CA3168515A1 - Systeme et methode d'entrainement de bas niveau de reseaux neuronaux - Google Patents
Systeme et methode d'entrainement de bas niveau de reseaux neuronauxInfo
- Publication number
- CA3168515A1 CA3168515A1 CA3168515A CA3168515A CA3168515A1 CA 3168515 A1 CA3168515 A1 CA 3168515A1 CA 3168515 A CA3168515 A CA 3168515A CA 3168515 A CA3168515 A CA 3168515A CA 3168515 A1 CA3168515 A1 CA 3168515A1
- Authority
- CA
- Canada
- Prior art keywords
- neural network
- network model
- training
- nodes
- low rank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
- Feedback Control In General (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163203454P | 2021-07-23 | 2021-07-23 | |
US63/203,454 | 2021-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3168515A1 true CA3168515A1 (fr) | 2023-01-23 |
Family
ID=84540531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3168515A Pending CA3168515A1 (fr) | 2021-07-23 | 2022-07-21 | Systeme et methode d'entrainement de bas niveau de reseaux neuronaux |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230057387A1 (fr) |
CA (1) | CA3168515A1 (fr) |
GB (1) | GB2614112A (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117318037B (zh) * | 2023-09-27 | 2024-09-06 | 国网湖北省电力有限公司电力科学研究院 | 一种含规模分布式新能源接入的配电网状态分析方法 |
CN117372702B (zh) * | 2023-12-08 | 2024-02-06 | 江西师范大学 | 自监督深度学习与模型方法相结合的云层去除方法及装置 |
CN118520975A (zh) * | 2024-07-22 | 2024-08-20 | 智慧眼科技股份有限公司 | 一种大语言模型训练方法、装置、电子设备及存储介质 |
CN118569324A (zh) * | 2024-08-01 | 2024-08-30 | 浪潮软件科技有限公司 | 一种大语言模型加速方法及装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9262724B2 (en) * | 2012-07-13 | 2016-02-16 | International Business Machines Corporation | Low-rank matrix factorization for deep belief network training with high-dimensional output targets |
US9400955B2 (en) * | 2013-12-13 | 2016-07-26 | Amazon Technologies, Inc. | Reducing dynamic range of low-rank decomposition matrices |
US10360497B2 (en) * | 2014-07-16 | 2019-07-23 | Qualcomm Incorporated | Decomposing convolution operation in neural networks |
JP6706326B2 (ja) * | 2016-02-03 | 2020-06-03 | グーグル エルエルシー | リカレントニューラルネットワークモデルの圧縮 |
WO2020190772A1 (fr) * | 2019-03-15 | 2020-09-24 | Futurewei Technologies, Inc. | Compression et optimisation de modèle de réseau de neurones artificiels |
-
2022
- 2022-07-21 CA CA3168515A patent/CA3168515A1/fr active Pending
- 2022-07-21 US US17/814,041 patent/US20230057387A1/en active Pending
- 2022-07-22 GB GB2210740.3A patent/GB2614112A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20230057387A1 (en) | 2023-02-23 |
GB2614112A (en) | 2023-06-28 |
GB202210740D0 (en) | 2022-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3168515A1 (fr) | Systeme et methode d'entrainement de bas niveau de reseaux neuronaux | |
Hubara et al. | Accelerated sparse neural training: A provable and efficient method to find n: m transposable masks | |
Swaminathan et al. | Sparse low rank factorization for deep neural network compression | |
Lu et al. | Learning compact recurrent neural networks | |
Zhang et al. | Platon: Pruning large transformer models with upper confidence bound of weight importance | |
Mueller et al. | Siamese recurrent architectures for learning sentence similarity | |
US8700552B2 (en) | Exploiting sparseness in training deep neural networks | |
Rae et al. | Fast parametric learning with activation memorization | |
Pandey et al. | Attention gated tensor neural network architectures for speech emotion recognition | |
CN111723914A (zh) | 一种基于卷积核预测的神经网络架构搜索方法 | |
Jakkala | Deep Gaussian processes: A survey | |
Liang et al. | Homodistil: Homotopic task-agnostic distillation of pre-trained transformers | |
Kamalakara et al. | Exploring low rank training of deep neural networks | |
Santacroce et al. | What matters in the structured pruning of generative language models? | |
Berman et al. | Multifactor sequential disentanglement via structured koopman autoencoders | |
CN117951274A (zh) | 一种基于融合向量和关键词检索的rag知识问答方法和装置 | |
Hu et al. | One pass imagenet | |
May | Kernel approximation methods for speech recognition | |
Zhang et al. | Pruned-yolo: Learning efficient object detector using model pruning | |
Ahn et al. | Multi-Corpus Speech Emotion Recognition for Unseen Corpus Using Corpus-Wise Weights in Classification Loss. | |
Chen et al. | Survey: Exploiting data redundancy for optimization of deep learning | |
Upreti | Convolutional neural network (cnn). a comprehensive overview | |
Park et al. | An effective 3D text recurrent voting generator for metaverse | |
Zheng et al. | A novel and efficient model pruning method for deep convolutional neural networks by evaluating the direct and indirect effects of filters | |
Hutchinson et al. | A sparse plus low-rank exponential language model for limited resource scenarios |