CA3116543A1 - Systemes et procedes d'interpretation de specimen - Google Patents
Systemes et procedes d'interpretation de specimen Download PDFInfo
- Publication number
- CA3116543A1 CA3116543A1 CA3116543A CA3116543A CA3116543A1 CA 3116543 A1 CA3116543 A1 CA 3116543A1 CA 3116543 A CA3116543 A CA 3116543A CA 3116543 A CA3116543 A CA 3116543A CA 3116543 A1 CA3116543 A1 CA 3116543A1
- Authority
- CA
- Canada
- Prior art keywords
- cell
- cells
- image
- disease
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
L'invention concerne des systèmes, des procédés, ainsi que des dispositifs et d'autres techniques utilisant un apprentissage automatique pour interpréter ou aider à l'interprétation d'échantillons biologiques d'après des images numériques. L'invention concerne des procédés permettant d'améliorer l'identification cellulaire basée sur l'image, des procédés de diagnostic, des procédés permettant d'évaluer l'efficacité d'une prévention de maladie, ainsi que des sorties visuelles utiles aidant les professionnels dans l'interprétation d'échantillons biologiques.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862745961P | 2018-10-15 | 2018-10-15 | |
US62/745,961 | 2018-10-15 | ||
US201962863973P | 2019-06-20 | 2019-06-20 | |
US62/863,973 | 2019-06-20 | ||
PCT/US2019/056222 WO2020081504A1 (fr) | 2018-10-15 | 2019-10-15 | Systèmes et procédés d'interprétation de spécimen |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3116543A1 true CA3116543A1 (fr) | 2020-04-23 |
Family
ID=70283171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3116543A Pending CA3116543A1 (fr) | 2018-10-15 | 2019-10-15 | Systemes et procedes d'interpretation de specimen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3867807A4 (fr) |
CA (1) | CA3116543A1 (fr) |
WO (1) | WO2020081504A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112071438B (zh) * | 2020-09-29 | 2022-06-14 | 武汉东湖大数据交易中心股份有限公司 | 一种百日咳智能筛查方法及系统 |
CN112232439B (zh) * | 2020-11-06 | 2024-04-05 | 四川云从天府人工智能科技有限公司 | 非监督ReID中的伪标签更新方法及系统 |
US20220172355A1 (en) * | 2020-12-02 | 2022-06-02 | Mayo Foundation For Medical Education And Research | Cytological analysis of nuclear neat-1 expression for detection of cholangiocarcinoma |
CN117496276B (zh) * | 2023-12-29 | 2024-04-19 | 广州锟元方青医疗科技有限公司 | 肺癌细胞形态学分析、识别方法及计算机可读存储介质 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU4240200A (en) * | 1999-04-14 | 2000-11-14 | Tripath, Inc. | Method and apparatus for determining microscope specimen preparation type |
US10446272B2 (en) * | 2009-12-09 | 2019-10-15 | Veracyte, Inc. | Methods and compositions for classification of samples |
EP2973217B1 (fr) * | 2013-03-15 | 2023-10-25 | Hologic, Inc. | Système et procédé d'examen et d'analyse d'échantillons cytologiques |
US9842391B2 (en) * | 2013-05-14 | 2017-12-12 | Pathxl Limited | Method and apparatus for processing an image of a tissue sample |
US9298968B1 (en) * | 2014-09-12 | 2016-03-29 | Flagship Biosciences, Inc. | Digital image analysis of inflammatory cells and mediators of inflammation |
US9984199B2 (en) * | 2015-05-21 | 2018-05-29 | Ge Healthcare Bio-Sciences Corp. | Method and system for classification and quantitative analysis of cell types in microscopy images |
CA2994911C (fr) * | 2015-09-02 | 2022-07-05 | Ventana Medical Systems, Inc. | Analyse automatisee d'echantillons cellulaires presentant un melange de motifs analytiquement distincts de coloration d'un analyte |
-
2019
- 2019-10-15 EP EP19873306.5A patent/EP3867807A4/fr active Pending
- 2019-10-15 WO PCT/US2019/056222 patent/WO2020081504A1/fr unknown
- 2019-10-15 CA CA3116543A patent/CA3116543A1/fr active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3867807A4 (fr) | 2022-08-03 |
WO2020081504A1 (fr) | 2020-04-23 |
EP3867807A1 (fr) | 2021-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11508168B2 (en) | Systems and methods for specimen interpretation | |
CA3116543A1 (fr) | Systemes et procedes d'interpretation de specimen | |
Shen et al. | Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams | |
Gupta et al. | The emergence of pathomics | |
Heesterbeek et al. | Noninvasive prenatal test results indicative of maternal malignancies: a nationwide genetic and clinical follow-up study | |
Negahbani et al. | PathoNet introduced as a deep neural network backend for evaluation of Ki-67 and tumor-infiltrating lymphocytes in breast cancer | |
JP2022553906A (ja) | 疾患検出モデルを開発するためのシステム、方法、プログラム | |
Gage et al. | Cervical histopathology variability among laboratories: a population-based statewide investigation | |
Yao et al. | Rib fracture detection system based on deep learning | |
Elkhader et al. | Artificial intelligence in oncology: From bench to clinic | |
Kolligs et al. | Risk factors for advanced neoplasia within subcentimetric polyps: implications for diagnostic imaging | |
Liang et al. | Development of artificial intelligence technology in diagnosis, treatment, and prognosis of colorectal cancer | |
Lee et al. | Unsupervised machine learning for identifying important visual features through bag-of-words using histopathology data from chronic kidney disease | |
Radiya-Dixit et al. | Automated classification of benign and malignant proliferative breast lesions | |
Lew et al. | Computational cytology: lessons learned from Pap test computer-assisted screening | |
Albalawi et al. | Oral squamous cell carcinoma detection using EfficientNet on histopathological images | |
US20240265541A1 (en) | Biological context for analyzing whole slide images | |
WO2017093524A1 (fr) | Dispositifs, systèmes et procédés de notation quantitative automatisée d'images de tissu numérisées | |
Ashraf et al. | A loss-based patch label denoising method for improving whole-slide image analysis using a convolutional neural network | |
Li et al. | A depthwise separable dense convolutional network with convolution block attention module for COVID-19 diagnosis on CT scans | |
WO2022026169A1 (fr) | Détermination automatique d'une recommandation médicale pour un patient sur la base de multiples images médicales provenant de multiples modalités d'imagerie médicale différentes | |
Mosquera-Zamudio et al. | Deep learning for skin melanocytic tumors in whole-slide images: A systematic review | |
Buendgens et al. | Weakly supervised end-to-end artificial intelligence in gastrointestinal endoscopy | |
Zhao et al. | LESS: Label-efficient multi-scale learning for cytological whole slide image screening | |
Sharkas et al. | Color-CADx: a deep learning approach for colorectal cancer classification through triple convolutional neural networks and discrete cosine transform |