKKQRILLQKFDEDGFKECNLNDTRYVNRFLCQFVA
DHILLTGKGKRRVFASNGQITNLLRGFWGLRKVRAENDRHHALDAVVVACS
TVAMQQKITRFVRYKEMNAFDGKTIDKETGKVLHQKTHFPQPWEFFAQEV
MIRVFGKPDGKPEFEEADTPEKLRTLLAEKLSSRPEAVHEYVTPLFVSRAPNR
KMSGAHKDTLRSAKRFVKHNEKISVKRVWLTEIKLADLENMVNYKNGREIEL
YEALKARLEAYGGNAKQAFDPKDNPFYKKGGQLVKAVRVEKTQESGVLLNK
KNAYTIADNGDMVRVDVFCKVDKKGKNQYFIVPIYAWQVAENILPDIDCKG
YRIDDSYTFCFSLHKYDLIAFQKDEKSKVEFAYYINCDSSNGRFYLAWHDKGS
KEQQFRISTQNLVLIQKYQVNELGKEIRPCRLKKRPPVR
PpnCas9 Pasteurella MQNNPLNYILGLDLGIASIGWAVVEIDEESSPIRLIDVGVRTFERAEVAKTGE
9,002 N605A H582A D13A
pneumotropica SLALSRRLARSSRRLIKRRAERLKKAKRLLKAEKILHSIDEKLPINVWQLRVKGL
KEKLERQEWAAVLLHLSKHRGYLSQRKNEGKSDNKELGALLSGIASNHQML
QSSEYRTPAEIAVKKFQVEEGHIRNQRGSYTHTFSRLDLLAEMELLFQRQAEL
GNSYTSTTLLENLTALLMWQKPALAGDAILKMLGKCTFEPSEYKAAKNSYSA
ERFVWLTKLNNLRILENGTERALNDNERFALLEQPYEKSKLTYAQVRAMLAL
SDNAIFKGVRYLGEDKKTVESKTTLIEMKFYHQIRKTLGSAELKKEWNELKGN
SDLLDEIGTAFSLYKTDDDICRYLEGKLPERVLNALLENLNFDKFIQLSLKALHQ
ILPLMLQGQRYDEAVSAIYGDHYGKKSTETTRLLPTIPADEIRNPVVLRTLTQA
RKVINAVVRLYGSPARIHIETAREVGKSYQDRKKLEKQQEDNRKQRESAVKK
FKEMFPHFVGEPKGKDILKMRLYELQQAKCLYSGKSLELHRLLEKGYVEVDH
ALPFSRTWDDSFNNKVLVLANENQNKGNLTPYEWLDGKNNSERWQHFVV

RVQTSGFSYAKKQRILNHKLDEKGFIERNLNDTRYVARFLCNFIADNMLLVG
KGKRNVFASNGQITALLRHRWGLQKVREQNDRHHALDAVVVACSTVAMQ
QKITRFVRYNEGNVFSGERIDRETGEIIPLHFPSPWAFFKENVEIRIFSENPKLE
LENRLPDYPQYNHEWVQPLFVSRMPTRKMTGQGHMETVKSAKRLNEGLS
VLKVPLTQLKLSDLERMVNRDREIALYESLKARLEQFGNDPAKAFAEPFYKKG
GALVKAVRLEQTQKSGVLVRDGNGVADNASMVRVDVFTKGGKYFLVPIYT
WQVAKGILPNRAATQGKDENDWDIMDEMATFQFSLCQNDLIKLVTKKKTI
FGYFNGLNRATSNINIKEHDLDKSKGKLGIYLEVGVKLAISLEKYQVDELGKNI
RPCRPTKRQHVR
SauCas9 Staphylococcus MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGA
9,003 N580A H557A D10A
aureus RRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSA
ALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKK
DGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYE
GPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLN
NLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTST
GKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSE
LTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKV
DLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSK
DAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYS
LEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQ
YLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNL
VDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKG
YKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQ
EYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVN
NLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPL
YKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKL
SLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQA
EFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPP
RIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG
SauCas9- Staphylococcus MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGA
9,004 N580A H557A D10A
KKH aureus RRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSA
ALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKK
DGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYE
GPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLN
NLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTST
GKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSE
LTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKV
DLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSK
DAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYS
LEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQ
YLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNL
VDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKG
YKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQ
EYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIV
NNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNP
LYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVK
LSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQ
AEFIASFYKNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRP
PHIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG
SauriCas9 Staphylococcus MQENQQKQNYILGLDIGITSVGYGLIDSKTREVIDAGVRLFPEADSENNSNR
9,005 N588A H565A D15A
auricularis RSKRGARRLKRRRIHRLNRVKDLLADYQMIDLNNVPKSTDPYTIRVKGLREPL
TKEEFAIALLHIAKRRGLHNISVSMGDEEQDNELSTKQQLQKNAQQLQDKY
VCELQLERLTNINKVRGEKNRFKTEDFVKEVKQLCETQRQYHNIDDQFIQQY
IDLVSTRREYFEGPGNGSPYGWDGDLLKWYEKLMGRCTYFPEELRSVKYAYS
ADLFNALNDLNNLVVTRDDNPKLEYYEKYHIIENVFKQKKNPTLKQIAKEIGV
QDYDIRGYRITKSGKPQFTSFKLYHDLKNIFEQAKYLEDVEMLDEIAKILTIYQ
DEISIKKALDQLPELLTESEKSQIAQLTGYTGTHRLSLKCIHIVIDELWESPENQ
MEIFTRLNLKPKKVEMSEIDSIPTTLVDEFILSPVVKRAFIQSIKVINAVINRFGL

PEDIIIELAREKNSKDRRKFINKLQKQNEATRKKIEQLLAKYGNTNAKYMIEKI
KLHDMQEGKCLYSLEAIPLEDLLSNPTHYEVDHIIPRSVSFDNSLNNKVLVKQ
SENSKKGNRTPYQYLSSNESKISYNQFKQHILNLSKAKDRISKKKRDMLLEER
DINKFEVQKEFINRNLVDTRYATRELSNLLKTYFSTHDYAVKVKTINGGFTNH
LRKVWDFKKHRNHGYKHHAEDALVIANADFLFKTHKALRRTDKILEQPGLE
VNDTTVKVDTEEKYQELFETPKQVKNIKQFRDFKYSHRVDKKPNRQLINDTL
YSTREIDGETYVVQTLKDLYAKDNEKVKKLFTERPQKILMYQHDPKTFEKLM
TILNQYAEAKNPLAAYYEDKGEYVTKYAKKGNGPAIHKIKYIDKKLGSYLDVS
NKYPETQNKLVKLSLKSFRFDIYKCEQGYKMVSIGYLDVLKKDNYYYIPKDKYE
AEKQKKKIKESDLFVGSFYYNDLIMYEDELFRVIGVNSDINNLVELNMVDITY
KDFCEVNNVTGEKRIKKTIGKRVVLIEKYTTDILGNLYKTPLPKKPCILIFKRGEL
SauriCas9- Staphylococcus MQENQQKQNYILGLDIGITSVGYGLIDSKTREVIDAGVRLFPEADSENNSNR
9,006 N588A H565A D15A
KKH auricularis RSKRGARRLKRRRIHRLNRVKDLLADYQMIDLNNVPKSTDPYTIRVKGLREPL
TKEEFAIALLHIAKRRGLHNISVSMGDEEQDNELSTKQQLQKNAQQLQDKY
VCELQLERLTNINKVRGEKNRFKTEDFVKEVKQLCETQRQYHNIDDQFIQQY
IDLVSTRREYFEGPGNGSPYGWDGDLLKWYEKLMGRCTYFPEELRSVKYAYS
ADLFNALNDLNNLVVTRDDNPKLEYYEKYHIIENVFKQKKNPTLKQIAKEIGV
QDYDIRGYRITKSGKPQFTSFKLYHDLKNIFEQAKYLEDVEMLDEIAKILTIYQ
DEISIKKALDQLPELLTESEKSQIAQLTGYTGTHRLSLKCIHIVIDELWESPENQ
MEIFTRLNLKPKKVEMSEIDSIPTTLVDEFILSPVVKRAFIQSIKVINAVINRFGL
PEDIIIELAREKNSKDRRKFINKLQKQNEATRKKIEQLLAKYGNTNAKYMIEKI
KLHDMQEGKCLYSLEAIPLEDLLSNPTHYEVDHIIPRSVSFDNSLNNKVLVKQ
SENSKKGNRTPYQYLSSNESKISYNQFKQHILNLSKAKDRISKKKRDMLLEER
DINKFEVQKEFINRNLVDTRYATRELSNLLKTYFSTHDYAVKVKTINGGFTNH
LRKVWDFKKHRNHGYKHHAEDALVIANADFLFKTHKALRRTDKILEQPGLE
VNDTTVKVDTEEKYQELFETPKQVKNIKQFRDFKYSHRVDKKPNRKLINDTL
YSTREIDGETYVVQTLKDLYAKDNEKVKKLFTERPQKILMYQHDPKTFEKLM
TILNQYAEAKNPLAAYYEDKGEYVTKYAKKGNGPAIHKIKYIDKKLGSYLDVS
NKYPETQNKLVKLSLKSFRFDIYKCEQGYKMVSIGYLDVLKKDNYYYIPKDKYE
AEKQKKKIKESDLFVGSFYKNDLIMYEDELFRVIGVNSDINNLVELNMVDITY
KDFCEVNNVTGEKHIKKTIGKRVVLIEKYTTDILGNLYKTPLPKKPQLIFKRGEL
ScaCas9- Streptococcus MEKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTNRKSIKKNLMGALL
9,007 N872A H849A D10A
Sc++ canis FDSGETAEATRLKRTARRRYTRRKNRIRYLQE1FANEMAKLDDSFFORLEESF
LVEEDKKNERHPIFGNLADEVAYHRNYPTIYHLRKKLADSPEKADLRLIYLALA
HIIKFRGHFLIEGKLNAENSDVAKLFYQLIQTYNQLFEESPLDEIEVDAKGILSA
RLSKSKRLEKLIAVFPNEKKNGLFGNIIALALGLTPNFKSNFDLTEDAKLQLSKD
TYDDDLDELLGQIGDQYADLFSAAKNLSDAILLSDILRSNSEVTKAPLSASMV
KRYDEHHQDLALLKTLVRQQFPEKYAEIFKDDTKNGYAGYVGADKKLRKRS
GKLATEEEFYKFIKPILEKMDGAEELLAKLNRDDLLRKQRTFDNGSIPHQIHLK
ELHAILRRQEEFYPFLKENREKIEKILTFRIPYYVGPLARGNSRFAWLTRKSEEA
ITPWNFEEVVDKGASAQSFIERMTNFDEQLPNKKVLPKHSLLYEYFTVYNEL
TKVKYVTERMRKPEFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS
VEIIGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIE
ERLKTYAHLFDDKVMKQLKRRHYTGWGRLSRKMINGIRDKQSGKTILDFLKS
DGFSNRNFMQLIHDDSLTFKEEIEKAQVSGQGDSLHEQIADLAGSPAIKKGIL
QTVKIVDELVKVMGHKPENIVIEMARENQTTTKGLQQSRERKKRIEEGIKELE
SQILKENPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVP
QSFIKDDSIDNKVLTRSVENRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQ
RKFDNLTKAERGGLSEADKAGFIKRQLVETRQITKHVARILDSRMNTKRDKN
DKPIREVKVITLKSKLVSDFRKDFQLYKVRDINNYHHAHDAYLNAVVGTALIK
KYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKRFFYSNIMNFFKTEVKL
ANGEIRKRPLIETNGETGEVVWNKEKDFATVRKVLAMPQVNIVKKTEVQTG
GFSKESILSKRESAKLIPRKKGWDTRKYGGFGSPTVAYSILVVAKVEKGKAKKL
KSVKVLVGITIMEKGSYEKDPIGFLEAKGYKDIKKELIFKLPKYSLFELENGRRR
MLASAKELQKANELVLPQHLVRLLYYTQNISATTGSNNLGYIEQHREEFKEIF
EKIIDFSEKYILKNKVNSNLKSSFDEQFAVSDSILLSNSFVSLLKYTSFGASGGFT
FLDLDVKQGRLRYQTVTEVLDATLIYQSITGLYETRTDLSQLGGD

SpyCas9 Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,008 N863A H840A D10A
pyogenes DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQ
EDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFE
EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR
NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKV
VDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQ
ILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
ILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKE
LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASA
GELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEll EQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF
KYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD
SpyCas9- Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,009 N863A H840A D10A
NG pyogenes DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQ
EDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFE
EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR
NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKV
VDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQ
ILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
IRPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKLKSVKE
LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASA
RFLQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEll EQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPRAF
KYFDTTIDRKVYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD
SpyCas9- Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,010 N863A H840A D10A
SpRY pyogenes DSGETAERTRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF

YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQ
EDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFE
EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR
NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKV
VDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQ
ILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
IRPKRNSDKLIARKKDWDPKKYGGFLWPTVAYSVLVVAKVEKGKSKKLKSVK
ELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS
AKQLQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDE
IIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTRLGAPRAF
KYFDTTIDPKQYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD
St1Cas9 Streptococcus MSDLVLGLDIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNRQG
9,011 N622A H599A D9A
thermophilus RRLARRKKHRRVRLNRLFEESGLITDFTKISINLNPYQLRVKGLTDELSNEELFI
ALKNMVKHRGISYLDDASDDGNSSVGDYAQIVKENSKQLETKTPGQIQLER
YQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSEALRILQTQQEFNPQITDEF
INRYLEILTGKRKYYHGPGNEKSRTDYGRYRTSGETLDNIFGILIGKCTFYPDEF
RAAKASYTAQEFNLLNDLNNLTVPTETKKLSKEQKNQIINYVKNEKAMGPAK
LFKYIAKLLSCDVADIKGYRIDKSGKAEIHTFEAYRKMKTLETLDIEQMDRETL
DKLAYVLTLNTEREGIQEALEHEFADGSFSQKQVDELVQFRKANSSIFGKGW
HNFSVKLMMELIPELYETSEEQMTILTRLGKQKTTSSSNKTKYIDEKLLTEEIY
NPVVAKSVRQAIKIVNAAIKEYGDFDNIVIEMARETNEDDEKKAIQKIQKAN
KDEKDAAMLKAANQYNGKAELPHSVFHGHKQLATKIRLWHQQGERCLYT
GKTISIHDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQEKGQRTPYQ
ALDSMDDAWSFRELKAFVRESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLV
DTRYASRVVLNALQEHFRAHKIDTKVSVVRGQFTSQLRRHWGIEKTRDTYH
HHAVDALIIAASSQLNLWKKQKNTLVSYSEDQLLDIETGELISDDEYKESVFK
APYQHFVDTLKSKEFEDSILFSYQVDSKFNRKISDATIYATRQAKVGKDKADE
TYVLGKIKDIYTQDGYDAFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPN
KQINEKGKEVPCNPFLKYKEEHGYIRKYSKKGNGPEIKSLKYYDSKLGNHIDIT
PKDSNNKVVLQSVSPWRADVYFNKTTGKYEILGLKYADLQFEKGTGTYKISQ
EKYNDIKKKEGVDSDSEFKFTLYKNDLLLVKDTETKEQQLFRFLSRTMPKQKH
YVELKPYDKQKFEGGEALIKVLGNVANSGQCKKGLGKSNISIYKVRTDVLGN
QHIIKNEGDKPKLDF
BlatCas9 Brevibacillus MAYTMGIDVGIASCGWAIVDLERQRIIDIGVRTFEKAENPKNGEALAVPRRE
9,012 N607A H584A D8A
laterosporus ARSSRRRLRRKKHRIERLKHMFVRNGLAVDIQHLEQTLRSQNEIDVWQLRV
DGLDRMLTQKEWLRVLIHLAQRRGFQSNRKTDGSSEDGQVLVNVTENDRL
MEEKDYRTVAEMMVKDEKFSDHKRNKNGNYHGVVSRSSLLVEIHTLFETQ
RQHHNSLASKDFELEYVNIWSAQRPVATKDQIEKMIGTCTFLPKEKRAPKAS
WHFQYFMLLQTINHIRITNVQGTRSLNKEEIEQVVNMALTKSKVSYHDTRKI
LDLSEEYQFVGLDYGKEDEKKKVESKETIIKLDDYHKLNKIFNEVELAKGETWE
ADDYDTVAYALTFFKDDEDIRDYLQNKYKDSKNRLVKNLANKEYTNELIGKV
STLSFRKVGHLSLKALRKIIPFLEQGMTYDKACQAAGFDFQGISKKKRSVVLP
VIDQISNPVVNRALTQTRKVINALIKKYGSPETIHIETARELSKTFDERKNITKD
YKENRDKNEHAKKHLSELGIINPTGLDIVKYKLWCEQQGRCMYSNQPISFER
LKESGYTEVDHIIPYSRSMNDSYNNRVLVMTRENREKGNQTPFEYMGNDT
QRWYEFEQRVTTNPQIKKEKRQNLLLKGFTNRRELEMLERNLNDTRYITKYL
SHFISTNLEFSPSDKKKKVVNTSGRITSHLRSRWGLEKNRGQNDLHHAMDAI
VIAVTSDSFIQQVTNYYKRKERRELNGDDKFPLPWKFFREEVIARLSPNPKEQ
lEALPNHFYSEDELADLQPIFVSRMPKRSITGEAHQAQFRRVVGKTKEGKNIT
AKKTALVDISYDKNGDFNMYGRETDPATYEAIKERYLEFGGNVKKAFSTDLH
KPKKDGTKGPLIKSVRIMENKTLVHPVNKGKGVVYNSSIVRTDVFQRKEKYY

LLPVYVTDVTKGKLPNKVIVAKKGYHDWIEVDDSFTFLFSLYPNDLIFIRQNPK
KKISLKKRIESHSISDSKEVQEIHAYYKGVDSSTAAIEFIIHDGSYYAKGVGVQN
LDCFEKYQVDILGNYFKVKGEKRLELETSDSNHKGKDVNSIKSTSR
cCas9-v16 Staphylococcus MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGA
9,013 N580A H557A D10A
aureus RRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSA
ALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKK
DGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYE
GPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLN
NLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTST
GKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSE
LTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKV
DLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSK
DAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYS
LEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQ
YLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNL
VDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKG
YKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQ
EYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIV
NNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNP
LYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVK
LSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQ
AEFIASFYKNDLIKINGELYRVIGVNSDKNNLIEVNMIDITYREYLENMNDKRP
PHIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG
cCas9-v17 Staphylococcus MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGA
9,014 N580A H557A D10A
aureus RRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSA
ALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKK
DGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYE
GPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLN
NLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTST
GKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSE
LTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKV
DLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSK
DAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYS
LEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQ
YLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNL
VDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKG
YKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQ
EYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIV
NNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNP
LYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVK
LSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQ
AEFIASFYKNDLIKINGELYRVIGVNNSTRNIVELNMIDITYREYLENMNDKRP
PHIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG
cCas9-v21 Staphylococcus MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGA
9,015 N580A H557A D10A
aureus RRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSA
ALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKK
DGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYE
GPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLN
NLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTST
GKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSE
LTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKV
DLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSK
DAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYS
LEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQ
YLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNL
VDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKG
YKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQ
EYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIV

NNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNP
LYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVK
LSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQ
AEFIASFYKNDLIKINGELYRVIGVNSDDRNIIELNMIDITYREYLENMNDKRP
PHIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG
cCas9-v42 Staphylococcus MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGA
9,016 N580A H557A DEA
aureus RRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSA
ALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKK
DGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYE
GPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLN
NLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTST
GKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSE
LTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKV
DLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSK
DAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYS
LEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQ
YLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNL
VDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKG
YKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQ
EYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIV
NNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNP
LYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVK
LSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQ
AEFIASFYKNDLIKINGELYRVIGVNNNRLNKIELNMIDITYREYLENMNDKRP
PHIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG
CdiCas9 Corynebacteriu MKYHVGIDVGTFSVGLAAIEVDDAGMPIKTLSLVSHIHDSGLDPDEIKSAVT
9,017 N597A H573A D8A
m diphtheriae RLASSGIARRTRRLYRRKRRRLQQLDKFIQRQGWPVIELEDYSDPLYPWKVR
AELAASYIADEKERGEKLSVALRHIARHRGWRNPYAKVSSLYLPDGPSDAFK
AIREEIKRASGQPVPETATVGQMVTLCELGTLKLRGEGGVLSARLQQSDYAR
EIQEICRMQEIGQELYRKIIDVVFAAESPKGSASSRVGKDPLQPGKNRALKAS
DAFQRYRIAALIGNLRVRVDGEKRILSVEEKNLVFDHLVNLTPKKEPEWVTIA
EILGIDRGQLIGTATMTDDGERAGARPPTHDTNRSIVNSRIAPLVDWWKTA
SALEQHAMVKALSNAEVDDFDSPEGAKVQAFFADLDDDVHAKLDSLHLPV
GRAAYSEDTLVRLTRRMLSDGVDLYTARLQEFGIEPSVVTPPTPRIGEPVGNP
AVDRVLKTVSRWLESATKTWGAPERVIIEHVREGFVTEKRAREMDGDMRR
RAARNAKLFQEMQEKLNVQGKPSRADLWRYQSVQRQNCQCAYCGSPITF
SNSEMDHIVPRAGQGSTNTRENLVAVCHRCNQSKGNTPFAIWAKNTSIEG
VSVKEAVERTRHWVTDTGMRSTDFKKFTKAVVERFQRATMDEEIDARSME
SVAWMANELRSRVAQHFASHGTTVRVYRGSLTAEARRASGISGKLKFFDGV
GKSRLDRRHHAIDAAVIAFTSDYVAETLAVRSNLKQSQAHRQEAPQWREFT
GKDAEHRAAWRVWCQKMEKLSALLTEDLRDDRVVVMSNVRLRLGNGSA
HKETIGKLSKVKLSSQLSVSDIDKASSEALWCALTREPGFDPKEGLPANPERHI
RVNGTHVYAGDNIGLFPVSAGSIALRGGYAELGSSFHHARVYKITSGKKPAF
AMLRVYTIDLLPYRNQDLFSVELKPQTMSMRQAEKKLRDALATGNAEYLG
WLVVDDELVVDTSKIATDQVKAVEAELGTIRRWRVDGFFSPSKLRLRPLQM
SKEGIKKESAPELSKIIDRPGWLPAVNKLFSDGNVTVVRRDSLGRVRLESTAH
LPVTWKVQ
CjeCas9 Campylobacter MARILAFDIGISSIGWAFSENDELKDCGVRIFTKVENPKTGESLALPRRLARSA 9,018 N582A H559A D8A
jejuni RKRLARRKARLNHLKHLIANEFKLNYEDYQSFDESLAKAYKGSLISPYELRFRA
LNELLSKQDFARVILHIAKRRGYDDIKNSDDKEKGAILKAIKQNEEKLANYQS
VGEYLYKEYFQKFKENSKEFTNVRNKKESYERCIAQSFLKDELKLIFKKQREFG
FSFSKKFEEEVLSVAFYKRALKDFSHLVGNCSFFTDEKRAPKNSPLAFMFVAL
TRIINLLNNLKNTEGILYTKDDLNALLNEVLKNGTLTYKQTKKLLGLSDDYEFK
GEKGTYFIEFKKYKEFIKALGEHNLSQDDLNEIAKDITLIKDEIKLKKALAKYDLN
QNQIDSLSKLEFKDHLNISFKALKLVTPLMLEGKKYDEACNELNLKVAINEDK
KDFLPAFNETYYKDEVTNPVVLRAIKEYRKVLNALLKKYGKVHKINIELAREVG
KNHSQRAKIEKEQNENYKAKKDAELECEKLGLKINSKNILKLRLFKEQKEFCAY
SGEKIKISDLQDEKMLEIDHIYPYSRSFDDSYMNKVLVFTKQNQEKLNQTPFE

AFGNDSAKWQKIEVLAKNLPTKKQKRILDKNYKDKEQKNFKDRNLNDTRYI
ARLVLNYTKDYLDFLPLSDDENTKLNDTQKGSKVHVEAKSGMLTSALRHTW
GFSAKDRNNHLHHAIDAVIIAYANNSIVKAFSDFKKEQESNSAELYAKKISELD
YKNKRKFFEPFSGFRQKVLDKIDEIFVSKPERKKPSGALHEETFRKEEEFYQSY
GGKEGVLKALELGKIRKVNGKIVKNGDMFRVDIFKHKKTNKFYAVPIYTMDF
ALKVLPNKAVARSKKGEIKDWILMDENYEFCFSLYKDSLILIQTKDMQEPEFV
YYNAFTSSTVSLIVSKHDNKFETLSKNQKILFKNANEKEVIAKSIGIQNLKVFEK
YIVSALGEVTKAEFRQREDFKK
GeoCas9 Geobacillus MRYKIGLDIGITSVGWAVMNLDIPRIEDLGVRIFDRAENPQTGESLALPRRLA
9,019 N605A H582A D8A
stearothermop RSARRRLRRRKHRLERIRRLVIREGILTKEELDKLFEEKHEIDVWQLRVEALDR
hilus KLNNDELARVLLHLAKRRGFKSNRKSERSNKENSTMLKHIEENRAILSSYRTV
GEMIVKDPKFALHKRNKGENYTNTIARDDLEREIRLIFSKQREFGNMSCTEEF
ENEYITIWASQRPVASKDDIEKKVGFCTFEPKEKRAPKATYTFQSFIAWEHIN
KLRLISPSGARGLTDEERRLLYEQAFQKNKITYHDIRTLLHLPDDTYFKGIVYDR
GESRKQNENIRFLELDAYHQIRKAVDKVYGKGKSSSFLPIDFDTFGYALTLFKD
DADIHSYLRNEYEQNGKRMPNLANKVYDNELIEELLNLSFTKFGHLSLKALRS
ILPYMEQGEVYSSACERAGYTFTGPKKKQKTMLLPNIPPIANPVVMRALTQA
RKVVNAIIKKYGSPVSIHIELARDLSQTFDERRKTKKEQDENRKKNETAIRQL
MEYGLTLNPTGHDIVKFKLWSEQNGRCAYSLQPIEIERLLEPGYVEVDHVIPY
SRSLDDSYTNKVLVLTRENREKGNRIPAEYLGVGTERWQQFETFVLTNKQFS
KKKRDRLLRLHYDENEETEFKNRNLNDTRYISRFFANFIREHLKFAESDDKQK
VYTVNGRVTAHLRSRWEFNKNREESDLHHAVDAVIVACTTPSDIAKVTAFY
QRREQNKELAKKTEPHFPQPWPHFADELRARLSKHPKESIKALNLGNYDDQ
KLESLQPVFVSRMPKRSVTGAAHQETLRRYVGIDERSGKIQTVVKTKLSEIKL
DASGHFPMYGKESDPRTYEAIRQRLLEHNNDPKKAFQEPLYKPKKNGEPGP
VIRTVKIIDTKNQVIPLNDGKTVAYNSNIVRVDVFEKDGKYYCVPVYTMDIM
KGILPNKAIEPNKPYSEWKEMTEDYTFRFSLYPNDLIRIELPREKTVKTAAGEE
INVKDVFVYYKTIDSANGGLELISHDHRFSLRGVGSRTLKRFEKYQVDVLGNI
YKVRGEKRVGLASSAHSKPGKTIRPLQSTRD
iSpyMacCa Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,020 N863A H840A D10A
s9 spp. DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRKLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLKREDLLRKQRTFDNGSIPHQIHLGELHAILRRQ
EDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFE
EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR
NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKV
VDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQ
ILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEIQTVGQNGG
LFDDNPKSPLEVIPSKLVPLKKELNPKKYGGYQKPTTAYPVLLITDTKCILIPISV
MNKKQFEQNPVKFLRDRGYQQVGKNDFIKLPKYTLVDIGDGIKRLWASSKEI
HKGNQLVVSKKSQILLYHAHHLDSDLSNDYLQNHNQQFDVLFNEIISFSKKC
KLGKEHIQKIENVYSNKKNSASIEELAESFIKLLGFTQLGATSPFNFLGVKLNQ
KQYKGKKDYILPCTEGTLIRQSITGLYETRVDLSKIGEDSGGSGGSKRTADGSE
FES
NmeCas9 Neisseria MAAFKPNSINYILGLDIGIASVGWAMVEIDEEENPIRLIDLGVRVFERAEVPK
9,021 N611A H588A D16A
meningitidis TGDSLAMARRLARSVRRLTRRRAHRLLRTRRLLKREGVLQAANFDENGLIKS

LPNTPWQLRAAALDRKLTPLEWSAVLLHLIKHRGYLSQRKNEGETADKELG
ALLKGVAGNAHALQTGDFRTPAELALNKFEKESGHIRNQRSDYSHTFSRKDL
QAELILLFEKQKEFGNPHVSGGLKEGIETLLMTQRPALSGDAVQKMLGHCTF
EPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDTERATLMDEPYRKS
KLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRALEKEGL
KDKKSPLNLSPELQDEIGTAFSLFKTDEDITGRLKDRIQPEILEALLKHISFDKFV
QISLKALRRIVPLMEQGKRYDEACAEIYGDHYGKKNTEEKIYLPPIPADEIRNP
VVLRALSQARKVINGVVRRYGSPARIHIETAREVGKSFKDRKEIEKRQEENRK
DREKAAAKFREYFPNFVGEPKSKDILKLRLYEQQHGKCLYSGKEINLGRLNEK
GYVEIDHALPFSRTWDDSFNNKVLVLGSENQNKGNQTPYEYFNGKDNSRE
WQEFKARVETSRFPRSKKQRILLQKFDEDGFKERNLNDTRYVNRFLCQFVA
DRMRLTGKGKKRVFASNGQITNLLRGFWGLRKVRAENDRHHALDAVVVA
CSTVAMQQKITRFVRYKEMNAFDGKTIDKETGEVLHQKTHFPQPWEFFAQ
EVMIRVFGKPDGKPEFEEADTLEKLRTLLAEKLSSRPEAVHEYVTPLFVSRAP
NRKMSGQGHMETVKSAKRLDEGVSVLRVPLTQLKLKDLEKMVNREREPKL
YEALKARLEAHKDDPAKAFAEPFYKYDKAGNRTQQVKAVRVEQVQKTGVW
VRNHNGIADNATMVRVDVFEKGDKYYLVPIYSWQVAKGILPDRAVVQGKD
EEDWQLIDDSFNFKFSLHPNDLVEVITKKARMFGYFASCHRGTGNINIRIHD
LDHKIGKNGILEGIGVKTALSFQKYQIDELGKEIRPCRLKKRPPVR
ScaCas9 Streptococcus MEKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTNRKSIKKNLMGALL
9,022 N872A H849A DEA
canis FDSGETAEATRLKRTARRRYTRRKNRIRYLQE1FANEMAKLDDSFFORLEESF
LVEEDKKNERHPIFGNLADEVAYHRNYPTIYHLRKKLADSPEKADLRLIYLALA
HIIKFRGHFLIEGKLNAENSDVAKLFYQLIQTYNQLFEESPLDEIEVDAKGILSA
RLSKSKRLEKLIAVFPNEKKNGLFGNIIALALGLTPNFKSNFDLTEDAKLQLSKD
TYDDDLDELLGQIGDQYADLFSAAKNLSDAILLSDILRSNSEVTKAPLSASMV
KRYDEHHQDLALLKTLVRQQFPEKYAEIFKDDTKNGYAGYVGIGIKHRKRTT
KLATQEEFYKFIKPILEKMDGAEELLAKLNRDDLLRKQRTFDNGSIPHQIHLKE
LHAILRRQEEFYPFLKENREKIEKILTFRIPYYVGPLARGNSRFAWLTRKSEEAI
TPWNFEEVVDKGASAQSFIERMTNFDEQLPNKKVLPKHSLLYEYFTVYNELT
KVKYVTERMRKPEFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSV
ElIGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEE
RLKTYAHLFDDKVMKQLKRRHYTGWGRLSRKMINGIRDKQSGKTILDFLKS
DGFSNRNFMQLIHDDSLTFKEEIEKAQVSGQGDSLHEQIADLAGSPAIKKGIL
QTVKIVDELVKVMGHKPENIVIEMARENQTTTKGLQQSRERKKRIEEGIKELE
SQILKENPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVP
QSFIKDDSIDNKVLTRSVENRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQ
RKFDNLTKAERGGLSEADKAGFIKRQLVETRQITKHVARILDSRMNTKRDKN
DKPIREVKVITLKSKLVSDFRKDFQLYKVRDINNYHHAHDAYLNAVVGTALIK
KYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKRFFYSNIMNFFKTEVKL
ANGEIRKRPLIETNGETGEVVWNKEKDFATVRKVLAMPQVNIVKKTEVQTG
GFSKESILSKRESAKLIPRKKGWDTRKYGGFGSPTVAYSILVVAKVEKGKAKKL
KSVKVLVGITIMEKGSYEKDPIGFLEAKGYKDIKKELIFKLPKYSLFELENGRRR
MLASATELQKANELVLPQHLVRLLYYTQNISATTGSNNLGYIEQHREEFKEIF
EKIIDFSEKYILKNKVNSNLKSSFDEQFAVSDSILLSNSFVSLLKYTSFGASGGFT
FLDLDVKQGRLRYQTVTEVLDATLIYQSITGLYETRTDLSQLGGD
ScaCas9- Streptococcus MEKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTNRKSIKKNLMGALL
9,023 N872A H849A DEA
HiFi-Sc++ canis LVEEDKKNERHPIFGNLADEVAYHRNYPTIYHLRKKLADSPEKADLRLIYLALA
HIIKFRGHFLIEGKLNAENSDVAKLFYQLIQTYNQLFEESPLDEIEVDAKGILSA
RLSKSKRLEKLIAVFPNEKKNGLFGNIIALALGLTPNFKSNFDLTEDAKLQLSKD
TYDDDLDELLGQIGDQYADLFSAAKNLSDAILLSDILRSNSEVTKAPLSASMV
KRYDEHHQDLALLKTLVRQQFPEKYAEIFKDDTKNGYAGYVGADKKLRKRS
GKLATEEEFYKFIKPILEKMDGAEELLAKLNRDDLLRKQRTFDNGSIPHQIHLK
ELHAILRRQEEFYPFLKENREKIEKILTFRIPYYVGPLARGNSRFAWLTRKSEEA
ITPWNFEEVVDKGASAQSFIERMTNFDEQLPNKKVLPKHSLLYEYFTVYNEL
TKVKYVTERMRKPEFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS
VEIIGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIE
ERLKTYAHLFDDKVMKQLKRRHYTGWGRLSRKMINGIRDKQSGKTILDFLKS
DGFSNANFMQLIHDDSLTFKEEIEKAQVSGQGDSLHEQIADLAGSPAIKKGIL

QTVKIVDELVKVMGHKPENIVIEMARENQTTTKGLQQSRERKKRIEEGIKELE
SQILKENPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVP
QSFIKDDSIDNKVLTRSVENRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQ
RKFDNLTKAERGGLSEADKAGFIKRQLVETRQITKHVARILDSRMNTKRDKN
DKPIREVKVITLKSKLVSDFRKDFQLYKVRDINNYHHAHDAYLNAVVGTALIK
KYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKRFFYSNIMNFFKTEVKL
ANGEIRKRPLIETNGETGEVVWNKEKDFATVRKVLAMPQVNIVKKTEVQTG
GFSKESILSKRESAKLIPRKKGWDTRKYGGFGSPTVAYSILVVAKVEKGKAKKL
KSVKVLVGITIMEKGSYEKDPIGFLEAKGYKDIKKELIFKLPKYSLFELENGRRR
MLASAKELQKANELVLPQHLVRLLYYTQNISATTGSNNLGYIEQHREEFKEIF
EKIIDFSEKYILKNKVNSNLKSSFDEQFAVSDSILLSNSFVSLLKYTSFGASGGFT
FLDLDVKQGRLRYQTVTEVLDATLIYQSITGLYETRTDLSQLGGD
SpyCas9- Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,024 N863A H840A DEA
3var-NRRH pyogenes DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MVKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEE
FYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGIIPHQIHLGELHAILRRQ
GDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFE
EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRLRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN
FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVV
DELVKVMGGHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQI
LKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
ILPKGNSDKLIARKKDWDPKKYGGFNSPTAAYSVLVVAKVEKGKSKKLKSVK
ELLGITIMERSSFEKNPIGFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS
AGVLHKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDE
IIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGVPAA
FKYFDTTIDKKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD
SpyCas9- Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,025 N863A H840A DEA
3var-NRTH pyogenes DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MVKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEE
FYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGIIPHQIHLGELHAILRRQ
GDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFE
EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRLRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN
FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVV
DELVKVMGGHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQI
LKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES

ILPKGNSDKLIARKKDWDPKKYGGFNSPTVAYSVLVVAKVEKGKSKKLKSVK
ELLGITIMERSSFEKNPIGFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS
ASVLHKGNELALPSKYVNFLYLASHYEKLKGSSEDNKQKQLFVEQHKHYLDEI
IEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGASAAF
KYFDTTIGRKLYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD
SpyCas9- Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,026 N863A H840A D10A
3var-NRCH pyogenes DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MVKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEE
FYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGIIPHQIHLGELHAILRRQ
GDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFE
EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRLRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN
FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVV
DELVKVMGGHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQI
LKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
ILPKGNSDKLIARKKDWDPKKYGGFNSPTVAYSVLVVAKVEKGKSKKLKSVK
ELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS
AGVLQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDE
IIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA
FKYFD-UINRKQYNTTKEVLDATLIRQSITGLYETRIDLSQLGGD
SpyCas9- Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,027 N863A H840A D10A
HF1 pyogenes DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQ
EDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFE
EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR
NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKV
VDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQ
ILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
ILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKE
LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASA
GELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEll EQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF
KYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD

SpyCas9- Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,028 N863A H840A D10A
QQR1 pyogenes DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQ
EDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFE
EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR
NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKV
VDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQ
ILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
ILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKE
LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASA
RELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEll EQISEFSKRVILADAQLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF
KYFDTTFKQKQYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD
SpyCas9- Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,029 N863A H840A D10A
SpG pyogenes DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQ
EDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFE
EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR
NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKV
VDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQ
ILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
ILPKRNSDKLIARKKDWDPKKYGGFLWPTVAYSVLVVAKVEKGKSKKLKSVK
ELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS
AKQLQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDE
IIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA
FKYFDTTIDRKQYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD
SpyCas9- Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,030 N863A H840A D10A
VQR pyogenes DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF

YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQ
EDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFE
EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR
NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKV
VDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQ
ILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
ILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKLKSVKE
LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASA
GELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEll EQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF
KYFDTTIDRKQYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD
SpyCas9- Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,031 N863A H840A D10A
VRER pyogenes DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQ
EDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFE
EVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR
NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKV
VDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQ
ILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
ILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKLKSVKE
LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASA
RELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEll EQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF
KYFDTTIDRKEYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD
SpyCas9- Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,032 N863A H840A D10A
xCas pyogenes DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDTKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKLYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGIIPHQIHLGELHAILRRQE
DFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEK
VVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGDQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR
NFIQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVV

LKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
ILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKE
LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASA
GVLQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEll EQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF
KYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD
SpyCas9- Streptococcus MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
9,033 N863A H840A D10A
xCas-NG pyogenes DSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAH
MIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILS
ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDTKLQLS
KDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKLYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGIIPHQIHLGELHAILRRQE
DFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEK
VVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE
GMRKPAFLSGDQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED
RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA
HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR
NFIQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVV
DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQI
LKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF
LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF
DNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK
LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
IRPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKLKSVKE
LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASA
RFLQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEll EQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPRAF
KYFDTTIDRKVYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD
St1Cas9- Streptococcus MSDLVLGLDIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNRQG
9,034 N622A H599A D9A
CNRZ1066 thermophilus RRLARRKKHRRVRLNRLFEESGLITDFTKISINLNPYQLRVKGLTDELSNEELFI
ALKNMVKHRGISYLDDASDDGNSSVGDYAQIVKENSKQLETKTPGQIQLER
YQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSEALRILQTQQEFNPQITDEF
INRYLEILTGKRKYYHGPGNEKSRTDYGRYRTSGETLDNIFGILIGKCTFYPDEF
RAAKASYTAQEFNLLNDLNNLTVPTETKKLSKEQKNQIINYVKNEKAMGPAK
LFKYIAKLLSCDVADIKGYRIDKSGKAEIHTFEAYRKMKTLETLDIEQMDRETL
DKLAYVLTLNTEREGIQEALEHEFADGSFSQKQVDELVQFRKANSSIFGKGW
HNFSVKLMMELIPELYETSEEQMTILTRLGKQKTTSSSNKTKYIDEKLLTEEIY
NPVVAKSVRQAIKIVNAAIKEYGDFDNIVIEMARETNEDDEKKAIQKIQKAN
KDEKDAAMLKAANQYNGKAELPHSVFHGHKQLATKIRLWHQQGERCLYT
GKTISIHDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQEKGQRTPYQ
ALDSMDDAWSFRELKAFVRESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLV
DTRYASRVVLNALQEHFRAHKIDTKVSVVRGQFTSQLRRHWGIEKTRDTYH
HHAVDALIIAASSQLNLWKKQKNTLVSYSEEQLLDIETGELISDDEYKESVFKA
PYQHFVDTLKSKEFEDSILFSYQVDSKFNRKISDATIYATRQAKVGKDKKDET
YVLGKIKDIYTQDGYDAFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPNK
QMNEKGKEVPCNPFLKYKEEHGYIRKYSKKGNGPEIKSLKYYDSKLLGNPIDI
TPENSKNKVVLQSLKPWRTDVYFNKATGKYEILGLKYADLQFEKGTGTYKIS
QEKYNDIKKKEGVDSDSEFKFTLYKNDLLLVKDTETKEQQLFRFLSRTLPKQK

HYVELKPYDKQKFEGGEALIKVLGNVANGGQCIKGLAKSNISIYKVRTDVLG
NQHIIKNEGDKPKLDF
St1Cas9- Streptococcus MSDLVLGLDIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNRQG
9,035 N622A H599A D9A
LMG1831 thermophilus RRLARRKKHRRVRLNRLFEESGLITDFTKISINLNPYQLRVKGLTDELSNEELFI
ALKNMVKHRGISYLDDASDDGNSSVGDYAQIVKENSKQLETKTPGQIQLER
YQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSEALRILQTQQEFNPQITDEF
INRYLEILTGKRKYYHGPGNEKSRTDYGRYRTSGETLDNIFGILIGKCTFYPDEF
RAAKASYTAQEFNLLNDLNNLTVPTETKKLSKEQKNQIINYVKNEKAMGPAK
LFKYIAKLLSCDVADIKGYRIDKSGKAEIHTFEAYRKMKTLETLDIEQMDRETL
DKLAYVLTLNTEREGIQEALEHEFADGSFSQKQVDELVQFRKANSSIFGKGW
HNFSVKLMMELIPELYETSEEQMTILTRLGKQKTTSSSNKTKYIDEKLLTEEIY
NPVVAKSVRQAIKIVNAAIKEYGDFDNIVIEMARETNEDDEKKAIQKIQKAN
KDEKDAAMLKAANQYNGKAELPHSVFHGHKQLATKIRLWHQQGERCLYT
GKTISIHDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQEKGQRTPYQ
ALDSMDDAWSFRELKAFVRESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLV
DTRYASRVVLNALQEHFRAHKIDTKVSVVRGQFTSQLRRHWGIEKTRDTYH
HHAVDALIIAASSQLNLWKKQKNTLVSYSEEQLLDIETGELISDDEYKESVFKA
PYQHFVDTLKSKEFEDSILFSYQVDSKFNRKISDATIYATRQAKVGKDKKDET
YVLGKIKDIYTQDGYDAFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPNK
QMNEKGKEVPCNPFLKYKEEHGYIRKYSKKGNGPEIKSLKYYDSKLLGNPIDI
TPENSKNKVVLQSLKPWRTDVYFNKNTGKYEILGLKYADLQFEKKTGTYKISQ
EKYNGIMKEEGVDSDSEFKFTLYKNDLLLVKDTETKEQQLFRFLSRTMPNVK
YYVELKPYSKDKFEKNESLIEILGSADKSGRCIKGLGKSNISIYKVRTDVLGNQH
IIKNEGDKPKLDF
St1Cas9- Streptococcus MSDLVLGLDIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNRQG
9,036 N622A H599A D9A
MTH17CL3 thermophilus RRLARRKKHRRVRLNRLFEESGLITDFTKISINLNPYQLRVKGLTDELSNEELFI

YQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSEALRILQTQQEFNPQITDEF
INRYLEILTGKRKYYHGPGNEKSRTDYGRYRTSGETLDNIFGILIGKCTFYPDEF
RAAKASYTAQEFNLLNDLNNLTVPTETKKLSKEQKNQIINYVKNEKAMGPAK
LFKYIAKLLSCDVADIKGYRIDKSGKAEIHTFEAYRKMKTLETLDIEQMDRETL
DKLAYVLTLNTEREGIQEALEHEFADGSFSQKQVDELVQFRKANSSIFGKGW
HNFSVKLMMELIPELYETSEEQMTILTRLGKQKTTSSSNKTKYIDEKLLTEEIY
NPVVAKSVRQAIKIVNAAIKEYGDFDNIVIEMARETNEDDEKKAIQKIQKAN
KDEKDAAMLKAANQYNGKAELPHSVFHGHKQLATKIRLWHQQGERCLYT
GKTISIHDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQEKGQRTPYQ
ALDSMDDAWSFRELKAFVRESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLV
DTRYASRVVLNALQEHFRAHKIDTKVSVVRGQFTSQLRRHWGIEKTRDTYH
HHAVDALIIAASSQLNLWKKQKNTLVSYSEDQLLDIETGELISDDEYKESVFK
APYQHFVDTLKSKEFEDSILFSYQVDSKFNRKISDATIYATRQAKVGKDKADE
TYVLGKIKDIYTQDGYDAFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPN
KQINEKGKEVPCNPFLKYKEEHGYIRKYSKKGNGPEIKSLKYYDSKLGNHIDIT
PKDSNNKVVLQSLKPWRTDVYFNKNTGKYEILGLKYSDMQFEKGTGKYSISK
EQYENIKVREGVDENSEFKFTLYKNDLLLLKDSENGEQILLRFTSRNDTSKHYV
ELKPYNRQKFEGSEYLIKSLGTVAKGGQCIKGLGKSNISIYKVRTDVLGNQHII
KNEGDKPKLDF
St1Cas9- Streptococcus MSDLVLGLDIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNRQG
9,037 N622A H599A D9A
TH1477 thermophilus RRLARRKKHRRVRLNRLFEESGLITDFTKISINLNPYQLRVKGLTDELSNEELFI
ALKNMVKHRGISYLDDASDDGNSSVGDYAQIVKENSKQLETKTPGQIQLER
YQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSEALRILQTQQEFNPQITDEF
INRYLEILTGKRKYYHGPGNEKSRTDYGRYRTSGETLDNIFGILIGKCTFYPDEF
RAAKASYTAQEFNLLNDLNNLTVPTETKKLSKEQKNQIINYVKNEKAMGPAK
LFKYIAKLLSCDVADIKGYRIDKSGKAEIHTFEAYRKMKTLETLDIEQMDRETL
DKLAYVLTLNTEREGIQEALEHEFADGSFSQKQVDELVQFRKANSSIFGKGW
HNFSVKLMMELIPELYETSEEQMTILTRLGKQKTTSSSNKTKYIDEKLLTEEIY
NPVVAKSVRQAIKIVNAAIKEYGDFDNIVIEMARETNEDDEKKAIQKIQKAN
KDEKDAAMLKAANQYNGKAELPHSVFHGHKQLATKIRLWHQQGERCLYT
GKTISIHDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQEKGQRTPYQ

ALDSMDDAWSFRELKAFVRESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLV
DTRYASRVVLNALQEHFRAHKIDTKVSVVRGQFTSQLRRHWGIEKTRDTYH
HHAVDALIIAASSQLNLWKKQKNTLVSYSEDQLLDIETGELISDDEYKESVFK
APYQHFVDTLKSKEFEDSILFSYQVDSKFNRKISDATIYATRQAKVGKDKADE
TYVLGKIKDIYTQDGYDAFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPN
KQINEKGKEVPCNPFLKYKEEHGYIRKYSKKGNGPEIKSLKYYDSKLGNHIDIT
PKDSNNKVVLQSLKPWRTDVYFNKNTGKYEILGLKYSDMQFEKGTGKYSISK
EQYENIKVREGVDENSEFKFTLYKNDLLLLKDSENGEQILLRFTSRNDTSKHYV
ELKPYNRQKFEGSEYLIKSLGTVVKGGRCIKGLGKSNISIYKVRTDVLGNQHIIK
NEGDKPKLDF
sRGN3.1 Staphylococcus MNQKFILGLDIGITSVGYGLIDYETKNIIDAGVRLFPEANVENNEGRRSKRGS
9,038 N585A H562A D10A
spp. RRLKRRRIHRLERVKLLLTEYDLINKEQIPTSNNPYQIRVKGLSEILSKDELAIAL
LHLAKRRGIHNVDVAADKEETASDSLSTKDQINKNAKFLESRYVCELQKERLE
NEGHVRGVENRFLTKDIVREAKKIIDTQMQYYPEIDETFKEKYISLVETRREYF
EGPGQGSPFGWNGDLKKWYEMLMGHCTYFPQELRSVKYAYSADLFNALN
DLNNLIIQRDNSEKLEYHEKYHIIENVFKQKKKPTLKQIAKEIGVNPEDIKGYRI
TKSGTPEFTSFKLFHDLKKVVKDHAILDDIDLLNQIAEILTIYQDKDSIVAELGQ
LEYLMSEADKQSISELTGYTGTHSLSLKCMNMIIDELWHSSMNQMEVFTYL
NMRPKKYELKGYQRIPTDMIDDAILSPVVKRTFIQSINVINKVIEKYGIPEDIIIE
LARENNSDDRKKFINNLQKKNEATRKRINEIIGQTGNQNAKRIVEKIRLHDQ
QEGKCLYSLESIPLEDLLNNPNHYEVDHIIPRSVSFDNSYHNKVLVKQSENSK
KSNLTPYQYFNSGKSKLSYNQFKQHILNLSKSQDRISKKKKEYLLEERDINKFE
VQKEFINRNLVDTRYATRELTNYLKAYFSANNMNVKVKTINGSFTDYLRKV
WKFKKERNHGYKHHAEDALIIANADFLFKENKKLKAVNSVLEKPEIETKQLDI
QVDSEDNYSEMFIIPKQVQDIKDFRNFKYSHRVDKKPNRQLINDTLYSTRKK
DNSTYIVQTIKDIYAKDNTTLKKQFDKSPEKFLMYQHDPRTFEKLEVIMKQYA
NEKNPLAKYHEETGEYLTKYSKKNNGPIVKSLKYIGNKLGSHLDVTHQFKSST
KKLVKLSIKNYRFDVYLTEKGYKFVTIAYLNVFKKDNYYYIPKDKYQELKEKKKI
KDTDQFIASFYKNDLIKLNGDLYKIIGVNSDDRNIIELDYYDIKYKDYCEINNIK
GEPRIKKTIGKKTESIEKFTTDVLGNLYLHSTEKAPQLIFKRGL
sRGN3.3 Staphylococcus MNQKFILGLDIGITSVGYGLIDYETKNIIDAGVRLFPEANVENNEGRRSKRGS
9,039 N585A H562A D10A
spp. RRLKRRRIHRLERVKLLLTEYDLINKEQIPTSNNPYQIRVKGLSEILSKDELAIAL
LHLAKRRGIHNVDVAADKEETASDSLSTKDQINKNAKFLESRYVCELQKERLE
NEGHVRGVENRFLTKDIVREAKKIIDTQMQYYPEIDETFKEKYISLVETRREYF
EGPGQGSPFGWNGDLKKWYEMLMGHCTYFPQELRSVKYAYSADLFNALN
DLNNLIIQRDNSEKLEYHEKYHIIENVFKQKKKPTLKQIAKEIGVNPEDIKGYRI
TKSGTPEFTSFKLFHDLKKVVKDHAILDDIDLLNQIAEILTIYQDKDSIVAELGQ
LEYLMSEADKQSISELTGYTGTHSLSLKCMNMIIDELWHSSMNQMEVFTYL
NMRPKKYELKGYQRIPTDMIDDAILSPVVKRTFIQSINVINKVIEKYGIPEDIIIE
LARENNSDDRKKFINNLQKKNEATRKRINEIIGQTGNQNAKRIVEKIRLHDQ
QEGKCLYSLESIPLEDLLNNPNHYEVDHIIPRSVSFDNSYHNKVLVKQSENSK
KSNLTPYQYFNSGKSKLSYNQFKQHILNLSKSQDRISKKKKEYLLEERDINKFE
VQKEFINRNLVDTRYATRELTSYLKAYFSANNMDVKVKTINGSFTNHLRKV
WRFDKYRNHGYKHHAEDALIIANADFLFKENKKLQNTNKILEKPTIENNTKK
VTVEKEEDYNNVFETPKLVEDIKQYRDYKFSHRVDKKPNRQLINDTLYSTRM
KDEHDYIVQTITDIYGKDNTNLKKQFNKNPEKFLMYQNDPKTFEKLSIIMKQ
YSDEKNPLAKYYEETGEYLTKYSKKNNGPIVKKIKLLGNKVGNHLDVTNKYEN
STKKLVKLSIKNYRFDVYLTEKGYKFVTIAYLNVFKKDNYYYIPKDKYQELKEKK
KIKDTDQFIASFYKNDLIKLNGDLYKIIGVNSDDRNIIELDYYDIKYKDYCEINNI
KGEPRIKKTIGKKTESIEKFTTDVLGNLYLHSTEKAPQLIFKRGL
In some embodiments, a Cas protein requires a protospacer adjacent motif (PAM) to be present in or adjacent to a target DNA sequence for the Cas protein to bind and/or function. In some embodiments, the PAM is or comprises, from 5' to 3', NGG (SEQ ID NO: 11,024), YG (SEQ ID
NO: 11,025), NNGRRT (SEQ ID NO: 11,026), NNNRRT (SEQ ID NO: 11,027), NGA (SEQ ID NO:
11,029), TYCV
(SEQ ID NO: 11,030), TATV (SEQ ID NO: 11,031), NTTN (SEQ ID NO: 11,032), or NNNGATT (SEQ
ID NO: 11,033), where N stands for any nucleotide, Y stands for C or T, R
stands for A or G, and V
stands for A or C or G. In some embodiments, a Cas protein is a protein listed in Table 7 or 8. In some embodiments, a Cas protein comprises one or more mutations altering its PAM.
In some embodiments, a Cas protein comprises E1369R, E1449H, and R1556A mutations or analogous substitutions to the amino acids corresponding to said positions. In some embodiments, a Cas protein comprises E782K, N968K, and R1015H mutations or analogous substitutions to the amino acids corresponding to said positions. In some embodiments, a Cas protein comprises D1135V, R1335Q, and T1337R mutations or analogous substitutions to the amino acids corresponding to said positions. In some embodiments, a Cas protein comprises 5542R and K607R mutations or analogous substitutions to the amino acids corresponding to said positions. In some embodiments, a Cas protein comprises 5542R, K548V, and N552R mutations or analogous substitutions to the amino acids corresponding to said positions.
Exemplary advances in the engineering of Cas enzymes to recognize altered PAM sequences are reviewed in Collias et al Nature Communications 12:555 (2021), incorporated herein by reference in its entirety.
In some embodiments, the Cas protein is catalytically active and cuts one or both strands of the target DNA site. In some embodiments, cutting the target DNA site is followed by formation of an alteration, e.g., an insertion or deletion, e.g., by the cellular repair machinery.
In some embodiments, the Cas protein is modified to deactivate or partially deactivate the nuclease, e.g., nuclease-deficient Cas9. Whereas wild-type Cas9 generates double-strand breaks (DSBs) at specific DNA sequences targeted by a gRNA, a number of CRISPR endonucleases having modified functionalities are available, for example: a "nickase" version of Cas9 that has been partially deactivated generates only a single-strand break; a catalytically inactive Cas9 ("dCas9") does not cut target DNA. In some embodiments, dCas9 binding to a DNA sequence may interfere with transcription at that site by steric hindrance. In some embodiments, dCas9 binding to an anchor sequence may interfere with (e.g., decrease or prevent) genomic complex (e.g., ASMC) formation and/or maintenance. In some embodiments, a DNA-binding domain comprises a catalytically inactive Cas9, e.g., dCas9. Many catalytically inactive Cas9 proteins are known in the art. In some embodiments, dCas9 comprises mutations in each endonuclease domain of the Cas protein, e.g., DlOA and H840A
or N863A mutations.
In some embodiments, a catalytically inactive or partially inactive CRISPR/Cas domain comprises a Cas protein comprising one or more mutations, e.g., one or more of the mutations listed in Table 7. In some embodiments, a Cas protein described on a given row of Table 7 comprises one, two, three, or all of the mutations listed in the same row of Table 7. In some embodiments, a Cas protein, e.g., not described in Table 7, comprises one, two, three, or all of the mutations listed in a row of Table 7 or a corresponding mutation at a corresponding site in that Cas protein.
In some embodiments, a Cas9 derivative with enhanced activity may be used in the gene modification polypeptide. In some embodiments, a Cas9 derivative may comprise mutations that improve activity of the HNH endonuclease domain, e.g., SpyCas9 R221K, N394K, or mutations that improve R-loop formation, e.g., SpyCas9 L1245V, or comprise a combination of such mutations, e.g., SpyCas9 R221K/N394K, SpyCas9 N394K/L1245V, SpyCas9 R221K/L1245V, or SpyCas9 R221K/N394K/L1245V (see, e.g., Spencer and Zhang Sci Rep 7:16836 (2017), the Cas9 derivatives and comprising mutations of which are incorporated herein by reference). In some embodiments, a Cas9 derivative may comprise one or more types of mutations described herein, e.g., PAM-modifying mutations, protein stabilizing mutations, activity enhancing mutations, and/or mutations partially or fully inactivating one or two endonuclease domains relative to the parental enzyme (e.g., one or more mutations to abolish endonuclease activity towards one or both strands of a target DNA, e.g., a nickase or catalytically dead enzyme). In some embodiments, a Cas9 enzyme used in a system described herein may comprise mutations that confer nickase activity toward the enzyme (e.g., SpyCas9 N863A or H840A) in addition to mutations improving catalytic efficiency (e.g., SpyCas9 R221K, N394K, and/or L1245V). In some embodiments, a Cas9 enzyme used in a system described herein is a SpyCas9 enzyme or derivative that further comprises an N863A mutation to confer nickase activity in addition to R221K and N394K
mutations to improve catalytic efficiency.
In some embodiments, a catalytically inactive, e.g., dCas9, or partially deactivated Cas9 protein comprises a Dll mutation (e.g., Dl lA mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a H969 mutation (e.g., H969A
mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a N995 mutation (e.g., N995A mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, comprises mutations at one, two, or three of positions D11, H969, and N995 (e.g., D11A, H969A, and N995A mutations) or analogous substitutions to the amino acids corresponding to said positions.
In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a D10 mutation (e.g., a DlOA mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a H557 mutation (e.g., a H557A mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, comprises a D10 mutation (e.g., a DlOA mutation) and a H557 mutation (e.g., a H557A mutation) or analogous substitutions to the amino acids corresponding to said positions.
In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a D839 mutation (e.g., a D839A mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a H840 mutation (e.g., a H840A mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a N863 mutation (e.g., a N863A mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, comprises a D10 mutation (e.g., D10A), a D839 mutation (e.g., D839A), a H840 mutation (e.g., H840A), and a N863 mutation (e.g., N863A) or analogous substitutions to the amino acids corresponding to said positions.
In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a E993 mutation (e.g., a E993A mutation) or an analogous substitution to the amino acid corresponding to said position.
In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a D917 mutation (e.g., a D917A mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a a E1006 mutation (e.g., a E1006A mutation) or an analogous substitution to the amino acid corresponding to said position.
In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a D1255 mutation (e.g., a D1255A mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, comprises a D917 mutation (e.g., D917A), a E1006 mutation (e.g., E1006A), and a D1255 mutation (e.g., D1255A) or analogous substitutions to the amino acids corresponding to said positions.
In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a D16 mutation (e.g., a D16A mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a D587 mutation (e.g., a D587A mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a partially deactivated Cas domain has nickase activity. In some embodiments, a partially deactivated Cas9 domain is a Cas9 nickase domain. In some embodiments, the catalytically inactive Cas domain or dead Cas domain produces no detectable double strand break formation. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a H588 mutation (e.g., a H588A mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, or partially deactivated Cas9 protein comprises a N611 mutation (e.g., a N611A mutation) or an analogous substitution to the amino acid corresponding to said position. In some embodiments, a catalytically inactive Cas9 protein, e.g., dCas9, comprises a D16 mutation (e.g., D16A), a D587 mutation (e.g., D587A), a H588 mutation (e.g., H588A), and a N611 mutation (e.g., N611A) or analogous substitutions to the amino acids corresponding to said positions.
In some embodiments, a DNA-binding domain or endonuclease domain may comprise a Cas molecule comprising or linked (e.g., covalently) to a gRNA (e.g., a template nucleic acid, e.g., template RNA, comprising a gRNA).
In some embodiments, an endonuclease domain or DNA binding domain comprises a Streptococcus pyogenes Cas9 (SpCas9) or a functional fragment or variant thereof. In some embodiments, the endonuclease domain or DNA binding domain comprises a modified SpCas9. In embodiments, the modified SpCas9 comprises a modification that alters protospacer-adjacent motif (PAM) specificity. In embodiments, the PAM has specificity for the nucleic acid sequence 5'-NGT-3'.
In embodiments, the modified SpCas9 comprises one or more amino acid substitutions, e.g., at one or more of positions L1111, D1135, G1218, E1219, A1322, of R1335, e.g., selected from L1111R, D1135V, G1218R, E1219F, A1322R, R1335V. In embodiments, the modified SpCas9 comprises the amino acid substitution T1337R and one or more additional amino acid substitutions, e.g., selected from L1111, D1135L, S1136R, G1218S, E1219V, D1332A, D1332S, D1332T, D1332V, D1332L, D1332K, D1332R, R1335Q, T1337, T1337L, T1337Q, T13371, T1337V, T1337F, T1337S, T1337N, T1337K, T1337H, T1337Q, and T1337M, or corresponding amino acid substitutions thereto. In embodiments, the modified SpCas9 comprises: (i) one or more amino acid substitutions selected from D1135L, S1136R, G1218S, E1219V, A1322R, R1335Q, and T1337; and (ii) one or more amino acid substitutions selected from L1111R, G1218R, E1219F, D1332A, D1332S, D1332T, D1332V, D1332L, D1332K, D1332R, T1337L, T13371, T1337V, T1337F, T1337S, T1337N, T1337K, T1337R, T1337H, T1337Q, and T1337M, or corresponding amino acid substitutions thereto.
In some embodiments, the endonuclease domain or DNA binding domain comprises a Cas domain, e.g., a Cas9 domain. In embodiments, the endonuclease domain or DNA
binding domain comprises a nuclease-active Cas domain, a Cas nickase (nCas) domain, or a nuclease-inactive Cas (dCas) domain. In embodiments, the endonuclease domain or DNA binding domain comprises a nuclease-active Cas9 domain, a Cas9 nickase (nCas9) domain, or a nuclease-inactive Cas9 (dCas9) domain. In some embodiments, the endonuclease domain or DNA binding domain comprises a Cas9 domain of Cas9 (e.g., dCas9 and nCas9), Cas12a/Cpfl, Cas12b/C2c1, Cas12c/C2c3, Cas12d/CasY, Cas12e/CasX, Cas12g, Cas12h, or Cas12i. In some embodiments, the endonuclease domain or DNA binding domain comprises a Cas9 (e.g., dCas9 and nCas9), Cas12a/Cpfl, Cas12b/C2c1, Cas12c/C2c3, Cas12d/CasY, Cas12e/CasX, Cas12g, Cas12h, or Cas12i. In some embodiments, the endonuclease domain or DNA
binding domain comprises an S. pyogenes or an S. thermophilus Cas9, or a functional fragment thereof In some embodiments, the endonuclease domain or DNA binding domain comprises a Cas9 sequence, e.g., as described in Chylinski, Rhun, and Charpentier (2013) RNA Biology 10:5, 726-737; incorporated herein by reference. In some embodiments, the endonuclease domain or DNA binding domain comprises the HNH nuclease subdomain and/or the RuvC1 subdomain of a Cas, e.g., Cas9, e.g., as described herein, or a variant thereof In some embodiments, the endonuclease domain or DNA binding domain comprises Cas12a/Cpfl, Cas12b/C2c1, Cas12c/C2c3, Cas12d/CasY, Cas12e/CasX, Cas12g, Cas12h, or Cas12i. In some embodiments, the endonuclease domain or DNA binding domain comprises a Cas polypeptide (e.g., enzyme), or a functional fragment thereof In embodiments, the Cas polypeptide (e.g., enzyme) is selected from Casl, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas5d, Cas5t, Cas5h, Cas5a, Cas6, Cas7, Cas8, Cas8a, Cas8b, Cas8c, Cas9 (e.g., Csnl or Csx12), Cas10, CaslOd, Cas12a/Cpfl, Cas12b/C2c1, Cas12c/C2c3, Cas12d/CasY, Cas12e/CasX, Cas12g, Cas12h, Cas12i, Csyl , Csy2, Csy3, Csy4, Csel, Cse2, Cse3, Cse4, Cse5e, Cscl, Csc2, Csa5, Csnl, Csn2, Csml, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csxl, Csx1S, Csx11, Csfl, Csf2, CsO, Csf4, Csdl, Csd2, Cstl, Cst2, Cshl, Csh2, Csal, Csa2, Csa3, Csa4, Csa5, Type II Cas effector proteins, Type V Cas effector proteins, Type VI Cas effector proteins, CARF, DinG, Cpfl, Cas12b/C2c1, Cas12c/C2c3, Cas12b/C2c1, Cas12c/C2c3, SpCas9(K855A), eSpCas9(1.1), SpCas9-HF1, hyper accurate Cas9 variant (HypaCas9), homologues thereof, modified or engineered versions thereof, and/or functional fragments thereof In embodiments, the Cas9 comprises one or more substitutions, e.g., selected from H840A, DlOA, P475A, W476A, N477A, D1125A, W1126A, and D1127A. In embodiments, the Cas9 comprises one or more mutations at positions selected from: D10, G12, G17, E762, H840, N854, N863, H982, H983, A984, D986, and/or A987, e.g., one or more substitutions selected from DlOA, G12A, G17A, E762A, H840A, N854A, N863A, H982A, H983A, A984A, and/or D986A. In some embodiments, the endonuclease domain or DNA
binding domain comprises a Cas (e.g., Cas9) sequence from Corynebacterium ulcerans, Corynebacterium diphtheria, Spiroplasma syrphidicola, Prevotella intermedia, Spiroplasma taiwanense, Streptococcus iniae, Belliella baltica, Psychroflexus torquis, Streptococcus thermophilus, Listeria innocua, Campylobacter jejuni, Neisseria meningitidis, Streptococcus pyogenes, or Staphylococcus aureus, or a fragment or variant thereof In some embodiments, the endonuclease domain or DNA binding domain comprises a Cpfl domain, e.g., comprising one or more substitutions, e.g., at position D917, E1006A, D1255 or any combination thereof, e.g., selected from D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, and D917A/E1006A/D1255A.
In some embodiments, the endonuclease domain or DNA binding domain comprises spCas9, spCas9-VRQR(SEQ ID NO: 5019), spCas9- VRER(SEQ ID NO: 5020), xCas9 (sp), saCas9, saCas9-KKH, spCas9-MQKSER(SEQ ID NO: 5021), spCas9-LRKIQK(SEQ ID NO: 5022), or spCas9-LRVSQL(SEQ ID NO: 5023).
In some embodiments, a gene modifying polypeptide has an endonuclease domain comprising a Cas9 nickase, e.g., Cas9 H840A. In embodiments, the Cas9 H840A has the following amino acid sequence:
Cas9 nickase (H840A):
DKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKR
TARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEK
YPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLF
EENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDA
KLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDE
I-IHQDLTLLKALVRQQLPEKYKEIFFDQ SKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVK
LNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGN
SRFAWMTRKSEETITPWNFEEVVDKGASAQ SFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNE
LTKVKYVTEGMRKPAFL SGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD SVEISGVEDRF
NASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLK
RRRYTGWGRLSRKLINGIRDKQ SGKTILDFLKS DGFANRNFMQLIHDD SLTFKEDIQKA QV SGQG
DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERM
KRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQ SF
LKDDSIDNKVLTRSDKNRGKSDNVP SEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLS
ELDKAGFIKRQLVETRQITKHVAQILD SRMNTKYDENDKLIREVKVITLKS KLV SDFRKDFQFYK
VREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYF
FYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT
GGF SKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGI
TIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKY
VNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH

RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLS QL
GGD (SEQ ID NO: 11,001) In some embodiments, a gene modifying polypeptide comprises a dCas9 sequence comprising a Dl OA and/or H840A mutation, e.g., the following sequence:
SMDKKY SIGLAIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFD SGETAEATRL
KRTARRRYTRRKNRICYLQEIF SNEMAKVDD SFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYH
EKYPTIYHLRKKLVD STDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQ
LFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAED
AKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYD
EFIFIQDLTLLKALVRQQLPEKYKEIFFDQ SKNGYAGYIDGGAS QEEFYKFIKPILEKMDGTEELLV
KLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARG
NSRFAWMTRKSEETITPWNFEEVVDKGASAQ SFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN
ELTKVKYVTEGMRKPAFL SGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD SVEISGVEDRF
NASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLK
RRRYTGWGRLSRKLINGIRDKQ SGKTILDFLKSDGFANRNFMQLIHDD SLTFKEDIQKAQVSGQG
D SLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERM
KRIEEGIKELGS QILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQ SF
LKDD SIDNKVLTRSDKNRGKSDNVP SEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLS
ELDKAGFIKRQLVETRQITKHVAQILD SRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYK
VREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYF
FY SNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL SMP QVNIVKKTEV QT
GGF SKESILPKRNSDKLIARKKDWDPKKYGGFD SPTVAYSVLVVAKVEKGKSKKLKSVKELLGI
TIMERS SFEKNPIDFLEAKGYKEVKKDLIIKLPKY S LFELENGRKRMLA SAGELQ KGNELALP S KY
VNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH
RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLS QL
GGD (SEQ ID NO: 5007) TAL Effectors and Zinc Finger Nucleases In some embodiments, an endonuclease domain or DNA-binding domain comprises a TAL
effector molecule. A TAL effector molecule, e.g., a TAL effector molecule that specifically binds a DNA
sequence, typically comprises a plurality of TAL effector domains or fragments thereof, and optionally one or more additional portions of naturally occurring TAL effectors (e.g., N-and/or C-terminal of the plurality of TAL effector domains). Many TAL effectors are known to those of skill in the art and are commercially available, e.g., from Thermo Fisher Scientific.
Naturally occurring TALEs are natural effector proteins secreted by numerous species of bacterial pathogens including the plant pathogen Xanthomonas which modulates gene expression in host plants and facilitates bacterial colonization and survival. The specific binding of TAL
effectors is based on a central repeat domain of tandemly arranged nearly identical repeats of typically 33 or 34 amino acids (the repeat-variable di-residues, RVD domain).

Members of the TAL effectors family differ mainly in the number and order of their repeats. The number of repeats typically ranges from 1.5 to 33.5 repeats and the C-terminal repeat is usually shorter in length (e.g., about 20 amino acids) and is generally referred to as a "half-repeat." Each repeat of the TAL
effector generally features a one-repeat-to-one-base-pair correlation with different repeat types exhibiting different base-pair specificity (one repeat recognizes one base-pair on the target gene sequence).
Generally, the smaller the number of repeats, the weaker the protein-DNA
interactions. A number of 6.5 repeats has been shown to be sufficient to activate transcription of a reporter gene (Scholze et al., 2010).
Repeat to repeat variations occur predominantly at amino acid positions 12 and 13, which have therefore been termed "hypervariable" and which are responsible for the specificity of the interaction with the target DNA promoter sequence, as shown in Table 9 listing exemplary repeat variable diresidues (RVD) and their correspondence to nucleic acid base targets.
Table 9 ¨ RVDs and Nucleic Acid Base Specificity Target Possible RVD Amino Acid Combinations A NI NN CI HI KI
NN GN SN VN LN DN QN EN FIN RH NK AN FN
HD RD KD ND AD
NG HG VG IG EG MG YG AA EP VA QG KG RG
Accordingly, it is possible to modify the repeats of a TAL effector to target specific DNA
sequences. Further studies have shown that the RVD NK can target G. Target sites of TAL effectors also tend to include a T flanking the 5' base targeted by the first repeat, but the exact mechanism of this recognition is not known. More than 113 TAL effector sequences are known to date. Non-limiting examples of TAL effectors from Xanthomonas include, Hax2, Hax3, Hax4, AvrXa7, AvrXa10 and AvrBs3.
Accordingly, the TAL effector domain of a TAL effector molecule described herein may be derived from a TAL effector from any bacterial species (e.g., Xanthomonas species such as the African strain of Xanthomonas oryzae pv. Oryzae (Yu et al. 2011), Xanthomonas campestris pv. raphani strain 756C and Xanthomonas oryzae pv. oryzicolastrain BL5256 (Bogdanove et al.
2011). In some embodiments, the TAL effector domain comprises an RVD domain as well as flanking sequence(s) (sequences on the N-terminal and/or C-terminal side of the RVD domain) also from the naturally occurring TAL effector. It may comprise more or fewer repeats than the RVD of the naturally occurring TAL effector. The TAL effector molecule can be designed to target a given DNA
sequence based on the above code and others known in the art. The number of TAL effector domains (e.g., repeats (monomers or modules)) and their specific sequence can beselected based on the desired DNA target sequence. For example, TAL effector domains, e.g., repeats, may be removed or added in order to suit a specific target sequence. In an embodiment, the TAL effector molecule of the present invention comprises between 6.5 and 33.5 TAL effector domains, e.g., repeats. In an embodiment, TAL effector molecule of the present invention comprises between 8 and 33.5 TAL effector domains, e.g., repeats, e.g., between 10 and 25 TAL effector domains, e.g., repeats, e.g., between 10 and 14 TAL effector domains, e.g., repeats.
In some embodiments, the TAL effector molecule comprises TAL effector domains that correspond to a perfect match to the DNA target sequence. In some embodiments, a mismatch between a repeat and a target base-pair on the DNA target sequence is permitted as along as it allows for the function of the polypeptide comprising the TAL effector molecule. In general, TALE binding is inversely correlated with the number of mismatches. In some embodiments, the TAL
effector molecule of a polypeptide of the present invention comprises no more than 7 mismatches, 6 mismatches, 5 mismatches, 4 mismatches, 3 mismatches, 2 mismatches, or 1 mismatch, and optionally no mismatch, with the target DNA sequence. Without wishing to be bound by theory, in general the smaller the number of TAL
effector domains in the TAL effector molecule, the smaller the number of mismatches will be tolerated and still allow for the function of the polypeptide comprising the TAL
effector molecule. The binding affinity is thought to depend on the sum of matching repeat-DNA combinations.
For example, TAL
effector molecules having 25 TAL effector domains or more may be able to tolerate up to 7 mismatches.
In addition to the TAL effector domains, the TAL effector molecule of the present invention may comprise additional sequences derived from a naturally occurring TAL effector.
The length of the C-terminal and/or N-terminal sequence(s) included on each side of the TAL
effector domain portion of the TAL effector molecule can vary and be selected by one skilled in the art, for example based on the studies of Zhang et al. (2011). Zhang et al., have characterized a number of C-terminal and N-terminal truncation mutants in Hax3 derived TAL-effector based proteins and have identified key elements, which contribute to optimal binding to the target sequence and thus activation of transcription. Generally, it was found that transcriptional activity is inversely correlated with the length of N-terminus. Regarding the C-terminus, an important element for DNA binding residues within the first 68 amino acids of the Hax 3 sequence was identified. Accordingly, in some embodiments, the first 68 amino acids on the C-terminal side of the TAL effector domains of the naturally occurring TAL effector is included in the TAL effector molecule.
Accordingly, in an embodiment, a TAL effector molecule comprises 1) one or more TAL effector domains derived from a naturally occurring TAL effector; 2) at least 70, 80, 90, 100, 110, 120, 130, 140, 150, 170, 180, 190, 200, 220, 230, 240, 250, 260, 270, 280 or more amino acids from the naturally occurring TAL effector on the N-terminal side of the TAL effector domains;
and/or 3) at least 68, 80, 90, 100, 110, 120, 130, 140, 150, 170, 180, 190, 200, 220, 230, 240, 250, 260 or more amino acids from the naturally occurring TAL effector on the C-terminal side of the TAL effector domains.
In some embodiments, an endonuclease domain or DNA-binding domain is or comprises a Zn finger molecule. A Zn finger molecule comprises a Zn finger protein, e.g., a naturally occurring Zn finger protein or engineered Zn finger protein, or fragment thereof. Many Zn finger proteins are known to those of skill in the art and are commercially available, e.g., from Sigma-Aldrich.
In some embodiments, a Zn finger molecule comprises a non-naturally occurring Zn finger protein that is engineered to bind to a target DNA sequence of choice. See, for example, Beerli, et al.
(2002) Nature Biotechnol. 20:135-141; Pabo, et al. (2001) Ann. Rev. Biochem.
70:313-340; Isalan, et al.
(2001) Nature Biotechnol. 19:656-660; Segal, et al. (2001) Curr. Opin.
Biotechnol. 12:632-637; Choo, et al. (2000) Curr. Opin. Struct. Biol. 10:411-416; U.S. Pat. Nos. 6,453,242;
6,534,261; 6,599,692;
6,503,717; 6,689,558; 7,030,215; 6,794,136; 7,067,317; 7,262,054; 7,070,934;
7,361,635; 7,253,273; and U.S. Patent Publication Nos. 2005/0064474; 2007/0218528; 2005/0267061, all incorporated herein by reference in their entireties.
An engineered Zn finger protein may have a novel binding specificity, compared to a naturally-occurring Zn finger protein. Engineering methods include, but are not limited to, rational design and various types of selection. Rational design includes, for example, using databases comprising triplet (or quadruplet) nucleotide sequences and individual Zn finger amino acid sequences, in which each triplet or .. quadruplet nucleotide sequence is associated with one or more amino acid sequences of zinc fingers which bind the particular triplet or quadruplet sequence. See, for example, U.S. Pat. Nos. 6,453,242 and 6,534,261, incorporated by reference herein in their entireties.
Exemplary selection methods, including phage display and two-hybrid systems, are disclosed in U.S. Pat. Nos. 5,789,538; 5,925,523; 6,007,988; 6,013,453; 6,410,248;
6,140,466; 6,200,759; and 6,242,568; as well as International Patent Publication Nos. WO 98/37186; WO
98/53057; WO 00/27878;
and WO 01/88197 and GB 2,338,237. In addition, enhancement of binding specificity for zinc finger proteins has been described, for example, in International Patent Publication No. WO 02/077227.
In addition, as disclosed in these and other references, zinc finger domains and/or multi-fingered zinc finger proteins may be linked together using any suitable linker sequences, including for example, linkers of 5 or more amino acids in length. See, also, U.S. Pat. Nos.
6,479,626; 6,903,185; and 7,153,949 for exemplary linker sequences 6 or more amino acids in length. The proteins described herein may include any combination of suitable linkers between the individual zinc fingers of the protein. In addition, enhancement of binding specificity for zinc finger binding domains has been described, for example, in co-owned International Patent Publication No. WO 02/077227.

Zn finger proteins and methods for design and construction of fusion proteins (and polynucleotides encoding same) are known to those of skill in the art and described in detail in U.S. Pat.
Nos. 6,140,0815; 789,538; 6,453,242; 6,534,261; 5,925,523; 6,007,988;
6,013,453; and 6,200,759;
International Patent Publication Nos. WO 95/19431; WO 96/06166; WO 98/53057;
WO 98/54311; WO
00/27878; WO 01/60970; WO 01/88197; WO 02/099084; WO 98/53058; WO 98/53059; WO
98/53060;
WO 02/016536; and WO 03/016496.
In addition, as disclosed in these and other references, Zn finger proteins and/or multi-fingered Zn finger proteins may be linked together, e.g., as a fusion protein, using any suitable linker sequences, including for example, linkers of 5 or more amino acids in length. See, also, U.S. Pat. Nos. 6,479,626;
6,903,185; and 7,153,949 for exemplary linker sequences 6 or more amino acids in length. The Zn finger molecules described herein may include any combination of suitable linkers between the individual zinc finger proteins and/or multi-fingered Zn finger proteins of the Zn finger molecule.
In certain embodiments, the DNA-binding domain or endonuclease domain comprises a Zn finger molecule comprising an engineered zinc finger protein that binds (in a sequence-specific manner) to a target DNA sequence. In some embodiments, the Zn finger molecule comprises one Zn finger protein or fragment thereof In other embodiments, the Zn finger molecule comprises a plurality of Zn finger proteins (or fragments thereof), e.g., 2, 3, 4, 5, 6 or more Zn finger proteins (and optionally no more than 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 Zn finger proteins). In some embodiments, the Zn finger molecule comprises at least three Zn finger proteins. In some embodiments, the Zn finger molecule comprises four, five or six fingers. In some embodiments, the Zn finger molecule comprises 8, 9, 10, 11 or 12 fingers. In some embodiments, a Zn finger molecule comprising three Zn finger proteins recognizes a target DNA
sequence comprising 9 or 10 nucleotides. In some embodiments, a Zn finger molecule comprising four Zn finger proteins recognizes a target DNA sequence comprising 12 to 14 nucleotides. In some embodiments, a Zn finger molecule comprising six Zn finger proteins recognizes a target DNA sequence comprising 18 to 21 nucleotides.
In some embodiments, a Zn finger molecule comprises a two-handed Zn finger protein. Two handed zinc finger proteins are those proteins in which two clusters of zinc finger proteins are separated by intervening amino acids so that the two zinc finger domains bind to two discontinuous target DNA
sequences. An example of a two handed type of zinc finger binding protein is SIP1, where a cluster of four zinc finger proteins is located at the amino terminus of the protein and a cluster of three Zn finger proteins is located at the carboxyl terminus (see Remade, et al. (1999) EMBO
Journal 18(18):5073-5084).
Each cluster of zinc fingers in these proteins is able to bind to a unique target sequence and the spacing between the two target sequences can comprise many nucleotides.

Linkers In some embodiments, a gene modifying polypeptide may comprise a linker, e.g., a peptide linker, e.g., a linker as described in Table 1 or Table 10. In some embodiments, a gene modifying polypeptide comprises, in an N-terminal to C-terminal direction, a Cas domain (e.g., a Cas domain of Table 8), a linker of Table 10 (or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto), and an RT domain (e.g., an RT domain of Table 6). In some embodiments, a gene modifying polypeptide comprises a flexible linker between the endonuclease and the RT domain, e.g., a linker comprising the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSS
(SEQ ID
NO: 11,002). In some embodiments, an RT domain of a gene modifying polypeptide may be located C-terminal to the endonuclease domain. In some embodiments, an RT domain of a gene modifying polypeptide may be located N-terminal to the endonuclease domain. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence as listed in Table Al, or or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
Table 10. Exemplary linker sequences Amino Acid Sequence SEQ ID NO

Amino Acid Sequence SEQ
ID NO

Amino Acid Sequence SEQ
ID NO

Amino Acid Sequence SEQ ID
NO

In some embodiments, a linker of a gene modifying polypeptide comprises a motif chosen from:
(SGGS).(SEQ ID NO: 5025), (GGGS).(SEQ ID NO: 5026), (GGGGS).(SEQ ID NO: 5027), (G)i.4.
(EAAAK).(SEQ ID NO: 5028), (GGS)õ4. or (XP)..
Gene modifying polypeptide selection by pooled screening Candidate gene modifying polypeptides may be screened to evaluate a candidate's gene editing ability. For example, an RNA gene modifying system designed for the targeted editing of a coding sequence in the human genome may be used. In certain embodiments, such a gene modifying system may be used in conjunction with a pooled screening approach.

For example, a library of gene modifying polypeptide candidates and a template guide RNA
(tgRNA) may be introduced into mammalian cells to test the candidates' gene editing abilities by a pooled screening approach. In specific embodiments, a library of gene modifying polypeptide candidates is introduced into mammalian cells followed by introduction of the tgRNA into the cells.
Representative, non-limiting examples of mammalian cells that may be used in screening include HEK293T cells, U2OS cells, HeLa cells, HepG2 cells, Huh7 cells, K562 cells, or iPS cells.
A gene modifying polypeptide candidate may comprise 1) a Cas-nuclease, for example a wild-type Cas nuclease, e.g., a wild-type Cas9 nuclease, a mutant Cas nuclease, e.g., a Cas nickase, for example, a Cas9 nickase such as a Cas9 N863A nickase, or a Cas nuclease selected from Table 7 or 8, 2) a peptide linker, e.g., a sequence from Table 1 or 10, that may exhibit varying degrees of length, flexibility, hydrophobicity, and/or secondary structure; and 3) a reverse transcriptase (RT), e.g. an RT domain from Table 1 or 6. A gene modifying polypeptide candidate library comprises: a plurality of different gene modifying polypeptide candidates that differ from each other with respect to one, two or all three of the Cas nuclease, peptide linker or RT domain components, or a plurality of nucleic acid expression vectors that encode such gene modifying polypeptide candidates.
For screening of gene modifying polypeptide candidates, a two-component system may be used that comprises a gene modifying polypeptide component and a tgRNA component. A
gene modifying component may comprise, for example, an expression vector, e.g., an expression plasmid or lentiviral vector, that encodes a gene modifying polypeptide candidate, for example, comprises a human codon-optimized nucleic acid that encodes a gene modifying polypeptide candidate, e.g., a Cas-linker-RT fusion as described above. In a particular embodiment, a lentiviral cassette is utilized that comprises: (i) a promoter for expression in mammalian cells, e.g., a CMV promoter; (ii) a gene modifying library candidate, e.g. a Cas-linker-RT fusion comprising a Cas nuclease of Table 7 or 8, a peptide linker of Table 10 and an RT of Table 6, for example a Cas-linker-RT fusion as in Table 1; (iii) a self-cleaving polypeptide, e.g., a T2A peptide; (iv) a marker enabling selection in mammalian cells, e.g., a puromycin resistance gene; and (v) a termination signal, e.g., a poly A tail.
The tgRNA component may comprise a tgRNA or expression vector, e.g., an expression plasmid, that produces the tgRNA, for example, utilizes a U6 promoter to drive expression of the tgRNA, wherein the tgRNA is a non-coding RNA sequence that is recognized by Cas and localizes it to the genomic locus of interest, and that also templates reverse transcription of the desired edit into the genome by the RT
domain.

To prepare a pool of cells expressing gene modifying polypeptide library candidates, mammalian cells, e.g., HEK293T or U2OS cells, may be transduced with pooled gene modifying polypeptide candidate expression vector preparations, e.g., lentiviral preparations, of the gene modifying candidate polypeptide library. In a particular embodiment, lentiviral plasmids are utilized, and HEK293 Lenti-X cells are seeded .. in 15 cm plates (-12x106 cells) prior to lentiviral plasmid transfection.
In such an embodiment, lentiviral plasmid transfection may be performed using the Lentiviral Packaging Mix (Biosettia) and transfection of the plasmid DNA for the gene modifying candidate library is performed the following day using Lipofectamine 2000 and Opti-MEM media according to the manufacturer's protocol. In such an embodiment, extracellular DNA may be removed by a full media change the next day and virus-containing media may be harvested 48 hours after. Lentiviral media may be concentrated using Lenti-X Concentrator (TaKaRa Biosciences) and 5 mL lentiviral aliquots may be made and stored at -80 C. Lentiviral titering is performed by enumerating colony forming units post-selection, e.g., post Puromycin selection.
For monitoring gene editing of a target DNA, mammalian cells, e.g., HEK293T or U2OS cells, carrying a target DNA may be utilized. In other embodiments for monitoring gene editing of a target DNA, mammalian cells, e.g., HEK293T or U2OS cells, carrying a target DNA genomic landing pad may be utilized. In particular embodiments, the target DNA genomic landing pad may comprise a gene to be edited for treatment of a disease or disorder of interest. In other particular embodiments, the target DNA is a gene sequence that expresses a protein that exhibits detectable characteristics that may be monitored to determine whether gene editing has occurred. For example, in certain embodiments, a blue fluorescence protein .. (BFP)- or green fluorescence protein (GFP)-expressing genomic landing pad is utilized. In certain embodiments, mammalian cells, e.g., HEK293T or U2OS cells, comprising a target DNA, e.g., a target DNA genomic landing pad, are seeded in culture plates at 500x-3000x cells per gene modifying library candidate and transduced at a 0.2-0.3 multiplicity of infection (MOI) to minimize multiple infections per cell. Puromycin (2.5 ug/mL) may be added 48 hours post infection to allow for selection of infected cells.
In such an embodiment, cells may be kept under puromycin selection for at least 7 days and then scaled up for tgRNA introduction, e.g., tgRNA electroporation.
To ascertain whether gene editing occurs, mammalian cells containing a target DNA to be edited may be infected with gene modifying polypeptide library candidates then transfected with tgRNA designed for use in editing of the target DNA. Subsequently, the cells may be analyzed to determine whether editing of the target locus has occurred according to the designed outcome, or whether no editing or imperfect editing has occurred, e.g., by using cell sorting and sequence analysis.
In a particular embodiment, to ascertain whether genome editing occurs, BFP-or GFP-expressing mammalian cells, e.g., HEK293T or U205 cells, may be infected with gene modifying library candidates and then transfected or electroporated with tgRNA plasmid or RNA, e.g., by electroporation of 250,000 cells/well with 200 ng of a tgRNA plasmid designed to convert BFP-to-GFP or GFP-to-BFP, at a cell count ensuring >250x-1000x coverage per library candidate. In such an embodiment, the genome-editing capacity of the various constructs in this assay may be assessed by sorting the cells by Fluorescence-Activated Cell Sorting (FACS) for expression of the color-converted fluorescent protein (FP) at 4-10 days post-electroporation. Cells are sorted and harvested as distinct populations of unedited cells (exhibiting original florescence protein signal), edited cells (exhibiting converted fluorescence protein signal), and imperfect edit (exhibiting no florescence protein signal) cells. A sample of unsorted cells may also be harvested as the input population to determine candidate enrichment during analysis.
To determine which gene modifying library candidates exhibit genome-editing capacity in an assay, genomic DNA (gDNA) is harvested from the sorted cell populations, and analyzed by sequencing the gene modifying library candidates in each population. Briefly, gene modifying candidates may be amplified from the genome using primers specific to the gene modifying polypeptide expression vector, e.g., the lentiviral cassette, amplified in a second round of PCR to dilute genomic DNA, and then sequenced, for example, sequenced by a next-generation sequencing platform. After quality control of sequencing reads, reads of at least about 1500 nucleotides and generally no more than about 3200 nucleotides are mapped to the gene modifying polypeptide library sequences and those containing a minimum of about an 80% match to a library sequence are considered to be successfully aligned to a given candidate for purposes of this pooled screen. In order to identify candidates capable of performing gene editing in the assay, e.g., the BFP-to-GFP or GFP-to-BFP edit, the read count of each library candidate in the edited population is compared to its read count in the initial, unsorted population.
For purposes of pooled screening, gene modifying candidates with genome-editing capacity are identified based on enrichment in the edited (converted FP) population relative to unsorted (input) cells. In some embodiments, an enrichment of at least 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, or at least 100-fold over the input indicates potentially useful gene editing activity, e.g., at least 2-fold enrichment. In some embodiments, the enrichment is converted to a log-value by taking the log base 2 of the enrichment ratio. In some embodiments, a 1og2 enrichment score of at least 0, 1, 2, 3, 4, 5, 5.5, 6.0, 6.2, 6.3, 6.4, 6.5, or at least 6.6 indicates potentially useful gene editing activity, e.g., a 1og2 enrichment score of at least 1Ø In particular embodiments, enrichment values observed for gene modifying candidates may be compared to enrichment values observed under similar conditions utilizing a reference, e.g., Element ID No: 17380 as listed in Example 7.
In some embodiments, multiple tgRNAs may be used to screen the gene modifying candidate library. In particular embodiments, a plurality of tgRNAs may be utilized to optimize template/Cas-linker-RT fusion pairs, e.g., for gene editing of particular target genes, for example, gene targets for the treatment of disease. In specific embodiments, a pooled approach to screening gene modifying candidates may be performed using a multiplicity of different tgRNAs in an arrayed format.
In some embodiments, multiple types of edits, e.g., insertions, substitutions, and/or deletions of different lengths, may be used to screen the gene modifying candidate library.
In some embodiments, multiple target sequences, e.g., different fluorescent proteins, may be used to screen the gene modifying candidate library. In some embodiments, multiple target sequences, e.g., different fluorescent proteins, may be used to screen the gene modifying candidate library. In some embodiments, multiple cell types, e.g., HEK293T or U20S, may be used to screen the gene modifying candidate library. The person of ordinary skill in the art will appreciate that a given candidate may exhibit altered editing capacity or even the gain or loss of any observable or useful activity across different conditions, including tgRNA sequence (e.g., nucleotide modifications, PBS
length, RT template length), target sequence, target location, type of edit, location of mutation relative to the first-strand nick of the gene modifying polypeptide, or cell type. Thus, in some embodiments, gene modifying library candidates are screened across multiple parameters, e.g., with at least two distinct tgRNAs in at least two cell types, and gene editing activity is identified by enrichment in any single condition. In other embodiments, a candidate with more robust activity across different tgRNA and cell types is identified by enrichment in at least two conditions, e.g., in all conditions screened. For clarity, candidates found to exhibit little to no enrichment under any given condition are not assumed to be inactive across all conditions and may be screened with different parameters or reconfigured at the polypeptide level, e.g., by swapping, shuffling, or evolving domains (e.g., RT domain), linkers, or other signals (e.g., NLS).
Sequences of exemplary Cas9-linker-RT fusions In some embodiments, a gene modifying polypeptide comprises a linker sequence and an RT
sequence. In some embodiments, a gene modifying polypeptide comprises a linker sequence as listed in Table 1, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%
identity thereto. In some embodiments, a gene modifying polypeptide comprises the amino acid sequence of an RT domain as listed in Table 1, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises a linker sequence as listed in Table 1, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto; and the amino acid sequence of an RT domain as listed in Table 1, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises: (i) a linker sequence as listed in a row of Table 1, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto; and (ii) the amino acid sequence of an RT domain as listed in the same row of Table 1, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.
Exemplary Gene Modifying Polypeptides In some embodiments, a gene modifying polypeptide (e.g., a gene modifying polypeptide that is part of a system described herein) comprises an amino acid sequence of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of any one of SEQ
ID NOs: 1-7743, or an amino acid sequence having at least 80% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 90% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 95% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of any one of SEQ ID NOs: 1-7743. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of any one of SEQ ID NOs: 6001-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of any one of SEQ ID
NOs: 4501-4541, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto.
In some embodiments, a gene modifying polypeptide comprises an amino acid sequence as listed in Table Al, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of a .. SEQ ID NO as listed in Table Dl, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of a SEQ ID NO as listed in Table D2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of a SEQ ID NO as listed in Table D3, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of a SEQ ID NO as listed in Table D4, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity .. thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of a SEQ ID NO as listed in Table D5, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of a SEQ ID NO as listed in Table D6, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying .. polypeptide comprises an amino acid sequence of a SEQ ID NO as listed in Table D7, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of a SEQ ID NO as listed in Table D8, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of a SEQ ID NO as listed in Table D9, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of a SEQ ID NO as listed in Table D10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of a SEQ ID NO as listed in Table D11, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an amino acid sequence of a SEQ ID NO as listed in Table D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto.
In some embodiments, a gene modifying polypeptide comprises an amino acid sequence as listed in Table Ti, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises a linker comprising a linker sequence as listed in Table Ti, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an RT
domain comprising an RT domain sequence as listed in Table Ti, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises: (i) a linker comprising a linker sequence as listed in a row of Table Ti, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto; and (ii) an RT domain comprising an RT domain sequence as listed in the same row of Table Ti, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.

Table Ti. Selection of exemplary gene modifying polypeptides SEQ ID NO: Linker Sequence SEQ ID RT name for Full NO: of Polypeptide linker Sequence 1372 AEAAAKEAAAKEAAAKEAAAKALEAEAAAKE 15,401 AVIRE_P03360_3mutA
AAAKEAAAKEAAAKA
1197 AEAAAKEAAAKEAAAKEAAAKALEAEAAAKE 15,402 FLV_P10273_3mutA
AAAKEAAAKEAAAKA
2784 AEAAAKEAAAKEAAAKEAAAKALEAEAAAKE 15,403 M
LVMS_P03355_3mutA_ AAAKEAAAKEAAAKA WS
647 AEAAAKEAAAKEAAAKEAAAKALEAEAAAKE 15,404 SFV3L_P27401_2mutA
AAAKEAAAKEAAAKA
In some embodiments, a gene modifying polypeptide comprises an amino acid sequence as listed in Table T2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises a linker comprising a linker sequence as listed in Table T2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises an RT
domain comprising an RT domain sequence as listed in Table T2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, a gene modifying polypeptide comprises: (i) a linker comprising a linker sequence as listed in a row of Table T2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto; and (ii) an RT domain comprising an RT domain sequence as listed in the same row of Table T2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
Table T2. Selection of exemplary gene modifying polypeptides SEQ ID NO: Linker Sequence SEQ ID NO: RT name for Full of linker Polypeptid e Sequence 2311 GGGGSGGGGSGGGGSGGGGS 15,405 MLVCB P08361 3mutA
1373 GGGGSGGGGSGGGGSGGGGSGGGGSGGGGS 15,406 AVIRE P03360 3mutA
2644 GGGGSGGGGSGGGGSGGGGSGGGGSGGGGS 15,407 MLVMS P03355 2304 GSSGSSGSSGSSGSSGSS 15,408 MLVCB P08361 3mutA
2325 EAAAKEAAAKEAAAKEAAAK 15,409 MLVCB P08361 3mutA
2322 EAAAKEAAAKEAAAKEAAAKEAAAKEAAAK 15,410 MLVCB P08361 3mutA
2187 PAPAPAPAPAP 15,411 MLVBM Q7SVK7 3mut 2309 PAPAPAPAPAPAP 15,412 MLVCB P08361 3mutA

2534 PAPAPAPAPAPAP 15,413 M LVFF P26809 3m utA
_ _ 2797 PAPAPAPAPAPAP 15,414 M LVMS P03355 3m utA
_ _ WS
_ 3084 PAPAPAPAPAPAP 15,415 M LVMS P03355 3m utA
_ _ WS
_ 2868 PAPAPAPAPAPAP 15,416 M LVMS P03355 PLV919 _ _ 126 EAAAKGGG 15,417 PE RV Q4VFZ2 3m ut _ _ 306 EAAAKGGG 15,418 PE RV Q4VFZ2 3m ut _ _ 1410 PAPGGG 15,419 AVI RE P03360 3m utA
_ _ 804 GGGGSSGGS 15,420 WMSV P03359 3mut _ _ 1937 GGGGGSEAAAK 15,421 BAEVM P10272 3m utA
_ _ 2721 GGGEAAAKGGS 15,422 M LVMS P03355 3m ut _ _ 3018 GGGEAAAKGGS 15,423 M LVMS P03355 3m ut _ _ 1018 GGGEAAAKGGS 15,424 XM RV6 A1Z651 3mutA
_ _ 2317 GGSGGG PAP 15,425 M LVCB P08361 3mutA
_ _ 2649 PAPGGSGGG 15,426 M LVMS P03355 PLV919 _ _ 2878 PAPGGSGGG 15,427 M LVMS P03355 PLV919 _ _ 912 GGSEAAAKPAP 15,428 WMSV P03359 3mutA
_ _ 2338 GGSPAPEAAAK 15,429 M LVCB P08361 3m utA
_ _ 2527 GGSPAPEAAAK 15,430 M LVFF P26809 3m utA
_ _ 141 EAAAKGGS PAP 15,431 PE RV Q4VFZ2 3m ut _ _ 341 EAAAKGGS PAP 15,432 PE RV Q4VFZ2 3m ut _ _ 2315 EAAAKPAPGGS 15,433 M LVCB P08361 3m utA
_ _ 3080 EAAAKPAPGGS 15,434 M LVMS P03355 3m utA
_ _ WS
_ 2688 GGGGSSEAAAK 15,435 M LVMS P03355 PLV919 _ _ 2885 GGGGSSEAAAK 15,436 M LVMS P03355 PLV919 _ _ 2810 GSSGGGEAAAK 15,437 M LVMS P03355 3m utA
_ _ WS
_ 3057 GSSGGGEAAAK 15,438 M LVMS P03355 3m utA
_ _ WS
_ 1861 GSSEAAAKGGG 15,439 M LVAV P03356 3m utA
_ _ 3056 GSSGGG PAP 15,440 M LVMS P03355 3m utA
_ _ WS
_ 1038 GSSPAPGGG 15,441 XM RV6 A1Z651 3mutA
_ _ 2308 PAPGGGGSS 15,442 M LVCB P08361 3mutA
_ _ 1672 GGGEAAAKPAP 15,443 KO RV _ Q9TTC1-Pro_3mutA
2526 GGGEAAAKPAP 15,444 M LVFF P26809 3m utA
_ _ 1938 GGGPAPEAAAK 15,445 BAEVM P10272 3mutA
_ _ 2641 GSSEAAAKPAP 15,446 M LVMS P03355 PLV919 _ _ 2891 GSSEAAAKPAP 15,447 M LVMS P03355 PLV919 _ _ 1225 GSSPAPEAAAK 15,448 FLV P10273 3mutA
_ _ 2839 GSSPAPEAAAK 15,449 M LVMS
P03355 3m utA
WS
3127 GSSPAPEAAAK 15,450 M LVMS
P03355 3m utA
WS
2798 PAPGSSEAAAK 15,451 M LVMS
P03355 3m utA
WS
3091 PAPGSSEAAAK 15,452 M LVMS
P03355 3m utA
WS
1372 AEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAA 15,453 AVI RE P03360 3m utA
AKEAAAKEAAAKA
1197 AEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAA 15,454 FLV P10273 3m utA
AKEAAAKEAAAKA
2611 AEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAA 15,455 M LVMS P03355 PLV919 AKEAAAKEAAAKA
2784 AEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAA 15,456 M LVMS P03355 3m utA
AKEAAAKEAAAKA WS
480 AEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAA 15,457 SFV1 P23074 2m utA
AKEAAAKEAAAKA
647 AEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAA 15,458 SFV3L P27401 2m utA
AKEAAAKEAAAKA
1006 AEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAA 15,459 XM RV6 A12651 3 m utA
AKEAAAKEAAAKA
2518 SGSETPGTSESATPES 15,460 M LVFF
P26809 3m utA
Subsequences of Exemplary Gene Modifying Polypeptides In some embodiments, the gene modifying polypeptide comprises, in N-terminal to C-terminal order, one or more (e.g., 1, 2, 3, 4, 5, or all 6) of an N-terminal methionine residue, a first nuclear localization signal (NLS), a DNA binding domain, a linker, an RT domain, and/or a second NLS. In some embodiments, a gene modifying polypeptide comprises, in N-terminal to C-terminal order, a NLS
(e.g., a first NLS), a DNA binding domain, a linker, and an RT domain, wherein the linker and RT
domain are the linker and RT domain of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to said linker and RT domain. In some embodiments, a gene modifying polypeptide comprises, in N-terminal to C-terminal order, a DNA binding domain, a linker, an RT domain, and an NLS
(e.g., a second NLS) wherein the linker and RT domain are the linker and RT domain of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to said linker and RT domain. In some embodiments, a gene modifying polypeptide comprises, in N-terminal to C-terminal order, a first NLS, a DNA
binding domain, a linker, an RT domain, and a second NLS, wherein the linker and RT domain are the linker and RT domain of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to said linker and RT
domain. In some embodimetns, the gene modifying polypeptide further comprises an N-terminal methionine residue.
In some embodiments, the gene modifying polypeptide comprises, in N-terminal to C-terminal order, one or more (e.g., 1, 2, 3, 4, 5, or all 6) of an N-terminal methionine residue, a first nuclear localization signal (NLS) (e.g., of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743 and/or as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto), a DNA binding domain (e.g., a Cas domain, e.g., a SpyCas9 domain, e.g., as listed in Table 8, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto; or a DNA binding domain of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743 and/or as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto), a linker (e.g., of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743 and/or as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto), an RT domain (e.g., of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743 and/or as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto), and a second NLS
(e.g., of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743 and/or as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto). In some embodiments, the gene modifying polypeptide further comprises (e.g., C-terminal to the second NLS) a T2A sequence and/or a puromycin sequence (e.g., of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743 and/or as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto). In some embodiments, a nucleic acid encoding a gene modifying polypeptide (e.g., as described herein) encodes a T2A sequence, e.g., wherein the T2A sequence is situated between a region encoding the gene modifying polypeptide and a second region, wherein the second region optionally encodes a selectable marker, e.g., puromycin.
In certain embodiments, the first NLS comprises a first NLS sequence of a gene modifying polypeptide having an amino acid sequence of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the first NLS comprises a first NLS sequence of a gene modifying polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the first NLS
sequence comprises a C-myc NLS. In certain embodiments, the first NLS comprises the amino acid sequence PAAKRVKLD (SEQ ID
NO: 11,095) , or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto.

In certain embodiments, the gene modifying polypeptide further comprises a spacer sequence between the first NLS and the DNA binding domain. In certain embodiments, the spacer sequence between the first NLS and the DNA binding domain comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids.
In certain embodiments, the spacer sequence between the first NLS and the DNA
binding domain comprises the amino acid sequence GG.
In certain embodiments, the DNA binding domain comprises a DNA binding domain of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the DNA binding domain comprises a DNA binding domain of a gene modifying polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the DNA binding domain comprises a Cas domain (e.g., as listed in Table 8). In certain embodiments, the DNA binding domain comprises the amino acid sequence of a SpyCas9 polypeptide (e.g., as listed in Table 8, e.g., a Cas9 N863A
polypeptide), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the DNA binding domain comprises the amino acid sequence:
DKKYS I GLD I GTNSVGWAVI TDEYKVPS KKFKVLGNTDRHS I KKNL I GALLFDS
GETAEATRLKRTARRR
YTRRKNRI CYLQE I FSNEMAKVDDSFFHRLEESFLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKK
LVDSTDKADLRL I YLALAHM I KFRGHFL I EGDLNPDNS DVDKLF I QLVQTYNQL FE ENP I
NASGVDAKAI
LSARLSKSRRLENL IAQL PGEKKNGLFGNL IALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQ
I GDQYADL FLAAKNLSDAILLSDI LRVNTE ITKAPL SASM I KRYDEHHQDLTLL KALVRQQL PEKYKE
IF
FDQSKNGYAGY I DGGASQEEFYKF I KP I LEKMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ
IHLGELHA
I LRRQEDFYP FL KDNREKI EKI LTFRI PYYVGPLARGNSRFAWMTRKS EET I
TPWNFEEVVDKGASAQSF
I ERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTV
KQLKEDYFKKIECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENEDILEDIVLTLTLFEDREM
I EERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKL I NG I RDKQS GKT I LDFL KS DGFANRNFMQL I
HDDS
LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAI KKGILQTVKVVDELVKVMGRHKPENIVI EMARENQTTQ
KGQKNSRERMKRI EEGI KELGS Q I LKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELD INRL SDYDVDHI
VPQSFLKDDS IDNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQLLNAKL ITQRKFDNLTKAERGGLS EL
DKAGF I KRQLVETRQ I TKHVAQ ILDSRMNTKYDENDKL IREVKVITLKSKLVSDFRKDFQFYKVRE INNY
HHAHDAYLNAVVGTAL I KKY PKLE S E FVYGDYKVYDVRKM IAKS EQE I GKATAKYF FYSN IMNF
FKTE IT
LANGE IRKRPL I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES IL PKRNSDKL IA
RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGIT IMERSSFEKNP I DFLEAKGYKEVK
KDL I I KL P KYSL FELENGRKRMLASAGELQKGNELAL P SKYVNFLYLASHYEKL KGS P EDNEQKQL
FVEQ

HKHYLDE I I EQI SEFS KRVI LADANLDKVL SAYNKHRDKP IREQAENI
IHLFTLTNLGAPAAFKYFDTTI
DRKRYTSTKEVLDATL IHQS ITGLYETRIDLSQLGGD (SEQ ID NO: 11,096), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto.
In certain embodiments, the gene modifying polypeptide further comprises a spacer sequence between the DNA binding domain and the linker. In certain embodiments, the spacer sequence between the DNA binding domain and the linker comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids. In certain embodiments, the spacer sequence between the DNA binding domain and the linker comprises the amino acid sequence GG.
In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises an amino acid sequence as listed in Table 1 or 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
In certain embodiments, the gene modifying polypeptide further comprises a spacer sequence between the linker and the RT domain. In certain embodiments, the spacer sequence between the linker and the RT domain comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids. In certain embodiments, the spacer sequence between the linker and the RT domain comprises the amino acid sequence GG.
In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the RT
domain comprises a RT
domain sequence of a gene modifying polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the RT domain comprises an amino acid sequence as listed in Table 1 or 6, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT domain has a length of about 400-500, 500-600, 600-700, 700-800, 800-900, or 900-1000 amino acids.
In certain embodiments, the gene modifying polypeptide further comprises a spacer sequence between the RT domain and the second NLS. In certain embodiments, the spacer sequence between the RT domain and the second NLS comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids. In certain embodiments, the spacer sequence between the RT domain and the second NLS
comprises the amino acid sequence AG.

In certain embodiments, the second NLS comprises a second NLS sequence of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743. In certain embodiments, the second NLS comprises a second NLS sequence of a gene modifying polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12.
In certain embodiments, the second NLS sequence comprises a plurality of partial NLS sequences. In embodiments, the NLS sequence, e.g., the second NLS sequence, comprises a first partial NLS sequence, e.g., comprising the amino acid sequence KRTADGSEFE (SEQ ID NO: 11,097), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In embodiments, the NLS sequence, e.g., the second NLS sequence, comprises a second partial NLS
sequence. In embodiments, the NLS sequence, e.g., the second NLS sequence, comprises an SV40A5 NLS, e.g., a bipartite SV40A5 NLS, e.g., comprising the amino acid sequence KRTADGSEFESPKKKAKVE (SEQ
ID NO: 11,098), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the NLS sequence, e.g., the second NLS sequence, comprises the amino acid sequence KRTADGSEFEKRTADGSEFESPKKKAKVE (SEQ ID NO: 11,099), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto.
In certain embodiments, the gene modifying polypeptide further comprises a spacer sequence between the second NLS and the T2A sequence and/or puromycin sequence. In certain embodiments, the spacer sequence between the second NLS and the T2A sequence and/or puromycin sequence comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids. In certain embodiments, the spacer sequence between the second NLS and the T2A sequence and/or puromycin sequence comprises the amino acid sequence GSG.
Linkers and RT domains In some embodiments, the gene modifying polypeptide comprises a linker (e.g., as described herein) and an RT domain (e.g., as described herein). In certain embodiments, the gene modifying polypeptide comprises, in N-terminal to C-terminal order, a linker (e.g., as described herein) and an RT
domain (e.g., as described herein).
In certain embodiments, the linker comprises a linker sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of any one of SEQ ID NOs:
1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain .. embodiments, the linker comprises a linker sequence of any one of SEQ ID
NOs: 6001-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of any one of SEQ ID NOs:
4501-4541, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of an exemplary gene modifying polypeptide listed in Table Al, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table Tl, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ
ID NO: listed in Table T2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D1, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D3, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D4, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ
ID NO: listed in Table D5, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D6, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D7, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D8, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D9, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ
ID NO: listed in Table D10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D11, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the linker comprises a linker sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
In certain embodiments, the RT domain comprises an RT domain sequence as listed in Table 6, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the RT domain comprises an RT domain sequence of an exemplary gene modifying polypeptide listed in Table Al, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO:
listed in Table Tl, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table T2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D1, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO:
listed in Table D2, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D3, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D4, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO:
listed in Table D5, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D6, or an amino acid sequence having at -- least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D7, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO:
listed in Table D8, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D9, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO:
listed in Table D11, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the RT domain comprises a RT domain sequence of a gene modifying polypeptide having the amino acid sequence of a SEQ ID NO: listed in Table D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
In some embodiments, a gene modifying polypeptide comprises a portion of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743, wherein the portion comprises a linker and RT domain, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity to said portion.
In some embodiments, a gene modifying polypeptide comprises a linker of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to said linker. In some embodiments, a gene modifying polypeptide comprises a linker of a gene modifying polypeptide of any one of SEQ ID NOs: 6001-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity to said linker. In some embodiments, a gene modifying polypeptide comprises a linker of a gene modifying polypeptide of any one of SEQ ID NOs: 4501-4541, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to said linker. In some embodiments, a gene modifying polypeptide comprises a linker of a gene modifying polypeptide as listed in any of Tables Al, Ti, T2, or Dl-D12, or a linker comprising an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
In some embodiments, a gene modifying polypeptide comprises an RT domain of a gene modifying polypeptide of any one of SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to said RT domain. In some embodiments, a gene modifying polypeptide comprises an RT domain of a gene modifying polypeptide of any one of SEQ ID
NOs: 6001-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity said RT domain. In some embodiments, a gene modifying polypeptide comprises an RT domain of a gene modifying polypeptide of any one of SEQ ID NOs: 4501-4541, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity said RT domain.
In some embodiments, a gene modifying polypeptide comprises an RT domain of a gene modifying polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12, or an RT domain comprising an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
In certain embodiments, the linker and the RT domain of a gene modifying polypeptide comprise the amino acid sequences of a linker and RT domain (or amino acid sequences having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto) of a gene modifying polypeptide having the amino acid sequence of any one of SEQ ID NOs: 1-7743. In certain embodiments, the linker and the RT domain of a gene modifying polypeptide comprise amino acid sequences of a linker and RT
domain having at least 80% identity to the linker and RT domains of any one of SEQ ID NOs: 1-7743. In certain embodiments, the linker and the RT domain of a gene modifying polypeptide comprise amino acid sequences of a linker and RT domain having at least 90% identity to the linker and RT domains of any one of SEQ ID NOs: 1-7743. In certain embodiments, the linker and the RT domain of a gene modifying polypeptide comprise amino acid sequences of a linker and RT domain having at least 95% identity to the linker and RT
domains of any one of SEQ ID NOs: 1-7743. In certain embodiments, the linker and the RT domain of a gene modifying polypeptide comprise amino acid sequences of a linker and RT
domain having at least 99% identity to the linker and RT domains of any one of SEQ ID NOs: 1-7743. In certain embodiments, the linker and the RT domain of a gene modifying polypeptide comprise the amino acid sequences of a linker and RT domain (or amino acid sequences having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto) of a gene modifying polypeptide having the amino acid sequence of any one of SEQ ID
NOs: 6001-7743. In certain embodiments, the linker and the RT domain of a gene modifying polypeptide comprise the amino acid sequences of a linker and RT domain (or amino acid sequences having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto) of a gene modifying polypeptide having the amino acid sequence of any one of SEQ ID NOs: 4501-4541. In certain embodiments, the linker and the RT domain of a gene modifying polypeptide comprise the amino acid sequences of a linker and RT
domain (or amino acid sequences having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto) from a single row of any of Tables Al, Tl, T2, or Dl-D12 (e.g., from a single exemplary gene modifying polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12).
In certain embodiments, the linker and the RT domain of a gene modifying polypeptide comprise the amino acid sequences of a linker and RT domain (or amino acid sequences having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto) from two different amino acid sequences selected from SEQ ID NOs: 1-7743. In certain embodiments, the linker and the RT domain of a gene modifying polypeptide comprise the amino acid sequences of a linker and RT domain (or amino acid sequences having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto) from different rows of any of Tables Al, Tl, T2, or Dl-D12.
In certain embodiments, the gene modifying polypeptide further comprises a first NLS (e.g., a 5' NLS), e.g., as described herein. In certain embodiments, the gene modifying polypeptide further comprises a second NLS (e.g., a 3' NLS), e.g., as described herein. In certain embodiments, the gene modifying polypeptide further comprises an N-terminal methionine residue.
RT Families and Mutants In certain embodiments, a gene modifying polypeptide comprises comprises the amino acid sequence of an RT domain sequence from a family selected from: AVIRE, BAEVM, FFV, FLV, FOAMY, GALV, KORV, MLVAV, MLVBM, MLVCB, MLVFF, MLVMS, PERV, SFV1, SFV3L, WMSV, XMRV6, BLVAU, BLVJ, HTL1A, HTL1C, HTL1L, HTL32, HTL3P, HTLV2, JSRV, MLVF5, MLVRD, MMTVB, MPMV, SFVCP, SMRVH, SRV1, SRV2, and WDSV. In certain embodiments, a gene modifying polypeptide comprises comprises the amino acid sequence of an RT domain sequence from a family selected from: AVIRE, BAEVM, FFV, FLV, FOAMV, GALV, KORV, MLVAV, MLVBM, MLVCB, MLVFF, MLVMS, PERV, SFV1, SFV3L, WMSV, and XMRV6.
In certain embodiments, a gene modifying polypeptide comprises comprises the amino acid sequence of an RT domain sequence from an MLVMS RT domain. In embodiments, the amino acid sequence of an RT domain sequence comprises one or more point mutations as listed in column 1 of Table Ml, or a point mutation corresponding thereto. In embodiments, the amino acid sequence of an RT
domain sequence comprises one or more point mutations as listed in column 3 of Table M1 (MLVMS), or a point mutation corresponding thereto. In embodiments, the amino acid sequence of an RT domain sequence comprises one or more point mutations at an amino acid position of the RT domain as listed in columns 1 and 2 of Table M2, or an amino acid position corresponding thereto.
In certain embodiments, a gene modifying polypeptide comprises comprises the amino acid sequence of an RT domain sequence from an AVIRE RT domain. In embodiments, the amino acid sequence of an RT domain sequence comprises one or more point mutations as listed in column 2 of Table Ml, or a point mutation corresponding thereto. In embodiments, the amino acid sequence of an RT
domain sequence comprises one or more point mutations as listed in column 4 of Table M1 (AVIRE), or a point mutation corresponding thereto. In embodiments, the amino acid sequence of an RT domain sequence comprises one or more point mutations at an amino acid position of the RT domain as listed in columns 3 and 4 of Table M2, or an amino acid position corresponding thereto.
In certain embodiments, the RT domain comprises an IENSSP (e.g., at the C-terminus).
Table Ml. Exemplary point mutations in MLVMS and AVIRE RT domains RT-linker filing Corresponding MLVMS AVIRE
(MLVMS) AVIRE (PLV4921) (PLV10990) E562Q E5640.

H594Q H5960.

IENSSP at C-term Table M2. Positions that can be mutated in exemplary MLVMS and AVIRE RT
domains WT residue & position MLVMS aa MLVMS AVIRE aa AVIRE
position # position #
* *

In certain embodiments, a gene modifying polypeptide comprises a gamma retrovirus derived RT
domain. In certain embodiments, the gamma retrovirus-derived RT domain of a gene modifying polypeptide comprises the amino acid sequence of an RT domain sequence from a family selected from:
AVIRE, BAEVM, FFV, FLV, FOAMV, GALV, KORV, MLVAV, MLVBM, MLVCB, MLVFF, MLVMS, PERV, SFV1, SFV3L, WMSV, and XMRV6. In some embodiments, the gamma retrovirus-derived RT domain of a gene modifying polypeptide is not derived from PERV. In some embodiments, said RT includes one, two, three, four, five, six or more mutations shown in Table 2 and corresponding to mutations D200N, L603W, T330P, D524G, E562Q, D583N, P51L, S67R, E67K, T197A, H204R, E302K, F309N, W313F, L435G, N454K, H594Q, L671P, E69K, or D653N in the RT
domain of murine leukemia virus reverse transcriptase. In some embodiments, the gene modifying polypeptide further comprises a linker having at least 99% identity to a linker domains of any one of SEQ ID NOs: 1-7743.
In some embodiments, the gene modifying polypeptide further comprises a linker having at least 99% or 100% identity to SEQ ID NO: 5217 or SEQ ID NO:11,041.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of an AVIRE RT (e.g., an AVIRE_P03360 sequence, e.g., SEQ ID NO: 8001), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT
domain comprises the amino acid sequence of an AVIRE RT further comprising one, two, three, four, or five mutations selected from the group consisting of D200N, G330P, L605W, T306K, and W313F, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of an AVIRE RT further comprising one, two, or three mutations selected from the group consisting of D200N, G330P, and L605W, or a corresponding position in a homologous RT
domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a BAEVM RT (e.g., an BAEVM_P10272 sequence, e.g., SEQ ID NO: 8004), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT
domain comprises the amino acid sequence of a BAEVM RT further comprising one, two, three, four, or five mutations selected from the group consisting of D198N, E328P, L602W, T304K, and W311F, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of a BAEVM RT further comprising one, two, or three mutations selected from the group consisting of D198N, E328P, and L602W, or a corresponding position in a homologous RT
domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of an FFV
RT (e.g., an FFV 093209 sequence, e.g., SEQ ID NO: 8012), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT domain comprises the amino acid sequence of an FFV RT further comprising one, two, three, or four mutations selected from the group consisting of D2 1N, T293N, T419P, and L393K, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of an FFV RT further comprising one, two, or three mutations selected from the group consisting of D2 1N, T293N, and T419P, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of an FFV RT further comprising the mutation D21N. In some embodiments, the RT domain comprises the amino acid sequence of an FFV RT
further comprising one, two, or three mutations selected from the group consisting of T207N, T333P, and L307K, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of an FFV RT further comprising one or two mutations selected from the group consisting of T207N and T333P, or a corresponding position in a homologous RT
domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of an FLV
RT (e.g., an FLV_P10273 sequence, e.g., SEQ ID NO: 8019), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT domain comprises the amino acid sequence of an FLV RT further comprising one, two, three, or four mutations selected from the group consisting of D199N, L602W, T305K, and W312F, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of an FLV RT further comprising one or two mutations selected from the group consisting of Di 99N and L602W, or a corresponding position in a homologous RT domain.

In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a FOAMV RT (e.g., an FOAMV_P14350 sequence, e.g., SEQ ID NO: 8021), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT
domain comprises the amino acid sequence of an FOAMV RT further comprising one, two, three, or four mutations selected from the group consisting of D24N, T296N, 5420P, and L396K, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of an FOAMV RT further comprising one, two, or three mutations selected from the group consisting of D24N, T296N, and 5420P, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of an FOAMV
RT further comprising the mutation D24N, or a corresponding position in a homologous RT
domain. In some embodiments, the RT domain comprises the amino acid sequence of an FOAMV RT
further comprising one, two, or three mutations selected from the group consisting of T207N, S331P, and L307K, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of an FOAMV RT further comprising one or two mutations selected from the group consisting of T207N and 5331P, or a corresponding position in a homologous RT domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a GALV
RT (e.g., an GALV_P21414 sequence, e.g., SEQ ID NO: 8027), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT domain comprises the amino acid sequence of a GALV RT further comprising one, two, three, four, or five mutations selected from the group consisting of D198N, E328P, L600W, T304K, and W311F, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of a GALV RT further comprising one, two, or three mutations selected from the group consisting of D198N, E328P, and L600W, or a corresponding position in a homologous RT
domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a KORV
RT (e.g., an KORV_Q9TTC1 sequence, e.g., SEQ ID NO: 8047), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT domain comprises the amino acid sequence of a GALV RT further comprising one, two, three, four, five, or six mutations selected from the group consisting of D32N, D322N, E452P, L274W, T428K, and W435F, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of a GALV RT further comprising one, two, three, or four mutations selected from the group consisting of D32N, D322N, E452P, and L274W, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of a GALV RT further comprising the mutation D32N. In some embodiments, the RT
domain comprises the amino acid sequence of a KORV RT further comprising one, two, three, four, or five mutations selected from the group consisting of D23 1N, E361P, L633W, T337K, and W344F, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of a KORV RT further comprising one, two, or three mutations selected from the group consisting of D231N, E361P, and L633W, or a corresponding position in a homologous RT
domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a MLVAV RT (e.g., an MLVAV_P03356 sequence, e.g., SEQ ID NO: 8053), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT
domain comprises the amino acid sequence of a MLVAV RT further comprising one, two, three, four, or five mutations selected from the group consisting of D200N, T330P, L603W, T306K, and W313F, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of a MLVAV RT further comprising one, two, or three mutations selected from the group consisting of D200N, T330P, and L603W, or a corresponding position in a homologous RT
domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a MLVBM RT (e.g., an MLVBM_Q7SVK7 sequence, e.g., SEQ ID NO: 8056), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT
domain comprises the amino acid sequence of a MLVBM RT further comprising one, two, three, four, or five mutations selected from the group consisting of D199N, T329P, L602W, T305K, and W312F, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of a MLVBM RT further comprising one, two, and three mutations selected from the group consisting of D200N, T330P, and L603W, or a corresponding position in a homologous RT domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a MLVCB RT (e.g., an MLVCB_P08361 sequence, e.g., SEQ ID NO: 8062), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT
domain comprises the amino acid sequence of a MLVCB RT further comprising one, two, three, four, or five mutations selected from the group consisting of D200N, T330P, L603W, T306K, and W313F, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of a MLVCB RT further comprising one, two, and three mutations selected from the group consisting of D200N, T330P, and L603W, or a corresponding position in a homologous RT
domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a MLVFF RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT domain comprises the amino acid sequence of a MLVFF RT
further comprising one, two, three, four, or five mutations selected from the group consisting of D200N, T330P, L603W, T306K, and W313F, or a corresponding position in a homologous RT
domain. In some embodiments, the RT domain comprises the amino acid sequence of a MLVFF RT
further comprising one, two, and three mutations selected from the group consisting of D200N, T330P, and L603W, or a corresponding position in a homologous RT domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a MLVMS RT (e.g., an MLVMS_reference sequence, e.g., SEQ ID NO: 8137; or an MLVMS_P03355 sequence, e.g., SEQ ID NO: 8070), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT domain comprises the amino acid sequence of a MLVMS RT further comprising one, two, three, four, five, or six mutations selected from the group consisting of D200N, T330P, L603W, T306K, W313F, and H8Y, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of a MLVMS RT further comprising one, two, three, four, or five mutations selected from the group consisting of D200N, T330P, L603W, T306K, and W313F, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of a MLVMS RT
further comprising one, two, or three mutations selected from the group consisting of D200N, T330P, and L603W, or a corresponding position in a homologous RT domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a PERV
RT (e.g., an PERV_Q4VFZ2 sequence, e.g., SEQ ID NO: 8099), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT domain comprises the amino acid sequence of a PERV RT further comprising one, two, three, four, or five mutations selected from the group consisting of D196N, E326P, L599W, T302K, and W309F, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of a PERV RT further comprising one, two, or three mutations selected from the group consisting of D196N, E326P, and L599W, or a corresponding position in a homologous RT
domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a SFV1 RT (e.g., an 5FV1_P23074 sequence, e.g., SEQ ID NO: 8105), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT domain comprises the amino acid sequence of a SFV1 RT further comprising one, two, three, or four mutations selected from the group consisting of D24N, T296N, N420P, and L396K, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of a SFV1 RT further comprising one, two, or three mutations selected from the group consisting of D24N, T296N, and N420P, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of a SFV1 RT further comprising the D24N, or a corresponding position in a homologous RT domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a SFV3L RT (e.g., an SFV3L_P27401 sequence, e.g., SEQ ID NO: 8111), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT
domain comprises the amino acid sequence of a SFV3L RT further comprising one, two, three, or four mutations selected from the group consisting of D24N, T296N, N422P, and L396K, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of a SFV3L RT further comprising one, two, or three mutations selected from the group consisting of D24N, T296N, and N422P, or a corresponding position in a homologous RT domain. In some embodiments, the RT domain comprises the amino acid sequence of a SFV3L
RT further comprising the mutation D24N, or a corresponding position in a homologous RT
domain. In some embodiments, the RT domain comprises the amino acid sequence of a SFV3L RT
further comprising one, two, or three mutations selected from the group consisting of T307N, N333P, and L307K, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of a SFV3L RT further comprising one or two mutations selected from the group consisting of T307N and N333P, or a corresponding position in a homologous RT
domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a WMSV RT (e.g., an WM5V_P03359 sequence, e.g., SEQ ID NO: 8131), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT
domain comprises the amino acid sequence of a WMSV RT further comprising one, two, three, four, or five mutations selected from the group consisting of D198N, E328P, L600W, T304K, and W311F, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of a WMSV RT further comprising one, two, or three mutations selected from the group consisting of D198N, E328P, and L600W, or a corresponding position in a homologous RT
domain.
In embodiments, the RT domain comprises the amino acid sequence of an RT
domain of a XMRV6 RT (e.g., an XMRV6_A1Z651 sequence, e.g., SEQ ID NO: 8134), or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the RT
domain comprises the amino acid sequence of a XMRV6 RT further comprising one, two, three, four, or five mutations selected from the group consisting of D200N, T330P, L603W, T306K, and W313F, or a corresponding position in a homologous RT domain. In some embodiments, the RT
domain comprises the amino acid sequence of a XMRV6 RT further comprising one, two, or three mutations selected from the group consisting of D200N, T330P, and L603W, or a corresponding position in a homologous RT
domain.
In certain embodiments, the RT domain of a gene modifying polypeptide comprises the amino acid sequence of an RT domain of an AVIRE RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In embodiments, the RT domain comprises the amino acid sequence of an RT domain comprised in a sequence listed in column 1 of Table A5, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In some embodiments, the gene modifying polypeptide further comprises a linker having at least 99% or 100%
identity to SEQ ID NO: 5217 or SEQ ID NO:11,041.
In certain embodiments, the RT domain of a gene modifying polypeptide comprises the amino acid sequence of an RT domain of an MLVMS RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In embodiments, the RT domain comprises the amino acid sequence of an RT domain comprised in a sequence listed in any of columns 2-6 of Table AS, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In some embodiments, the gene modifying polypeptide further comprises a linker having at least 99% or 100%
identity to SEQ ID NO: 5217 or SEQ ID NO:11,041.
Table A5. Exemplary gene modifying polypeptides comprising an AVIRE RT domain or an MLVMS RT domain.
AVIRE SEQ ID NOs: MLVMS SEQ ID NOs:

Systems In an aspect, the disclosure relates to a system comprising nucleic acid molecule encoding a gene modifying polypeptide (e.g., as described herein) and a template nucleic acid (e.g., a template RNA, e.g., as described herein). In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises one or more silent mutations in the coding region (e.g., in the sequence encoding the RT domain) relative to a nucleic acid molecule as described herein. In certain embodiments, the system further comprises a gRNA (e.g., a gRNA that binds to a polypeptide that induces a nick, e.g., in the opposite strand of the target DNA bound by the gene modifying polypeptide).
In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide encodes a polypeptide having an amino acid sequence selected from SEQ ID NOs:
1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide encodes a polypeptide having an amino acid sequence selected from SEQ ID NOs: 6001-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide encodes a polypeptide having an amino acid sequence selected from SEQ ID NOs: 4501-4541, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide encodes a polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises a sequence encoding a portion of an amino acid sequence selected from SEQ ID NOs: 1-7743, wherein the portion comprises a linker and RT domain, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to said portion. In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises a sequence encoding a portion of an amino acid sequence selected from SEQ ID NOs: 6001-7743, wherein the portion comprises a linker and RT
domain, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to said portion. In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises a sequence encoding a portion of an amino acid sequence selected from SEQ ID NOs: 4501-4541, wherein the portion comprises a linker and RT domain, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to said portion. In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises a sequence encoding a portion of a polypeptide listed in any of Tables Al, Tl, T2, or Dl-D12, wherein the portion comprises a linker and RT domain, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to said portion.
In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises a sequence encoding the linker of an amino acid sequence selected from SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises a sequence encoding the linker of a polypeptide having an amino acid sequence selected from SEQ ID
NOs: 6001-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises a sequence encoding the linker of a polypeptide having an amino acid sequence selected from SEQ ID NOs: 4501-4541, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises a sequence encoding the linker of a polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises a sequence encoding the RT domain of an amino acid sequence selected from SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises a sequence encoding the RT domain of a polypeptide having an amino acid sequence selected from SEQ ID NOs: 6001-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises a sequence encoding the RT domain of a polypeptide having an amino acid sequence selected from SEQ ID NOs: 4501-4541, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the nucleic acid molecule encoding the gene modifying polypeptide comprises a sequence encoding the RT
domain of a polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
In an aspect, the disclosure relates to a system comprising a gene modifying polypeptide (e.g., as described herein) and a template nucleic acid (e.g., a template RNA, e.g., as described herein).
In certain embodiments, the gene modifying polypeptide comprises a polypeptide having an amino acid sequence selected from SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the gene modifying polypeptide comprises a polypeptide having an amino acid sequence selected from SEQ ID NOs: 6001-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the gene modifying polypeptide comprises a polypeptide having an amino acid sequence selected from SEQ ID NOs: 4501-4541, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the gene modifying polypeptide comprises a polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
In certain embodiments, the gene modifying polypeptide comprises a portion of an amino acid sequence selected from SEQ ID NOs: 1-7743, wherein the portion comprises a linker and RT domain, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity to said portion.
In certain embodiments, the gene modifying polypeptide comprises a portion of an amino acid sequence selected from SEQ ID NOs: 6001-7743, wherein the portion comprises a linker and RT domain, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity to said portion. In certain embodiments, the gene modifying polypeptide comprises a portion of an amino acid sequence selected from SEQ ID NOs: 4501-4541, wherein the portion comprises a linker and RT domain, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity to said portion. In certain embodiments, the gene modifying polypeptide comprises a portion of a polypeptide listed in any of Tables Al, Tl, T2, or Dl-D12, wherein the portion comprises a linker and RT
domain, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to said portion.
In certain embodiments, the gene modifying polypeptide comprises the linker of an amino acid sequence selected from SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the gene modifying polypeptide comprises a sequence encoding the linker of a polypeptide having an amino acid sequence selected from .. SEQ ID NOs: 6001-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the gene modifying polypeptide comprises a sequence encoding the linker of a polypeptide having an amino acid sequence selected from SEQ ID NOs: 4501-4541, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the gene modifying polypeptide comprises the linker of a polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.
In certain embodiments, the gene modifying polypeptide comprises the RT domain of an amino acid sequence selected from SEQ ID NOs: 1-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the gene modifying polypeptide comprises a sequence encoding the RT domain of a polypeptide having an amino acid sequence selected from SEQ ID NOs: 6001-7743, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto. In certain embodiments, the gene modifying polypeptide comprises a sequence encoding the RT domain of a polypeptide having an amino acid sequence selected from SEQ ID
NOs: 4501-4541, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99%
identity thereto. In certain embodiments, the gene modifying polypeptide comprises the RT domain of a polypeptide as listed in any of Tables Al, Tl, T2, or Dl-D12, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity thereto.

Table Al. Exemplary amino acid sequences for gene modifying polypeptides comprising an RT domain and a linker sequence SEQ

ID
n.) o n.) NO: Amino Acid Sequence c,.) GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDSFFHRL 7:-=-3 cA, ,.z EESFLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL I
EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS .6.
n.) ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY 4=, DEHHQDLTLLKALVRQQLPEKYKE I FFDQSKNGYAGYIDGGASQEEFYKF I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLFKTNRKVTVKQLKEDYFKKIECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNIMNFFKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR P
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGEAAAKGS SGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSKE .
L.
AQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGTGRTG I, F' , QLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PA , , oo PTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVASG N, N, WPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTGE .
, VLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHLPKR I, I

LAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S PKKKAKVE
0, GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDSFFHRL
EESFLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL I
EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FFDQSKNGYAGYIDGGASQEEFYKF I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLFKTNRKVTVKQLKEDYFKKIECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG
IV
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ n LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL -t I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNIMNFFKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES cp n.) I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ o n.) KGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR t?
O
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGEAAAKGGS PAPGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL --.1 cA
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDPGTG =
.6.
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ un I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV
ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL

TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I

DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED

t..0 LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
..._c+4 O
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ cA) LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL .6.
t.o I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES .6.
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKGGS PAPGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV
ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL
TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE P

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL .. L.
L.
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL

0, (7.1 ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ
I GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY , s:) DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR N, N, EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV .

DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR L.

LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG 0, QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGAEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAAAKEAAAKEAAAKAGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQ
AWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALPPQR
IV
SWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRAS n ,-i AKKAQ I CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPTTAKQVREFLGKAGFCRLF I
PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI KKALLSAPALALPDVTKPFT ---.
LYVDERKGVARGVLTQTLGPWRRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNP cp t.o ATLLPEETDEPVTHDCHQLL I EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS
SLPEGTSAQKAELMALTQALRLAEGKS I N I YTDSRYAFATA o t.o HVHGAIYKQRGWLTSAGRE I KNKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S PKKKAKVE t..0 7:-:--, GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL --.1 o EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS c::' .6.
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY u'l DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV

DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI

n.) KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGAEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAAAKEAAAKEAAAKAGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQ o n.) AWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALPPQR ca SWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRAS
,4z AKKAQ I CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPTTAKQVREFLGKAGFCRLF I
PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI KKALLSAPALALPDVTKPFT .6.
n.) LYVDERKGVARGVLTQTLGPWRRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNP .6.
ATLLPEETDEPVTHDCHQLL I EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS
SLPEGTSAQKAELMALTQALRLAEGKS I N I YTDSRYAFATA
HVHGAIYKQRGWLTSAGRE I KNKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG P
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ L.
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL L.

0, ---.1 I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE
I RKRPL I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES , MERS S FE KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ N, N, KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR .

KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKEAAAKEAAAKGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVR L.
, QYPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFEWRD 0, PGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKK
TVVQ I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKK
LDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLT
D I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLE
ALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
IV
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY n ,-i DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR ---.
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV cp n.) DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR o n.) LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
...._w c:
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ --.1 cA
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL ,:::, .6.
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES un I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR

KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGSGS S PAPGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSK
EAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRT
GQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I P
APTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVAS
GWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTG
EVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHLPK
RLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S

t.) GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL o n.) EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS c,, 7:-:--, ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY c,,,) o DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 4=, EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV 4tµ.2 DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGEAAAKEAAAKEAAAKEAAAKEAAAKGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QL
KASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTS
P
QPLFAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDG L.
QRWLTEARKKTVVQ I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPW L.

0, ---.1 RRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I -- , ,--, EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS
SLPEGTSAQKAELMALTQALRLAEGKS I N I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I K N, N, NKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE
KRTADGSE FE S PKKKAKVE .

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL -- L.

EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS 0, ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
IV
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES n ,-i I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ ---.
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR cp n.) KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGS SGGGEAAAKGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL o n.) S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG ...t?
O
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ --.1 o I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV 4a ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL un TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I

n.) QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ o n.) LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL ca I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES 7:-:--, ,4z I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ .6.
n.) KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR 4=, KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGS SGGGEAAAKGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV
ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL
TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHL
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS P
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY L.
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR L.

0, ---.1 E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNFDKNLPNE KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV , N DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I
LED IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR N, N, LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG .

QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ L.
, LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL 0, I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGS SGS SGS SGS SGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYP
LS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGT
GRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVV
Q I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDP
IV
VASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I P n LTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALH t..1 LPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE ci) n.) GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL o n.) EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS w 7:-:--, ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY --.1 cA
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 4a E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV u'l DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG

QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGS SGS SGS SGS SGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYP
LS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I

GRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVV
N
Q I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDP ca VASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I P
,4z LTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALH .6.
t.o LPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE .6.

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL P
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES L.
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ L.

0, ---.1 KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS
KRVI LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR , L.,,.) KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGGGGS S PAPGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSK N, N, EAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRT .

GQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I P L.
, APTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVAS 0, GWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTG
EVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHLPK
RLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
IV
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV n ,-i DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR ---.
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG cp t.o QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ o t.o LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL t..0 7:-:--, I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES --.1 o I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ =
.6.
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR u'l KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGS S PAPGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSKEAQ
EG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTGQL

TWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPT
TAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVASGWP
VCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTGEVL
TWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHLPKRLA
I I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL

ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY Cit t.o DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR ,,c+4 EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV cli4 DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR 4=, LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
4tµ.2 QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKGGGGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSKE
AQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTG
QLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PA
PTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVASG P
WPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTGE L.
VLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHLPKR L.

0, ---.1 LAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE , MPAAKRVKLDGGDKKYS I GLD I
GTNSVGWAVI TDEYKVPSKKFKVLGNTDRHS I KKNL I GALLFDSGETAEATRLKRTARRRYTRRKNR I
CYLQE I FSNEMAKVDDS FFHRL N, N, EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS .

ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY L.

DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 0, EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
IV
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR n 1-i KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGSEAAAKPAPGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL ---.
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG cp t.o RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ o t.o I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV ...t?
O
ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL --.1 o TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL =
.6.
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE un GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS

ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I

n.) I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES o n.) I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ ca KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR t KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGGGSGGGGSGGGGSGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVR .6.
n.) QYPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFEWRD .6.
PGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKK
TVVQ I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKK
LDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLT
D I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLE
ALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR P
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV L.
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR L.

0, ---.1 LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG , v, QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL
SDYDVDH IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ N, N, LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL .

I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES L.
, I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ 0, KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGPAPAPAPAPAPGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV
ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL
TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL
IV
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE n ,-i GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL ---.
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS ci) n.) ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY o n.) DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR ...._w c:
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV --.1 cA
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR 4a LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG u'l QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL

I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGGGEAAAKGGSGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI

n.) ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL o n.) TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHL ca PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE
,4z GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL .6.
n.) EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS .6.
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ P
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR L.
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGEAAAKGS SGGSGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL L.

0, ---.1 S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG , (7.1 RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ N, N, I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV .

ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL L.
, TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHL 0, PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
IV
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG n ,-i QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ ---.
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL cp n.) I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES o n.) I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ n.) O.--KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR --.1 KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGSGSETPGTSE SATPE SGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSV E
RQYPLS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFEWR u'l DPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARK
KTVVQ I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSK

KLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDL
TD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N
I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLL
EALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE

EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV Cit t.o DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG cli4 QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ .6.
t.o LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL .6.
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKGGGGSEAAAKGGTLQLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPV
SVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFE
WRDPGTGRTGQLTWTRLPQGFKNS PT I FDEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEA
RKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKEKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYL
S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I EETGVRK
DLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I
N I YTDSRYAFATAHVHGAI YKQRGLLTSAGRE I KNKEE I L S P
LLEALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE L.
L.

0, ---.1 EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM
I KFRGHFL I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS , ---.1 ARLSKSRRLENL IAQLPGEKKNGLFGNL
IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I GDQYADLFLAAKNL SDAI LL SD I LRVNTE
I TKAPL SASM I KRY N, N, DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR .

EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV L.

DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR 0, LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKGGGPAPGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ
IV
YPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP n 1-i GTGRTGQLTWTRLPQGFKNS PT I FDEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
---.
VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKEKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL cp t.o DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD o t.o I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGLLTSAGRE I KNKEE I L SLLEA ...._w O
LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE --.1 cA

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL c::' .6.
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS un ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR

E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE

KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
N
KRYTSTKEVLDATL IHQS I
TGLYETRIDLSQLGGDGGGSSGSSGSSGSSGSSGSSGGTLQLDDEYRLYSPLVKPDQNI
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASA ca TPVSVRQYPLS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLF
,4z AFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWL .6.
t.o TEARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPV 4=, AYLS KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I EETG
VRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS
I N I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE
I LSLLEALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE
FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR P
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG L.
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ L.

0, ---.1 LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I
LDSRMNTKYDENDKL I REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL , oo I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I
RKRPL I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES .. N, N, I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ .

KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR L.
, KRYTSTKEVLDATL IHQS I
TGLYETRIDLSQLGGDGGGSSGSSGSSGSSGSSGSSGGTLQLDDEYRLYSPLVKPDQNI
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASA 0, TPVSVRQYPLS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLF
AFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWL
TEARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPV
AYLS KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I EETG
VRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS
I N I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE
I LSLLEALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE
FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
IV
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS n ,-i ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY ---.
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR cp t.o E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV ,:::, t.o DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR ...t?
c:
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG --.1 cA
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ c, .6.
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL un I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ

KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGEAAAKEAAAKEAAAKEAAAKEAAAKEAAAKGGTLQLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQ
VPPQVI QLKASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALPPQRSWYTVLDLKDAFF
CLRLHPTSQPLFAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTY
LGYSLRDGQRWLTEARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I
PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI KKALLSAPALALPDVTKPFTLYVDERKGVARGV
LTQTLGPWRRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I TVIAPHALEN
IVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDE PVT
HDCHQLL I EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS

n.) TSAGRE I KNKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S PKKKAKVE o r..) GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL .. c,, 7:-:--, EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS c,.) ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY 4=, DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 4tµ.2 E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGEAAAKEAAAKEAAAKEAAAKEAAAKEAAAKGGTLQLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQ P
VPPQVI QLKASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALPPQRSWYTVLDLKDAFF L.
CLRLHPTSQPLFAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTY L.

0, ---.1 LGYSLRDGQRWLTEARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I
PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI KKALLSAPALALPDVTKPFTLYVDERKGVARGV , s:) LTQTLGPWRRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I TVIAPHALEN
IVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDE PVT N, N, HDCHQLL I EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS
SLPEGTSAQKAELMALTQALRLAEGKS I N I YTDSRYAFATAHVHGAI YKQRGWL .

TSAGRE I KNKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S PKKKAKVE L.
, GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL 0, EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
IV
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL n I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL

I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ cp n.) KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR o n.) KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGGGS SEAAAKGGTLQLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ w 7:-:--, YPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP --.1 cA
GTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
.6.
VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL un DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD

I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEA
LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE

DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED

t..0 LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
..._c+4 O
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ cA) LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL .6.
t.o I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES .6.
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGGGS SEAAAKGGTLQLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ
YPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP
GTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL
DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD
I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEA
LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE P

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL L.
L.
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL

0, oo ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ
I GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY , KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR N, N, E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV .

DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR L.

LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG 0, QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGSGSETPGTSE SATPE SGGTLQLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATP
VSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAF
IV
EWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTE n ,-i ARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAY ---.
L S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I EETGVR
cp t.o KDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I
N I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE IL o t.o SLLEALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE
S PKKKAKVE t..0 7:-:--, GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL --.1 o EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS c::' .6.
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY u'l DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV

DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI

KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGPAPGS SGGTLQLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSK tc ? j N
EAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRT ca GQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I P
,4z APTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVAS .6.
t.o GWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTG 4=, EVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHLPK
RLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG P
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ L.
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL L.

0, oo I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I
RKRPL I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES .. , ,--, I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I
MERS S FE KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ N, N, KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR .

KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGPAPEAAAKGGGGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ L.
, YPLS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP 0, GTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL
DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD
I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEA
LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
IV
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY n ,-i DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR ---.
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV cp t.o DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
t.o LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I

c:
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ --.1 cA
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL c, .6.
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES un I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR

KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKGGGGGTLQLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV
ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL
TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S

r..) GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL o n.) EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS c,, 7:-:--, ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY c,,,) o DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 4=, E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV 4tµ.2 DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGPAPGGGEAAAKGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ
YPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP P
GTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
L.
VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL L.

0, oo DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD , N I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS
I N I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEA N, N, LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE .

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL L.

EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS 0, ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
IV
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES n ,-i I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ ---.
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR cp n.) KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGS SEAAAKGGGGGTLQLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ ,:::, n.) YPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP n.) O.--GTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
--.1 o VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL c, .6.
DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD un I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEA
LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I

n.) QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ o n.) LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL ca I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES 7:-:--, ,4z I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ .6.
n.) KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR 4=, KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGPAPGGSEAAAKGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ
YPLS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP
GTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL
DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD
I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEA
LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS P
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY L.
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR L.

0, oo E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNFDKNLPNE KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV , L.,.) DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED
I LED IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR N, N, LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG .

QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ L.
, LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL 0, I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGGSGS SEAAAKGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ
YPLS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP
GTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL
IV
DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD n I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEA t..1 LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE ci) n.) GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL o n.) EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS w 7:-:--, ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY --.1 o DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 4a E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV u'l DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG

QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL IHQS I
TGLYETRIDLSQLGGDGGSGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGTLQLDDEYRLYSPLVKPDQNI
QFWLEQFPQAWAETAGMGL
AKQVPPQVI QLKASATPVSVRQYPLS KEAQEG I RPHVQRL I QQG I LVPVQS

n.) AFFCLRLHPTSQPLFAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRRE o n.) VTYLGYSLRDGQRWLTEARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I
PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI KKALLSAPALALPDVTKPFTLYVDERKGVA ca RGVLTQTLGPWRRPVAYLS KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I TVIAPHALEN
IVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDE
,4z PVTHDCHQLL I EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS
SLPEGTSAQKAELMALTQALRLAEGKS I N I YTDSRYAFATAHVHGAI YKQR .6.
n.) GWLTSAGRE I KNKEE I LSLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S PKKKAKVE .6.

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL P
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES L.
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ L.

0, oo KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR , -P KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGEAAAKGGS PAPGGTLQLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ N, N, YPLS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP .

GTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
L.
, VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL 0, DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD
I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEA
LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
IV
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV n ,-i DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR ---.
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG cp n.) QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ o n.) LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL w 7:-:--, I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES --.1 o I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
.6.
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR u'l KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGGSGGSGGSGGSGGSGGSGGTLQLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASA
TPVSVRQYPLS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLF

AFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWL
TEARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPV
AYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I EETG
VRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS
I N I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE
I L SLLEALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE
FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL

ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY Cit t.o DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR ,,c+4 EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV cli4 DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR 4=, LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
4tµ.2 QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGSGGSGGSGGSGGSGGSGGTLQLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASA
TPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD
I HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLF
AFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWL
TEARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPV P
AYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I EETG
L.
VRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS
I N I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE L.

0, oo I L SLLEALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE
KRTADGSE FE S PKKKAKVE , v, 144 MPAAKRVKLDGGDKKYS I GLD I GTNSVGWAVI TDEYKVPSKKFKVLGNTDRHS I KKNL I
GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL N, N, EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS .

ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY L.

DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 0, EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
IV
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR n 1¨i KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGSGS SGGGGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYP ---.
L S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGT cp t.o GRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVV o t.o Q I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDP t..0 VASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I P --.1 o LTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALH F

LPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS

ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I

n.) I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES o n.) I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ ca KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR t o KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGGGGSGGTLQLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSKE .6.
n.) AQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTG 4=, QLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PA
PTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVASG
WPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTGE
VLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHLPKR
LAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR P
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV L.
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR L.

0, oo LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG , (7.1 QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I
NRLSDYDVDH IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ N, N, LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL .

I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES L.
, I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ 0, KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGEAAAKGGTLQLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSKE
AQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTG
QLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PA
PTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVASG
WPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTGE
VLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHLPKR
IV
LAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S PKKKAKVE
n ,-i GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL ---.
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS ci) n.) ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY o n.) DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR ...._w O
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV --.1 o DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR 4a LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG u'l QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL

I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGAEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAAAKEAAAKEAAAKAGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQ
FPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALP
PQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGY
RASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I

PFTLYVDERKGVARGVLTQTLGPWRRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAA
N
LNPATLLPEETDEPVTHDCHQLL I EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I
WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I YTDSRYAF ca ATAHVHGAIYKQRGWLTSAGRE I KNKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S PKKKAKVE
,4z GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL .6.
t.o EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS .6.
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ P
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR L.
KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGAEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAAAKEAAAKEAAAKAGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQ L.

0, oo FPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I
LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALP , ---.1 PQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I
FNEALHRDLANFR I QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGY N, N, RASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I
PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI KKALLSAPALALPDVTK .

PFTLYVDERKGVARGVLTQTLGPWRRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAA L.
, LNPATLLPEETDEPVTHDCHQLL I EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I
WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I YTDSRYAF 0, ATAHVHGAIYKQRGWLTSAGRE I KNKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
IV
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG n ,-i QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ ---.
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL cp t.o I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES o t.o I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ t.o O.--KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR --.1 o KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGPAPAPAPAPAPAPGGTLQLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSV 4a RQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFEWR u'l DPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARK
KTVVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSK

KLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDL
TD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N
I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLL
EALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE

E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV Cit t.o DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG cli4 QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ .6.
t.o LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL .6.
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGS PAPEAAAKGGTLQLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ
YPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP
GTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL
DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD
I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEA P
LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE L.
L.

0, oo EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I
KFRGHFL I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS , oo ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ
I GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY N, N, DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR .

E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV L.

DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR 0, LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKPAPGGSGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ
IV
YPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP n 1-i GTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
---.
VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL cp t.o DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD o t.o I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEA ...._w O
LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE --.1 cA

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL c::' .6.
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS un ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR

E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE

KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
N
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGPAPGGGGGSGGTLQLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYP ca L S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGT
,4z GRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVV .6.
t.o Q I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDP .6.
VASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I P
LTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALH
LPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR P
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG L.
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ L.

0, oo LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I
LDSRMNTKYDENDKL I REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL , s:) I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I
RKRPL I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES N, N, I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ .

KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR L.
, KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGAEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAAAKEAAAKEAAAKAGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQ 0, AWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALPPQR
SWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRAS
AKKAQ I CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPTTAKQVREFLGKAGFCRLF I
PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI KKALLSAPALALPDVTKPFT
LYVDERKGVARGVLTQTLGPWRRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNP
ATLLPEETDEPVTHDCHQLL I EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS
SLPEGTSAQKAELMALTQALRLAEGKS I N I YTDSRYAFATA
HVHGAIYKQRGWLTSAGRE I KNKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
IV
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS n ,-i ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY ---.
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR cp t.o E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV ,:::, t.o DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR ...t?
c:
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG --.1 cA
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ c, .6.
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL un I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ

KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGAEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAAAKEAAAKEAAAKAGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQ
AWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALPPQR
SWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRAS
AKKAQ I CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPTTAKQVREFLGKAGFCRLF I
PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI KKALLSAPALALPDVTKPFT
LYVDERKGVARGVLTQTLGPWRRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNP
ATLLPEETDEPVTHDCHQLL I EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS

n.) HVHGAIYKQRGWLTSAGRE I KNKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S PKKKAKVE o r..) GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL c,, 7:-:--, EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS c,.) ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY 4=, DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 4tµ.2 E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGSGGSGGSGGSGGSGGSGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPV P
SVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFE L.
WRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEA
L.

0, s:) RKKTVVQ I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYL , TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I EETGVRK
N, N, DLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I
N I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L S .

LLEALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE
S PKKKAKVE L.
, GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL 0, EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
IV
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL n I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL

I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ cp n.) KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR o n.) KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGPAPEAAAKGGGGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL w 7:-:--, S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG --.1 cA
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
.6.
I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV u'l ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL

TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I

DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED

t..0 LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
..._c+4 O
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ cA) LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL .6.
t.o I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES .6.
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGEAAAKEAAAKEAAAKEAAAKEAAAKEAAAKGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPP
QVI QLKASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLR
LHPTSQPLFAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGY
SLRDGQRWLTEARKKTVVQ I PAPTTAKQVREFLGKAGFCRLF I
PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQ
TLGPWRRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDC
HQLL I EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS
SLPEGTSAQKAELMALTQALRLAEGKS I N I YTDSRYAFATAHVHGAI YKQRGWLTSA
GRE I KNKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S PKKKAKVE
P

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL L.
L.
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL

0, s:) ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ
I GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY , ,--, DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR N, N, EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV .

DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR L.

LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG 0, QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKGGS PAPGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG
IV
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ n 1¨i I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV ---.
ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL cp t.o TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL o t.o PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE t..0 GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL --.1 o EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS c::' .6.
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY u'l DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV

DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI

n.) KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGEAAAKGGS PAPGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL o n.) S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG ca RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
,4z I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV .6.
n.) ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL .6.
TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHL
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG P
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ L.
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL L.

0, s:) I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I
RKRPL I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES , N I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I
MERS S FE KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ N, N, KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR .

KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGSGSETPGTSE SATPE SGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSV L.
, RQYPLS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFEWR 0, DPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARK
KTVVQ I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSK
KLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDL
TD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N
I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLL
EALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
IV
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY n ,-i DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR ---.
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV cp n.) DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR o n.) LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
...._w c:
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ --.1 cA
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL ,:::, .6.
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES un I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR

KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGS SGGGEAAAKGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV
ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL
TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S

r..) GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL o n.) EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS c,, 7:-:--, ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY c,,,) o DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 4=, EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV 4tµ.2 DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGS SGGGEAAAKGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG P
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ L.
I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV L.

0, s:) ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL , L.,.) TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I
N I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL N, N, PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE .

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL L.

EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS 0, ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
IV
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES n ,-i I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ ---.
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR cp n.) KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGS SGS SGS SGS SGS SGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVR o n.) QYPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFEWRD n.) O.--PGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKK
--.1 TVVQ I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKK E
LDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLT un D I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLE
ALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I

n.) QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ o n.) LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL ca I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES 7:-:--, ,4z I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ .6.
n.) KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR 4=, KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGGGGS S PAPGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSK
EAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRT
GQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I P
APTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVAS
GWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTG
EVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHLPK
RLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS P
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY L.
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR L.

0, s:) E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNFDKNLPNE KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV , -P DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I
LED IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR N, N, LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG .

QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ L.
, LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL 0, I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGS SGS SGS SGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSK
EAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRT
GQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I P
APTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVAS
IV
GWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTG n EVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHLPK t..1 RLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE ci) n.) GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL o n.) EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS w 7:-:--, ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY --.1 cA
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 4a E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV u'l DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG

QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGSGS SGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSKEAQ
EG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I

n.) TWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPT o n.) TAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVASGWP ca VCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTGEVL
,4z TWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHLPKRLA .6.
n.) I I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S PKKKAKVE
.6.

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL P
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES L.
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ L.

0, s:) KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR , v, KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGSGGGPAPGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSK N, N, EAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRT .

GQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I P L.
, APTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVAS 0, GWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTG
EVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHLPK
RLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
IV
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV n ,-i DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR ---.
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG cp n.) QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ o n.) LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL w 7:-:--, I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES --.1 cA
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
.6.
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR u'l KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGGGSGGGGSGGGGSGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVR
QYPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFEWRD

PGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKK
TVVQ I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKK
LDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLT
D I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLE
ALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE
217 MPAAKRVKLDGGDKKYS I GLD I GTNSVGWAVI TDEYKVPSKKFKVLGNTDRHS I KKNL I
GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL

ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY Cit t.o DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR ,,c+4 EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV cli4 DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR 4=, LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
4tµ.2 QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGPAPGGSEAAAKGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV P
ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL L.
TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL L.

0, s:) PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE
S PKKKAKVE , cr, GTNSVGWAVI TDEYKVPSKKFKVLGNTDRHS I KKNL I GALLFDSGETAEATRLKRTARRRYTRRKNR I
CYLQE I FSNEMAKVDDS FFHRL N, N, EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS .

ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY L.

DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 0, EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
IV
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR n KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKGGGGGLDDEYRLYS PLVKPDQN I

AQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTG cp t.o QLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PA o t.o PTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVASG ...t?
O
WPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTGE --.1 o VLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHLPKR F

LAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS

ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I

n.) I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES o n.) I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ ca KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR t KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGS S PAPGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSKEAQ .6.
n.) EG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTGQL .6.
TWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPT
TAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVASGWP
VCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTGEVL
TWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHLPKRLA
I I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR P
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV L.
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR L.

0, s:) LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG , ---.1 QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL
SDYDVDH IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ N, N, LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL .

I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES L.
, I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ 0, KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKPAPGS SGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV
ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL
TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL
IV
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE n ,-i GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL ---.
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS ci) n.) ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY o n.) DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR ...._w c:
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV --.1 cA
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR 4a LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG u'l QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL

I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGPAPGS SEAAAKGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI

n.) ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL o n.) TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHL ca PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE
,4z GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL .6.
n.) EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS .6.
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ P
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR L.
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGS SGS SGS SGS SGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYP L.

0, s:) LS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGT , oo GRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVV N, N, Q I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDP .

VASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I P L.
, LTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALH 0, LPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
IV
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKG n ,-i QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ ---.
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL cp n.) I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSNI MNFEKTE I TLANGE I RKRPL I
ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES o n.) I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ n.) CO--KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR --.1 o KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGS SGS SGS SGS SGGLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYP ,:::, .6.
LS KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGT un GRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVV
Q I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDP

VASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I P
LTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALH
LPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE

EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV Cit t.o DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG cli4 QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ .6.
t.o LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL .6.
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGGEAAAKGGSGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV
ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL
TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL P
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE L.
L.

0, s:) EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I
KFRGHFL I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS , s:) ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ
I GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY N, N, DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR .

EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV L.

DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR 0, LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGEAAAKEAAAKEAAAKEAAAKEAAAKGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QL
IV
KASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTS
n ,-i QPLFAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDG ---.
QRWLTEARKKTVVQ I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPW cp t.o RRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I o t.o EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS
SLPEGTSAQKAELMALTQALRLAEGKS I N I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I K
...._w O
NKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE
KRTADGSE FE S PKKKAKVE --.1 cA

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL c::' .6.
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS un ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR

E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE

KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
N
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGS SGS SGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSKEAQ ca EG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTGQL
,4z TWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPT .6.
t.o TAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVASGWP .6.
VCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTGEVL
TWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHLPKRLA
I I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR P
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG L.
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ L.

0, N
, LDSRMNTKYDENDKL I REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL , RKRPL I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES N, N, I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ .

KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR L.
, KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGGGSEAAAKPAPGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL 0, S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ
I PAPTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV
ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL
TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHL
PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
IV
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS n ,-i ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY ---.
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR cp t.o E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV o t.o DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR ...t?
O
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG --.1 o QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ =
.6.
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL un I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ

KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGPAPGGSGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSKEAQ
EG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTGQL
TWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPT
TAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVASGWP
VCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTGEVL
TWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I

n.) I I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S PKKKAKVE
o r..) GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL c,, 7:-:--, EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS c,.) ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY 4=, DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 4tµ.2 E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGS SEAAAKGGSGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL P
S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTG L.
RTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ L.

0, N
, KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPV , ,--, ASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PL N, N, TGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I LSLLEALHL .

PKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE L.
, GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL 0, EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAI LS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNLSDAI LLSD I LRVNTE I TKAPLSASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRLSDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
IV
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL n I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL

I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ cp n.) KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVLSAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR o n.) KRYTSTKEVLDATL I HQS I TGLYETR I DLSQLGGDGGGGSGS S PAPGGLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPLSK ...._w c:
EAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRT --.1 cA
GQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I
CRREVTYLGYSLRDGQRWLTEARKKTVVQ I P
.6.
APTTAKQVREFLGKAGFCRLF I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKLDPVAS un GWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD I PLTG

EVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEALHLPK
RLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLPAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE

DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED

t..0 LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
..._c+4 O
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ cA) LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL .6.
t.o I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES .6.
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKGGGPAPGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ
YPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP
GTGRTGQLTWTRLPQGFKNS PT I FDEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKEKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL
DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD
I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGLLTSAGRE I KNKEE I L SLLEA
LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE P

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL L.
L.
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL

0, N
, I GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY , N DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR N, N, E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV .

DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR L.

LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG 0, QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKEAAAKEAAAKGGTLQLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPV
SVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFE
IV
WRDPGTGRTGQLTWTRLPQGFKNS PT I FDEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEA n 1¨i RKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKEKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYL ---.
S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I EETGVRK
cp t.o DLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I
N I YTDSRYAFATAHVHGAI YKQRGLLTSAGRE I KNKEE I L S o t.o LLEALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE t..0 GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL --.1 o EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS c::' .6.
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY u'l DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV

DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI

n.) KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGEAAAKEAAAKEAAAKEAAAKEAAAKEAAAKGGTLQLDDEYRLYS PLVKPDQN I
QFWLEQFPQAWAETAGMGLAKQ o n.) VPPQVI QLKASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALPPQRSWYTVLDLKDAFF ca CLRLHPTSQPLFAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FDEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTY t LGYSLRDGQRWLTEARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I
PGFATLAAPLYPLTKEKGEFSWAPEHQKAFDAI KKALLSAPALALPDVTKPFTLYVDERKGVARGV .6.
n.) LTQTLGPWRRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I TVIAPHALEN
IVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDE PVT .6.
HDCHQLL I EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS
SLPEGTSAQKAELMALTQALRLAEGKS I N I YTDSRYAFATAHVHGAI YKQRGLL
TSAGRE I KNKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG P
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ L.
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL L.

0, N
, RKRPL I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES , L.,.) I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I
MERS S FE KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ N, N, KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR .

KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKEAAAKEAAAKGGTLQLDDEYRLYS
PLVKPDQN I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPV L.
, SVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLFAFE 0, WRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEA
RKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYL
S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I EETGVRK
DLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I
N I YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L S
LLEALHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S
PKKKAKVE

GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL
EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS
IV
ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY n 1-i DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR ---.
E KI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I ERMTNFDKNLPNE
KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL SGEQKKAIV cp n.) DLLEKTNRKVTVKQLKEDYFKKIECEDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR o n.) LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
...._w c:
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ --.1 cA
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL ,:::, .6.
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES un I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR

KRYTSTKEVLDATL I HQS I TGLYETR I DL SQLGGDGGEAAAKGGSGGGGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQFPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQ
YPL S KEAQEG I RPHVQRL I QQG I LVPVQS PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I
HPTVPNPYNLLCALPPQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDP
GTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGYRASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKT
VVQ I PAPTTAKQVRE FLGTAGFCRLW I PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI
KKALLSAPALALPDVTKPFTLYVDERKGVARGVLTQTLGPWRRPVAYLSKKL
DPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAALNPATLLPEETDEPVTHDCHQLL I
EETGVRKDLTD
I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAFATAHVHGAI YKQRGWLTSAGRE I KNKEE I L SLLEA
LHLPKRLAI I HCPGHQKAKDP I SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S

t.) MO MPAAKRVKLDGGDKKYS I GLD I GTNSVGWAVI TDEYKVPSKKFKVLGNTDRHS I KKNL I
GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL o n.) EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS c,, 7:-:--, ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY c,,,) o DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR 4=, EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV 4tµ.2 DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES
I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR
KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGAEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAAAKEAAAKEAAAKAGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQ
FPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALP P
PQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGY L.
RASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I
PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI KKALLSAPALALPDVTK L.

0, N
, I TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAA , -P LNPATLLPEETDEPVTHDCHQLL I EETGVRKDLTD I
PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I
YTDSRYAF N, N, ATAHVHGAIYKQRGWLTSAGRE I KNKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S PKKKAKVE .

MO MPAAKRVKLDGGDKKYS I GLD I GTNSVGWAVI TDEYKVPSKKFKVLGNTDRHS I KKNL I
GALLFDSGETAEATRLKRTARRRYTRRKNR I CYLQE I FSNEMAKVDDS FFHRL L.

EE S FLVEEDKKHERHP I FGNIVDEVAYHEKYPT I YHLRKKLVDSTDKADLRL I YLALAHM I KFRGHFL
I EGDLNPDNSDVDKLF I QLVQTYNQLFEENP INASGVDAKAILS 0, ARLSKSRRLENL IAQLPGEKKNGLFGNL IALSLGLTPNEKSNEDLAEDAKLQLSKDTYDDDLDNLLAQ I
GDQYADLFLAAKNL SDAI LL SD I LRVNTE I TKAPL SASM I KRY
DEHHQDLTLLKALVRQQLPEKYKE I FEDQSKNGYAGYIDGGASQEEFYKE I KP I LE
KMDGTEELLVKLNREDLLRKQRTFDNGS I PHQ IHLGELHAILRRQEDFYPFLKDNR
EKI E KI LTFR I PYYVGPLARGNSRFAWMTRKSEET I TPWNFEEVVDKGASAQSF I
ERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAELSGEQKKAIV
DLLEKTNRKVTVKQLKEDYFKKI ECFDSVE I SGVEDRFNASLGTYHDLLKI I KDKDFLDNEENED I LED
IVLTLTLFEDREM I EERLKTYAHLFDDKVMKQLKRRRYTGWGR
LSRKL ING I RDKQSGKT I LDFLKSDGFANRNFMQL IHDDSLTFKED I
QKAQVSGQGDSLHEHIANLAGSPAI KKG I LQTVKVVDELVKVMGRHKPEN IVI EMARENQTTQKG
QKNSRERMKR I EEG I KELGSQ I LKEHPVENTQLQNE KLYLYYLQNGRDMYVDQELD I NRL SDYDVDH
IVPQS FLKDDS I DNKVLTRSDKARGKSDNVPSEEVVKKMKNYWRQ
LLNAKL I TQRKFDNLTKAERGGLSELDKAGF I KRQLVETRQ I TKHVAQ I LDSRMNTKYDENDKL I
REVKVI TLKSKLVSDFRKDFQFYKVRE I NNYHHAHDAYLNAVVGTAL
IV
I KKYPKLE SE FVYGDYKVYDVRKM IAKSEQE I GKATAKYFFYSN I MNFEKTE I TLANGE I RKRPL
I ETNGETGE IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES n ,-i I LPKRNSDKL IARKKDWDPKKYGGFDS PTVAYSVLVVAKVE KGKS KKLKSVKELLG I T I MERS S FE
KNP I DFLEAKGYKEVKKDL I I KLPKYSLFELENGRKRMLASAGELQ ---.
KGNELALPS KYVNFLYLASHYE KLKGS PEDNEQKQLFVEQHKHYLDE I I EQ I SE FS KRVI
LADANLDKVL SAYNKHRDKP I REQAEN I I HLFTLTNLGAPAAFKYFDTT I DR cp n.) KRYTSTKEVLDATL I HQS I TGLYETR I DL
SQLGGDGGAEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAAAKEAAAKEAAAKAGGTLQLDDEYRLYS PLVKPDQN
I QFWLEQ o n.) FPQAWAETAGMGLAKQVPPQVI QLKASATPVSVRQYPL S KEAQEG I RPHVQRL I QQG I LVPVQS
PWNTPLLPVRKPGTNDYRPVQDLREVNKRVQD I HPTVPNPYNLLCALP w 7:-:--, PQRSWYTVLDLKDAFFCLRLHPTSQPLEAFEWRDPGTGRTGQLTWTRLPQGFKNS PT I FNEALHRDLANFR I
QHPQVTLLQYVDDLLLAGATKQDCLEGTKALLLELSDLGY --.1 o RASAKKAQ I CRREVTYLGYSLRDGQRWLTEARKKTVVQ I PAPTTAKQVRE FLGTAGFCRLW I
PGFATLAAPLYPLTKPKGEFSWAPEHQKAFDAI KKALLSAPALALPDVTK 4a PFTLYVDERKGVARGVLTQTLGPWRRPVAYL S KKLDPVASGWPVCLKAIAAVAI LVKDADKLTLGQN I
TVIAPHALENIVRQPPDRWMTNARMTHYQSLLLTERVTFAPPAA u'l LNPATLLPEETDEPVTHDCHQLL I EETGVRKDLTD I PLTGEVLTWFTDGSSYVVEGKRMAGAAVVDGTRT I
WAS SLPEGTSAQKAELMALTQALRLAEGKS I N I YTDSRYAF
ATAHVHGAIYKQRGWLTSAGRE I KNKEE I L SLLEALHLPKRLAI I HCPGHQKAKDP I
SRGNQMADRVAKQAAQGVNLLAGKRTADGSE FE KRTADGSE FE S PKKKAKVE

DEMANDE OU BREVET VOLUMINEUX
LA PRESENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND
PLUS D'UN TOME.

NOTE : Pour les tomes additionels, veuillez contacter le Bureau canadien des brevets JUMBO APPLICATIONS/PATENTS
THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE
VOLUME

NOTE: For additional volumes, please contact the Canadian Patent Office NOM DU FICHIER / FILE NAME:
NOTE POUR LE TOME / VOLUME NOTE:

Claims (78)

WO 2023/039424 PCT/US2022/076045
1. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table 1, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker has a sequence from the same row of Table 1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
2. The gene modifying polypeptide of claim 1, wherein the RT domain has a sequence with at least 90% identity to the RT domain of Table 1.
3. The gene modifying polypeptide of any of the preceding claims, wherein the RT domain has a sequence with at least 95% identity to the RT domain of Table 1.
4. The gene modifying polypeptide of any of the preceding claims, wherein the RT domain has a sequence with at least 98% identity to the RT domain of Table 1.
5. The gene modifying polypeptide of any of the preceding claims, wherein the RT domain has a sequence with at least 99% identity to the RT domain of Table 1.
6. The gene modifying polypeptide of any of the preceding claims, wherein the RT domain has a sequence with 100% identity to the RT domain of Table 1.
7. The gene modifying polypeptide of any of the preceding claims, wherein the linker has a sequence with at least 90% identity to the linker sequence from the same row of Table 1 as the RT
domain.
8. The gene modifying polypeptide of any of the preceding claims, wherein the linker has a sequence with at least 95% identity to the linker sequence from the same row of Table 1 as the RT
domain.
9. The gene modifying polypeptide of any of the preceding claims, wherein the linker has a sequence with at least 97% identity to the linker sequence from the same row of Table 1 as the RT
domain.
10. The gene modifying polypeptide of any of the preceding claims, wherein the linker has a sequence with 100% identity to the linker sequence from the same row of Table 1 as the RT domain.
11. The gene modifying polypeptide of any of the preceding claims, wherein the RT domain comprises a mutation as listed in Table 2.
12. The gene modifying polypeptide of any of the preceding claims, wherein the Cas domain comprises a sequence of Table 7 or 8, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identity thereto.
13. The gene modifying polypeptide of any of the preceding claims, wherein the Cas domain is a Cas nickase domain.
14. The gene modifying polypeptide of any of the preceding claims, wherein the Cas domain is a Cas9 nickase domain.
15. The gene modifying polypeptide of any of the preceding claims, wherein the Cas domain comprises an N863A mutation.
16. The gene modifying polypeptide of any of the preceding claims, which comprises an NLS, e.g., wherein the gene modifying polypeptide comprises two NLSs.
17. The gene modifying polypeptide of any of the preceding claims, which comprises an NLS N-terminal of the Cas9 domain.
18. The gene modifying polypeptide of any of the preceding claims, which comprises an NLS C-terminal of the RT domain.
19. The gene modifying polypeptide of any of the preceding claims, which comprises a first NLS
which is N-terminal of the Cas9 domain and a second NLS which is C-terminal of the RT domain.
20. The gene modifying polypeptide of any of the preceding claims, which comprises a sequence of SEQ ID NO: 4000 which comprises the first NLS and the Cas domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identity thereto.
21. The gene modifying polypeptide of any of the preceding claims, which comprises a sequence of SEQ ID NO: 4001 which comprises the second NLS, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identity thereto.
22. The gene modifying polypeptide of any of the preceding claims, which comprises a GG amino acid sequence between the Cas domain and the linker.
23. The gene modifying polypeptide of any of the preceding claims, which comprises an AG amino acid sequence between the RT domain and the second NLS.
24. The gene modifying polypeptide of any of the preceding claims, which comprises a GG amino acid sequence between the linker and the RT domain.
25. The gene modifying polypeptide of any of the preceding claims, which comprises an amino acid sequence according to any of SEQ ID Nos: 1-3332 in the sequence listing, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
26. The gene modifying polypeptide of any of the preceding claims, which comprises an amino acid sequence with at least 90% identity to any of SEQ ID Nos: 1-3332 in the sequence listing.
27. The gene modifying polypeptide of any of the preceding claims, which comprises an amino acid sequence with at least 95% identity to any of SEQ ID Nos: 1-3332 in the sequence listing.
28. The gene modifying polypeptide of any of the preceding claims, which comprises an amino acid sequence with at least 98% identity to any of SEQ ID Nos: 1-3332 in the sequence listing.
29. The gene modifying polypeptide of any of the preceding claims, which comprises an amino acid sequence with at least 99% identity to any of SEQ ID Nos: 1-3332 in the sequence listing.
30. The gene modifying polypeptide of any of the preceding claims, which comprises an amino acid sequence with 100% identity to any of SEQ ID Nos: 1-3332 in the sequence listing.
31. The gene modifying polypeptide of any of the preceding claims, which produces an increase in converted GFP+ of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, 1500%, 2000%, or 2500% relative to unsorted input cells in an assay of Example 2 using HEK cells and g4 guide RNA.
32. The gene modifying polypeptide of any of the preceding claims, which has an activity that is at least 50%, 60%, 70%, 80%, or 90% of the activity of a gene modifying polypeptide comprising, in an N-terminal to C-terminal direction:
a) an NLS and Cas domain sequence of SEQ ID NO: 4000;
b) a linker having the sequence EAAAKGSS;
c) an RT domain having the sequence of PERV_Q4VFZ2_3mutA_WS; and d) an NLS sequence of SEQ ID NO: 4001, in an assay of Example 1 using HEK cells and g4 guide RNA.
33. The gene modifying polypeptide of any of the preceding claims, which has an activity that is at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, 1500%, 2000%, or 2500% greater than the activity of a gene modifying polypeptide comprising a sequence of SEQ
ID NO: 4002, e.g., in an assay of Example 1 using HEK cells and g4 guide RNA.
34. A nucleic acid (e.g., DNA or RNA, e.g., mRNA) encoding the gene modifying polypeptide of any of the preceding claims.
35. A cell comprising the gene modifying polypeptide of any of claims 1-33 or the nucleic acid of claim 34.
36. A system comprising:
i) the gene modifying polypeptide of any of claims 1-33, and ii) a template RNA that comprises:
a) a gRNA spacer that is complementary to a portion a target nucleic acid sequence;

b) a gRNA scaffold that binds the Cas domain of the gene modifying polypeptide;
c) a heterologous object sequence; and d) a primer binding site sequence (PBS sequence).
37. A method for modifying a target nucleic acid in a cell (e.g., a human cell), the method comprising contacting the cell with the system of claim 36, or nucleic acid encoding the same, thereby modifying the target nucleic acid.
38. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain comprising the RT domain of a reference gene modifying polypeptide having the sequence of any one of SEQ ID NOs: 1-7743, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT
domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises the linker of said reference gene modifying polypeptide, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
39. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table 1, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker has a sequence from the same row of Table 1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
40. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table Al, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table Al as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
41. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table A5, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
42. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table Tl, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
43. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table T2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
44. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);

a reverse transcriptase (RT) domain of Table D1, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
45. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D2 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
46. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D3, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D3 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
47. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D4, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D4 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
48. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D5, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D5 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
49. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D6, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D6 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
50. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D7, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D7 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
51. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D8, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D8 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
52. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D9, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D9 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
53. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D10, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D10 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
54. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table D11, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table Dll as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
55. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);

a reverse transcriptase (RT) domain of Table D12, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table D12 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
56. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table Tl, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table T1 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
57. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain of Table T2, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence from the same row of Table T2 as the RT domain, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
58. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
an AVIRE reverse transcriptase (RT) domain (e.g., as described herein), or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the RT domain is C-terminal of the Cas domain; and a linker disposed between the RT domain and the Cas domain, wherein the linker comprises a sequence as listed in Figure 11, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
59. A gene modifying polypeptide comprising:
a Cas domain (e.g., a Cas nickase domain, e.g., a Cas9 nickase domain);
a reverse transcriptase (RT) domain comprising an amino acid sequence of an RT
domain provided in any one of SEQ ID NOs: 1-7743, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto; and a linker disposed between the RT domain and the Cas domain comprising an amino acid sequence of a linker as listed in Table 10, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto, wherein the amino acid sequences of the RT domain and the linker are provided in the same amino acid sequence of any one of SEQ ID NOs: 1-7743, which produces an increase in converted GFP+ of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, 1500%, 2000%, or 2500% relative to unsorted input cells in an assay of Example 2 using HEK cells and g4 guide RNA.
60. A nucleic acid (e.g., DNA or RNA, e.g., mRNA) encoding the gene modifying polypeptide of any of the claims 38-59.
61. A cell comprising the gene modifying polypeptide of any of claims 38-59 or the nucleic acid of claim 60.
62. A system comprising:
i) the gene modifying polypeptide of any of claims 38-59, and ii) a template RNA that comprises:
a) a gRNA spacer that is complementary to a portion a target nucleic acid sequence;
b) a gRNA scaffold that binds the Cas domain of the gene modifying polypeptide;
c) a heterologous object sequence; and d) a primer binding site sequence (PBS sequence).
63. A method for modifying a target nucleic acid in a cell (e.g., a human cell), the method comprising contacting the cell with the system of claim 62, or nucleic acid encoding the same, thereby modifying the target nucleic acid.
64. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain of an AVIRE RT, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas domain;
and a linker disposed between the Cas nickase domain and the RT domain, wherein the linker comprises an amino acid sequence as listed in Table 10, or an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity thereto.
65. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain comprising the RT domain of a reference gene modifying polypeptide having sequence of any one of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 6076, 6143, 6200, 6254, 6274, 6315, 6328, 6337, 6403, 6420, 6440, 6513, 6552, 6613, 6671, 6822, 6840, 6884, 6907, 6970, 7025, 7052, 7078, 7243, 7253, 7318, 7379, 7486, 7524, 7668, 7680, 7720, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 6015, 6029, 6045, 6077, 6129, 6144, 6164, 6201, 6227, 6244, 6250, 6264, 6289, 6304, 6316, 6384, 6421, 6441, 6492, 6514, 6530, 6569, 6584, 6621, 6651, 6659, 6683, 6703, 6727, 6732, 6745, 6755, 6784, 6817, 6823, 6841, 6871, 6885, 6898, 6908, 6933, 6971, 7009, 7018, 7045, 7053, 7068, 7079, 7096, 7104, 7122, 7151, 7163, 7181, 7244, 7273, 7319, 7336, 7380, 7402, 7462, 7487, 7525, 7569, 7626, 7689, 7707, 7721, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 6001, 6030, 6078, 6108, 6130, 6165, 6265, 6275, 6305, 6329, 6370, 6385, 6404, 6531, 6585, 6622, 6652, 6733, 6756, 6765, 6798, 6824, 6972, 7046, 7054, 7069, 7080, 7105, 7123, 7143, 7152, 7204, 7320, 7351, 7381, 7403, 7438, 7488, 7500, 7526, 7588, 7612, 7627 or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas domain;
and a linker disposed between the Cas nickase domain and the RT domain, wherein the linker comprises the linker of said reference gene modifying polypeptide, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
66. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain having the sequence of SEQ ID NO: 8001, 8002, or 8003, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99%
identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas nickase domain; and a linker disposed between the RT domain and the Cas nickase domain, wherein the linker comprises an amino acid sequence of the linker of any of SEQ ID NOS: a reference gene modifying polypeptide having sequence of any one of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 6076, 6143, 6200, 6254, 6274, 6315, 6328, 6337, 6403, 6420, 6440, 6513, 6552, 6613, 6671, 6822, 6840, 6884, 6907, 6970, 7025, 7052, 7078, 7243, 7253, 7318, 7379, 7486, 7524, 7668, 7680, 7720, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 6015, 6029, 6045, 6077, 6129, 6144, 6164, 6201, 6227, 6244, 6250, 6264, 6289, 6304, 6316, 6384, 6421, 6441, 6492, 6514, 6530, 6569, 6584, 6621, 6651, 6659, 6683, 6703, 6727, 6732, 6745, 6755, 6784, 6817, 6823, 6841, 6871, 6885, 6898, 6908, 6933, 6971, 7009, 7018, 7045, 7053, 7068, 7079, 7096, 7104, 7122, 7151, 7163, 7181, 7244, 7273, 7319, 7336, 7380, 7402, 7462, 7487, 7525, 7569, 7626, 7689, 7707, 7721, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 6001, 6030, 6078, 6108, 6130, 6165, 6265, 6275, 6305, 6329, 6370, 6385, 6404, 6531, 6585, 6622, 6652, 6733, 6756, 6765, 6798, 6824, 6972, 7046, 7054, 7069, 7080, 7105, 7123, 7143, 7152, 7204, 7320, 7351, 7381, 7403, 7438, 7488, 7500, 7526, 7588, 7612, 7627, or a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identity thereto.
67. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain having the sequence of SEQ ID NO: 8,003, or a sequence having at least 95% identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas nickase domain; and a linker disposed between the RT domain and the Cas nickase domain, wherein the linker comprises an amino acid sequence according to SEQ ID NO: 5217 or 15,401.
68. A gene modifying polypeptide comprising:

a reverse transcriptase (RT) domain having the sequence of SEQ ID NO: 8,020, or a sequence having at least 95% identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas nickase domain; and a linker disposed between the RT domain and the Cas nickase domain, wherein the linker comprises an amino acid sequence according to SEQ ID NO: 5217 or 15,402.
69. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain having the sequence of SEQ ID NO: 8,074, or a sequence having at least 95% identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas nickase domain; and a linker disposed between the RT domain and the Cas nickase domain, wherein the linker comprises an amino acid sequence according to SEQ ID NO: 15,403.
70. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain having the sequence of SEQ ID NO: 8,113, or a sequence having at least 95% identity thereto;
a Cas nickase domain, wherein the RT domain is C-terminal of the Cas nickase domain; and a linker disposed between the RT domain and the Cas nickase domain, wherein the linker comprises an amino acid sequence according to SEQ ID NO: 15,404.
71. A gene modifying polypeptide comprising:
a reverse transcriptase (RT) domain comprising the RT domain of a reference gene modifying polypeptide having the sequence of any one of SEQ ID NOs: 1-7743,, and a Cas nickase domain, wherein the RT domain is C-terminal of the Cas nickase domain; and a linker disposed between the RT domain and the Cas nickase domain, wherein the linker comprises the linker of said reference gene modifying polypeptide.
72. A nucleic acid molecule encoding the gene modifying polypeptide of any of claims 64-71.
73. A cell comprising the gene modifying polypeptide of any of claims 64-71.
74. A cell comprising the nucleic acid molecule of claim 72.
75. A system comprising:

i) the gene modifying polypeptide of any of claims 64-71, or a nucleic acid molecule encoding the gene modifying polypeptide of claim 72, and ii) a template RNA that comprises:
a) a gRNA spacer that is complementary to a portion a target nucleic acid sequence;
b) a gRNA scaffold that binds the Cas nickase domain of the gene modifying polypeptide;
c) a heterologous object sequence; and d) a primer binding site sequence.
76. A lipid nanoparticle formulation comprising the gene modifying polypeptide of any of claims 64-71, the nucleic acid of claim 72, or the system of claim 75.
77. A method for modifying a target nucleic acid molecule in a cell, the method comprising contacting the cell with the system of claim 75, thereby modifying the target nucleic acid molecule.
78. A method of using a gene modifying polypeptide according to any of claims 64-71, or a nucleic acid of claim 72, or a system of claim 75, to modify a target genome by target-primed reverse transcription, the method comprising contacting the target genome with the gene modifying polypeptide, nucleic acid, or system, thereby modifying the target nucleic acid molecule.
CA3231677A 2021-09-08 2022-09-07 Methods and compositions for modulating a genome Pending CA3231677A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202163241953P 2021-09-08 2021-09-08
US63/241,953 2021-09-08
US202263373444P 2022-08-24 2022-08-24
US63/373,444 2022-08-24
PCT/US2022/076045 WO2023039424A2 (en) 2021-09-08 2022-09-07 Methods and compositions for modulating a genome

Publications (1)

Publication Number Publication Date
CA3231677A1 true CA3231677A1 (en) 2023-03-16

Family

ID=85507644

Family Applications (1)

Application Number Title Priority Date Filing Date
CA3231677A Pending CA3231677A1 (en) 2021-09-08 2022-09-07 Methods and compositions for modulating a genome

Country Status (6)

Country Link
US (2) US20240076638A1 (en)
AU (1) AU2022343268A1 (en)
CA (1) CA3231677A1 (en)
IL (1) IL311225A (en)
TW (1) TW202323522A (en)
WO (1) WO2023039424A2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201912327SA (en) * 2012-12-12 2020-02-27 Broad Inst Inc Engineering and Optimization of Improved Systems, Methods and Enzyme Compositions for Sequence Manipulation
EP3679143A1 (en) * 2017-09-08 2020-07-15 Life Technologies Corporation Methods for improved homologous recombination and compositions thereof
US20210079404A9 (en) * 2018-09-25 2021-03-18 Massachusetts Institute Of Technology Engineered dcas9 with reduced toxicity and its use in genetic circuits
EP3924475A1 (en) * 2019-02-15 2021-12-22 Sigma-Aldrich Co. LLC Crispr/cas fusion proteins and systems
MX2021011426A (en) * 2019-03-19 2022-03-11 Broad Inst Inc Methods and compositions for editing nucleotide sequences.
US20220411768A1 (en) * 2019-10-21 2022-12-29 The Trustees Of Columbia University In The City Of New York Methods of performing rna templated genome editing
WO2021092130A1 (en) * 2019-11-05 2021-05-14 Pairwise Plants Services, Inc. Compositions and methods for rna-encoded dna-replacement of alleles
WO2021138469A1 (en) * 2019-12-30 2021-07-08 The Broad Institute, Inc. Genome editing using reverse transcriptase enabled and fully active crispr complexes
EP4121522A4 (en) * 2020-03-19 2024-06-19 Intellia Therapeutics, Inc. Methods and compositions for directed genome editing

Also Published As

Publication number Publication date
US20240002886A1 (en) 2024-01-04
TW202323522A (en) 2023-06-16
US20240002822A1 (en) 2024-01-04
US20240076638A1 (en) 2024-03-07
IL311225A (en) 2024-05-01
WO2023039424A3 (en) 2023-07-06
AU2022343268A1 (en) 2024-03-28
WO2023039424A2 (en) 2023-03-16
US20240026324A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
KR102553518B1 (en) Methods and compositions for RNA-guided treatment of HIV infection
JP5749014B2 (en) Polyprint lacto modified retroviral vector
WO2016197354A1 (en) Crispr-cas9 method for specific knockout of swine pdx1 gene and sgrna for use in targeting specifically pdx1 gene
WO2016187904A1 (en) Method for pig cmah gene specific knockout by means of crispr-cas9 and sgrna for specially targeting cmah gene
CN113286880A (en) Methods and compositions for regulating a genome
WO2016197361A1 (en) Method for specific knockout of swine ggta1 gene using crispr-cas9 specificity, and sgrna used for specifically targeting ggta1 gene
CN108124453A (en) Cas9 retrovirus integrases and Cas9 for DNA sequence dna targeting to be incorporated in cell or the genome of organism recombinate enzyme system
KR20190005801A (en) Target Specific CRISPR variants
CA3174483A1 (en) Improved methods and compositions for modulating a genome
KR20220139433A (en) Rna-guided human genome engineering
Wang et al. A novel family of tyrosine integrases encoded by the temperate pleolipovirus SNJ2
JP2021522783A (en) Lentivirus-based vectors and related systems and methods for eukaryotic gene editing
KR20230129230A (en) Compositions and methods for targeting BCL11A
GB2556648A (en) Methods
WO2020163779A1 (en) Production and tracking of engineered cells with combinatorial genetic modifications
RU2752529C9 (en) Improved eucaryotic cells for protein production and methods for their production
CA3231679A1 (en) Hbb-modulating compositions and methods
CA3231594A1 (en) Serpina-modulating compositions and methods
CN112143704B (en) Cell strain capable of indicating ACE2 expression level and construction method and application thereof
CA3231677A1 (en) Methods and compositions for modulating a genome
JP2005509438A (en) Chimeric plasmid containing replicating retroviral genome and use thereof
CA3231712A1 (en) Pah-modulating compositions and methods
CA3231678A1 (en) Recruitment in trans of gene editing system components
JP7345563B2 (en) Target-specific CRISPR variants
US20230193322A1 (en) CAS9 Fusion Proteins and Related Methods