CA3100032A1 - Compositions and methods for treating the eye - Google Patents
Compositions and methods for treating the eyeInfo
- Publication number
- CA3100032A1 CA3100032A1 CA3100032A CA3100032A CA3100032A1 CA 3100032 A1 CA3100032 A1 CA 3100032A1 CA 3100032 A CA3100032 A CA 3100032A CA 3100032 A CA3100032 A CA 3100032A CA 3100032 A1 CA3100032 A1 CA 3100032A1
- Authority
- CA
- Canada
- Prior art keywords
- optionally
- pichia
- extracts
- composition
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/06—Fungi, e.g. yeasts
- A61K36/062—Ascomycota
- A61K36/064—Saccharomycetales, e.g. baker's yeast
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/14—Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/28—Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Mycology (AREA)
- Molecular Biology (AREA)
- Ophthalmology & Optometry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Dispersion Chemistry (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Botany (AREA)
- Alternative & Traditional Medicine (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Biophysics (AREA)
- Inorganic Chemistry (AREA)
- Biochemistry (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines Containing Plant Substances (AREA)
Abstract
ABSTRACT The present invention relates to compositions comprising one or more compounds and/or extracts which induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea, and methods of using the compositions to treat the eye. Date Recue/Date Received 2020-11-19
Description
COMPOSITIONS AND METHODS FOR TREATING THE EYE
CROSS REFERENCE TO RELATED APPLICATION
The present application claims the benefit of the earlier filing date of United States provisional patent applications 62/937,458 and 62/937,473, each, filed November 19, 2019 and United States patent application 17/099,185 filed November 16, 2020 the entirety of each such application is hereby incorporated by reference herein as if fully set forth herein.
FIELD OF THE INVENTION
The present invention relates to compositions comprising one or more compounds and/or extracts which induce, promote and/or improve production/release/delivery/excretion of mucin from and/or in the cornea, and methods of using the compositions to treat the eye.
BACKGROUND OF THE INVENTION
"Dry eye is a multifactorial disease of the ocular surface characterized by a loss of homeostasis of the tear film, and accompanied by ocular symptoms, in which tear film instability and hyperosmolarity, ocular surface inflammation and damage, and neurosensory abnormalities play etiological roles." Craig, J.P. et al. TFOS DEWS II
definition and classification report. Ocul Surf 2017; 15: 276-283. Dry eye can result from abnormal or inadequate tear formation, and deficiency in mucin secretion (i.e., keratoconjunctivitis sicca).
Dry eye symptoms can be manifest as a result of various underlying disorders such as autoimmune disorders that damage lacrimal (i.e., tear-producing) glands, such as rheumatoid arthritis, Sjogren's syndrome, systemic lupus erythrematosus, and systemic sclerosis and sarcoidosis. Dry eye can also be induced following eye surgery, such as Lasik0 surgery.
Dry eye is estimated to affect more than 13 million individuals in the United States.
Regardless of the underlying pathology, dry eye commonly involves the rapid breakdown of the pre-ocular tear film, resulting in dehydration of the exposed outer surface.
Normal tear formation is required to keep the cornea and conjunctiva moist, and this in turn helps to prevent ulceration of both, as well as to maintain corneal transparency. In addition, tears facilitate movement of the eyelid over the eye surface (e.g., blinking) and removal of foreign substances from the eye. Tears also normally contain lysozyme which is useful in preventing infection in the eye. Dry eye can be associated with mild discomfort to severe Date Recue/Date Received 2020-11-19 pain in the eye. When it occurs for prolonged periods of time, it can cause blurred vision, grittiness and/or burning sensation, and itchiness. If the condition is allowed to persist without treatment, it can further lead to corneal ulcers and/or scarring.
Dry eye symptoms include eye pain or fatigue, increased blinking, and bloodshot eyes. Further, bacteria may enter through a scratch and cause infection, and if the scratch is deep enough it can even affect the vision of the person. In addition to eyestrain, causes of dry eye include Sjogren's syndrome, Stevens-Johnson syndrome, burns and injury to the eye, and side effects of hypotensive drugs, tranquilizers, eyedrops for treating glaucoma, and other such drugs.
Eyedrops are an effective way to treat dry eye. Such eyedrops typically include dry-eye treatment actives - a common active in such eyedrops is hyaluronic acid.
Hyaluronic acid is a biologically derived macromolecular substance, has extremely high water retention and characteristic properties such as high viscoelasticity, good thickening property, and good thread-forming ability, and has been used as a humectant in topical agents for treating various kinds of skin problems and so forth. In the case of dry eye caused by Sjogren's syndrome, in which dryness is seen over' the entire body, the application of eyedrops containing hyaluronic acid is effective. However, when instilled as an eyedrop, hyaluronic acid has a relatively short residence time on the cornea, so the effect of hyaluronic acid eyedrops lasts only about
CROSS REFERENCE TO RELATED APPLICATION
The present application claims the benefit of the earlier filing date of United States provisional patent applications 62/937,458 and 62/937,473, each, filed November 19, 2019 and United States patent application 17/099,185 filed November 16, 2020 the entirety of each such application is hereby incorporated by reference herein as if fully set forth herein.
FIELD OF THE INVENTION
The present invention relates to compositions comprising one or more compounds and/or extracts which induce, promote and/or improve production/release/delivery/excretion of mucin from and/or in the cornea, and methods of using the compositions to treat the eye.
BACKGROUND OF THE INVENTION
"Dry eye is a multifactorial disease of the ocular surface characterized by a loss of homeostasis of the tear film, and accompanied by ocular symptoms, in which tear film instability and hyperosmolarity, ocular surface inflammation and damage, and neurosensory abnormalities play etiological roles." Craig, J.P. et al. TFOS DEWS II
definition and classification report. Ocul Surf 2017; 15: 276-283. Dry eye can result from abnormal or inadequate tear formation, and deficiency in mucin secretion (i.e., keratoconjunctivitis sicca).
Dry eye symptoms can be manifest as a result of various underlying disorders such as autoimmune disorders that damage lacrimal (i.e., tear-producing) glands, such as rheumatoid arthritis, Sjogren's syndrome, systemic lupus erythrematosus, and systemic sclerosis and sarcoidosis. Dry eye can also be induced following eye surgery, such as Lasik0 surgery.
Dry eye is estimated to affect more than 13 million individuals in the United States.
Regardless of the underlying pathology, dry eye commonly involves the rapid breakdown of the pre-ocular tear film, resulting in dehydration of the exposed outer surface.
Normal tear formation is required to keep the cornea and conjunctiva moist, and this in turn helps to prevent ulceration of both, as well as to maintain corneal transparency. In addition, tears facilitate movement of the eyelid over the eye surface (e.g., blinking) and removal of foreign substances from the eye. Tears also normally contain lysozyme which is useful in preventing infection in the eye. Dry eye can be associated with mild discomfort to severe Date Recue/Date Received 2020-11-19 pain in the eye. When it occurs for prolonged periods of time, it can cause blurred vision, grittiness and/or burning sensation, and itchiness. If the condition is allowed to persist without treatment, it can further lead to corneal ulcers and/or scarring.
Dry eye symptoms include eye pain or fatigue, increased blinking, and bloodshot eyes. Further, bacteria may enter through a scratch and cause infection, and if the scratch is deep enough it can even affect the vision of the person. In addition to eyestrain, causes of dry eye include Sjogren's syndrome, Stevens-Johnson syndrome, burns and injury to the eye, and side effects of hypotensive drugs, tranquilizers, eyedrops for treating glaucoma, and other such drugs.
Eyedrops are an effective way to treat dry eye. Such eyedrops typically include dry-eye treatment actives - a common active in such eyedrops is hyaluronic acid.
Hyaluronic acid is a biologically derived macromolecular substance, has extremely high water retention and characteristic properties such as high viscoelasticity, good thickening property, and good thread-forming ability, and has been used as a humectant in topical agents for treating various kinds of skin problems and so forth. In the case of dry eye caused by Sjogren's syndrome, in which dryness is seen over' the entire body, the application of eyedrops containing hyaluronic acid is effective. However, when instilled as an eyedrop, hyaluronic acid has a relatively short residence time on the cornea, so the effect of hyaluronic acid eyedrops lasts only about
2 or 3 hours, which means that the patient must apply the drops more frequently (such as 5 to .. 10 times a day).
Hyaluronic acid (HA) is produced by corneal epithelial cells in the eye.
Notably, significantly higher hyaluronic acid concentrations have been found in the corneas of younger human population than in the older. (See Pacella, E., Pascella, F., De Paolis, G., et al.
Glycosaminoglycans in the human cornea: age-related changes. Ophthalmol. Eye Dis. 7:1-5, 2015).
In addition, the tear film is the body's natural defense against dry eye. The tear film contains ocular mucins and is essential for maintaining the homeostasis of the wet ocular surface. Mucins are produced, among other places, by corneal epithelial cells in the eye.
Mucins are glycoproteins expressed by epithelial tissues of mucosal surfaces.
They protect tissues by functioning as antioxidants and providing lubrication. Mucin genes associated with the tear film include MUC1, MUC2, MUC4, MUC5AC, MUC5B, MUC7 and MUC16.
Mucin is also useful as an antimicrobial and both Mucin and hyaluronic acid are useful for general wound healing, and is essential for overall eye health maintenance.
Date Recue/Date Received 2020-11-19 There is therefore a need for an ophthalmic pharmaceutical composition that would promote and/or improve the production and/or release of hyaluronic acid and/or mucin from and/or in the cornea.
The present inventors have discovered extracts, or sources of extracts, of the genus Pichia which can induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea.
Accordingly an aspect of the present invention relates to microemulsion compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia to induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea.
Another aspect of the present invention relates to methods for inducing, promoting and/or improving production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea comprising the step of administering ophthalmic microemulsion compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia Another aspect of the present invention relates to methods for treating (e.g., reducing) and/or preventing dry eye, or the symptoms associated with dry eye, comprising the step of administering ophthalmic microemulsion compositions comprising one or more extracts, or sources of extracts, of the genus Pichia.
A further aspect of the present invention relates to methods for treating (e.g., reducing) and/or preventing dry eye, or the symptoms associated with dry eye, comprising the step of administering ophthalmic microemulsion compositions comprising one or more extracts, or sources of extracts, of the genus Pichia.
Another aspect of the present invention relates to methods of preventing and/or treating (e.g., reducing) eye symptoms associated with dry eye and/or resulting from decreased or low-level production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea by administering compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia.
One aspect of the present invention relates to compositions comprising a safe and effective amount of safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia to induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea, which compositions can be administered to patients having a MUC5AC concentration in tears lower than 6 (or about 6),
Hyaluronic acid (HA) is produced by corneal epithelial cells in the eye.
Notably, significantly higher hyaluronic acid concentrations have been found in the corneas of younger human population than in the older. (See Pacella, E., Pascella, F., De Paolis, G., et al.
Glycosaminoglycans in the human cornea: age-related changes. Ophthalmol. Eye Dis. 7:1-5, 2015).
In addition, the tear film is the body's natural defense against dry eye. The tear film contains ocular mucins and is essential for maintaining the homeostasis of the wet ocular surface. Mucins are produced, among other places, by corneal epithelial cells in the eye.
Mucins are glycoproteins expressed by epithelial tissues of mucosal surfaces.
They protect tissues by functioning as antioxidants and providing lubrication. Mucin genes associated with the tear film include MUC1, MUC2, MUC4, MUC5AC, MUC5B, MUC7 and MUC16.
Mucin is also useful as an antimicrobial and both Mucin and hyaluronic acid are useful for general wound healing, and is essential for overall eye health maintenance.
Date Recue/Date Received 2020-11-19 There is therefore a need for an ophthalmic pharmaceutical composition that would promote and/or improve the production and/or release of hyaluronic acid and/or mucin from and/or in the cornea.
The present inventors have discovered extracts, or sources of extracts, of the genus Pichia which can induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea.
Accordingly an aspect of the present invention relates to microemulsion compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia to induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea.
Another aspect of the present invention relates to methods for inducing, promoting and/or improving production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea comprising the step of administering ophthalmic microemulsion compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia Another aspect of the present invention relates to methods for treating (e.g., reducing) and/or preventing dry eye, or the symptoms associated with dry eye, comprising the step of administering ophthalmic microemulsion compositions comprising one or more extracts, or sources of extracts, of the genus Pichia.
A further aspect of the present invention relates to methods for treating (e.g., reducing) and/or preventing dry eye, or the symptoms associated with dry eye, comprising the step of administering ophthalmic microemulsion compositions comprising one or more extracts, or sources of extracts, of the genus Pichia.
Another aspect of the present invention relates to methods of preventing and/or treating (e.g., reducing) eye symptoms associated with dry eye and/or resulting from decreased or low-level production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea by administering compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia.
One aspect of the present invention relates to compositions comprising a safe and effective amount of safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia to induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea, which compositions can be administered to patients having a MUC5AC concentration in tears lower than 6 (or about 6),
3 Date Recue/Date Received 2020-11-19 optionally 8 (or about 8), nanograms per milligram of proteins, such that the concentration of MUC5AC in the tears is raised to (or, is made to be) equal to or greater than 8 (or about 8) nanograms to 15 (or about 15) nanograms, optionally from 9 (or about 9) nanograms to 12 (or about 12) nanograms, per milligram of proteins.
In certain embodiments, the above-described concentration of MUC5AC in the tears (i.e., equal to or greater than 8 (or about 8) nanograms to 15 (or about 15) nanograms, optionally from 9 (or about 9) nanograms to 12 (or about 12) nanograms, per milligram of proteins), resulting from the compounds and/or extracts which induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea is maintained for a period of up to, at least, about 2 hours, optionally about 4 hours, optionally about 6 hours, optionally about 8 hours, optionally about 10 hours, optionally about 12 hours, or optionally from about 12 to about 24 hours.
Concentrations of MUC5AC in tears detailed above are determined using the Uchino Method (described below in the definitions).
A similar aspect of the present invention relates to methods for inducing, promoting and/or improving production/release/delivery/excretion of hyaluronic acid from and/or in the cornea comprising the step of administering ophthalmic compositions comprising safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia to induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea, which compositions can be administered to patients having a hyaluronic acid concentration, in their tears, lower than 10 (or about 10) nanograms, optionally lower than 15 (or about 15) nanograms, optionally lower than 20 (or about 20) nanograms, or optionally lower than 25 (or about 25) nanograms, per milligram of proteins, such that the concentration of hyaluronic acid in their tears is raised to (or, is made to be) equal to or greater than 10 (or about 10), optionally equal to or greater than 15 (or about 15), optionally equal to or greater than 20 (or about 20), optionally equal to or greater than 25 (or about 25) nanograms, optionally equal to or greater than 30 (or about 30), optionally equal to or greater than 35 (or about 35), optionally equal to or greater than 40 (or about 40), or optionally equal to or greater than 45 (or about 45) nanograms per milligram of proteins to 100 (or about 100), optionally 90 (or about 90), optionally 80 (or about 80), optionally 70 (or about 70), or optionally 60 (or about 60) nanograms per milligram of proteins.
In certain embodiments, the above-described concentration of hyaluronic acid, in the patients' tears, resulting from the compounds and/or extracts of the present invention is
In certain embodiments, the above-described concentration of MUC5AC in the tears (i.e., equal to or greater than 8 (or about 8) nanograms to 15 (or about 15) nanograms, optionally from 9 (or about 9) nanograms to 12 (or about 12) nanograms, per milligram of proteins), resulting from the compounds and/or extracts which induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea is maintained for a period of up to, at least, about 2 hours, optionally about 4 hours, optionally about 6 hours, optionally about 8 hours, optionally about 10 hours, optionally about 12 hours, or optionally from about 12 to about 24 hours.
Concentrations of MUC5AC in tears detailed above are determined using the Uchino Method (described below in the definitions).
A similar aspect of the present invention relates to methods for inducing, promoting and/or improving production/release/delivery/excretion of hyaluronic acid from and/or in the cornea comprising the step of administering ophthalmic compositions comprising safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia to induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea, which compositions can be administered to patients having a hyaluronic acid concentration, in their tears, lower than 10 (or about 10) nanograms, optionally lower than 15 (or about 15) nanograms, optionally lower than 20 (or about 20) nanograms, or optionally lower than 25 (or about 25) nanograms, per milligram of proteins, such that the concentration of hyaluronic acid in their tears is raised to (or, is made to be) equal to or greater than 10 (or about 10), optionally equal to or greater than 15 (or about 15), optionally equal to or greater than 20 (or about 20), optionally equal to or greater than 25 (or about 25) nanograms, optionally equal to or greater than 30 (or about 30), optionally equal to or greater than 35 (or about 35), optionally equal to or greater than 40 (or about 40), or optionally equal to or greater than 45 (or about 45) nanograms per milligram of proteins to 100 (or about 100), optionally 90 (or about 90), optionally 80 (or about 80), optionally 70 (or about 70), or optionally 60 (or about 60) nanograms per milligram of proteins.
In certain embodiments, the above-described concentration of hyaluronic acid, in the patients' tears, resulting from the compounds and/or extracts of the present invention is
4 Date Recue/Date Received 2020-11-19 maintained for a period of up to, at least, about 2 hours, optionally about 4 hours, optionally about 6 hours, optionally about 8 hours, optionally about 10 hours, optionally about 12 hours, or optionally from about 12 to about 24 hours.
Concentrations of hyaluronic acid detailed above are determined using the Dreyfuss Method (described below in the definitions).
A further aspect of the present invention relates to methods of promoting healing or increasing the rate of healing of wounds in and/or on the eye (e.g., non-dry eye associated, eye trauma, postoperative surgical or nonspecific wounds) of a patient by administering compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia which induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid or mucin from and/or in the cornea (namely, to increase production/release/delivery/excretion of hyaluronic acid or mucin from and/or in the cornea), in certain embodiments, beyond the respective concentration levels of hyaluronic acid or mucin ordinarily produced by such patient without (or absent) administration of the compositions comprising a safe and effective amount of the one or more extracts, or sources of extracts, of the genus Pichia).
A still further aspect of the present invention relates to methods for improving the antimicrobial properties in tears (or, the tear film of the eye) of a patient by administering compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia which induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea (namely, to increase production/release/delivery/excretion of mucin from and/or in the cornea, in certain embodiments, beyond the concentration level of mucin ordinarily produced by such patient without (or absent) the administration of the compositions comprising a safe and effective amount of such one or more extracts, or sources of extracts, of the genus Pichia).
SUMMARY OF THE INVENTION
The present invention relates to a microemulsion composition for treating the eye comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) an ophthalmologically acceptable carrier
Concentrations of hyaluronic acid detailed above are determined using the Dreyfuss Method (described below in the definitions).
A further aspect of the present invention relates to methods of promoting healing or increasing the rate of healing of wounds in and/or on the eye (e.g., non-dry eye associated, eye trauma, postoperative surgical or nonspecific wounds) of a patient by administering compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia which induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid or mucin from and/or in the cornea (namely, to increase production/release/delivery/excretion of hyaluronic acid or mucin from and/or in the cornea), in certain embodiments, beyond the respective concentration levels of hyaluronic acid or mucin ordinarily produced by such patient without (or absent) administration of the compositions comprising a safe and effective amount of the one or more extracts, or sources of extracts, of the genus Pichia).
A still further aspect of the present invention relates to methods for improving the antimicrobial properties in tears (or, the tear film of the eye) of a patient by administering compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia which induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea (namely, to increase production/release/delivery/excretion of mucin from and/or in the cornea, in certain embodiments, beyond the concentration level of mucin ordinarily produced by such patient without (or absent) the administration of the compositions comprising a safe and effective amount of such one or more extracts, or sources of extracts, of the genus Pichia).
SUMMARY OF THE INVENTION
The present invention relates to a microemulsion composition for treating the eye comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) an ophthalmologically acceptable carrier
5 Date Recue/Date Received 2020-11-19 wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
The present invention relates to methods for producing/releasing/delivering/excreting mucin from and/or in the cornea comprising the step of administering (optionally, in a patient in need of such production/release/deliverance/excretion of mucin) a composition, in certain embodiments an ophthalmic microemulsion composition, comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia;
ii) optionally, a safe and effective amount of a permeation enhancer; and iii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
The present invention relates to methods for preventing or treating the symptoms associated with dry eye comprising the step of topically administering (optionally, in a patient need of such prevention or treatment) a microemulsion composition comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia;
ii) one or more demulcents or soothing agents;
iii) optionally, a safe and effective amount of a permeation enhancer; and iv) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
The present invention relates to methods for maintaining the concentration of MU5AC in tears within the range of equal to or greater than 8 nanograms to 15 nanograms per milligrams of protein, comprising the step of administering (optionally, in a patient in need of such maintenance) a microemulsion composition comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia;
ii) optionally, a safe and effective amount of a permeation enhancer; and iii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
The present invention relates to methods for producing/releasing/delivering/excreting mucin from and/or in the cornea comprising the step of administering (optionally, in a patient in need of such production/release/deliverance/excretion of mucin) a composition, in certain embodiments an ophthalmic microemulsion composition, comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia;
ii) optionally, a safe and effective amount of a permeation enhancer; and iii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
The present invention relates to methods for preventing or treating the symptoms associated with dry eye comprising the step of topically administering (optionally, in a patient need of such prevention or treatment) a microemulsion composition comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia;
ii) one or more demulcents or soothing agents;
iii) optionally, a safe and effective amount of a permeation enhancer; and iv) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
The present invention relates to methods for maintaining the concentration of MU5AC in tears within the range of equal to or greater than 8 nanograms to 15 nanograms per milligrams of protein, comprising the step of administering (optionally, in a patient in need of such maintenance) a microemulsion composition comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia;
ii) optionally, a safe and effective amount of a permeation enhancer; and iii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
6 Date Recue/Date Received 2020-11-19 The present invention relates to methods for treating a patient having decreased or low-level production/release/delivery/excretion of mucin from and/or in the cornea comprising the step of topically administering to the eye the patient a microemulsion composition comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia;
ii) optionally, a safe and effective amount of a permeation enhancer; and iii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
The present invention relates to methods for preventing or treating the symptoms associated with dry eye comprising the step of topically administering to a patient (optionally, in a patient need of such prevention micromulsion or reduction in dry eye symptoms) a microemulsion composition comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia;
ii) optionally, a safe and effective amount of a permeation enhancer; and iii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
The present invention relates to methods for promoting healing or increasing the rate of healing of wounds in and/or on the eye (optionally, of a patient in need of such eye wound healing), comprising the step of administering a microemulsion compositions (i.e., which increase production/release/delivery/excretion of mucin and/or hyaluronic acid from and/or in the cornea, in certain embodiments, beyond the concentration level of mucin produced by such patient without (or absent) administration of the microemulsion compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia) comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
i) one or more extracts, or sources of extracts, of the genus Pichia;
ii) optionally, a safe and effective amount of a permeation enhancer; and iii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
The present invention relates to methods for preventing or treating the symptoms associated with dry eye comprising the step of topically administering to a patient (optionally, in a patient need of such prevention micromulsion or reduction in dry eye symptoms) a microemulsion composition comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia;
ii) optionally, a safe and effective amount of a permeation enhancer; and iii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
The present invention relates to methods for promoting healing or increasing the rate of healing of wounds in and/or on the eye (optionally, of a patient in need of such eye wound healing), comprising the step of administering a microemulsion compositions (i.e., which increase production/release/delivery/excretion of mucin and/or hyaluronic acid from and/or in the cornea, in certain embodiments, beyond the concentration level of mucin produced by such patient without (or absent) administration of the microemulsion compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia) comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
7 Date Recue/Date Received 2020-11-19 The present invention relates to methods for improving the antimicrobial properties in tears (or, the tear film of the eye) of a patent (optionally, in a patient need of such antimicrobial properties), comprising the step of administering a microemulsion compositions (i.e., which increase production/release/delivery/excretion of mucin and/or hyaluronic acid from and/or in the cornea, in certain embodiments, beyond the concentration level of mucin produced by such patient without (or absent) administration of the microemulsion compositions comprising a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia) comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia;
ii) optionally, a safe and effective amount of a permeation enhancer; and iii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
BRIEF DESCRIPTION OF THE FIGURES
Figure 1 depicts bar graphs showing increase in MUC4 expression in corneal epithelial cells after adding Pichia anomala extract to growth medium containing corneal epithelial cells..
Figure 2 depicts bar graphs showing increase in mucin-1 secretion in corneal epithelial cells after adding Pichia anomala extract to growth medium containing corneal epithelial cells..
Figure 3 depicts bar graphs showing increased Mucin-1 production in corneal tissue cells after topical applications of Pichia anomala extract.
Figure 4 depicts bar graphs showing increased HA production in corneal epithelial cells after topical applications of Pichia anomala extract at 24 and 48 hours.
Figure 5 depicts bar graphs showing statistically significant increase in HA
production in corneal epithelial cells at 48 hours after placing corneal epithelial cells in growth medium containing Pichia anomala extract.
DETAILED DESCRIPTION OF INVENTION
i) one or more extracts, or sources of extracts, of the genus Pichia;
ii) optionally, a safe and effective amount of a permeation enhancer; and iii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
BRIEF DESCRIPTION OF THE FIGURES
Figure 1 depicts bar graphs showing increase in MUC4 expression in corneal epithelial cells after adding Pichia anomala extract to growth medium containing corneal epithelial cells..
Figure 2 depicts bar graphs showing increase in mucin-1 secretion in corneal epithelial cells after adding Pichia anomala extract to growth medium containing corneal epithelial cells..
Figure 3 depicts bar graphs showing increased Mucin-1 production in corneal tissue cells after topical applications of Pichia anomala extract.
Figure 4 depicts bar graphs showing increased HA production in corneal epithelial cells after topical applications of Pichia anomala extract at 24 and 48 hours.
Figure 5 depicts bar graphs showing statistically significant increase in HA
production in corneal epithelial cells at 48 hours after placing corneal epithelial cells in growth medium containing Pichia anomala extract.
DETAILED DESCRIPTION OF INVENTION
8 Date Recue/Date Received 2020-11-19 It is believed that one skilled in the art can, based upon the description herein, utilize this invention to its fullest extent. The following specific embodiments can be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
The compositions of the present invention can comprise, consist of, or consist essentially of the elements, steps and limitations of the invention described herein, as well any of the additional or optional ingredients, components, or limitations described herein.
The term "comprising" (and its grammatical variations) as used herein is used in the inclusive sense of "having" or "including" and not in the exclusive sense of "consisting only of" The terms "a" and "the" as used herein are understood to encompass the plural as well as the singular.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention belongs. Also, all publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety to the extent that they are not inconsistent with this specification. As used herein, all percentages are by weight of the total composition unless otherwise specified As used herein, the terms "cornea" or "corneal" is, includes and/or relates to, the transparent front part of the eye that covers the iris, pupil, and anterior chamber, the layers of which transparent front part include the corneal epithelium layer (comprising corneal epithelial cells), Bowman's layer (also known as the anterior limiting membrane), Corneal stroma (also substantia propria), Descemet's membrane (also posterior limiting membrane), and Corneal endothelium (simple squamous or low cuboidal monolayer, approximately 5 pin thick, of mitochondria-rich cells).
The functions of the various layers are as follows:
Epithelium provides:
= provides barrier to chemicals and water;
= provides barrier to microbes;
= provides smooth optical surface as an internal part of the tear film-cornea interface, contributing to refractive poser of the eye; and = houses Langerhans cells which perform important immunological functions.
Bowman's layer:
= aides in maintaining the corneal shape.
The compositions of the present invention can comprise, consist of, or consist essentially of the elements, steps and limitations of the invention described herein, as well any of the additional or optional ingredients, components, or limitations described herein.
The term "comprising" (and its grammatical variations) as used herein is used in the inclusive sense of "having" or "including" and not in the exclusive sense of "consisting only of" The terms "a" and "the" as used herein are understood to encompass the plural as well as the singular.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention belongs. Also, all publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety to the extent that they are not inconsistent with this specification. As used herein, all percentages are by weight of the total composition unless otherwise specified As used herein, the terms "cornea" or "corneal" is, includes and/or relates to, the transparent front part of the eye that covers the iris, pupil, and anterior chamber, the layers of which transparent front part include the corneal epithelium layer (comprising corneal epithelial cells), Bowman's layer (also known as the anterior limiting membrane), Corneal stroma (also substantia propria), Descemet's membrane (also posterior limiting membrane), and Corneal endothelium (simple squamous or low cuboidal monolayer, approximately 5 pin thick, of mitochondria-rich cells).
The functions of the various layers are as follows:
Epithelium provides:
= provides barrier to chemicals and water;
= provides barrier to microbes;
= provides smooth optical surface as an internal part of the tear film-cornea interface, contributing to refractive poser of the eye; and = houses Langerhans cells which perform important immunological functions.
Bowman's layer:
= aides in maintaining the corneal shape.
9 Date Recue/Date Received 2020-11-19 Corneal stroma:
= provides mechanical strength to cornea;
= provides transparency of cornea; and = acts as refracting lens.
Descernet's membrane:
= acts as resting layer for endothelial cells.
Corneal endothelium:
= maintains corneal clarity by removing water from the corneal stroma.
The corneal epithelium layer is composed fairly uniformly of 5-7 layers of cells. The corneal epithelium is about 50 p. in thickness. The epithelium is uniform to provide a smooth regular surface and is made up of nonkeratinized stratified squamous epithelium. Without being limited by theory, it is believed that, in the case of hyaluronic acid production, the corneal epithelium layer further contains tight junction structures (i.e., those structures [e.g., membrane or film barriers] typically inhibiting chemical permeation into tissues) which may obstruct, or act as a barrier, to diffusion of the one or more extracts, or sources of extracts, of the genus Pichia, reducing diffusion of the one or more extracts, or sources of extracts, of the genus Pichia across the corneal epithelium and into the corneal tissues, thereby, reducing the concentration levels of the extract that can accumulate within the corneal tissues and contact the cellular portions of such tissues responsible for hyaluronic acid production.
As used herein, the phrase "decreased or low-level production/release/delivery/excretion of hyaluronic acid from and/or in the cornea" means a concentration of hyaluronic acid which is less than the concentration of hyaluronic acid in the tears of a normal (i.e., non-diseased) person, or, in certain embodiments, less than 25 (or about 25) nanograms per milligram of proteins, as determined using the method described in Dreyfuss JL, Regatieri CV, Coelho B, et al. Altered hyaluronic acid content in tear fluid of patients with adenoviral conjunctivitis. An Acad Bras Cienc. 2015;87(1):455-462. That method (the Dreyfuss Method) is reproduced below:
= Sample Collection For collecting the tears, Schirmer strips were placed in the temporal side of each eye under the eyelid, during 5 minutes, without any use of topical anesthetics.
The strips were dried at room temperature and stored at ¨20 C until analysis.
= Tear Sample Preparation Date Recue/Date Received 2020-11-19 Tear compounds were eluted from the Schirmer strips using 100 pL of distilled water, and hyaluronic acid and protein content analyses were performed.
= Hyaluronic Acid Measurement Hyaluronic acid content in tear fluids was assayed by a non-isotopic fluoroassay (See Martins Jr, Passerotti CC, Maciel RM, Sampaio Lo, Dietrich CP and Nader HB.
2003.) Practical determination of hyaluronan by a new noncompetitive fluorescence-based assay on serum of normal and cirrhotic patients. Anal Biochem 319: 65-72.) Eluted tear fluids and standard concentrations of hyaluronic acid (Sigma, St.
Louis, MO) were added to 96 multiwell plates (FluoroNUNC Maxisorp-microtiterplates, Roskilde, Denmark) previously coated with hyaluronic acid -binding protein.
The plates were then sequentially incubated with biotinylated hyaluronic acid -binding protein and europiumlabeled streptavidin (Amershan, Piscataway, NJ).
Afterwards, the europium remaining in the solid phase was released by an enhancement solution and the fluorescence was measured using a time-resolved flurometer (Perkin-Elmer Life Sciences-Wallac Oy, Turku, Finland). The data (counts/s) were processed automatically using the MultiCalc software program (Perkin-Elmer Life Sciences-Wallac Oy) and values are expressed as ng/mg protein.
= Protein Analysis Total tear protein concentration was determined using a colorimetric assay kit according to the manufacturer's instructions (Protein Assay Kit from Bio-Rad, Hercules, CA). The protein profile was analyzed through sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) as previously described (See Laemmli UK. 1970.) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.). Briefly, 10 Kg of protein from the tear samples were applied to a 3-20% linear gradient polyacrylamide gel under reducing conditions. After electrophoresis, the gels were stained by comassie blue (Bio-Rad, Hercules, CA). Each protein band was quantified by densitometry using the software ImageJ Version 10.2 for Mac (U.S. National Institutes of Health, Bethesda, Maryland, USA). The results are expressed by arbitrary densitometric units (ADU).
As used herein, the phrase "decreased or low-level production/release/delivery/excretion of mucin from and/or in the cornea"
means a concentration of MUC5AC which is less than the concentration of MUC5AC in the tears of a normal (i.e., non-diseased) person, or, in certain embodiments, less than 6, optionally less than 8, nanograms per milligram of proteins, as determined using the method described in Uchino Y, Uchino M, Yokoi N, et al. Alteration of Tear Mucin SAC in Office Workers Using Visual Display Terminals: The Osaka Study. JAMA Ophthalmol. n2014;132(8):985-992.
That method (the Uchino Method) is reproduced below:
= MUC5AC Concentration in Tears The concentration of the secreted mucin MUC5AC in the tear samples was quantified by enzyme-linked immunoassay (E90756Hu; USCN Life Science). (See Maker AV, Katabi N, Gonen M, et al. Pancreatic cyst fluid and serum mucin levels predict dysplasia in intraductal papillary mucinous neoplasms of the pancreas.
Ann Surg Oncol. 2011;18(1):199-206.) All samples were analyzed according to the Date Recue/Date Received 2020-11-19 manufacturer's guidelines. Absorbance was measured at 450 nm, and the standard solutions in the kit were recombinant human MUC5AC. A protein assay reagent kit (BCA Protein Assay Kit; Pierce) was used to determine the protein concentration in the tear samples. The MUC5AC concentration was normalized to the tear protein content and expressed as MUC5AC protein (nanograms) per tear total protein (milligrams).
As used herein, a composition that is "essentially free" of an ingredient means the composition that has about 2% or less of that ingredient by weight based on the total weight of the composition. Preferably, a composition that is essentially free of an ingredient has about 1% or less, more preferably about 0.5% or less, more preferably about 0.1% or less, more preferably about 0.05 or less, more preferably about 0.01% or less by weight based on the total weight of composition of the ingredient. In certain more preferred embodiments, a composition that is essentially free of an ingredient is free of the ingredient, i.e. has none of that ingredient in the composition.
As used herein, "microemulsion" means emulsions possessing one or more of the following characteristics: i) they are formed spontaneously or substantially spontaneously when their components are brought into contact, that is without substantial energy supply, e.g. in the absence of heating or the use of high shear equipment or other substantial agitation; ii) they exhibit thermodynamic stability; iii) they are monophasic;
iv) they are substantially non-opaque, i.e. are transparent or opalescent when viewed by optical microscopic means; and/or v) in their undisturbed state, they are optically isotropic, though an anisotropic structure may be observable using e.g. x-ray technique. The particles of a microemulsion may be spherical, though other structures are feasible, e.g.
liquid crystals with lamellar, hexagonal or isotropic symmetries. Generally, microemulsions comprise droplets or particles having a maximum dimension (e.g. diameter) of less than 1,500 A, preferably less than 1000 A, preferably less than 500 A, but greater than 100 A. Included within this definition of microemulsion are self-emulsifying drug delivery systems (SEDDS). SEDDS
are isotropic mixtures of oil, surfactant (with or without co-surfactant) and co-solvent which spontaneously emulsify when exposed to an aqueous medium with gentle agitation. SEDDS
may be used to improve bioavailability of poorly water soluble drugs via oral administration.
The addition of a co-solvent facilitate the formation of a self-emulsifying system as it significantly reduces the interfacial tension. In so doing, it creates a fluid interfacial film with sufficient flexibility to take up different curvatures required to form microemulsion over a wide range of compositions. Further detail regarding SEDDS can be found in US Pat.
Date Recue/Date Received 2020-11-19 Publication US2018/0036233A1 to Shabaik et al., herein incorporated by reference in its entirety.
As used herein, "ophthalmologically acceptable" means that the ingredients which the term describes are suitable for use in contact with tissues (e.g., the soft tissues of the eye or periorbital skin tissues) without undue toxicity, incompatibility, instability, irritation, allergic response, and the like. As will be recognized by one of skill in the art, cosmetically/
dermatologically acceptable salts are acidic/anionic or basic/cationic salts.
As used herein, the term "safe and effective amount" means an amount of disclosed the extract, compound or of the composition sufficient to induce, promote and/or improve the production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in one or more layer of the cornea, but low enough to avoid serious side effects. The safe and effective amount of the compound, extract, or composition will vary with e.g. the age, health and environmental exposure of the end user, the duration and nature of the treatment, the specific extract, ingredient, or composition employed, the particular ophthalmologically-acceptable carrier utilized, and like factors.
In certain embodiments, the present invention as disclosed herein may be practiced in the absence of any compound or element (or group of compounds or elements) which is not specifically disclosed herein.
In general, IUPAC nomenclature rules are used herein and according to the following term definitions.
The term "C1-8 alkyl," whether used alone or as part of a substituent group, refers to a saturated aliphatic branched or straight-chain monovalent hydrocarbon radical having from 1-8 carbon atoms. For example, "C1-8a1ky1" specifically includes the radicals methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, tert-butyl, 1-butyl, 1-pentyl, 2-pentyl, 3-pentyl, 1-hexyl, 2-hexyl, 3- hexyl, 1-heptyl, 2-heptyl, 3-heptyl, 1-octyl, 2-octyl, 3-octyl and the like. Said term may also refer to the corresponding alkyldiyl radical. Alkyl and alkyldiyl radicals may be attached to a core molecule via a terminal carbon atom or via a carbon atom within the chain.
Similarly, any number of substituent variables may be attached to an alkyl or alkyldiyl radical when allowed by available valences.
The term "C1-4a1ky1," whether used alone or as part of a substituent group, refers to a saturated aliphatic branched or straight-chain monovalent hydrocarbon radical or alkyldiyl linking group having a specified number of carbon atoms, wherein the radical is derived by the removal of one hydrogen atom from a carbon atom and the alkyldiyl linking group is Date Recue/Date Received 2020-11-19 derived by the removal of one hydrogen atom from each of two carbon atoms in the chain.
The term "C1-4a1ky1" refers to a radical having from 1-4 carbon atoms in a linear or branched arrangement. For example, "C1-4a1ky1" specifically includes the radicals methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, tert- butyl, 1-butyl, and the like. Alkyl and alkyldiyl radicals may be attached to a core molecule via a terminal carbon atom or via a carbon atom within the chain. Similarly, any number of substituent variables may be attached to an alkyl or alkyldiyl radical when allowed by available valences.
The term "C2-4a1keny1" refers to an alkenyl radical having from 2-4 carbon atoms.
For example, specifically includes the radicals ethenyl, propenyl, allyl (2-propenyl), butenyl and the like. As described above, an alkenyl radical may be similarly attached to a core molecule and further substituted where indicated.
The term "halo" as such or in combination with other terms means halogen atom, such as fluoro, chloro, bromo or iodo.
The term "substituted," refers to a core molecule in which one or more hydrogen atoms have been replaced with that amount of substituents allowed by available valences.
Substitution is not limited to the core molecule, but may also occur on a substituent radical, whereby the radical becomes a linking group.
The term "independently selected" refers to two or more substituents that may be selected from a substituent variable group, wherein the selected substituents may be the same or different.
The term "dependently selected" refers to one or more substituent variables that are specified in an indicated combination for substitution in a core molecule (e.g. variables that refer to groups of substituents appearing in a tabular list of compounds).
Acceptable salts from inorganic bases include, for example, sodium or potassium salts, and the like. Acceptable salts from organic bases include, for example, salts formed with primary, secondary, or tertiary amines, and the like.
Compounds and/or Extracts which Induce, Promote and/or Improve Production/Release/Delivery/Excretion of Hyaluronic Acid and/or Mucin in the Cornea.
The present invention comprises one or more compounds and/or extracts which induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea.
Date Recue/Date Received 2020-11-19 In certain embodiments, the compounds and/or extracts which induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea are, or comprise, extracts, or sources of extracts, of the genus Pichia.
Pichia is a genus of yeasts in the family Saccharomycetaceae. More than 100 species of this genus are known. Suitable species for use in the compositions of the present invention include (selected from or selected from the group consisting of) Pichia anomala, Pichia Pichia norvegensis, and Pichia ohmeri. Pichia anomala (formerly named Hansenula anomala) can be found in raw milk and cheese. The extracts of yeasts of the genus Pichia are rich in mannans, polysaccharides composed of mannose monomers.
Extracts or sources of extracts of the genus Pichia may be isolated from the fruit or other aerial parts of a plant. Any ophthalmologically acceptable extract of the genus of Pichia may be used. Mixtures of extracts, or sources of extract, of the above species from the genus of Pichia may also be used.
In certain embodiments, the extracts, or sources of extracts, from genus of Pichia used in the present invention are extracts of Pichia anomala. Extracts of Pichia anomala can be isolated from the fruit or other aerial parts of a plant. In certain embodiments, a suitable extract of Pichia anomala is produced from a strain of Pichia anomala present on fruit or leaves of a kiwi plant. In another embodiment, extract of Pichia anomala is commercially available from Silab-France as PRO-LIPISKIN or UNFLAMAGYLO, where the extract is produced from a strain of Pichia anomala present on sugar cane. Preferred for use herein is an extract of Pichia anomala characterized as having:
- a solids content of between 26 and 40 g/l, - a pH between 6 and 7, - a protein content between 2 and 170 g/l, and - a sugars content (mannose curve) ranging between 18 and 30 g/1 (within which characterization falls PRO-LIPISKIN and Hyalurodine (Silab-France).
Hyalurodine is the Pichia anomala extract used in the Examples (below). In one embodiment, the Pichia anomala extract is obtained in accordance with the following process as described in FR2897266 and FR2938768, both of which are incorporated by herein by reference.
In certain embodiments, the extraction process described below eliminates much of the protein from a Pichia extract and concentrates the active in terms of mannan. The Date Recue/Date Received 2020-11-19 process comprises at least one enzymatic hydrolysis step of the proteins, to obtain peptides and small proteins and, in certain embodiments, a further step of removing these small peptides and proteins by filtration based on the selection of the size of such molecules.
In certain embodiments, the extracts of Pichia genus, including Pichia anomala extract, are obtained by an extraction process involving one or more hydrolysis enzyme (s) to hydrolyze proteins in Pichia genus, either successively or simultaneously.
In certain embodiments, enzymatic hydrolysis is used to break-down proteins in the extract of the Pichia genus into protein fractions having weight average molecular weights of less than 5000Da. Suitable hydrolysis enzymes include, but is not limited to, at least one peptidase, in certain embodiments, chosen from papain, trypsin, chymotrypsin, subtilisin, pepsin, thermolysin, pronase, flavastacine, enterokinase, factor Xa protease, Turin, bromelain, proteinase K, genenase I, thermitase, carboxypeptidase A, carboxypeptidase B, collagenase or mixtures thereof In certain embodiments, the enzymes used to obtain the Pichia genus extract are inactivated prior to separation of the resulting soluble and insoluble phases.
In one embodiment, the Pichia anomala extract is characterized as having:
- a solids content of between 5 and 300 g/l, - a pH between 4 and 9, - a protein content between 2 and 10, preferably 3-9, g/l, and - a sugars content (mannose curve) ranging between 1 and 100 g/1 In certain embodiments, extract of Pichia genus comprises a mannan content of greater than or equal to 30% of the total weight of dried Pichia genus extract, or optionally at a mannan content of at least 50% by weight of the total weight of the dried Pichia genus extract.
In certain embodiments, the phase of Pichia genus extract is dried (and the solids content is measured) by passing the Pichia genus extract containing phase through oven heat of 105 C (or about 105 C) in the presence of sand until a constant weight is obtained/observed.
In certain embodiments, the solids (or dry matter) content of the dried extract of Pichia genus is between 10 and 200 g/l, or optionally between 26 and 40 g/l.
Date Recue/Date Received 2020-11-19 In certain embodiments, the pH measured by the potentiometric method at room temperature (25 C) leads to values of between 4.5 and 8.5, optionally between 6.0 and 7Ø
Determination of total sugar content, the DUBOIS method can be used. In the presence of concentrated sulphuric acid and phenol, reducing sugars give an orange yellow compound. From a standard range (preferably using a mannose assay curve), the total sugar content of a sample can be determined. In certain embodiments, the total sugar content in the dried extract of Pichia genus is between 7 and 145 g/l, or optionally between 18 and 29 g/l.
In certain embodiments, the dried extract of Pichia genus contains at least 30% of total sugars by weight of dried extract of Pichia genus compared to the total solids by weight of dried extract of Pichia genus, optionally, at least 50% by weight of dried extract of Pichia genus.
In certain embodiments, the carbohydrate fraction of the dried extract of Pichia genus is composed of mannose and glucose in the form of (or essentially in the form of) oligosaccharides and polysaccharides having a weight average molecular weight of from about 180 to about 800,000 Da, optionally, from about 5000 to about 515,000 Da, optionally from about 6000 to about 270,000 Da. In certain embodiments, at least 70% (or about 70%), optionally at least 75% (or about 75%), at least 80% (or about 80%), optionally at least 85%
(or about 85%), at least 90% (or about 90%), optionally at least 95% (or about 95%), or 100% (or about 100%) of the oligosaccharides and polysaccharides in the dried extract of Pichia genus fall within the aforementioned weight average molecular weight ranges.
Determination of the protein content protein is obtained by the Kjedhal method. In certain embodiments, the dried extract of Pichia genus has a protein content of between 4 and 90 g/l, or optionally between 12 and 18 g/l. The dried extract of Pichia genus contains less than 45% of proteins, or optionally less than 30%, of the total solids in the dried extract of Pichia genus.
In certain embodiments, the dried extract of Pichia genus comprises mannans, mannoses polymerized in the form of oligosaccharides and polysaccharides, whose weight average molecular weight is from about 180 to about 800,000 Da, optionally, from about 5000 to about 515,000 Da, optionally from about 6000 to about 270,000 Da.
dried extract of Pichia genus. In certain embodiments, at least 70% (or about 70%), optionally at least 75%
(or about 75%), at least 80% (or about 80%), optionally at least 85% (or about 85%), at least 90% (or about 90%), optionally at least 95% (or about 95%), or 100% (or about 100%) of the Date Recue/Date Received 2020-11-19 oligosaccharides and polysaccharides in the dried extract of Pichia genus fall within the aforementioned weight average molecular weight ranges.
In certain embodiments, the extraction process includes a step, after the step of enzymatic hydrolysis of proteins, of removing (e.g., through filtration) proteins having a weight average molecular weight of less than 5000Da. Accordingly, the extracts of the Pichia genus are free of or substantially free of proteins and/or peptides having a weight average molecular weight of less than 5000Da.
In certain embodiments, the above described extraction process may include a step of deodorizing, bleaching and / or stabilizing the extract of Pichia genus before the filtrations.
The filtrations can be the following: - Press filtration, and - sterilizing filtration.
In certain embodiments, the extracts used belong to the variety Pichia anomala. A
particular non-limiting example of a production process is described below.
- Extracts (or yeasts) of Pichia anomala are cultured in a culture medium adapted to their development, then centrifuged to recover the biomass, - The biomass is then milled in a ball mill. Then the ground material is resuspended in water at a concentration of 50 grams per liter before enzymatic hydrolysis in basic medium at 30 C for 6 hours, - After hydrolysis, the product is centrifuged and filtered before sterilization, - By successive filtrations on filters of different sizes, a hydrolyzate containing at least 30% of mannans relative to the total weight of the solids is obtained and/or proteins of specific weight average molecular weight are obtained. (The hydrolyzate obtained is in the form of a clear liquid aqueous solution of light yellow color.) In certain embodiments, the Pichia anomala extract is obtained in accordance with the following manufacturing examples:
1. Pichia anomala extract A:
I. Extraction of the Pichia anomala extract A:
Date Recue/Date Received 2020-11-19 Preparation of Pichia anomala extract A includes the following steps:
- culture of yeast Pichia anomala in an environment adapted to their development, - centrifugation to retrieve the biomass, - solubilization of biomass, - enzymatic hydrolysis at basic pH, - separation of the soluble and insoluble phases, - heat treatment, - filtration, and - sterile filtration.
Characterization of the Pichia anomala extract A:
The Pichia anomala extract A obtain above is characterized by:
- - a solids content of between 48 and 84 g/l, - - a pH between 4 and 9, - - a protein content between 19 and 48 g/l, and - - a total sugar content between 10 and 42 g/l.
2. Pichia anomala extract B
I. Extraction of the Pichia anomala extract B:
Preparation of Pichia anomala extract B includes the following steps:
- culture of yeast Pichia anomala in an environment adapted to their development, - centrifugation to retrieve the biomass, - solubilization of biomass, - enzymatic hydrolysis at acid pH, - separation of the soluble and insoluble phases, - heat treatment, - filtration, and - sterile filtration.
Characterization of the Pichia anomala extract B:
The Pichia anomala extract B obtain above is characterized by:
- - a solids content of between 58 and 95 g/l, - - a pH between 4 and 9, - - a protein content between 23 and 54 g/l, and - - a total sugar content between 12 and 32 g/l.
3. Pichia anomala extract C
I. Extraction of the Pichia anomala extract C:
Preparation of Pichia anomala extract C includes the following steps:
Date Recue/Date Received 2020-11-19 - culture of yeast Pichia anomala in an environment adapted to their development, - centrifugation to retrieve the biomass, - solubilization of biomass, - successive enzymatic hydrolyses in basic medium, - separation of the soluble and insoluble phases, - heat treatment, - filtration, and - sterile filtration.
Characterization of the Pichia anomala extract C:
The Pichia anomala extract C obtain above is characterized by:
- - a solids content of between 91 and 195 g/l, - - a pH between 4 and 9, - - a protein content between 36 and 111 g/l, and - - a total sugar content between 18 and 65 g/l.
4. Pichia anomala extract D
I. Extraction of the Pichia anomala extract D:
Preparation of Pichia anomala extract D includes the following steps:
- culture of yeast Pichia anomala in an environment adapted to their development, - centrifugation to retrieve the biomass, - solubilization of biomass, - hydrolyzed simultaneously with at least two enzymes at acid pH, - separation of the soluble and insoluble phases, - heat treatment, - filtration, and - sterile filtration.
Characterization of the Pichia anomala extract D:
The Pichia anomala extract D obtain above is characterized by:
- - a solids content of between 5 and 53 g/l, - - a pH between 4 and 9, - - a protein content between 2 and 30 g/l, and - - a total sugar content between 1 and 18 g/l.
5. Pichia anomala extract E
I. Extraction of the Pichia anomala extract E:
Preparation of Pichia anomala extract E includes the following steps:
Date Recue/Date Received 2020-11-19 - culture of yeast Pichia anomala in an environment adapted to their development, - centrifugation to retrieve the biomass, - solubilization of biomass in a hydroglycolique environment, - hydrolyzed simultaneously with at least two enzymes at acid pH, - separation of the soluble and insoluble phases, - heat treatment, - filtration, and - sterile filtration.
Characterization of the Pichia anomala extract E:
The Pichia anomala extract E obtain above is characterized by:
- - a solids content of between 172 and 300 g/l, - - a pH between 4 and 9, - - a protein content between 69 and 170 g/l, and - - a total sugar content between 34 and 100 g/l.
Preferably, the Pichia anomala extract is obtained using the process for obtaining Pichia anomala extract D as described above.
In certain embodiments, the extract, or source of extracts, of the genus Pichia comprises oligosaccharides and polysaccharides having an average degree of polymerization of from DP 1 to DP 4444, optionally from DP 30 to DP 2860, optionally from DP
35 to DP
1500. In certain embodiments, at least 70% (or about 70%), optionally at least 75% (or about 75%), at least 80% (or about 80%), optionally at least 85% (or about 85%), at least 90% (or about 90%), optionally at least 95% (or about 95%), or 100% (or about 100%) of the oligosaccharides and polysaccharides in the dried extract of Pichia genus fall within the aforementioned average degree of polymerization ranges.
In certain embodiments, the extract, or source of extracts, of the genus Pichia are present in the compositions of the present invention so as to provide a Pichia extract concentration in, or contacting, corneal tissue cells in the user (i.e., internal corneal fluid levels), after topical application, of at least 0.3mg/m1 (or about 0.3 mg/ml), optionally, at least 0.5 mg/ml (or about 0.5 mg/ml), optionally, at least 1 mg/ml (or about 1 mg/ml), optionally, at least 1.5 mg/ml (or about 1.5mg/m1), optionally, at least 2 mg/ml (or about 2 mg/ml), optionally, at least 2.5 mg/ml (or about 2.5mg/m1), optionally, at least 3mg/m1 (or about 3mg/m1), optionally, at least 3.5 mg/ml (or about 3.5mg/m1), optionally, at least 4 mg/ml (or Date Recue/Date Received 2020-11-19 about 4 mg/ml), optionally, at least 4.5 mg/ml (or about 4.5 mg/ml), optionally, at least 5 mg/ml (or about 5 mg/ml), or at least 5.5 mg/ml (or about 5.5 mg/ml), optionally, at least 6 mg/ml (or about 6 mg/ml), or optionally, at least 6.5 mg/ml (or about 6.5 mg/ml), optionally, at least 7 mg/ml (or about 7 mg/ml), optionally, at least 7.5 mg/ml (or about 7.5 mg/ml), optionally, at least 8 mg/ml (or about 8 mg/ml), optionally, at least 8.5 mg/ml (or about 8.5 mg/ml), optionally, at least 9 mg/ml (or about 9 mg/ml), optionally, at least 8.5 mg/ml (or about 8.5 mg/ml), optionally, at least 9 mg/ml (or about 9 mg/ml), optionally, at least 9.5 mg/ml (or about 9.5 mg/ml), or optionally, at least 10 mg/ml (or about 10mg/m1) to 100 mg/ml (or about 100 mg/ml), optionally, to 95 mg/ml (or about 95 mg/ml), optionally, to 90 mg/ml (or about 90 mg/ml), optionally, to 85 mg/ml (or about 85mg/m1), optionally, to 80 mg/ml (or about 80 mg/ml), optionally, to 75 mg/ml (or about 75 mg/ml), optionally, to 70 mg/ml (or about 70 mg/ml), optionally, to 65 mg/ml (or about 65 mg/ml), optionally, to 60 mg/ml (or about 60 mg/ml), optionally, to 55 mg/ml (or about 55 mg/ml), optionally, to 50 mg/ml (or about 50 mg/ml), optionally, to 45 mg/ml (or about 45 mg/ml), optionally, to 40 mg/ml (or about 40 mg/ml), optionally, to 35 mg/ml (or about 35 mg/ml), optionally, to 30 mg/ml (or about 30 mg/ml), optionally, to 25 mg/ml (or about 25 mg/ml), optionally, to 20 mg/ml (or about 20 mg/ml), or optionally, to 15 mg/ml (or about 15 mg/ml).
In certain embodiments, the extract, or source of extracts, of the genus Pichia are present in the compositions of the present invention at a concentration of from 0.01% (or about 0.01%), optionally, from 0.05% (or about 0.05%), optionally, from 0.1%
(or about 0.1%), optionally, from 0.5% (or about 0.5%), optionally, from 1% (or about 1%), optionally, from 1.5% (or about 1.5%), optionally, from 2% (or about 2%), optionally, from 2.5% (or about 2.5%), optionally, from 3% (or about 3%), optionally, from 3.5%, (or about 3.5%), optionally, from 4% (or about 4%), optionally, from 4.5% (or about 4.5%), optionally, from 5% (or about 5%), optionally, from 5.5% (or about 5.5%), optionally, from 6%
(or about 6%), optionally, from 6.5% (or about 6.5%), optionally, from 7% (or about 7%), optionally, from 7.5% (or about 7.5%), optionally, from 8% (or about 8%), optionally, from 8.5% (or about 8.5%), optionally, from 9% (or about 9%), optionally, from 9.5% (or about 9.5%), optionally, from 10% (or about 10%), optionally, from 10.5% (or about 10.5%), optionally, from 11% (or about 11%), optionally, from 11.5% (or about 11.5%), optionally, from 12%
(or about 12%), optionally, from 12.5% (or about 12.5%), optionally, from 13%
(or about 13%), optionally, from 13.5% (or about 13.5%), optionally, from 14% (or about 14%), optionally, from 14.5% (or about 14.5%), optionally, from 15% (or about 15%), optionally, Date Recue/Date Received 2020-11-19 from 15.5% (or about 15.5%), optionally, from 16% (or about 16%), optionally, from 16.5%
(or about 16.5%), optionally, from 17% (or about 17%), optionally, from 17.5%
(or about 17.5%), optionally, from 18% (or about 18%), optionally, from 18.5% (or about 18.5%), optionally, from 19% (or about 19%), optionally, from 19.5% (or about 19.5%), optionally, from 20% (or about 20%), optionally, from 20.5% (or about 20.5%) to 30% (or about 30%), optionally, to 35% (or about 35%), optionally, to 40% (or about 40%), optionally, to 45% (or about 45%), optionally, to 50% (or about 50%), optionally, to 55% (or about 55%), optionally, to 60% (or about 60%), optionally, to 65% (or about 65%), optionally, to 70% (or about 70%), optionally, to 75% (or about 75%), optionally, to 80% (or about 80%), optionally, to 85% (or about 85%), optionally, to 90% (or about 90%), optionally, to 95% (or about 95%), or optionally, to 100% (or about 100%), by weight, of the total composition.
Permeation Enhancer In certain embodiments, the compositions of the present invention optionally comprise a permeation enhancer.
Suitable permeation enhancers include (selected from or selected from the group consisting of) either alone or in combination, surfactants such as saponins, polyoxyethylene, polyoxyethylene ethers of fatty acids such as polyoxyethylene 4-, 9-, 10-, and 23-lauryl ether, polyoxyethylene 10-and 20-cetyl ether, polyoxyethylene 10-and 20-stearyl ether, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene monolaurate, polyoxyethylene sorbitans such as polyoxyethylene sorbitan monolaurate, decamethonium, decamethonium bromide, and dodecyltrimethylammonium bromide; chelators such natural polyacids (e.g., citric acid), phosphate salts (e.g., disodium pyrophosphate), phosphonates, bisphosphonates (e.g., etridronic acid), aminocarboxylic acids (e.g., ethylenediaminetetraacetic acid (EDTA) and disodium EDTA) and ethylenediamine-N,N'-disuccinic acid (EDDS)); bile salts and acids such as cholic acid, deoxycholic acid, glycocholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium cholate, sodium glycocholate, glycocholate, sodium deoxycholate, sodium taurocholate, sodium glycodeoxycholate, sodium taurodeoxycholate, chenodeoxycholic acid, and urosdeoxycholic acid; fusidic acid derivatives, glycyrrhizic acid, and ammonium glycyrrhizide, with saponin EDTA, fusidic acid, polyoxyethylene 9-lauryl ether, polyoxyethylene 20-stearylether, glycocholate, or mixtures of any of the above.
Date Recue/Date Received 2020-11-19 The concentration of permeation enhancer administered should be the minimum amount needed to sufficiently increase absorption of the compound and/or extract through the mucous or other barrier membranes of the eye. Generally, concentrations ranging from 0.01% (or about 0.01%), optionally, from 0.05% (or about 0.05%), optionally, from 0.1% (or about 0.1%), optionally, from 0.15% (or about 0.15%), optionally, from 0.2%
(or about 0.2%), optionally, from 0.25% (or about 0.25%) to 2% (or about 2%), optionally, to 2.5% (or about 2.5%), optionally, to 3% (or about 3%), optionally, to 3.5%, (or about 3.5%), optionally, to 4% (or about 4%), optionally, to 4.5% (or about 4.5%), optionally, to 5% (or about 5%), optionally, to 5.5% (or about 5.5%), optionally, to 6% (or about 6%), optionally, to 6.5% (or about 6.5%), optionally, to 7% (or about 7%), optionally, to 7.5%
(or about 7.5%), optionally, to 8% (or about 8%), optionally, to 8.5% (or about 8.5%), optionally, to 9% (or about 9%), optionally, to 9.5% (or about 9.5%), optionally, to 10% (or about 10%), optionally, to 10.5% (or about 10.5%), optionally, to 11% (or about 11%), optionally, to 11.5% (or about 11.5%), optionally, to 12% (or about 12%), optionally, to 12.5% (or about 12.5%), optionally, to 13% (or about 13%), optionally, to 13.5% (or about 13.5%), optionally, to 14% (or about 14%), optionally, to 14.5% (or about 14.5%), optionally, to 15%
(or about 15%), optionally, to 15.5% (or about 15.5%), optionally, to 16% (or about 16%), optionally, to 16.5% (or about 16.5%), optionally, to 17% (or about 17%), optionally, to 17.5% (or about 17.5%), optionally, to 18% (or about 18%), optionally, to 18.5% (or about 18.5%), optionally, to 19% (or about 19%), optionally, to 19.5% (or about 19.5%), optionally, to 20% (or about 20%), of the total composition (w/v), are useful in the compositions of the present invention.
Ophthalmologically Acceptable Carrier The compositions of the present invention also comprise an aqueous, oil-in-water emulsion, water-in-oil emulsion carrier, oil-in-water microemulsion, or water-in-oil microemulsion carrier. The carrier is ophthalmologically acceptable. Useful oil-in-water and water-oil-carriers can be found in US Patent Publication 20030165545A1 and US
Patents 9480645, 8828412 and 8496976, each of which patent documents are herein incorporated by reference in its entirety.
In certain embodiments, the compositions of the present invention include emulsions, optionally, self-emulsifying emulsions, including an oily component, such as one or more Date Recue/Date Received 2020-11-19 oils, for example, and without limitation, mineral oil and/or one or more other conventional well known and/or commercially available oils suitable for use in the present invention; a surfactant component which includes three or more surfactants; and an aqueous component which includes an aqueous phase. In addition, a number of additional components may be included in the present compositions. The compositions of the present invention are substantially non-toxic and/or non-irritating and/or non-damaging to the eye and can provide a protective function for ocular cells and tissues.
One or more oils or oily substances are used to form the present compositions.
Any suitable oil or oily substance or combinations of oils or oily substances may be employed provided such oils and/or oily substances are effective in the present compositions, and do not cause any substantial or significant detrimental effect to the human or animal to whom the composition is administered, or to the contact lens being treated, or the wearing of the treated contact lens, or to the wearer of the treated contact lens. The oily component may, for example, and without limitation, be a higher fatty acid glyceride, for example, castor oil, corn oil, sunflower oil and the like and mixtures thereof The oily component may include one or more non-polar oils such as mineral oil, silicone oil and the like and mixtures thereof The ophthalmologically acceptable carrier (or, compositions of the present invention) may optionally comprise one or more additional excipients and/or one or more additional active ingredients. Examples of such optional components are described below.
Excipients commonly used in ophthalmic compositions include, but are not limited to, demulcents, tonicity agents, preservatives, chelating agents, buffering agents (other than and in addition to the organic acids of the present invention), and surfactants.
Other excipients comprise solubilizing agents, stabilizing agents, comfort-enhancing agents, polymers, emollients, pH-adjusting agents (other than and in addition to the organic acids of the present invention), and/or lubricants. Any of a variety of excipients may be used in the compositions of the present invention including water, mixtures of water and water-miscible solvents, such as vegetable oils or mineral oils comprising from 0.5% to 5% non-toxic water-soluble polymers, natural products, such as agar and acacia, starch derivatives, such as starch acetate and hydroxypropyl starch, and also other synthetic products such as polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl methyl ether, polyethylene oxide, and preferably cross-linked polyacrylic acid and mixtures thereof Date Recue/Date Received 2020-11-19 Demulcents or soothing agents used with embodiments of the present invention include, but are not limited to, cellulose derivatives (such hydroxyethyl cellulose, methyl cellulose, hypromellose or mixtures thereof), hyaluronic acid or salt thereof (such as sodium hyaluronate), tamarind seed extract, glycerin, polyvinyl pyrrolidone, polyethylene oxide, polyethylene glycol, propylene glycol and polyacrylic acid and mixtures thereof In certain embodiments, one or more of hyaluronic acid, propylene glycol, tamarind seed extract, glycerin and/or polyethylene glycol 400 are the demulcents or soothing agents.
In certain embodiments, the demulcent or soothing agent is selected from hyaluronic acid, tamarind seed extract or mixtures thereof Compositions of the present invention are ophthalmologically suitable for application to a subject's eyes. The term "aqueous" typically denotes an aqueous formulation wherein the excipient is > about 50%, more preferably > about 75% and in particular >
about 90% by weight water. In certain embodiments, the compositions of the present invention are essentially free of compounds which irritate the eye. In certain embodiments, the compositions of the present invention are essentially free of free fatty acids and Ci to C4 alcohols. In certain embodiments, the compositions of the present invention are comprise less than 40% (or about 40%), optionally, less than 35% (or about 35%), optionally, less than 30% (or about 30%), optionally less than 25% (or about 25%), optionally, less than 20% (or about 20%), optionally, less than 15% (or about 15%), optionally less than 10%
(or about
= provides mechanical strength to cornea;
= provides transparency of cornea; and = acts as refracting lens.
Descernet's membrane:
= acts as resting layer for endothelial cells.
Corneal endothelium:
= maintains corneal clarity by removing water from the corneal stroma.
The corneal epithelium layer is composed fairly uniformly of 5-7 layers of cells. The corneal epithelium is about 50 p. in thickness. The epithelium is uniform to provide a smooth regular surface and is made up of nonkeratinized stratified squamous epithelium. Without being limited by theory, it is believed that, in the case of hyaluronic acid production, the corneal epithelium layer further contains tight junction structures (i.e., those structures [e.g., membrane or film barriers] typically inhibiting chemical permeation into tissues) which may obstruct, or act as a barrier, to diffusion of the one or more extracts, or sources of extracts, of the genus Pichia, reducing diffusion of the one or more extracts, or sources of extracts, of the genus Pichia across the corneal epithelium and into the corneal tissues, thereby, reducing the concentration levels of the extract that can accumulate within the corneal tissues and contact the cellular portions of such tissues responsible for hyaluronic acid production.
As used herein, the phrase "decreased or low-level production/release/delivery/excretion of hyaluronic acid from and/or in the cornea" means a concentration of hyaluronic acid which is less than the concentration of hyaluronic acid in the tears of a normal (i.e., non-diseased) person, or, in certain embodiments, less than 25 (or about 25) nanograms per milligram of proteins, as determined using the method described in Dreyfuss JL, Regatieri CV, Coelho B, et al. Altered hyaluronic acid content in tear fluid of patients with adenoviral conjunctivitis. An Acad Bras Cienc. 2015;87(1):455-462. That method (the Dreyfuss Method) is reproduced below:
= Sample Collection For collecting the tears, Schirmer strips were placed in the temporal side of each eye under the eyelid, during 5 minutes, without any use of topical anesthetics.
The strips were dried at room temperature and stored at ¨20 C until analysis.
= Tear Sample Preparation Date Recue/Date Received 2020-11-19 Tear compounds were eluted from the Schirmer strips using 100 pL of distilled water, and hyaluronic acid and protein content analyses were performed.
= Hyaluronic Acid Measurement Hyaluronic acid content in tear fluids was assayed by a non-isotopic fluoroassay (See Martins Jr, Passerotti CC, Maciel RM, Sampaio Lo, Dietrich CP and Nader HB.
2003.) Practical determination of hyaluronan by a new noncompetitive fluorescence-based assay on serum of normal and cirrhotic patients. Anal Biochem 319: 65-72.) Eluted tear fluids and standard concentrations of hyaluronic acid (Sigma, St.
Louis, MO) were added to 96 multiwell plates (FluoroNUNC Maxisorp-microtiterplates, Roskilde, Denmark) previously coated with hyaluronic acid -binding protein.
The plates were then sequentially incubated with biotinylated hyaluronic acid -binding protein and europiumlabeled streptavidin (Amershan, Piscataway, NJ).
Afterwards, the europium remaining in the solid phase was released by an enhancement solution and the fluorescence was measured using a time-resolved flurometer (Perkin-Elmer Life Sciences-Wallac Oy, Turku, Finland). The data (counts/s) were processed automatically using the MultiCalc software program (Perkin-Elmer Life Sciences-Wallac Oy) and values are expressed as ng/mg protein.
= Protein Analysis Total tear protein concentration was determined using a colorimetric assay kit according to the manufacturer's instructions (Protein Assay Kit from Bio-Rad, Hercules, CA). The protein profile was analyzed through sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) as previously described (See Laemmli UK. 1970.) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.). Briefly, 10 Kg of protein from the tear samples were applied to a 3-20% linear gradient polyacrylamide gel under reducing conditions. After electrophoresis, the gels were stained by comassie blue (Bio-Rad, Hercules, CA). Each protein band was quantified by densitometry using the software ImageJ Version 10.2 for Mac (U.S. National Institutes of Health, Bethesda, Maryland, USA). The results are expressed by arbitrary densitometric units (ADU).
As used herein, the phrase "decreased or low-level production/release/delivery/excretion of mucin from and/or in the cornea"
means a concentration of MUC5AC which is less than the concentration of MUC5AC in the tears of a normal (i.e., non-diseased) person, or, in certain embodiments, less than 6, optionally less than 8, nanograms per milligram of proteins, as determined using the method described in Uchino Y, Uchino M, Yokoi N, et al. Alteration of Tear Mucin SAC in Office Workers Using Visual Display Terminals: The Osaka Study. JAMA Ophthalmol. n2014;132(8):985-992.
That method (the Uchino Method) is reproduced below:
= MUC5AC Concentration in Tears The concentration of the secreted mucin MUC5AC in the tear samples was quantified by enzyme-linked immunoassay (E90756Hu; USCN Life Science). (See Maker AV, Katabi N, Gonen M, et al. Pancreatic cyst fluid and serum mucin levels predict dysplasia in intraductal papillary mucinous neoplasms of the pancreas.
Ann Surg Oncol. 2011;18(1):199-206.) All samples were analyzed according to the Date Recue/Date Received 2020-11-19 manufacturer's guidelines. Absorbance was measured at 450 nm, and the standard solutions in the kit were recombinant human MUC5AC. A protein assay reagent kit (BCA Protein Assay Kit; Pierce) was used to determine the protein concentration in the tear samples. The MUC5AC concentration was normalized to the tear protein content and expressed as MUC5AC protein (nanograms) per tear total protein (milligrams).
As used herein, a composition that is "essentially free" of an ingredient means the composition that has about 2% or less of that ingredient by weight based on the total weight of the composition. Preferably, a composition that is essentially free of an ingredient has about 1% or less, more preferably about 0.5% or less, more preferably about 0.1% or less, more preferably about 0.05 or less, more preferably about 0.01% or less by weight based on the total weight of composition of the ingredient. In certain more preferred embodiments, a composition that is essentially free of an ingredient is free of the ingredient, i.e. has none of that ingredient in the composition.
As used herein, "microemulsion" means emulsions possessing one or more of the following characteristics: i) they are formed spontaneously or substantially spontaneously when their components are brought into contact, that is without substantial energy supply, e.g. in the absence of heating or the use of high shear equipment or other substantial agitation; ii) they exhibit thermodynamic stability; iii) they are monophasic;
iv) they are substantially non-opaque, i.e. are transparent or opalescent when viewed by optical microscopic means; and/or v) in their undisturbed state, they are optically isotropic, though an anisotropic structure may be observable using e.g. x-ray technique. The particles of a microemulsion may be spherical, though other structures are feasible, e.g.
liquid crystals with lamellar, hexagonal or isotropic symmetries. Generally, microemulsions comprise droplets or particles having a maximum dimension (e.g. diameter) of less than 1,500 A, preferably less than 1000 A, preferably less than 500 A, but greater than 100 A. Included within this definition of microemulsion are self-emulsifying drug delivery systems (SEDDS). SEDDS
are isotropic mixtures of oil, surfactant (with or without co-surfactant) and co-solvent which spontaneously emulsify when exposed to an aqueous medium with gentle agitation. SEDDS
may be used to improve bioavailability of poorly water soluble drugs via oral administration.
The addition of a co-solvent facilitate the formation of a self-emulsifying system as it significantly reduces the interfacial tension. In so doing, it creates a fluid interfacial film with sufficient flexibility to take up different curvatures required to form microemulsion over a wide range of compositions. Further detail regarding SEDDS can be found in US Pat.
Date Recue/Date Received 2020-11-19 Publication US2018/0036233A1 to Shabaik et al., herein incorporated by reference in its entirety.
As used herein, "ophthalmologically acceptable" means that the ingredients which the term describes are suitable for use in contact with tissues (e.g., the soft tissues of the eye or periorbital skin tissues) without undue toxicity, incompatibility, instability, irritation, allergic response, and the like. As will be recognized by one of skill in the art, cosmetically/
dermatologically acceptable salts are acidic/anionic or basic/cationic salts.
As used herein, the term "safe and effective amount" means an amount of disclosed the extract, compound or of the composition sufficient to induce, promote and/or improve the production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in one or more layer of the cornea, but low enough to avoid serious side effects. The safe and effective amount of the compound, extract, or composition will vary with e.g. the age, health and environmental exposure of the end user, the duration and nature of the treatment, the specific extract, ingredient, or composition employed, the particular ophthalmologically-acceptable carrier utilized, and like factors.
In certain embodiments, the present invention as disclosed herein may be practiced in the absence of any compound or element (or group of compounds or elements) which is not specifically disclosed herein.
In general, IUPAC nomenclature rules are used herein and according to the following term definitions.
The term "C1-8 alkyl," whether used alone or as part of a substituent group, refers to a saturated aliphatic branched or straight-chain monovalent hydrocarbon radical having from 1-8 carbon atoms. For example, "C1-8a1ky1" specifically includes the radicals methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, tert-butyl, 1-butyl, 1-pentyl, 2-pentyl, 3-pentyl, 1-hexyl, 2-hexyl, 3- hexyl, 1-heptyl, 2-heptyl, 3-heptyl, 1-octyl, 2-octyl, 3-octyl and the like. Said term may also refer to the corresponding alkyldiyl radical. Alkyl and alkyldiyl radicals may be attached to a core molecule via a terminal carbon atom or via a carbon atom within the chain.
Similarly, any number of substituent variables may be attached to an alkyl or alkyldiyl radical when allowed by available valences.
The term "C1-4a1ky1," whether used alone or as part of a substituent group, refers to a saturated aliphatic branched or straight-chain monovalent hydrocarbon radical or alkyldiyl linking group having a specified number of carbon atoms, wherein the radical is derived by the removal of one hydrogen atom from a carbon atom and the alkyldiyl linking group is Date Recue/Date Received 2020-11-19 derived by the removal of one hydrogen atom from each of two carbon atoms in the chain.
The term "C1-4a1ky1" refers to a radical having from 1-4 carbon atoms in a linear or branched arrangement. For example, "C1-4a1ky1" specifically includes the radicals methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, tert- butyl, 1-butyl, and the like. Alkyl and alkyldiyl radicals may be attached to a core molecule via a terminal carbon atom or via a carbon atom within the chain. Similarly, any number of substituent variables may be attached to an alkyl or alkyldiyl radical when allowed by available valences.
The term "C2-4a1keny1" refers to an alkenyl radical having from 2-4 carbon atoms.
For example, specifically includes the radicals ethenyl, propenyl, allyl (2-propenyl), butenyl and the like. As described above, an alkenyl radical may be similarly attached to a core molecule and further substituted where indicated.
The term "halo" as such or in combination with other terms means halogen atom, such as fluoro, chloro, bromo or iodo.
The term "substituted," refers to a core molecule in which one or more hydrogen atoms have been replaced with that amount of substituents allowed by available valences.
Substitution is not limited to the core molecule, but may also occur on a substituent radical, whereby the radical becomes a linking group.
The term "independently selected" refers to two or more substituents that may be selected from a substituent variable group, wherein the selected substituents may be the same or different.
The term "dependently selected" refers to one or more substituent variables that are specified in an indicated combination for substitution in a core molecule (e.g. variables that refer to groups of substituents appearing in a tabular list of compounds).
Acceptable salts from inorganic bases include, for example, sodium or potassium salts, and the like. Acceptable salts from organic bases include, for example, salts formed with primary, secondary, or tertiary amines, and the like.
Compounds and/or Extracts which Induce, Promote and/or Improve Production/Release/Delivery/Excretion of Hyaluronic Acid and/or Mucin in the Cornea.
The present invention comprises one or more compounds and/or extracts which induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea.
Date Recue/Date Received 2020-11-19 In certain embodiments, the compounds and/or extracts which induce, promote and/or improve production/release/delivery/excretion of hyaluronic acid and/or mucin from and/or in the cornea are, or comprise, extracts, or sources of extracts, of the genus Pichia.
Pichia is a genus of yeasts in the family Saccharomycetaceae. More than 100 species of this genus are known. Suitable species for use in the compositions of the present invention include (selected from or selected from the group consisting of) Pichia anomala, Pichia Pichia norvegensis, and Pichia ohmeri. Pichia anomala (formerly named Hansenula anomala) can be found in raw milk and cheese. The extracts of yeasts of the genus Pichia are rich in mannans, polysaccharides composed of mannose monomers.
Extracts or sources of extracts of the genus Pichia may be isolated from the fruit or other aerial parts of a plant. Any ophthalmologically acceptable extract of the genus of Pichia may be used. Mixtures of extracts, or sources of extract, of the above species from the genus of Pichia may also be used.
In certain embodiments, the extracts, or sources of extracts, from genus of Pichia used in the present invention are extracts of Pichia anomala. Extracts of Pichia anomala can be isolated from the fruit or other aerial parts of a plant. In certain embodiments, a suitable extract of Pichia anomala is produced from a strain of Pichia anomala present on fruit or leaves of a kiwi plant. In another embodiment, extract of Pichia anomala is commercially available from Silab-France as PRO-LIPISKIN or UNFLAMAGYLO, where the extract is produced from a strain of Pichia anomala present on sugar cane. Preferred for use herein is an extract of Pichia anomala characterized as having:
- a solids content of between 26 and 40 g/l, - a pH between 6 and 7, - a protein content between 2 and 170 g/l, and - a sugars content (mannose curve) ranging between 18 and 30 g/1 (within which characterization falls PRO-LIPISKIN and Hyalurodine (Silab-France).
Hyalurodine is the Pichia anomala extract used in the Examples (below). In one embodiment, the Pichia anomala extract is obtained in accordance with the following process as described in FR2897266 and FR2938768, both of which are incorporated by herein by reference.
In certain embodiments, the extraction process described below eliminates much of the protein from a Pichia extract and concentrates the active in terms of mannan. The Date Recue/Date Received 2020-11-19 process comprises at least one enzymatic hydrolysis step of the proteins, to obtain peptides and small proteins and, in certain embodiments, a further step of removing these small peptides and proteins by filtration based on the selection of the size of such molecules.
In certain embodiments, the extracts of Pichia genus, including Pichia anomala extract, are obtained by an extraction process involving one or more hydrolysis enzyme (s) to hydrolyze proteins in Pichia genus, either successively or simultaneously.
In certain embodiments, enzymatic hydrolysis is used to break-down proteins in the extract of the Pichia genus into protein fractions having weight average molecular weights of less than 5000Da. Suitable hydrolysis enzymes include, but is not limited to, at least one peptidase, in certain embodiments, chosen from papain, trypsin, chymotrypsin, subtilisin, pepsin, thermolysin, pronase, flavastacine, enterokinase, factor Xa protease, Turin, bromelain, proteinase K, genenase I, thermitase, carboxypeptidase A, carboxypeptidase B, collagenase or mixtures thereof In certain embodiments, the enzymes used to obtain the Pichia genus extract are inactivated prior to separation of the resulting soluble and insoluble phases.
In one embodiment, the Pichia anomala extract is characterized as having:
- a solids content of between 5 and 300 g/l, - a pH between 4 and 9, - a protein content between 2 and 10, preferably 3-9, g/l, and - a sugars content (mannose curve) ranging between 1 and 100 g/1 In certain embodiments, extract of Pichia genus comprises a mannan content of greater than or equal to 30% of the total weight of dried Pichia genus extract, or optionally at a mannan content of at least 50% by weight of the total weight of the dried Pichia genus extract.
In certain embodiments, the phase of Pichia genus extract is dried (and the solids content is measured) by passing the Pichia genus extract containing phase through oven heat of 105 C (or about 105 C) in the presence of sand until a constant weight is obtained/observed.
In certain embodiments, the solids (or dry matter) content of the dried extract of Pichia genus is between 10 and 200 g/l, or optionally between 26 and 40 g/l.
Date Recue/Date Received 2020-11-19 In certain embodiments, the pH measured by the potentiometric method at room temperature (25 C) leads to values of between 4.5 and 8.5, optionally between 6.0 and 7Ø
Determination of total sugar content, the DUBOIS method can be used. In the presence of concentrated sulphuric acid and phenol, reducing sugars give an orange yellow compound. From a standard range (preferably using a mannose assay curve), the total sugar content of a sample can be determined. In certain embodiments, the total sugar content in the dried extract of Pichia genus is between 7 and 145 g/l, or optionally between 18 and 29 g/l.
In certain embodiments, the dried extract of Pichia genus contains at least 30% of total sugars by weight of dried extract of Pichia genus compared to the total solids by weight of dried extract of Pichia genus, optionally, at least 50% by weight of dried extract of Pichia genus.
In certain embodiments, the carbohydrate fraction of the dried extract of Pichia genus is composed of mannose and glucose in the form of (or essentially in the form of) oligosaccharides and polysaccharides having a weight average molecular weight of from about 180 to about 800,000 Da, optionally, from about 5000 to about 515,000 Da, optionally from about 6000 to about 270,000 Da. In certain embodiments, at least 70% (or about 70%), optionally at least 75% (or about 75%), at least 80% (or about 80%), optionally at least 85%
(or about 85%), at least 90% (or about 90%), optionally at least 95% (or about 95%), or 100% (or about 100%) of the oligosaccharides and polysaccharides in the dried extract of Pichia genus fall within the aforementioned weight average molecular weight ranges.
Determination of the protein content protein is obtained by the Kjedhal method. In certain embodiments, the dried extract of Pichia genus has a protein content of between 4 and 90 g/l, or optionally between 12 and 18 g/l. The dried extract of Pichia genus contains less than 45% of proteins, or optionally less than 30%, of the total solids in the dried extract of Pichia genus.
In certain embodiments, the dried extract of Pichia genus comprises mannans, mannoses polymerized in the form of oligosaccharides and polysaccharides, whose weight average molecular weight is from about 180 to about 800,000 Da, optionally, from about 5000 to about 515,000 Da, optionally from about 6000 to about 270,000 Da.
dried extract of Pichia genus. In certain embodiments, at least 70% (or about 70%), optionally at least 75%
(or about 75%), at least 80% (or about 80%), optionally at least 85% (or about 85%), at least 90% (or about 90%), optionally at least 95% (or about 95%), or 100% (or about 100%) of the Date Recue/Date Received 2020-11-19 oligosaccharides and polysaccharides in the dried extract of Pichia genus fall within the aforementioned weight average molecular weight ranges.
In certain embodiments, the extraction process includes a step, after the step of enzymatic hydrolysis of proteins, of removing (e.g., through filtration) proteins having a weight average molecular weight of less than 5000Da. Accordingly, the extracts of the Pichia genus are free of or substantially free of proteins and/or peptides having a weight average molecular weight of less than 5000Da.
In certain embodiments, the above described extraction process may include a step of deodorizing, bleaching and / or stabilizing the extract of Pichia genus before the filtrations.
The filtrations can be the following: - Press filtration, and - sterilizing filtration.
In certain embodiments, the extracts used belong to the variety Pichia anomala. A
particular non-limiting example of a production process is described below.
- Extracts (or yeasts) of Pichia anomala are cultured in a culture medium adapted to their development, then centrifuged to recover the biomass, - The biomass is then milled in a ball mill. Then the ground material is resuspended in water at a concentration of 50 grams per liter before enzymatic hydrolysis in basic medium at 30 C for 6 hours, - After hydrolysis, the product is centrifuged and filtered before sterilization, - By successive filtrations on filters of different sizes, a hydrolyzate containing at least 30% of mannans relative to the total weight of the solids is obtained and/or proteins of specific weight average molecular weight are obtained. (The hydrolyzate obtained is in the form of a clear liquid aqueous solution of light yellow color.) In certain embodiments, the Pichia anomala extract is obtained in accordance with the following manufacturing examples:
1. Pichia anomala extract A:
I. Extraction of the Pichia anomala extract A:
Date Recue/Date Received 2020-11-19 Preparation of Pichia anomala extract A includes the following steps:
- culture of yeast Pichia anomala in an environment adapted to their development, - centrifugation to retrieve the biomass, - solubilization of biomass, - enzymatic hydrolysis at basic pH, - separation of the soluble and insoluble phases, - heat treatment, - filtration, and - sterile filtration.
Characterization of the Pichia anomala extract A:
The Pichia anomala extract A obtain above is characterized by:
- - a solids content of between 48 and 84 g/l, - - a pH between 4 and 9, - - a protein content between 19 and 48 g/l, and - - a total sugar content between 10 and 42 g/l.
2. Pichia anomala extract B
I. Extraction of the Pichia anomala extract B:
Preparation of Pichia anomala extract B includes the following steps:
- culture of yeast Pichia anomala in an environment adapted to their development, - centrifugation to retrieve the biomass, - solubilization of biomass, - enzymatic hydrolysis at acid pH, - separation of the soluble and insoluble phases, - heat treatment, - filtration, and - sterile filtration.
Characterization of the Pichia anomala extract B:
The Pichia anomala extract B obtain above is characterized by:
- - a solids content of between 58 and 95 g/l, - - a pH between 4 and 9, - - a protein content between 23 and 54 g/l, and - - a total sugar content between 12 and 32 g/l.
3. Pichia anomala extract C
I. Extraction of the Pichia anomala extract C:
Preparation of Pichia anomala extract C includes the following steps:
Date Recue/Date Received 2020-11-19 - culture of yeast Pichia anomala in an environment adapted to their development, - centrifugation to retrieve the biomass, - solubilization of biomass, - successive enzymatic hydrolyses in basic medium, - separation of the soluble and insoluble phases, - heat treatment, - filtration, and - sterile filtration.
Characterization of the Pichia anomala extract C:
The Pichia anomala extract C obtain above is characterized by:
- - a solids content of between 91 and 195 g/l, - - a pH between 4 and 9, - - a protein content between 36 and 111 g/l, and - - a total sugar content between 18 and 65 g/l.
4. Pichia anomala extract D
I. Extraction of the Pichia anomala extract D:
Preparation of Pichia anomala extract D includes the following steps:
- culture of yeast Pichia anomala in an environment adapted to their development, - centrifugation to retrieve the biomass, - solubilization of biomass, - hydrolyzed simultaneously with at least two enzymes at acid pH, - separation of the soluble and insoluble phases, - heat treatment, - filtration, and - sterile filtration.
Characterization of the Pichia anomala extract D:
The Pichia anomala extract D obtain above is characterized by:
- - a solids content of between 5 and 53 g/l, - - a pH between 4 and 9, - - a protein content between 2 and 30 g/l, and - - a total sugar content between 1 and 18 g/l.
5. Pichia anomala extract E
I. Extraction of the Pichia anomala extract E:
Preparation of Pichia anomala extract E includes the following steps:
Date Recue/Date Received 2020-11-19 - culture of yeast Pichia anomala in an environment adapted to their development, - centrifugation to retrieve the biomass, - solubilization of biomass in a hydroglycolique environment, - hydrolyzed simultaneously with at least two enzymes at acid pH, - separation of the soluble and insoluble phases, - heat treatment, - filtration, and - sterile filtration.
Characterization of the Pichia anomala extract E:
The Pichia anomala extract E obtain above is characterized by:
- - a solids content of between 172 and 300 g/l, - - a pH between 4 and 9, - - a protein content between 69 and 170 g/l, and - - a total sugar content between 34 and 100 g/l.
Preferably, the Pichia anomala extract is obtained using the process for obtaining Pichia anomala extract D as described above.
In certain embodiments, the extract, or source of extracts, of the genus Pichia comprises oligosaccharides and polysaccharides having an average degree of polymerization of from DP 1 to DP 4444, optionally from DP 30 to DP 2860, optionally from DP
35 to DP
1500. In certain embodiments, at least 70% (or about 70%), optionally at least 75% (or about 75%), at least 80% (or about 80%), optionally at least 85% (or about 85%), at least 90% (or about 90%), optionally at least 95% (or about 95%), or 100% (or about 100%) of the oligosaccharides and polysaccharides in the dried extract of Pichia genus fall within the aforementioned average degree of polymerization ranges.
In certain embodiments, the extract, or source of extracts, of the genus Pichia are present in the compositions of the present invention so as to provide a Pichia extract concentration in, or contacting, corneal tissue cells in the user (i.e., internal corneal fluid levels), after topical application, of at least 0.3mg/m1 (or about 0.3 mg/ml), optionally, at least 0.5 mg/ml (or about 0.5 mg/ml), optionally, at least 1 mg/ml (or about 1 mg/ml), optionally, at least 1.5 mg/ml (or about 1.5mg/m1), optionally, at least 2 mg/ml (or about 2 mg/ml), optionally, at least 2.5 mg/ml (or about 2.5mg/m1), optionally, at least 3mg/m1 (or about 3mg/m1), optionally, at least 3.5 mg/ml (or about 3.5mg/m1), optionally, at least 4 mg/ml (or Date Recue/Date Received 2020-11-19 about 4 mg/ml), optionally, at least 4.5 mg/ml (or about 4.5 mg/ml), optionally, at least 5 mg/ml (or about 5 mg/ml), or at least 5.5 mg/ml (or about 5.5 mg/ml), optionally, at least 6 mg/ml (or about 6 mg/ml), or optionally, at least 6.5 mg/ml (or about 6.5 mg/ml), optionally, at least 7 mg/ml (or about 7 mg/ml), optionally, at least 7.5 mg/ml (or about 7.5 mg/ml), optionally, at least 8 mg/ml (or about 8 mg/ml), optionally, at least 8.5 mg/ml (or about 8.5 mg/ml), optionally, at least 9 mg/ml (or about 9 mg/ml), optionally, at least 8.5 mg/ml (or about 8.5 mg/ml), optionally, at least 9 mg/ml (or about 9 mg/ml), optionally, at least 9.5 mg/ml (or about 9.5 mg/ml), or optionally, at least 10 mg/ml (or about 10mg/m1) to 100 mg/ml (or about 100 mg/ml), optionally, to 95 mg/ml (or about 95 mg/ml), optionally, to 90 mg/ml (or about 90 mg/ml), optionally, to 85 mg/ml (or about 85mg/m1), optionally, to 80 mg/ml (or about 80 mg/ml), optionally, to 75 mg/ml (or about 75 mg/ml), optionally, to 70 mg/ml (or about 70 mg/ml), optionally, to 65 mg/ml (or about 65 mg/ml), optionally, to 60 mg/ml (or about 60 mg/ml), optionally, to 55 mg/ml (or about 55 mg/ml), optionally, to 50 mg/ml (or about 50 mg/ml), optionally, to 45 mg/ml (or about 45 mg/ml), optionally, to 40 mg/ml (or about 40 mg/ml), optionally, to 35 mg/ml (or about 35 mg/ml), optionally, to 30 mg/ml (or about 30 mg/ml), optionally, to 25 mg/ml (or about 25 mg/ml), optionally, to 20 mg/ml (or about 20 mg/ml), or optionally, to 15 mg/ml (or about 15 mg/ml).
In certain embodiments, the extract, or source of extracts, of the genus Pichia are present in the compositions of the present invention at a concentration of from 0.01% (or about 0.01%), optionally, from 0.05% (or about 0.05%), optionally, from 0.1%
(or about 0.1%), optionally, from 0.5% (or about 0.5%), optionally, from 1% (or about 1%), optionally, from 1.5% (or about 1.5%), optionally, from 2% (or about 2%), optionally, from 2.5% (or about 2.5%), optionally, from 3% (or about 3%), optionally, from 3.5%, (or about 3.5%), optionally, from 4% (or about 4%), optionally, from 4.5% (or about 4.5%), optionally, from 5% (or about 5%), optionally, from 5.5% (or about 5.5%), optionally, from 6%
(or about 6%), optionally, from 6.5% (or about 6.5%), optionally, from 7% (or about 7%), optionally, from 7.5% (or about 7.5%), optionally, from 8% (or about 8%), optionally, from 8.5% (or about 8.5%), optionally, from 9% (or about 9%), optionally, from 9.5% (or about 9.5%), optionally, from 10% (or about 10%), optionally, from 10.5% (or about 10.5%), optionally, from 11% (or about 11%), optionally, from 11.5% (or about 11.5%), optionally, from 12%
(or about 12%), optionally, from 12.5% (or about 12.5%), optionally, from 13%
(or about 13%), optionally, from 13.5% (or about 13.5%), optionally, from 14% (or about 14%), optionally, from 14.5% (or about 14.5%), optionally, from 15% (or about 15%), optionally, Date Recue/Date Received 2020-11-19 from 15.5% (or about 15.5%), optionally, from 16% (or about 16%), optionally, from 16.5%
(or about 16.5%), optionally, from 17% (or about 17%), optionally, from 17.5%
(or about 17.5%), optionally, from 18% (or about 18%), optionally, from 18.5% (or about 18.5%), optionally, from 19% (or about 19%), optionally, from 19.5% (or about 19.5%), optionally, from 20% (or about 20%), optionally, from 20.5% (or about 20.5%) to 30% (or about 30%), optionally, to 35% (or about 35%), optionally, to 40% (or about 40%), optionally, to 45% (or about 45%), optionally, to 50% (or about 50%), optionally, to 55% (or about 55%), optionally, to 60% (or about 60%), optionally, to 65% (or about 65%), optionally, to 70% (or about 70%), optionally, to 75% (or about 75%), optionally, to 80% (or about 80%), optionally, to 85% (or about 85%), optionally, to 90% (or about 90%), optionally, to 95% (or about 95%), or optionally, to 100% (or about 100%), by weight, of the total composition.
Permeation Enhancer In certain embodiments, the compositions of the present invention optionally comprise a permeation enhancer.
Suitable permeation enhancers include (selected from or selected from the group consisting of) either alone or in combination, surfactants such as saponins, polyoxyethylene, polyoxyethylene ethers of fatty acids such as polyoxyethylene 4-, 9-, 10-, and 23-lauryl ether, polyoxyethylene 10-and 20-cetyl ether, polyoxyethylene 10-and 20-stearyl ether, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene monolaurate, polyoxyethylene sorbitans such as polyoxyethylene sorbitan monolaurate, decamethonium, decamethonium bromide, and dodecyltrimethylammonium bromide; chelators such natural polyacids (e.g., citric acid), phosphate salts (e.g., disodium pyrophosphate), phosphonates, bisphosphonates (e.g., etridronic acid), aminocarboxylic acids (e.g., ethylenediaminetetraacetic acid (EDTA) and disodium EDTA) and ethylenediamine-N,N'-disuccinic acid (EDDS)); bile salts and acids such as cholic acid, deoxycholic acid, glycocholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium cholate, sodium glycocholate, glycocholate, sodium deoxycholate, sodium taurocholate, sodium glycodeoxycholate, sodium taurodeoxycholate, chenodeoxycholic acid, and urosdeoxycholic acid; fusidic acid derivatives, glycyrrhizic acid, and ammonium glycyrrhizide, with saponin EDTA, fusidic acid, polyoxyethylene 9-lauryl ether, polyoxyethylene 20-stearylether, glycocholate, or mixtures of any of the above.
Date Recue/Date Received 2020-11-19 The concentration of permeation enhancer administered should be the minimum amount needed to sufficiently increase absorption of the compound and/or extract through the mucous or other barrier membranes of the eye. Generally, concentrations ranging from 0.01% (or about 0.01%), optionally, from 0.05% (or about 0.05%), optionally, from 0.1% (or about 0.1%), optionally, from 0.15% (or about 0.15%), optionally, from 0.2%
(or about 0.2%), optionally, from 0.25% (or about 0.25%) to 2% (or about 2%), optionally, to 2.5% (or about 2.5%), optionally, to 3% (or about 3%), optionally, to 3.5%, (or about 3.5%), optionally, to 4% (or about 4%), optionally, to 4.5% (or about 4.5%), optionally, to 5% (or about 5%), optionally, to 5.5% (or about 5.5%), optionally, to 6% (or about 6%), optionally, to 6.5% (or about 6.5%), optionally, to 7% (or about 7%), optionally, to 7.5%
(or about 7.5%), optionally, to 8% (or about 8%), optionally, to 8.5% (or about 8.5%), optionally, to 9% (or about 9%), optionally, to 9.5% (or about 9.5%), optionally, to 10% (or about 10%), optionally, to 10.5% (or about 10.5%), optionally, to 11% (or about 11%), optionally, to 11.5% (or about 11.5%), optionally, to 12% (or about 12%), optionally, to 12.5% (or about 12.5%), optionally, to 13% (or about 13%), optionally, to 13.5% (or about 13.5%), optionally, to 14% (or about 14%), optionally, to 14.5% (or about 14.5%), optionally, to 15%
(or about 15%), optionally, to 15.5% (or about 15.5%), optionally, to 16% (or about 16%), optionally, to 16.5% (or about 16.5%), optionally, to 17% (or about 17%), optionally, to 17.5% (or about 17.5%), optionally, to 18% (or about 18%), optionally, to 18.5% (or about 18.5%), optionally, to 19% (or about 19%), optionally, to 19.5% (or about 19.5%), optionally, to 20% (or about 20%), of the total composition (w/v), are useful in the compositions of the present invention.
Ophthalmologically Acceptable Carrier The compositions of the present invention also comprise an aqueous, oil-in-water emulsion, water-in-oil emulsion carrier, oil-in-water microemulsion, or water-in-oil microemulsion carrier. The carrier is ophthalmologically acceptable. Useful oil-in-water and water-oil-carriers can be found in US Patent Publication 20030165545A1 and US
Patents 9480645, 8828412 and 8496976, each of which patent documents are herein incorporated by reference in its entirety.
In certain embodiments, the compositions of the present invention include emulsions, optionally, self-emulsifying emulsions, including an oily component, such as one or more Date Recue/Date Received 2020-11-19 oils, for example, and without limitation, mineral oil and/or one or more other conventional well known and/or commercially available oils suitable for use in the present invention; a surfactant component which includes three or more surfactants; and an aqueous component which includes an aqueous phase. In addition, a number of additional components may be included in the present compositions. The compositions of the present invention are substantially non-toxic and/or non-irritating and/or non-damaging to the eye and can provide a protective function for ocular cells and tissues.
One or more oils or oily substances are used to form the present compositions.
Any suitable oil or oily substance or combinations of oils or oily substances may be employed provided such oils and/or oily substances are effective in the present compositions, and do not cause any substantial or significant detrimental effect to the human or animal to whom the composition is administered, or to the contact lens being treated, or the wearing of the treated contact lens, or to the wearer of the treated contact lens. The oily component may, for example, and without limitation, be a higher fatty acid glyceride, for example, castor oil, corn oil, sunflower oil and the like and mixtures thereof The oily component may include one or more non-polar oils such as mineral oil, silicone oil and the like and mixtures thereof The ophthalmologically acceptable carrier (or, compositions of the present invention) may optionally comprise one or more additional excipients and/or one or more additional active ingredients. Examples of such optional components are described below.
Excipients commonly used in ophthalmic compositions include, but are not limited to, demulcents, tonicity agents, preservatives, chelating agents, buffering agents (other than and in addition to the organic acids of the present invention), and surfactants.
Other excipients comprise solubilizing agents, stabilizing agents, comfort-enhancing agents, polymers, emollients, pH-adjusting agents (other than and in addition to the organic acids of the present invention), and/or lubricants. Any of a variety of excipients may be used in the compositions of the present invention including water, mixtures of water and water-miscible solvents, such as vegetable oils or mineral oils comprising from 0.5% to 5% non-toxic water-soluble polymers, natural products, such as agar and acacia, starch derivatives, such as starch acetate and hydroxypropyl starch, and also other synthetic products such as polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl methyl ether, polyethylene oxide, and preferably cross-linked polyacrylic acid and mixtures thereof Date Recue/Date Received 2020-11-19 Demulcents or soothing agents used with embodiments of the present invention include, but are not limited to, cellulose derivatives (such hydroxyethyl cellulose, methyl cellulose, hypromellose or mixtures thereof), hyaluronic acid or salt thereof (such as sodium hyaluronate), tamarind seed extract, glycerin, polyvinyl pyrrolidone, polyethylene oxide, polyethylene glycol, propylene glycol and polyacrylic acid and mixtures thereof In certain embodiments, one or more of hyaluronic acid, propylene glycol, tamarind seed extract, glycerin and/or polyethylene glycol 400 are the demulcents or soothing agents.
In certain embodiments, the demulcent or soothing agent is selected from hyaluronic acid, tamarind seed extract or mixtures thereof Compositions of the present invention are ophthalmologically suitable for application to a subject's eyes. The term "aqueous" typically denotes an aqueous formulation wherein the excipient is > about 50%, more preferably > about 75% and in particular >
about 90% by weight water. In certain embodiments, the compositions of the present invention are essentially free of compounds which irritate the eye. In certain embodiments, the compositions of the present invention are essentially free of free fatty acids and Ci to C4 alcohols. In certain embodiments, the compositions of the present invention are comprise less than 40% (or about 40%), optionally, less than 35% (or about 35%), optionally, less than 30% (or about 30%), optionally less than 25% (or about 25%), optionally, less than 20% (or about 20%), optionally, less than 15% (or about 15%), optionally less than 10%
(or about
10%), or optionally, less than 5% (or about 5%), by weight of the total composition, of a non-alcohol, organic excipient or solvent. These drops may be delivered from a single dose ampoule which may preferably be sterile and thus render bacteriostatic components of the formulation unnecessary. Alternatively, the drops may be delivered from a multi-dose bottle which may preferably comprise a device which extracts any preservative from the composition as it is delivered, such devices being known in the art.
In certain embodiments, the compositions of the present invention are isotonic, or slightly hypotonic in order to combat any hypertonicity of tears caused by evaporation and/or disease. This may require a tonicity agent to bring the osmolality of the formulation to a level at or near 210-320 milliosmoles per kilogram (mOsm/kg). The compositions of the present invention generally have an osmolality in the range of 220-320 mOsm/kg, or, optionally, have an osmolality in the range of 235-300 mOsm/kg. The ophthalmic compositions will generally be formulated as sterile aqueous solutions.
Date Recue/Date Received 2020-11-19 The osmolality of the compositions of the present invention may be adjusted with tonicity agents to a value which is compatible with the intended use of the compositions. For example, the osmolality of the composition may be adjusted to approximate the osmotic pressure of normal tear fluid, which is equivalent to about 0.9 w/v % of sodium chloride in .. water. Examples of suitable tonicity adjusting agents include, without limitation, sodium, potassium, calcium and magnesium chloride; dextrose; glycerin; propylene glycol; mannitol;
sorbitol and the like and mixtures thereof In one embodiment, a combination of sodium chloride and potassium chloride are used to adjust the tonicity of the composition.
The compositions of the present invention can also be used to administer pharmaceutically active compounds. Such compounds include, but are not limited to, glaucoma therapeutics, pain relievers, anti-inflammatory and anti-allergy medications, and anti-microbials. More specific examples of pharmaceutically active compounds include betaxolol, timolol, pilocarpine, carbonic anhydrase inhibitors and prostglandins;
dopaminergic antagonists; post-surgical antihypertensive agents, such as para-amino clonidine (apraclonidine); anti-infectives such as ciprofloxacin, moxifloxacin, and tobramycin; non-steroidal and steroidal anti-inflammatories, such as naproxen, diclofenac, nepafenac, suprofen, ketorolac, tetrahydrocortisol and dexamethasone; dry eye therapeutics such as PDE4 inhibitors; and anti-allergy medications such as H1/H4 inhibitors, H4 inhibitors, olopatadine or mixtures thereof It is also contemplated that the concentrations of the ingredients comprising the formulations of the present invention can vary. A person of ordinary skill in the art would understand that the concentrations can vary depending on the addition, substitution, and/or subtraction of ingredients in a given formulation.
In certain embodiments, the compositions of the present invention may have a pH
which is compatible with the intended use, and is often in the range of 4 (or about 4) to 10 (or about 10), optionally between 6 (or about 6) to 8 (to about 8), optionally between 6.5 (or about 6.5) to 7.5 (or about 7.5), or optionally between 6.8 (or about 6.8) to 7.2 (or about 7.2).
In certain embodiments, a variety of conventional buffers may be employed, such as phosphate, borate, citrate, acetate, histidine, tris, bis-tris and the like and mixtures thereof Borate buffers include boric acid and its salts, such as sodium or potassium borate.
Potassium tetraborate or potassium metaborate, which produce boric acid or a salt of boric Date Recue/Date Received 2020-11-19 acid in solution, may also be employed. Hydrated salts such as sodium borate decahydrate can also be used. Phosphate buffers include phosphoric acid and its salts; for example, M 2HPO4 and MH2PO4, wherein M is an alkali metal such as sodium and potassium.
Hydrated salts can also be used. In one embodiment of the present invention, Na2HPO4.7H20 and NaH2P02.H20 are used as buffers. The term phosphate also includes compounds that produce phosphoric acid or a salt of phosphoric acid in solution.
Additionally, organic counter-ions for the above buffers may also be employed.
The concentration of buffer generally varies from about 0.01 to 2.5 w/v % and more preferably varies from about 0.05 to about 0.5 w/v %.
In certain embodiments, the viscosity of the compositions of the present invention range from about 1 to about 500 cps, optionally from about 10 to about 200 cps, or optionally from about 10 to about 100 cps, when measured using a TA Instrument AR 2000 rheometer.
The TA Instrument AR 2000 rheometer should be used with the AR2000 flow test method of the TA Rheological Advantage software with a 40 mm steel plate geometry; the viscosity ranges should be obtained by measuring steady state flow controlling shear rate from 0 sec to 200 sec In certain embodiments, the compositions of the present invention are useful as, and in the form of, eye-drop solution, eye wash solution, contact lens lubricating and/or rewetting solution, spray, mist or any other manner of administering a composition to the eye.
The compositions of the present invention may also be useful as, and in the form of, packing solutions for contact lenses. In certain embodiments, as packing solutions, the compositions of the present invention may be sealed in blister packaging and, also, suitable for undergoing sterilization.
Examples of blister packages and sterilization techniques are disclosed in the following references which are hereby incorporated by reference in their entirety, U.S. Pat.
Nos. D435,966; 4,691,820; 5,467,868; 5,704,468; 5,823,327; 6,050,398, 5,696,686;
6,018,931; 5,577,367; and 5,488,815. This portion of the manufacturing process presents another method of treating the ophthalmic devices with anti-allergic agent, namely adding anti-allergic agents to a solution prior to sealing the package, and subsequently sterilizing the package. This is the preferred method of treating ophthalmic devices with anti-allergic agents.
Date Recue/Date Received 2020-11-19 Sterilization can take place at different temperatures and periods of time.
The preferred sterilization conditions range from about 100 C for about 8 hours to about 150 C
for about 0.5 minute. More preferred sterilization conditions range from about 115 C for about 2.5 hours to about 130 C for about 5.0 minutes. The most preferred sterilization conditions are about 124 C for about 18 minutes.
When used as packing solutions, the compositions of the present invention may be water-based solutions. Typical packing solutions include, without limitation, saline solutions, other buffered solutions, and deionized water. In certain embodiments, the packing solution is an aqueous solution of deioinized water or saline solution containing salts including, without limitation, sodium chloride, sodium borate, sodium phosphate, sodium hydrogenphosphate, sodium dihydrogenphosphate, or the corresponding potassium salts of the same. These ingredients are generally combined to form buffered solutions that include an acid and its conjugate base, so that addition of acids and bases cause only a relatively small change in pH. In certain embodiments, the pH of the packing solution is as described above. The buffered solutions may additionally include 2-(N-morpholino)ethanesulfonic acid (MES), sodium hydroxide, 2,2-bis(hydroxymethyl)-2,2',2"-nitrilotriethanol, n-tris(hydroxymethyl)methy1-2-aminoethanesulfonic acid, citric acid, sodium citrate, sodium carbonate, sodium bicarbonate, acetic acid, sodium acetate, ethylenediamine tetraacetic acid and the like and combinations thereof Preferably, the solution is a borate buffered or phosphate buffered saline solution or deionized water. The particularly preferred solution contains about 500 ppm to about 18,500 ppm sodium borate, most particularly preferred about 1000 ppm of sodium borate.
If any ingredients incorporated into the packing solutions are subject to oxidative degradation, agents that stabilize packing solutions containing such ingredients may be added. Such "oxidative stabilization agents" include but are not limited to chelants such as EDTA, Dequest, Desferal, silica, chitin derivatives such as chitosan, cellulose and its derivatives, and N,N,N',N',N", N"-hexa(2-pyridy1)-1,3,5-tris(aminomethyObenzene, and certain macrocyclic ligands such as crown ethers, ligand containing knots and catenands.
See, David A. Leigh et al Angew. Chem Int. Ed., 2001, 40, No. 8, pgs. 1538-1542 and Jean-Claude Chambron et al. Pure & Appl. Chem., 1990, Vol. 62, No. 6, pgs. 1027-1034.
Oxidative stabilization agents may include other compounds that inhibit oxidations such as those selected from the group consisting of 2,2',2",6,6',6"-Hexa-(1,1-dimethylethy1)4,4',4"-Date Recue/Date Received 2020-11-19 [(2,4,6-trimethy1-1,3,5-benzenetriy1)-trismethylenel-triphenol (Irganox 1330), 1,3,5tris[3,5-di(1,1-dimethylethy1)4-hydroxybenzy11-1H,3H,5H-1,3,5-triazine-2,4,6-trione, pentaerythrityl tetrakis[3-[3,5-di(1,1-dimethylethyl)-4-hydroxyphenyll-propionate], octadecy1-3-[3,5-di(1,1-dimethylethyl)-4-hydroxyphenyll-propionate, tris[2,4-di(1,1-dimethylethyl)-phenyll-phosphite, 2,2'-di(octadecyloxy)-5,5'-spirobi(1,3,2-dioxaphosphorinane), dioctadecyl disulphide, didodecy1-3,3'-thiodipropionate, dioctadecy1-3,3'-thiodipropionate, butylhydroxytoluene, ethylene bis[3,3-di[3-(1,1-dimethylethyl)-4-hydroxyphenyllbutyratel and mixtures thereof The preferred oxidative stabilization agents are diethylenetriaminepentaacetic acid ("DTPA"), or salts of DTPA such as CaNa3DTPA, ZnNa3DTPA, and Ca2DTPA. See, U.S. App. Pat. No. 60/783,557 filed on, March 17, 2006, entitled "Methods for Stabilizing Oxidatively Unstable Pharmaceutical Compositions" and its corresponding non-provisional filing which are hereby incorporated by reference in their entirety. In certain embodiments, the concentration of oxidative stabilization agents in the solution be from about 2.5 nmoles/liter to about, 5000 nmoles/liter, optionally, from about 20 nmoles/liter to about 1000 nmoles/liter, optionally from about 100 nmoles/liter to about 1000 nmoles/liter, or optionally from about 100 nmoles/liter to about 500 nmoles/liter.
In particular embodiments, the compositions of the present invention are formulated for administration at any frequency of administration, including once a week, once every five days, once every three days, once every two days, twice a day, three times a day, four times a day, five times a day, six times a day, eight times a day, every hour, or greater frequency.
Such dosing frequency is also maintained for a varying duration of time depending on the therapeutic needs of the user. The duration of a particular therapeutic regimen may vary from one-time dosing to a regimen that extends for months or years. One of ordinary skill in the art would be familiar with determining a therapeutic regimen for a specific indication.
The composition and products containing such compositions of this invention may be prepared using methodology that is well known by an artisan of ordinary skill.
EXAMPLES
Any compositions of the present invention as described in following examples illustrate specific embodiments of compositions of the present invention, but are not intended Date Recue/Date Received 2020-11-19 to be limiting thereof Other modifications can be undertaken by the skilled artisan without departing from the spirit and scope of this invention.
The following test methods were used in the Examples:
Example 1 To reduce obstruction potentially caused by tight junction structures (i.e., those surface structures [e.g., membrane or film barriers] typically inhibiting chemical permeation into tissues) , induction of mucin secretion in human epicorneal 3D tissues was observed by contacting the corneal tissues with growth media containing Pichia anomala ferment extracts (Hyalurodine) (i.e., "treated" media) such that the bottom cell layer of the corneal tissues (i.e., cell layer which don't have tight junction structures inhibiting chemical permeation into tissues) were immersed in the growth media. By contacting the bottom cell layer of the corneal tissues with the growth media containing the Pichia anomala ferment extracts, the extract can directly contact and move upward into the inner corneal tissues without having to first pass through any tight junction structures or other surface barrier, providing improved bioavailability of Pichia anomala into corneal tissue cells.
Human epicorneal 3D tissues in growth media treated to have 1.56 mg/ml and 1.95 mg/ml concentrations of Pichia anomala ferment extracts (Hyalurodine) showed an increase of MUC4 gene expressions in the human epicorneal 3D tissues.
EpiCorneal 3D human tissues were purchased from MatTek Company (Ashland, MA, USA). Upon receiving the epicorneal 3D human tissues, they were incubated in MatTek assay medium overnight following the manufacturer's instruction. The epicorneal 3D human tissues were divided into three treatment groups with three tissues per group.
Pichia anomala ferment extracts (Hyalurodine) were added, respectively, into the culture medium containing the human epicorneal tissues of two of the treatment groups to produce media concentrations of 1.56 mg/ml and 1.95 mg/ml, respectively. The epicorneal tissues in all treatment groups were allowed to incubate for two days. The Pichia anomala ferment extract was supplied by Silab, St. Viance, France. After the two days, the human epicorneal 3D tissues were cut in halves and half of the tissues were lysed in 350 pL lysis buffer, consisting of 100 parts RLT
buffer (RNeasy Mini kit, Qiagen, Valencia, CA), to one part 2-mercaptoethanol.
RNA was Date Recue/Date Received 2020-11-19 extracted from the solutions using the RNeasy Mini Kit (Qiagen, Valencia, CA) according to manufacturer's instructions and RNA was eluted in 25 pL RNase-free water.
Reverse transcription (RT) was performed using the Applied Biosystems High Capacity Reverse Transcription Kit (ThermoFisher Scientific, Bridgewater, NJ).
Gene expression assays sold under the tradename TAQMAN for mucin-4 (MUC4), polymerase (RNA) II polypeptide A (POLR2A), and Master Mix were purchased from ThermoFisher Scientific (Bridgewater, NJ). qPCR analysis was performed using TaqMan Master Mix (ThermoFisher Scientific, Bridgewater, NJ), and run on a real time PCR system sold under the tradename QUANTSTUDIO 7 Flex System (ThermoFisher Scientific, Bridgewater, NJ).
The expression of the MUC4 gene was normalized against the expression of the human POLR2A housekeeping gene. The fold changes were calculated in comparison to the untreated control (UT) and two-tailed two-sample Student t-tests (Microsoft Office Excel 2007; Microsoft, Redmond, WA, USA) were performed. Results were shown in Figure 1, indicating increased fold changes of MUC4 in corneal tissue cells with increased concentration of Pichia anomala ferment extract in media. The "untreated"
sample was prepared the same as described this example except no Pichia anomala is added to media Example 2 Human epicorneal 3D tissues in growth media treated to contain 0.39 mg/ml, 0.78 mg/ml, 1.56 mg/ml and 1.95 mg/ml concentrations of Pichia anomala ferment extracts (Hyalurodine) showed an increase of MUC4 gene expressions in human epicorneal tissues. *, p < 0.05.
EpiCorneal 3D human tissues were purchased from MatTek Company (Ashland, MA, USA). Upon receiving the epicorneal 3D human tissues, theywere incubated in MatTek assay medium overnight following the manufacturer's instruction. The epicorneal 3D human tissues were divided into five treatment groups with three tissues per group.
Pichia anomala ferment extracts (Hyalurodine) were added, respectively, into the culture medium of four of the treatment groups to produce media concentrations of 0.39 mg/ml, 0.78 mg/ml, 1.56 mg/ml and 1.95 mg/ml, respectively. The epicorneal tissues of all five of the treatment groups allowed to incubate for two days. The Pichia anomala ferment extract was supplied by Silab, St. Viance, France. After the two days, culture media were collected for measuring Date Recue/Date Received 2020-11-19 mucin 1 secretion using human mucin-1 (CA15-3) enzyme-linked immunosorbent assay (ELISA) kit (EHMUC1, ThermoFisher Scientific, Bridgewater, NJ) following the manufacturer's protocol. To assess activity, the colorimetric change was measured using a microplate reader (SpectraMax M2E, Molecular Devices, Sunnyvale, CA, USA).
This assay employs the standard enzyme-linked immunosorbent assay technique, so there is a linear correlation between Mucin-1 concentration in the sample and the colorimetric change. A
standard curve was generated, with the Mucin-1 concentration on the x-axis and absorbance on the y-axis to indicate corresponding Mucin-1 concentration. Results were shown in Figure 2, indicating increased Mucin-1 production in corneal tissue cells with increased environmental concentration of Pichia anomala ferment extract in media.
Example 3 Compositions having the 1.95 mg/ml, 7.8 mg/ml, 19.5 mg/ml and 39 mg/ml concentrations of Pichia anomala extracts in PBS showed an increase of mucin-1 secretion in human epicorneal 3D tissues when applied topically to corneal tissue cells. *, p < 0.05.
EpiCorneal 3D human tissues were purchased from MatTek Company (Ashland, MA, USA). Upon receiving the epicorneal 3D human tissues, they were incubated in MatTek assay medium overnight following the manufacturer's instruction. The epicorneal 3D human tissues were divided into three treatment groups with three tissues per group.
Four .. concentrations of Pichia anomala ferment extracts (Hyalurodine) 1.95 mg/ml, 7.8 mg/ml, 19.5 mg/ml and 39 mg/ml were suspended in aqueous phosphate buffered solution (PBS) vehicles and were topically applied, respectively, to the corneal epithelium surface of four of the treatment groups. The epicorneal tissues of all five treatment groups were allowed to incubate for two days. The Pichia anomala ferment extract was supplied by Silab, St.
Viance, France. After the two days, culture media were collected for measuring mucin 1 secretion using human mucin-1 (CA15-3) enzyme-linked immunosorbent assay (ELISA) kit (EHMUC1, ThermoFisher Scientific, Bridgewater, NJ) following the manufacturer's protocol. To assess activity, the colorimetric change was measured using a microplate reader (SpectraMax M2E, Molecular Devices, Sunnyvale, CA, USA). This assay employs the standard enzyme-linked immunosorbent assay technique, so there is a linear correlation between Mucin-1 concentration in the sample and the colorimetric change. A
standard curve was generated, with the Mucin-1 concentration on the x-axis and absorbance on the y-axis to Date Recue/Date Received 2020-11-19 indicate corresponding Mucin-1 concentration. Results were shown in Figure 3.
(Kiwi is used in Figure 2 to represent Pichia anomala ferment extract).
The results show that increased Mucin-1 production in corneal tissue cells was observed after topical application of compositions having the 1.95 mg/ml, 7.8 mg/ml, 19.5 mg/ml and 39 mg/ml concentrations of Pichia anomala extracts (in PBS).
Example 4 Pichia anomala ferment extracts (Hyalurodine) induced hyaluronic acid secretion in human epicorneal 3D tissues when applied topically to corneal tissue cells.
Without being .. limited by theory, it is believed that such topical application requires diffusion of the Pichia anomala ferment extracts through tight junction structures of the human epicorneal tissue (i.e., those structures [e.g., membrane or film barriers] typically inhibiting chemical permeation into tissues) to reach the inside of the epicorneal tissue.
EpiCorneal 3D human tissues were purchased from MatTek Company (Ashland, MA, USA). Upon receiving the epicorneal 3D human tissues, they were incubated in MatTek assay medium overnight following the manufacturer's instruction. The epicorneal 3D human tissues were divided into five treatment groups with three tissues per group.
Four concentrations of Pichia anomala ferment extracts (Hyalurodine) 1.95 mg/ml, 7.8 mg/ml, 19.5 mg/ml and 39 mg/mlin aqueous phosphate buffered solution (PBS) vehicle were topically applied, respectively, to the corneal epithelium surface of four of the treatment groups (such that the Pichia anomala ferment extracts were delivered through the above-mentioned tight junction structures). The epicorneal tissues in all five treatment groups were allowed to incubate for two days. The Pichia anomala ferment extract was supplied by Silab, St. Viance, France. After the two days, the culture media were collected for measuring hyaluronic acid (HA) secretion using HA enzyme-linked immunosorbent assay (ELISA) kit (K-1200, Echelon, Salt Lake City, UT, USA) following the manufacturer's protocol. To assess activity, the colorimetric change was measured using a microplate reader (SpectraMax M2E, Molecular Devices, Sunnyvale, CA, USA). This assay employs the competitive enzyme-linked immunosorbent assay technique, so there is an inverse correlation between HA concentration in the sample and the colorimetric change. A standard curve was generated, with the HA concentration on the x-axis and absorbance on the y-axis to indicate corresponding HA concentration. Results were shown in Figure 4.
Date Recue/Date Received 2020-11-19 While the results suggest that topical application at the tested concentration directionally indicate induction of HA production in the corneal cells, factors such as tight junction structures (or, other surface membrane or film layer barriers) may reduce the concentration of Pichia anomala reaching the internal corneal tissues. In such situations, embodiments of the present invention incorporating penetration enhancers may be useful.
Example 5 To reduce obstruction potentially caused by the above tight junction structures (or, membrane or film barriers), induction of hyaluronic acid secretion in human epicorneal 3D
tissues was observed by contacting the corneal tissues with growth media containing Pichia anomala ferment extracts (Hyalurodine) (i.e., "treated" media) such that the bottom cell layer of the corneal tissues (i.e., cell layers which don't have tight junction structures inhibiting chemical permeation into tissues) were immersed in the growth media. By contacting the bottom cell layer of the corneal tissues with the growth media containing the Pichia anomala ferment extracts, the extract can directly contact and move upward into the inner corneal tissues without having to first pass through any tight junction structures or other surface barrier, providing improved bioavailability of Pichia anomala into corneal tissue cells.
EpiCorneal 3D human tissues were purchased from MatTek Company (Ashland, MA, USA). Upon receiving the epicorneal 3D human tissues, these tissues were incubated in MatTek assay medium overnight following the manufacturer's instruction. The epicorneal 3D human tissues were divided into five treatment groups with three tissues per group.
Pichia anomala ferment extracts (Hyalurodine) were added into the culture medium of four of the treatment groups to produce media concentrations of 0.39 mg/ml, 0.78 mg/ml, 1.56 mg/ml and 1.95 mg/ml, respectively, to contact the bottom cell layer of the human epicorneal tissues. The epicorneal tissues of all five of the treatment groups were allowed to incubate for two days. The Pichia anomala ferment extract was supplied by Silab, St.
Viance, France.
After the two days, the culture media were collected for measuring hyaluronic acid (HA) secretion using HA enzyme-linked immunosorbent assay (ELISA) kit (K-1200, Echelon, Salt Lake City, UT, USA) following the manufacturer's protocol. To assess activity, the colorimetric change was measured using a microplate reader (SpectraMax M2E, Molecular Date Recue/Date Received 2020-11-19 Devices, Sunnyvale, CA, USA). This assay employs the competitive enzyme-linked immunosorbent assay technique, so there is an inverse correlation between HA
concentration in the sample and the colorimetric change. A standard curve was generated, with the HA
concentration on the x-axis and absorbance on the y-axis to indicate corresponding HA
concentration. Results were shown in Figure 5.
The results show that a statistically significant increase in HA production in corneal tissue cells was observed at such tissue environmental concentrations of Pichia anomala of at least 0.3 mg/ml (i.e., concentrations of Pichia anomala extract contacting such internal corneal tissue cells [e.g., corneal fluid level concentrations]).
Example 6 Table 1 illustrates the components of such formulations (as shown in formulations 6A
and 6B), which components can be incorporated as described below using conventional mixing technology.
Date Recue/Date Received 2020-11-19 Table 1 Useful for Relief of Useful for Relief of Dry Eye Irritation Dry Eye Irritation for Contact Lenses INGREDIENT %w/w amount %w/w amount per batch per (gms) batch (gms) Sodium 0.20 2.0 0.15 1.5 Hyaluronate Pichia anomala 2.0 20.0 5.0 50.0 extract Polysorbate 80 1.0 10.0 2.0 20.0 Polysorbate 20 5.0 50.0 10.0 100.0 Polyethylene 0.25 2.5 0 0 Glycol 400 Boric Acid 0.60 6.0 0.60 6.0 Sodium Borate 0.05 0.50 0.05 0.50 Sodium Chloride*
Potassium 0.10 1.0 0.10 1.0 Chloride Calcium 0.006 0.06 0.006 0.06 Chloride Dihydrate Magnesium 0.006 0.06 0.006 0.06 Chloride Sodium 0.014 0.14 0.014 0.14 Chlorite Dihydrate Date Recue/Date Received 2020-11-19 Polyquatemium 0.0015 0.015 0.0015 0.015 (33%aqueous) Sodium 0.014 0.14 0.014 0.14 Chlorite Dihydrate 1N Sodium Hydroxide solution**
Hydrochloric Acid solution**
Purified Water***
total 100.00 1000.0 g 100.00 1000.00 * adjust to tonicity of 280-290 mOsm/Kg ** adjust to pH 7.2 *** q.s to 100%w/w For Examples 6A-6B: The Sodium Hyaluronate can be supplied by CONTIPRO A.S.
(DOLNI, DOBROUC, CZECH REPUBLIC) For Examples 6A and 6B: The Pichia anomala extract supplied by SILAB (SAINT
VIANCE, FRANCE).
For Examples 6A-6B: The Polysorbate 20 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 6A-6B: The Polysorbate 80 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 6A: The Polyethylene Glycol 400 can be supplied by Clariant Produkte (BURGKIRCHEN, GERMANY).
For Examples 6A-6B: The Boric Acid can be supplied by Merck KGaA (DARMSTADT, GERMANY).
Date Recue/Date Received 2020-11-19 For Examples 6A-6B: The Sodium Borate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 6A-6B: The Sodium Chloride can be supplied by Caldic (DUSSELDORF, GERMANY).
For Examples 6A-6B: The Potassium Chloride can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 6A-6B: The Calcium Chloride Dihydrate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 6A-6B: The Magnesium Chloride can be supplied by KGaA (DARMSTADT, GERMANY).
For Examples 6A-6B: The Polyquaternium-42 (33% aqueous) can be supplied by DSM
BIOMEDICAL (BERKELEY, CA, USA).
For Examples 6A-6B: The Sodium Chlorite Dihydrate can be supplied by Oxychem (WICHITA, KS, USA) For Examples 6A-6B: The 1N Sodium Hydroxide can be supplied by VWR (RADNER, PA, USA).
For Examples 6A-6B: The 1N Hydrochloric acid can be supplied by VWR (RADNER, PA, USA).
Solution 6A can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 10 g of Polysorbate 80 and 50 g of Polysorbate 20.
The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 20.0 g of Pichia anomala extract. The solution is mixed until the Pichia anomala extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the solution of Step 4 is added 2.0 grams of Sodium Hyaluronate. The solution is mixed to fully dissolve the Sodium Hyaluronate.
6. The following ingredients are next added sequentially, allowing for each to dissolve before adding the next: 2.5 grams Polyethylene Glycol 400, 6.0 grams Boric acid, 0.05gram Sodium Borate, 1.0 gram Potassium Chloride, 0.06 gram Calcium Chloride Dihydrate, 0.06 gram Magnesium Chloride, and 0.0015 grams Polyquaternium-42 (aqueous).
Date Recue/Date Received 2020-11-19 7. While continuing to mix, 0.14gram Sodium Chlorite Dihydrate is added and mixed to dissolve.
8. The tonicity of the formula is determined and adjusted to 280 mOsm/Kg with Sodium Chloride.
9. The pH of the formula is adjusted to pH of 7.2 using the 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
10. The solution is brought to 1000.0 grams using Purified Water USP and mixed for 10 minutes to be fully uniform.
In certain embodiments, the compositions of the present invention are isotonic, or slightly hypotonic in order to combat any hypertonicity of tears caused by evaporation and/or disease. This may require a tonicity agent to bring the osmolality of the formulation to a level at or near 210-320 milliosmoles per kilogram (mOsm/kg). The compositions of the present invention generally have an osmolality in the range of 220-320 mOsm/kg, or, optionally, have an osmolality in the range of 235-300 mOsm/kg. The ophthalmic compositions will generally be formulated as sterile aqueous solutions.
Date Recue/Date Received 2020-11-19 The osmolality of the compositions of the present invention may be adjusted with tonicity agents to a value which is compatible with the intended use of the compositions. For example, the osmolality of the composition may be adjusted to approximate the osmotic pressure of normal tear fluid, which is equivalent to about 0.9 w/v % of sodium chloride in .. water. Examples of suitable tonicity adjusting agents include, without limitation, sodium, potassium, calcium and magnesium chloride; dextrose; glycerin; propylene glycol; mannitol;
sorbitol and the like and mixtures thereof In one embodiment, a combination of sodium chloride and potassium chloride are used to adjust the tonicity of the composition.
The compositions of the present invention can also be used to administer pharmaceutically active compounds. Such compounds include, but are not limited to, glaucoma therapeutics, pain relievers, anti-inflammatory and anti-allergy medications, and anti-microbials. More specific examples of pharmaceutically active compounds include betaxolol, timolol, pilocarpine, carbonic anhydrase inhibitors and prostglandins;
dopaminergic antagonists; post-surgical antihypertensive agents, such as para-amino clonidine (apraclonidine); anti-infectives such as ciprofloxacin, moxifloxacin, and tobramycin; non-steroidal and steroidal anti-inflammatories, such as naproxen, diclofenac, nepafenac, suprofen, ketorolac, tetrahydrocortisol and dexamethasone; dry eye therapeutics such as PDE4 inhibitors; and anti-allergy medications such as H1/H4 inhibitors, H4 inhibitors, olopatadine or mixtures thereof It is also contemplated that the concentrations of the ingredients comprising the formulations of the present invention can vary. A person of ordinary skill in the art would understand that the concentrations can vary depending on the addition, substitution, and/or subtraction of ingredients in a given formulation.
In certain embodiments, the compositions of the present invention may have a pH
which is compatible with the intended use, and is often in the range of 4 (or about 4) to 10 (or about 10), optionally between 6 (or about 6) to 8 (to about 8), optionally between 6.5 (or about 6.5) to 7.5 (or about 7.5), or optionally between 6.8 (or about 6.8) to 7.2 (or about 7.2).
In certain embodiments, a variety of conventional buffers may be employed, such as phosphate, borate, citrate, acetate, histidine, tris, bis-tris and the like and mixtures thereof Borate buffers include boric acid and its salts, such as sodium or potassium borate.
Potassium tetraborate or potassium metaborate, which produce boric acid or a salt of boric Date Recue/Date Received 2020-11-19 acid in solution, may also be employed. Hydrated salts such as sodium borate decahydrate can also be used. Phosphate buffers include phosphoric acid and its salts; for example, M 2HPO4 and MH2PO4, wherein M is an alkali metal such as sodium and potassium.
Hydrated salts can also be used. In one embodiment of the present invention, Na2HPO4.7H20 and NaH2P02.H20 are used as buffers. The term phosphate also includes compounds that produce phosphoric acid or a salt of phosphoric acid in solution.
Additionally, organic counter-ions for the above buffers may also be employed.
The concentration of buffer generally varies from about 0.01 to 2.5 w/v % and more preferably varies from about 0.05 to about 0.5 w/v %.
In certain embodiments, the viscosity of the compositions of the present invention range from about 1 to about 500 cps, optionally from about 10 to about 200 cps, or optionally from about 10 to about 100 cps, when measured using a TA Instrument AR 2000 rheometer.
The TA Instrument AR 2000 rheometer should be used with the AR2000 flow test method of the TA Rheological Advantage software with a 40 mm steel plate geometry; the viscosity ranges should be obtained by measuring steady state flow controlling shear rate from 0 sec to 200 sec In certain embodiments, the compositions of the present invention are useful as, and in the form of, eye-drop solution, eye wash solution, contact lens lubricating and/or rewetting solution, spray, mist or any other manner of administering a composition to the eye.
The compositions of the present invention may also be useful as, and in the form of, packing solutions for contact lenses. In certain embodiments, as packing solutions, the compositions of the present invention may be sealed in blister packaging and, also, suitable for undergoing sterilization.
Examples of blister packages and sterilization techniques are disclosed in the following references which are hereby incorporated by reference in their entirety, U.S. Pat.
Nos. D435,966; 4,691,820; 5,467,868; 5,704,468; 5,823,327; 6,050,398, 5,696,686;
6,018,931; 5,577,367; and 5,488,815. This portion of the manufacturing process presents another method of treating the ophthalmic devices with anti-allergic agent, namely adding anti-allergic agents to a solution prior to sealing the package, and subsequently sterilizing the package. This is the preferred method of treating ophthalmic devices with anti-allergic agents.
Date Recue/Date Received 2020-11-19 Sterilization can take place at different temperatures and periods of time.
The preferred sterilization conditions range from about 100 C for about 8 hours to about 150 C
for about 0.5 minute. More preferred sterilization conditions range from about 115 C for about 2.5 hours to about 130 C for about 5.0 minutes. The most preferred sterilization conditions are about 124 C for about 18 minutes.
When used as packing solutions, the compositions of the present invention may be water-based solutions. Typical packing solutions include, without limitation, saline solutions, other buffered solutions, and deionized water. In certain embodiments, the packing solution is an aqueous solution of deioinized water or saline solution containing salts including, without limitation, sodium chloride, sodium borate, sodium phosphate, sodium hydrogenphosphate, sodium dihydrogenphosphate, or the corresponding potassium salts of the same. These ingredients are generally combined to form buffered solutions that include an acid and its conjugate base, so that addition of acids and bases cause only a relatively small change in pH. In certain embodiments, the pH of the packing solution is as described above. The buffered solutions may additionally include 2-(N-morpholino)ethanesulfonic acid (MES), sodium hydroxide, 2,2-bis(hydroxymethyl)-2,2',2"-nitrilotriethanol, n-tris(hydroxymethyl)methy1-2-aminoethanesulfonic acid, citric acid, sodium citrate, sodium carbonate, sodium bicarbonate, acetic acid, sodium acetate, ethylenediamine tetraacetic acid and the like and combinations thereof Preferably, the solution is a borate buffered or phosphate buffered saline solution or deionized water. The particularly preferred solution contains about 500 ppm to about 18,500 ppm sodium borate, most particularly preferred about 1000 ppm of sodium borate.
If any ingredients incorporated into the packing solutions are subject to oxidative degradation, agents that stabilize packing solutions containing such ingredients may be added. Such "oxidative stabilization agents" include but are not limited to chelants such as EDTA, Dequest, Desferal, silica, chitin derivatives such as chitosan, cellulose and its derivatives, and N,N,N',N',N", N"-hexa(2-pyridy1)-1,3,5-tris(aminomethyObenzene, and certain macrocyclic ligands such as crown ethers, ligand containing knots and catenands.
See, David A. Leigh et al Angew. Chem Int. Ed., 2001, 40, No. 8, pgs. 1538-1542 and Jean-Claude Chambron et al. Pure & Appl. Chem., 1990, Vol. 62, No. 6, pgs. 1027-1034.
Oxidative stabilization agents may include other compounds that inhibit oxidations such as those selected from the group consisting of 2,2',2",6,6',6"-Hexa-(1,1-dimethylethy1)4,4',4"-Date Recue/Date Received 2020-11-19 [(2,4,6-trimethy1-1,3,5-benzenetriy1)-trismethylenel-triphenol (Irganox 1330), 1,3,5tris[3,5-di(1,1-dimethylethy1)4-hydroxybenzy11-1H,3H,5H-1,3,5-triazine-2,4,6-trione, pentaerythrityl tetrakis[3-[3,5-di(1,1-dimethylethyl)-4-hydroxyphenyll-propionate], octadecy1-3-[3,5-di(1,1-dimethylethyl)-4-hydroxyphenyll-propionate, tris[2,4-di(1,1-dimethylethyl)-phenyll-phosphite, 2,2'-di(octadecyloxy)-5,5'-spirobi(1,3,2-dioxaphosphorinane), dioctadecyl disulphide, didodecy1-3,3'-thiodipropionate, dioctadecy1-3,3'-thiodipropionate, butylhydroxytoluene, ethylene bis[3,3-di[3-(1,1-dimethylethyl)-4-hydroxyphenyllbutyratel and mixtures thereof The preferred oxidative stabilization agents are diethylenetriaminepentaacetic acid ("DTPA"), or salts of DTPA such as CaNa3DTPA, ZnNa3DTPA, and Ca2DTPA. See, U.S. App. Pat. No. 60/783,557 filed on, March 17, 2006, entitled "Methods for Stabilizing Oxidatively Unstable Pharmaceutical Compositions" and its corresponding non-provisional filing which are hereby incorporated by reference in their entirety. In certain embodiments, the concentration of oxidative stabilization agents in the solution be from about 2.5 nmoles/liter to about, 5000 nmoles/liter, optionally, from about 20 nmoles/liter to about 1000 nmoles/liter, optionally from about 100 nmoles/liter to about 1000 nmoles/liter, or optionally from about 100 nmoles/liter to about 500 nmoles/liter.
In particular embodiments, the compositions of the present invention are formulated for administration at any frequency of administration, including once a week, once every five days, once every three days, once every two days, twice a day, three times a day, four times a day, five times a day, six times a day, eight times a day, every hour, or greater frequency.
Such dosing frequency is also maintained for a varying duration of time depending on the therapeutic needs of the user. The duration of a particular therapeutic regimen may vary from one-time dosing to a regimen that extends for months or years. One of ordinary skill in the art would be familiar with determining a therapeutic regimen for a specific indication.
The composition and products containing such compositions of this invention may be prepared using methodology that is well known by an artisan of ordinary skill.
EXAMPLES
Any compositions of the present invention as described in following examples illustrate specific embodiments of compositions of the present invention, but are not intended Date Recue/Date Received 2020-11-19 to be limiting thereof Other modifications can be undertaken by the skilled artisan without departing from the spirit and scope of this invention.
The following test methods were used in the Examples:
Example 1 To reduce obstruction potentially caused by tight junction structures (i.e., those surface structures [e.g., membrane or film barriers] typically inhibiting chemical permeation into tissues) , induction of mucin secretion in human epicorneal 3D tissues was observed by contacting the corneal tissues with growth media containing Pichia anomala ferment extracts (Hyalurodine) (i.e., "treated" media) such that the bottom cell layer of the corneal tissues (i.e., cell layer which don't have tight junction structures inhibiting chemical permeation into tissues) were immersed in the growth media. By contacting the bottom cell layer of the corneal tissues with the growth media containing the Pichia anomala ferment extracts, the extract can directly contact and move upward into the inner corneal tissues without having to first pass through any tight junction structures or other surface barrier, providing improved bioavailability of Pichia anomala into corneal tissue cells.
Human epicorneal 3D tissues in growth media treated to have 1.56 mg/ml and 1.95 mg/ml concentrations of Pichia anomala ferment extracts (Hyalurodine) showed an increase of MUC4 gene expressions in the human epicorneal 3D tissues.
EpiCorneal 3D human tissues were purchased from MatTek Company (Ashland, MA, USA). Upon receiving the epicorneal 3D human tissues, they were incubated in MatTek assay medium overnight following the manufacturer's instruction. The epicorneal 3D human tissues were divided into three treatment groups with three tissues per group.
Pichia anomala ferment extracts (Hyalurodine) were added, respectively, into the culture medium containing the human epicorneal tissues of two of the treatment groups to produce media concentrations of 1.56 mg/ml and 1.95 mg/ml, respectively. The epicorneal tissues in all treatment groups were allowed to incubate for two days. The Pichia anomala ferment extract was supplied by Silab, St. Viance, France. After the two days, the human epicorneal 3D tissues were cut in halves and half of the tissues were lysed in 350 pL lysis buffer, consisting of 100 parts RLT
buffer (RNeasy Mini kit, Qiagen, Valencia, CA), to one part 2-mercaptoethanol.
RNA was Date Recue/Date Received 2020-11-19 extracted from the solutions using the RNeasy Mini Kit (Qiagen, Valencia, CA) according to manufacturer's instructions and RNA was eluted in 25 pL RNase-free water.
Reverse transcription (RT) was performed using the Applied Biosystems High Capacity Reverse Transcription Kit (ThermoFisher Scientific, Bridgewater, NJ).
Gene expression assays sold under the tradename TAQMAN for mucin-4 (MUC4), polymerase (RNA) II polypeptide A (POLR2A), and Master Mix were purchased from ThermoFisher Scientific (Bridgewater, NJ). qPCR analysis was performed using TaqMan Master Mix (ThermoFisher Scientific, Bridgewater, NJ), and run on a real time PCR system sold under the tradename QUANTSTUDIO 7 Flex System (ThermoFisher Scientific, Bridgewater, NJ).
The expression of the MUC4 gene was normalized against the expression of the human POLR2A housekeeping gene. The fold changes were calculated in comparison to the untreated control (UT) and two-tailed two-sample Student t-tests (Microsoft Office Excel 2007; Microsoft, Redmond, WA, USA) were performed. Results were shown in Figure 1, indicating increased fold changes of MUC4 in corneal tissue cells with increased concentration of Pichia anomala ferment extract in media. The "untreated"
sample was prepared the same as described this example except no Pichia anomala is added to media Example 2 Human epicorneal 3D tissues in growth media treated to contain 0.39 mg/ml, 0.78 mg/ml, 1.56 mg/ml and 1.95 mg/ml concentrations of Pichia anomala ferment extracts (Hyalurodine) showed an increase of MUC4 gene expressions in human epicorneal tissues. *, p < 0.05.
EpiCorneal 3D human tissues were purchased from MatTek Company (Ashland, MA, USA). Upon receiving the epicorneal 3D human tissues, theywere incubated in MatTek assay medium overnight following the manufacturer's instruction. The epicorneal 3D human tissues were divided into five treatment groups with three tissues per group.
Pichia anomala ferment extracts (Hyalurodine) were added, respectively, into the culture medium of four of the treatment groups to produce media concentrations of 0.39 mg/ml, 0.78 mg/ml, 1.56 mg/ml and 1.95 mg/ml, respectively. The epicorneal tissues of all five of the treatment groups allowed to incubate for two days. The Pichia anomala ferment extract was supplied by Silab, St. Viance, France. After the two days, culture media were collected for measuring Date Recue/Date Received 2020-11-19 mucin 1 secretion using human mucin-1 (CA15-3) enzyme-linked immunosorbent assay (ELISA) kit (EHMUC1, ThermoFisher Scientific, Bridgewater, NJ) following the manufacturer's protocol. To assess activity, the colorimetric change was measured using a microplate reader (SpectraMax M2E, Molecular Devices, Sunnyvale, CA, USA).
This assay employs the standard enzyme-linked immunosorbent assay technique, so there is a linear correlation between Mucin-1 concentration in the sample and the colorimetric change. A
standard curve was generated, with the Mucin-1 concentration on the x-axis and absorbance on the y-axis to indicate corresponding Mucin-1 concentration. Results were shown in Figure 2, indicating increased Mucin-1 production in corneal tissue cells with increased environmental concentration of Pichia anomala ferment extract in media.
Example 3 Compositions having the 1.95 mg/ml, 7.8 mg/ml, 19.5 mg/ml and 39 mg/ml concentrations of Pichia anomala extracts in PBS showed an increase of mucin-1 secretion in human epicorneal 3D tissues when applied topically to corneal tissue cells. *, p < 0.05.
EpiCorneal 3D human tissues were purchased from MatTek Company (Ashland, MA, USA). Upon receiving the epicorneal 3D human tissues, they were incubated in MatTek assay medium overnight following the manufacturer's instruction. The epicorneal 3D human tissues were divided into three treatment groups with three tissues per group.
Four .. concentrations of Pichia anomala ferment extracts (Hyalurodine) 1.95 mg/ml, 7.8 mg/ml, 19.5 mg/ml and 39 mg/ml were suspended in aqueous phosphate buffered solution (PBS) vehicles and were topically applied, respectively, to the corneal epithelium surface of four of the treatment groups. The epicorneal tissues of all five treatment groups were allowed to incubate for two days. The Pichia anomala ferment extract was supplied by Silab, St.
Viance, France. After the two days, culture media were collected for measuring mucin 1 secretion using human mucin-1 (CA15-3) enzyme-linked immunosorbent assay (ELISA) kit (EHMUC1, ThermoFisher Scientific, Bridgewater, NJ) following the manufacturer's protocol. To assess activity, the colorimetric change was measured using a microplate reader (SpectraMax M2E, Molecular Devices, Sunnyvale, CA, USA). This assay employs the standard enzyme-linked immunosorbent assay technique, so there is a linear correlation between Mucin-1 concentration in the sample and the colorimetric change. A
standard curve was generated, with the Mucin-1 concentration on the x-axis and absorbance on the y-axis to Date Recue/Date Received 2020-11-19 indicate corresponding Mucin-1 concentration. Results were shown in Figure 3.
(Kiwi is used in Figure 2 to represent Pichia anomala ferment extract).
The results show that increased Mucin-1 production in corneal tissue cells was observed after topical application of compositions having the 1.95 mg/ml, 7.8 mg/ml, 19.5 mg/ml and 39 mg/ml concentrations of Pichia anomala extracts (in PBS).
Example 4 Pichia anomala ferment extracts (Hyalurodine) induced hyaluronic acid secretion in human epicorneal 3D tissues when applied topically to corneal tissue cells.
Without being .. limited by theory, it is believed that such topical application requires diffusion of the Pichia anomala ferment extracts through tight junction structures of the human epicorneal tissue (i.e., those structures [e.g., membrane or film barriers] typically inhibiting chemical permeation into tissues) to reach the inside of the epicorneal tissue.
EpiCorneal 3D human tissues were purchased from MatTek Company (Ashland, MA, USA). Upon receiving the epicorneal 3D human tissues, they were incubated in MatTek assay medium overnight following the manufacturer's instruction. The epicorneal 3D human tissues were divided into five treatment groups with three tissues per group.
Four concentrations of Pichia anomala ferment extracts (Hyalurodine) 1.95 mg/ml, 7.8 mg/ml, 19.5 mg/ml and 39 mg/mlin aqueous phosphate buffered solution (PBS) vehicle were topically applied, respectively, to the corneal epithelium surface of four of the treatment groups (such that the Pichia anomala ferment extracts were delivered through the above-mentioned tight junction structures). The epicorneal tissues in all five treatment groups were allowed to incubate for two days. The Pichia anomala ferment extract was supplied by Silab, St. Viance, France. After the two days, the culture media were collected for measuring hyaluronic acid (HA) secretion using HA enzyme-linked immunosorbent assay (ELISA) kit (K-1200, Echelon, Salt Lake City, UT, USA) following the manufacturer's protocol. To assess activity, the colorimetric change was measured using a microplate reader (SpectraMax M2E, Molecular Devices, Sunnyvale, CA, USA). This assay employs the competitive enzyme-linked immunosorbent assay technique, so there is an inverse correlation between HA concentration in the sample and the colorimetric change. A standard curve was generated, with the HA concentration on the x-axis and absorbance on the y-axis to indicate corresponding HA concentration. Results were shown in Figure 4.
Date Recue/Date Received 2020-11-19 While the results suggest that topical application at the tested concentration directionally indicate induction of HA production in the corneal cells, factors such as tight junction structures (or, other surface membrane or film layer barriers) may reduce the concentration of Pichia anomala reaching the internal corneal tissues. In such situations, embodiments of the present invention incorporating penetration enhancers may be useful.
Example 5 To reduce obstruction potentially caused by the above tight junction structures (or, membrane or film barriers), induction of hyaluronic acid secretion in human epicorneal 3D
tissues was observed by contacting the corneal tissues with growth media containing Pichia anomala ferment extracts (Hyalurodine) (i.e., "treated" media) such that the bottom cell layer of the corneal tissues (i.e., cell layers which don't have tight junction structures inhibiting chemical permeation into tissues) were immersed in the growth media. By contacting the bottom cell layer of the corneal tissues with the growth media containing the Pichia anomala ferment extracts, the extract can directly contact and move upward into the inner corneal tissues without having to first pass through any tight junction structures or other surface barrier, providing improved bioavailability of Pichia anomala into corneal tissue cells.
EpiCorneal 3D human tissues were purchased from MatTek Company (Ashland, MA, USA). Upon receiving the epicorneal 3D human tissues, these tissues were incubated in MatTek assay medium overnight following the manufacturer's instruction. The epicorneal 3D human tissues were divided into five treatment groups with three tissues per group.
Pichia anomala ferment extracts (Hyalurodine) were added into the culture medium of four of the treatment groups to produce media concentrations of 0.39 mg/ml, 0.78 mg/ml, 1.56 mg/ml and 1.95 mg/ml, respectively, to contact the bottom cell layer of the human epicorneal tissues. The epicorneal tissues of all five of the treatment groups were allowed to incubate for two days. The Pichia anomala ferment extract was supplied by Silab, St.
Viance, France.
After the two days, the culture media were collected for measuring hyaluronic acid (HA) secretion using HA enzyme-linked immunosorbent assay (ELISA) kit (K-1200, Echelon, Salt Lake City, UT, USA) following the manufacturer's protocol. To assess activity, the colorimetric change was measured using a microplate reader (SpectraMax M2E, Molecular Date Recue/Date Received 2020-11-19 Devices, Sunnyvale, CA, USA). This assay employs the competitive enzyme-linked immunosorbent assay technique, so there is an inverse correlation between HA
concentration in the sample and the colorimetric change. A standard curve was generated, with the HA
concentration on the x-axis and absorbance on the y-axis to indicate corresponding HA
concentration. Results were shown in Figure 5.
The results show that a statistically significant increase in HA production in corneal tissue cells was observed at such tissue environmental concentrations of Pichia anomala of at least 0.3 mg/ml (i.e., concentrations of Pichia anomala extract contacting such internal corneal tissue cells [e.g., corneal fluid level concentrations]).
Example 6 Table 1 illustrates the components of such formulations (as shown in formulations 6A
and 6B), which components can be incorporated as described below using conventional mixing technology.
Date Recue/Date Received 2020-11-19 Table 1 Useful for Relief of Useful for Relief of Dry Eye Irritation Dry Eye Irritation for Contact Lenses INGREDIENT %w/w amount %w/w amount per batch per (gms) batch (gms) Sodium 0.20 2.0 0.15 1.5 Hyaluronate Pichia anomala 2.0 20.0 5.0 50.0 extract Polysorbate 80 1.0 10.0 2.0 20.0 Polysorbate 20 5.0 50.0 10.0 100.0 Polyethylene 0.25 2.5 0 0 Glycol 400 Boric Acid 0.60 6.0 0.60 6.0 Sodium Borate 0.05 0.50 0.05 0.50 Sodium Chloride*
Potassium 0.10 1.0 0.10 1.0 Chloride Calcium 0.006 0.06 0.006 0.06 Chloride Dihydrate Magnesium 0.006 0.06 0.006 0.06 Chloride Sodium 0.014 0.14 0.014 0.14 Chlorite Dihydrate Date Recue/Date Received 2020-11-19 Polyquatemium 0.0015 0.015 0.0015 0.015 (33%aqueous) Sodium 0.014 0.14 0.014 0.14 Chlorite Dihydrate 1N Sodium Hydroxide solution**
Hydrochloric Acid solution**
Purified Water***
total 100.00 1000.0 g 100.00 1000.00 * adjust to tonicity of 280-290 mOsm/Kg ** adjust to pH 7.2 *** q.s to 100%w/w For Examples 6A-6B: The Sodium Hyaluronate can be supplied by CONTIPRO A.S.
(DOLNI, DOBROUC, CZECH REPUBLIC) For Examples 6A and 6B: The Pichia anomala extract supplied by SILAB (SAINT
VIANCE, FRANCE).
For Examples 6A-6B: The Polysorbate 20 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 6A-6B: The Polysorbate 80 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 6A: The Polyethylene Glycol 400 can be supplied by Clariant Produkte (BURGKIRCHEN, GERMANY).
For Examples 6A-6B: The Boric Acid can be supplied by Merck KGaA (DARMSTADT, GERMANY).
Date Recue/Date Received 2020-11-19 For Examples 6A-6B: The Sodium Borate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 6A-6B: The Sodium Chloride can be supplied by Caldic (DUSSELDORF, GERMANY).
For Examples 6A-6B: The Potassium Chloride can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 6A-6B: The Calcium Chloride Dihydrate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 6A-6B: The Magnesium Chloride can be supplied by KGaA (DARMSTADT, GERMANY).
For Examples 6A-6B: The Polyquaternium-42 (33% aqueous) can be supplied by DSM
BIOMEDICAL (BERKELEY, CA, USA).
For Examples 6A-6B: The Sodium Chlorite Dihydrate can be supplied by Oxychem (WICHITA, KS, USA) For Examples 6A-6B: The 1N Sodium Hydroxide can be supplied by VWR (RADNER, PA, USA).
For Examples 6A-6B: The 1N Hydrochloric acid can be supplied by VWR (RADNER, PA, USA).
Solution 6A can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 10 g of Polysorbate 80 and 50 g of Polysorbate 20.
The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 20.0 g of Pichia anomala extract. The solution is mixed until the Pichia anomala extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the solution of Step 4 is added 2.0 grams of Sodium Hyaluronate. The solution is mixed to fully dissolve the Sodium Hyaluronate.
6. The following ingredients are next added sequentially, allowing for each to dissolve before adding the next: 2.5 grams Polyethylene Glycol 400, 6.0 grams Boric acid, 0.05gram Sodium Borate, 1.0 gram Potassium Chloride, 0.06 gram Calcium Chloride Dihydrate, 0.06 gram Magnesium Chloride, and 0.0015 grams Polyquaternium-42 (aqueous).
Date Recue/Date Received 2020-11-19 7. While continuing to mix, 0.14gram Sodium Chlorite Dihydrate is added and mixed to dissolve.
8. The tonicity of the formula is determined and adjusted to 280 mOsm/Kg with Sodium Chloride.
9. The pH of the formula is adjusted to pH of 7.2 using the 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
10. The solution is brought to 1000.0 grams using Purified Water USP and mixed for 10 minutes to be fully uniform.
11. The solution is filtered using a 0.22 micron filter.
Solution 6B can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 20 g of Polysorbate 10 and 100 g of Polysorbate 20. The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 50 g of Pichia anomala extract. The solution is mixed until the Pichia anomala extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the solution of Step 4 is added 1.5 grams of Sodium Hyaluronate. The solution is mixed to fully dissolve the Sodium Hyaluronate.
6. The following ingredients are next added sequentially, allowing for each to dissolve before adding the next: 6.0 grams Boric acid, 0.05 gram Sodium Borate, 1.0 gram Potassium Chloride, 0.06 gram Calcium Chloride Dihydrate, 0.06 gram Magnesium Chloride and 0.0015 grams Polyquaternium-42 (aqueous).
7. While continuing to mix, 0.14 gram Sodium Chlorite Dihydrate is added and mixed to dissolve.
8. The tonicity of the formula is determined and adjusted to 280 mOsm/Kg with Sodium Chloride.
9. The pH of the formula is adjusted to pH of 7.2 using the 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
10. The solution is brought to 1000.0 grams using Purified Water USP and mixed for 10 minutes to be fully uniform.
11. The solution is filtered using a 0.22 micron filter.
Date Recue/Date Received 2020-11-19 Example 7 Table 2 illustrates the components of formulations of the present invention (as shown in formulations 7A and 7B), which components can be incorporated as described below using conventional mixing technology.
Table 2 Useful for Relief Useful for Relief of Dry Eye of Dry Eye Irritation Irritation for Contact Lenses INGREDIENT %w/w amount %w/w amount per per batch batch (gms) (gms) Pichia anomala 1.0 10.0 2.0 20.0 extract Polysorbate 80 1.0 10.0 1.0 10.0 Polysorbate 20 3.0 30.0 5.0 50.0 Glycerin 0.25 2.5 0.25 2.5 Hypromellose 0.198 1.98 0.198 1.98 Boric Acid 0.40 4.0 0.40 4.0 Sodium Borate 0.022 0.22 0.022 0.22 Disodium 0.027 0.27 0.027 0.27 Phosphate Sodium Citrate 0.40 4.0 0.40 4.0 Dihydrate Sodium Chloride*
Potassium 0.10 1.0 0.10 1.0 Chloride Date Recue/Date Received 2020-11-19 50% Aqueous 0.057 0.57 0.057 0.57 Solution of Sodium Lactate Magnesium 0.013 0.13 0.013 0.13 Chloride Glucose 0.0036 0.036 0.0036 0.036 Glycine 0.0000 0.0002 0.0000 0.0002 Ascorbic Acid 0.0000 0.0001 0.0000 0.0001 Disodium 0.01 0.1 0.05 0.5 Edetate Polyquaternium 0.0030 0.030 0.0015 0.015 (33%aqueous) Sodium 0.014 0.14 0.014 0.14 Chlorite Dihydrate 1N Sodium Hydroxide solution**
Hydrochloric Acid solution**
Purified Water***
total 100.00 1000.00 100.00 1000.00 * adjust to tonicity of 280-290 mOsm/Kg ** adjust to pH 7.2 *** q.s to 100.00% volume Date Recue/Date Received 2020-11-19 For Examples 7A and 7B: The Pichia anomala extract can be supplied by SILAB
(SAINT
VIANCE, FRANCE).
For Examples 7A-7B: The Polysorbate 20 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 7A-7B: The Polysorbate 80 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 7A-7B The Boric Acid can be supplied by Merck KGaA (DARMSTADT, GERMANY).
For Examples 7A-7B: The Sodium Borate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 7A-7B: The Sodium Chloride can be supplied by Caldic (DUSSELDORF, GERMANY).
For Examples 7A-7B: The Potassium Chloride can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 7A-7B: The Hypromellose E3 2910 can be supplied by DOW CHEMICAL
(PLAQUEMINE, LOUISIANA, USA).
For Examples 7A-7B: The Glycerin can be supplied by Emery Oleochemicals GmbH
(DUSSELDORF, GERMANY).
For Examples 7A-7B: The Disodium Phosphate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 7A-7B: The Sodium Citrate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 7A-7B: The Sodium Lactate can be supplied as Sodium Lactate (50%
aqueous) by Merck KGaA (DARMSTADT, GERMANY).
For Examples 7A-7B: The Glucose can be supplied by Roquette Freres (LASTREM, FRANCE).
For Examples 7A-7B: The Glycine can be supplied by Merck KGaA (DARMSTADT, GERMANY).
For Examples 7A-7B: The Ascorbic Acid can be supplied by DSM NUTRITIONAL
Products (DRAKEMYRE, SCOTLAND, UK).
For Examples 7A-7B: The Polyquatemium 42 to be supplied as Polyquatemium 42 (33%
aqueous) by DSM BIOMEDICAL, (BERKELEY, CA).
Date Recue/Date Received 2020-11-19 For examples 7A-7B: The Disodium Edetate can be supplied by Merck NV/SA
(OVERUSE, BELGIUM).
For Examples 7A-7B: The 1N Sodium Hydroxide can be supplied by VWR (RADNER, PA, USA).
For Examples 7A-7B: The 1N Hydrochloric acid can be supplied by VWR (RADNER, PA, USA).
For Examples 7A-7B: The Sodium Chlorite Dihydrate to be supplied by Oxychem (WICHITA, KS, USA) Solution 7A can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 10 g of Polysorbate 80 and 30 g of Polysorbate 20.
The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 10.0 g of Pichia anomala extract. The solution is mixed until the Pichia anomala extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the above is added 1.98 g of Hypromellose E3 Premium. The solution is mixed until the Hypromellose E3 Premium dissolved.
6. The following ingredients are next added sequentially, allowing each to dissolve before adding the next: 2.50 grams Glycerin, 4.0 grams Boric acid, 0.22 gram Sodium Borate, 0.27gram Disodium Phosphate, 4.00 grams Sodium Citrate Dihydrate, 1 gram Potassium Chloride, 0.57 gram Sodium Lactate (50% aqueous), 0.13 gram Magnesium Chloride, 0.036 gram Glucose, 0.0002 gram Glycine, 0.0001 gram Ascorbic acid, 0.10 gram Disodium Edetate, 0.030 gram Polyquaternium-42 (33%aqueous), and 0.14 gram Sodium Chlorite.
7. The tonicity of the solution is determined and adjusted to 280 mOsm with Sodium Chloride.
8. The pH of the solution is measured and adjusted to 7.2 with 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
9. The solution is brought to a volume of 1,000.00 grams with Purified Water and mixed for 10 minutes.
10. The solution is filtered using a 0.22 micron filter.
Date Recue/Date Received 2020-11-19 Solution 7B can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 10 g of Polysorbate 80 and 50 g of Polysorbate 20.
The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 20.0 g of Pichia anomala extract. The solution is mixed until the Pichia anomala extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the above is added 1.98 g of Hypromellose E3 Premium. The solution is mixed until the Hypromellose E3 Premium dissolved.
6. The following ingredients are next added sequentially, allowing each to dissolve before adding the next: 2.50 grams Glycerin, 4.0 grams Boric acid, 0.22 gram Sodium Borate, 0.27gram Disodium Phosphate, 4.00 grams Sodium Citrate Dihydrate, 1 gram Potassium Chloride, 0.57 gram Sodium Lactate (50% aqueous), 0.13 gram Magnesium Chloride, 0.036 gram Glucose, 0.0002 gram Glycine, 0.0001 gram Ascorbic acid, 0.05 gram Disodium Edetate, 0.015 gram Polyquaternium-42 (33%aqueous), and 0.14 gram Sodium Chlorite.
7. The tonicity of the solution is determined and adjusted to 280 mOsm with Sodium Chloride.
8. The pH of the solution is measured and adjusted to 7.2 with 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
9. The solution is brought to a volume of 1,000.00 grams with Purified Water and mixed for 10 minutes.
10. The solution is filtered using a 0.22 micron filter.
Date Recue/Date Received 2020-11-19 Example 8 Table 3 illustrates the components of such formulations (as shown in formulations 8A
and 8B), which components can be incorporated as described below using conventional mixing technology.
Table 3 Useful for Relief of Useful for Relief of Dry Eye Irritation Dry Eye Irritation for Contact Lenses INGREDIENT %w/w amount %w/w amount per batch per (gms) batch (gms) Sodium 0.20 2.0 0.15 1.5 Hyaluronate Kiwi Extract 2.0 20.0 5.0 50.0 Polysorbate 80 1.0 10.0 2.0 20.0 Polysorbate 20 5.0 50.0 10.0 100.0 Polyethylene 0.25 2.5 0 0 Glycol 400 Boric Acid 0.60 6.0 0.60 6.0 Sodium Borate 0.05 0.50 0.05 0.50 Sodium Chloride*
Potassium 0.10 1.0 0.10 1.0 Chloride Calcium 0.006 0.06 0.006 0.06 Chloride Dihydrate Magnesium 0.006 0.06 0.006 0.06 Chloride Date Recue/Date Received 2020-11-19 Sodium 0.014 0.14 0.014 0.14 Chlorite Dihydrate Polyquatemium 0.0015 0.015 0.0015 0.015 (33%aqueous) Sodium 0.014 0.14 0.014 0.14 Chlorite Dihydrate 1N Sodium Hydroxide solution**
Hydrochloric Acid solution**
Purified Water***
total 100.00 1000.0 g 100.00 1000.00 * adjust to tonicity of 280-290 mOsm/Kg ** adjust to pH 7.2 *** q.s to 100%w/w For Examples 8A-8B: The Sodium Hyaluronate can be supplied by CONTIPRO A.S.
(DOLNI, DOBROUC, CZECH REPUBLIC) For Examples 8A and 8B: The Kiwi Extract (Pichia anomala yeast extract) can be supplied by SILAB (SAINT VIANCE, FRANCE).
For Examples 8A-8B: The Polysorbate 20 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 8A-8B: The Polysorbate 80 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 8A: The Polyethylene Glycol 400 can be supplied by Clariant Produkte (BURGKIRCHEN, GERMANY).
Date Recue/Date Received 2020-11-19 For Examples 8A-8B: The Boric Acid can be supplied by Merck KGaA (DARMSTADT, GERMANY).
For Examples 8A-8B: The Sodium Borate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 8A-8B: The Sodium Chloride can be supplied by Caldic (DUSSELDORF, GERMANY).
For Examples 8A-8B: The Potassium Chloride can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 8A-8B: The Calcium Chloride Dihydrate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 8A-8B: The Magnesium Chloride can be supplied by KGaA (DARMSTADT, GERMANY).
For Examples 8A-8B: The Polyquaternium-42 (33% aqueous) can be supplied by DSM
BIOMEDICAL (BERKELEY, CA, USA).
For Examples 8A-8B: The Sodium Chlorite Dihydrate can be supplied by Oxychem (WICHITA, KS, USA) For Examples 8A-8B: The 1N Sodium Hydroxide can be supplied by VWR (RADNER, PA, USA).
For Examples 8A-8B: The 1N Hydrochloric acid can be supplied by VWR (RADNER, PA, USA).
Solution 8A can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 10 g of Polysorbate 80 and 50 g of Polysorbate 20.
The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 20.0 g of Kiwi Extract. The solution is mixed until the Kiwi Extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the solution of Step 4 is added 2.0 grams of Sodium Hyaluronate. The solution is mixed to fully dissolve the Sodium Hyaluronate.
6. The following ingredients are next added sequentially, allowing for each to dissolve before adding the next: 2.5 grams Polyethylene Glycol 400, 6.0 grams Boric acid, 0.05gram Sodium Borate, 1.0 gram Potassium Chloride, 0.06 gram Calcium Chloride Date Recue/Date Received 2020-11-19 Dihydrate, 0.06 gram Magnesium Chloride, and 0.0015 grams Polyquatemium-42 (aqueous).
7. While continuing to mix, 0.14gram Sodium Chlorite Dihydrate is added and mixed to dissolve.
8. The tonicity of the formula is determined and adjusted to 280 mOsm/Kg with Sodium Chloride.
9. The pH of the formula is adjusted to pH of 7.2 using the 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
10. The solution is brought to 1000.0 grams using Purified Water USP and mixed for 10 minutes to be fully uniform.
11. The solution is filtered using a 0.22 micron filter.
Date Recue/Date Received 2020-11-19 Solution 8B can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 20 g of Polysorbate 10 and 100 g of Polysorbate 20. The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 50 g of Kiwi Extract. The solution is mixed until the Kiwi Extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the solution of Step 4 is added 1.5 grams of Sodium Hyaluronate. The solution is mixed to fully dissolve the Sodium Hyaluronate.
6. The following ingredients are next added sequentially, allowing for each to dissolve before adding the next: 6.0 grams Boric acid, 0.05 gram Sodium Borate, 1.0 gram Potassium Chloride, 0.06 gram Calcium Chloride Dihydrate, 0.06 gram Magnesium Chloride and 0.0015 grams Polyquaternium-42 (aqueous).
7. While continuing to mix, 0.14 gram Sodium Chlorite Dihydrate is added and mixed to dissolve.
8. The tonicity of the formula is determined and adjusted to 280 mOsm/Kg with Sodium Chloride.
9. The pH of the formula is adjusted to pH of 7.2 using the 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
10. The solution is brought to 1000.0 grams using Purified Water USP and mixed for 10 minutes to be fully uniform.
11. The solution is filtered using a 0.22 micron filter.
Example 9 Table 4 illustrates the components of formulations of the present invention (as shown in formulations 9A and 9B), which components can be incorporated as described below using conventional mixing technology.
Table 4 Useful for Relief of Dry Date Recue/Date Received 2020-11-19 Useful for Eye Irritation Relief of Dry for Contact Eye Irritation Lenses INGREDIENT %w/w amoun %w/w amoun t per t per batch batch (gms) (gms) Kiwi Extract 1.0 10.0 2.0 20.0 Polysorbate 80 1.0 10.0 1.0 10.0 Polysorbate 20 3.0 30.0 5.0 50.0 Glycerin 0.25 2.5 0.25 2.5 Hypromellose 0.198 1.98 0.198 1.98 Boric Acid 0.40 4.0 0.40 4.0 Sodium Borate 0.022 0.22 0.022 0.22 Disodium 0.027 0.27 0.027 0.27 Phosphate Sodium Citrate 0.40 4.0 0.40 4.0 Dihydrate Sodium Chloride*
Potassium 0.10 1.0 0.10 1.0 Chloride 50% Aqueous 0.057 0.57 0.057 0.57 Solution of Sodium Lactate Magnesium 0.013 0.13 0.013 0.13 Chloride Glucose 0.0036 0.036 0.0036 0.036 Glycine 0.0000 0.0002 0.0000 0.0002 Date Recue/Date Received 2020-11-19 Ascorbic Acid 0.0000 0.0001 0.0000 0.0001 Disodium 0.01 0.1 0.05 0.5 Edetate Polyquaternium 0.0030 0.030 0.0015 0.015 (33%aqueous) Sodium 0.014 0.14 0.014 0.14 Chlorite Dihydrate 1N Sodium Hydroxide solution**
Hydrochloric Acid solution**
Purified Water***
total 100.00 1000.0 100.00 1000.0 0 g * adjust to tonicity of 280-290 mOsm/Kg ** adjust to pH 7.2 *** q.s to 100.00% volume For Examples 9A and 9B: The Kiwi Extract (Pichia anomala yeast extract) can be supplied by SILAB (SAINT VIANCE, FRANCE).
For Examples 9A-9B: The Polysorbate 20 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 9A-9B: The Polysorbate 80 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 9A-9B The Boric Acid can be supplied by Merck KGaA (DARMSTADT, GERMANY).
Date Recue/Date Received 2020-11-19 For Examples 9A-9B: The Sodium Borate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 9A-9B: The Sodium Chloride can be supplied by Caldic (DUSSELDORF, GERMANY).
For Examples 9A-9B: The Potassium Chloride can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 9A-9B: The Hypromellose E3 2910 can be supplied by DOW CHEMICAL
(PLAQUEMINE, LOUISIANA, USA).
For Examples 9A-9B: The Glycerin can be supplied by Emery Oleochemicals GmbH
(DUSSELDORF, GERMANY).
For Examples 9A-9B: The Disodium Phosphate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 9A-9B: The Sodium Citrate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 9A-9B: The Sodium Lactate can be supplied as Sodium Lactate (50%
aqueous) by Merck KGaA (DARMSTADT, GERMANY).
For Examples 9A-9B: The Glucose can be supplied by Roquette Freres (LASTREM, FRANCE).
For Examples 9A-9B: The Glycine can be supplied by Merck KGaA (DARMSTADT, GERMANY).
For Examples 9A-9B: The Ascorbic Acid can be supplied by DSM NUTRITIONAL
Products (DRAKEMYRE, SCOTLAND, UK).
For Examples 9A-9B: The Polyquaternium 42 to be supplied as Polyquaternium 42 (33%
aqueous) by DSM BIOMEDICAL, (BERKELEY, CA).
For examples 9A-9B: The Disodium Edetate can be supplied by Merck NV/SA
(OVERUSE, BELGIUM).
For Examples 9A-9B: The 1N Sodium Hydroxide can be supplied by VWR (RADNER, PA, USA).
For Examples 9A-9B: The 1N Hydrochloric acid can be supplied by VWR (RADNER, PA, USA).
For Examples 9A-9B: The Sodium Chlorite Dihydrate to be supplied by Oxychem (WICHITA, KS, USA) Date Recue/Date Received 2020-11-19 Solution 9A can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 10 g of Polysorbate 80 and 30 g of Polysorbate 20.
The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 10.0 g of Kiwi Extract. The solution is mixed until the Kiwi Extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the above is added 1.98 g of Hypromellose E3 Premium. The solution is mixed until the Hypromellose E3 Premium dissolved.
6. The following ingredients are next added sequentially, allowing each to dissolve before adding the next: 2.50 grams Glycerin, 4.0 grams Boric acid, 0.22 gram Sodium Borate, 0.27gram Disodium Phosphate, 4.00 grams Sodium Citrate Dihydrate, 1 gram Potassium Chloride, 0.57 gram Sodium Lactate (50% aqueous), 0.13 gram Magnesium Chloride, 0.036 gram Glucose, 0.0002 gram Glycine, 0.0001 gram Ascorbic acid, 0.10 gram Disodium Edetate, 0.030 gram Polyquaternium-42 (33%aqueous), and 0.14 gram Sodium Chlorite.
7. The tonicity of the solution is determined and adjusted to 280 mOsm with Sodium Chloride.
8. The pH of the solution is measured and adjusted to 7.2 with 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
9. The solution is brought to a volume of 1,000.00 grams with Purified Water and mixed for 10 minutes.
10. The solution is filtered using a 0.22 micron filter.
Solution 9B can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 10 g of Polysorbate 80 and 50 g of Polysorbate 20.
The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 20.0 g of Kiwi Extract. The solution is mixed until the Kiwi Extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
Date Recue/Date Received 2020-11-19 5. To the above is added 1.98 g of Hypromellose E3 Premium. The solution is mixed until the Hypromellose E3 Premium dissolved.
6. The following ingredients are next added sequentially, allowing each to dissolve before adding the next: 2.50 grams Glycerin, 4.0 grams Boric acid, 0.22 gram Sodium Borate, 0.27gram Disodium Phosphate, 4.00 grams Sodium Citrate Dihydrate, 1 gram Potassium Chloride, 0.57 gram Sodium Lactate (50% aqueous), 0.13 gram Magnesium Chloride, 0.036 gram Glucose, 0.0002 gram Glycine, 0.0001 gram Ascorbic acid, 0.05 gram Disodium Edetate, 0.015 gram Polyquaternium-42 (33%aqueous), and 0.14 gram Sodium Chlorite.
7. The tonicity of the solution is determined and adjusted to 280 mOsm with Sodium Chloride.
8. The pH of the solution is measured and adjusted to 7.2 with 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
9. The solution is brought to a volume of 1,000.00 grams with Purified Water and mixed for 10 minutes.
10. The solution is filtered using a 0.22 micron filter.
Date Recue/Date Received 2020-11-19 Embodiments of the Present Invention 1. A microemulsion composition or microemulsion for treating the eye comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
2. The composition of embodiment 1 (or, any of the following embodiments), wherein the genus of Pichia is selected from Pichia anomala, Pichia guilhermondil, Pichia norvegensis, Pichia ohmeri and mixtures thereof 3. The composition of embodiments land/or 2 (or, any of the following embodiments), wherein the genus of Pichia is Pichia anomala.
4. The composition of any one of or combination of embodiments 1 to 3 (or, any of the following embodiments), where in the one or more extracts, or sources of extracts, of the genus Pichia are present at a concentration of from about 0.01% to about 100% by weight of the total composition.
5. The composition of any one of or combination of embodiments 1 to 4 (or, any of the following embodiments), where in the one or more extracts, or sources of extracts, of the genus Pichia are present at a concentration of from about 0.05% to about 95% by weight of the total composition.
6. The composition of any one of or combination of embodiments 1 to 5 (or, any of the following embodiments), where in the one or more extracts, or sources of extracts, of the genus Pichia are present at a concentration of from about 0.1% to about 90% by weight of the total composition.
7. The composition of any one of or combination of embodiments 1 to 6 (or, any of the following embodiments), comprising a permeation enhancer.
Date Recue/Date Received 2020-11-19 8. The composition of any one of or combination of embodiments 1 to 7 (or, any of the following embodiments), wherein the permeation enhancer is present at a concentration of from about 0.01% to about 20% (w/v) of the total composition.
9. The composition of any one of or combination of embodiments 1 to 8 (or, any of the following embodiments), wherein the permeation enhancer is present at a concentration of from about 0.1% to 10% (w/v) of the total composition.
10. The composition of any one of or combination of embodiments 1 to 9 (or, any of the following embodiments), wherein the permeation enhancer is present at a concentration of from about 0.25% to 5% (w/v) of the total composition, 11. The composition of any one of or combination of embodiments 1 to 10 (or, any of the following embodiments), wherein the permeation enhancer is selected from polyoxyethylene, polyoxyethylene ethers of fatty acids, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene monolaurate, polyoxyethylene sorbitan monolaurate, fusidic acid and derivatives thereof, EDTA, disodium EDTA, cholic acid, deoxycholic acid, glycocholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium cholate, sodium glycocholate, glycocholate, sodium deoxycholate, sodium taurocholate, sodium glycodeoxycholate, sodium taurodeoxycholate, chenodeoxycholic acid, urosdeoxycholic acid, saponins, glycyrrhizic acid, ammonium glycyrrhizide, decamethonium, decamethonium bromide, and dodecyltrimethylammonium bromide or mixtures of any of the above.
Solution 6B can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 20 g of Polysorbate 10 and 100 g of Polysorbate 20. The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 50 g of Pichia anomala extract. The solution is mixed until the Pichia anomala extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the solution of Step 4 is added 1.5 grams of Sodium Hyaluronate. The solution is mixed to fully dissolve the Sodium Hyaluronate.
6. The following ingredients are next added sequentially, allowing for each to dissolve before adding the next: 6.0 grams Boric acid, 0.05 gram Sodium Borate, 1.0 gram Potassium Chloride, 0.06 gram Calcium Chloride Dihydrate, 0.06 gram Magnesium Chloride and 0.0015 grams Polyquaternium-42 (aqueous).
7. While continuing to mix, 0.14 gram Sodium Chlorite Dihydrate is added and mixed to dissolve.
8. The tonicity of the formula is determined and adjusted to 280 mOsm/Kg with Sodium Chloride.
9. The pH of the formula is adjusted to pH of 7.2 using the 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
10. The solution is brought to 1000.0 grams using Purified Water USP and mixed for 10 minutes to be fully uniform.
11. The solution is filtered using a 0.22 micron filter.
Date Recue/Date Received 2020-11-19 Example 7 Table 2 illustrates the components of formulations of the present invention (as shown in formulations 7A and 7B), which components can be incorporated as described below using conventional mixing technology.
Table 2 Useful for Relief Useful for Relief of Dry Eye of Dry Eye Irritation Irritation for Contact Lenses INGREDIENT %w/w amount %w/w amount per per batch batch (gms) (gms) Pichia anomala 1.0 10.0 2.0 20.0 extract Polysorbate 80 1.0 10.0 1.0 10.0 Polysorbate 20 3.0 30.0 5.0 50.0 Glycerin 0.25 2.5 0.25 2.5 Hypromellose 0.198 1.98 0.198 1.98 Boric Acid 0.40 4.0 0.40 4.0 Sodium Borate 0.022 0.22 0.022 0.22 Disodium 0.027 0.27 0.027 0.27 Phosphate Sodium Citrate 0.40 4.0 0.40 4.0 Dihydrate Sodium Chloride*
Potassium 0.10 1.0 0.10 1.0 Chloride Date Recue/Date Received 2020-11-19 50% Aqueous 0.057 0.57 0.057 0.57 Solution of Sodium Lactate Magnesium 0.013 0.13 0.013 0.13 Chloride Glucose 0.0036 0.036 0.0036 0.036 Glycine 0.0000 0.0002 0.0000 0.0002 Ascorbic Acid 0.0000 0.0001 0.0000 0.0001 Disodium 0.01 0.1 0.05 0.5 Edetate Polyquaternium 0.0030 0.030 0.0015 0.015 (33%aqueous) Sodium 0.014 0.14 0.014 0.14 Chlorite Dihydrate 1N Sodium Hydroxide solution**
Hydrochloric Acid solution**
Purified Water***
total 100.00 1000.00 100.00 1000.00 * adjust to tonicity of 280-290 mOsm/Kg ** adjust to pH 7.2 *** q.s to 100.00% volume Date Recue/Date Received 2020-11-19 For Examples 7A and 7B: The Pichia anomala extract can be supplied by SILAB
(SAINT
VIANCE, FRANCE).
For Examples 7A-7B: The Polysorbate 20 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 7A-7B: The Polysorbate 80 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 7A-7B The Boric Acid can be supplied by Merck KGaA (DARMSTADT, GERMANY).
For Examples 7A-7B: The Sodium Borate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 7A-7B: The Sodium Chloride can be supplied by Caldic (DUSSELDORF, GERMANY).
For Examples 7A-7B: The Potassium Chloride can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 7A-7B: The Hypromellose E3 2910 can be supplied by DOW CHEMICAL
(PLAQUEMINE, LOUISIANA, USA).
For Examples 7A-7B: The Glycerin can be supplied by Emery Oleochemicals GmbH
(DUSSELDORF, GERMANY).
For Examples 7A-7B: The Disodium Phosphate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 7A-7B: The Sodium Citrate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 7A-7B: The Sodium Lactate can be supplied as Sodium Lactate (50%
aqueous) by Merck KGaA (DARMSTADT, GERMANY).
For Examples 7A-7B: The Glucose can be supplied by Roquette Freres (LASTREM, FRANCE).
For Examples 7A-7B: The Glycine can be supplied by Merck KGaA (DARMSTADT, GERMANY).
For Examples 7A-7B: The Ascorbic Acid can be supplied by DSM NUTRITIONAL
Products (DRAKEMYRE, SCOTLAND, UK).
For Examples 7A-7B: The Polyquatemium 42 to be supplied as Polyquatemium 42 (33%
aqueous) by DSM BIOMEDICAL, (BERKELEY, CA).
Date Recue/Date Received 2020-11-19 For examples 7A-7B: The Disodium Edetate can be supplied by Merck NV/SA
(OVERUSE, BELGIUM).
For Examples 7A-7B: The 1N Sodium Hydroxide can be supplied by VWR (RADNER, PA, USA).
For Examples 7A-7B: The 1N Hydrochloric acid can be supplied by VWR (RADNER, PA, USA).
For Examples 7A-7B: The Sodium Chlorite Dihydrate to be supplied by Oxychem (WICHITA, KS, USA) Solution 7A can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 10 g of Polysorbate 80 and 30 g of Polysorbate 20.
The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 10.0 g of Pichia anomala extract. The solution is mixed until the Pichia anomala extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the above is added 1.98 g of Hypromellose E3 Premium. The solution is mixed until the Hypromellose E3 Premium dissolved.
6. The following ingredients are next added sequentially, allowing each to dissolve before adding the next: 2.50 grams Glycerin, 4.0 grams Boric acid, 0.22 gram Sodium Borate, 0.27gram Disodium Phosphate, 4.00 grams Sodium Citrate Dihydrate, 1 gram Potassium Chloride, 0.57 gram Sodium Lactate (50% aqueous), 0.13 gram Magnesium Chloride, 0.036 gram Glucose, 0.0002 gram Glycine, 0.0001 gram Ascorbic acid, 0.10 gram Disodium Edetate, 0.030 gram Polyquaternium-42 (33%aqueous), and 0.14 gram Sodium Chlorite.
7. The tonicity of the solution is determined and adjusted to 280 mOsm with Sodium Chloride.
8. The pH of the solution is measured and adjusted to 7.2 with 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
9. The solution is brought to a volume of 1,000.00 grams with Purified Water and mixed for 10 minutes.
10. The solution is filtered using a 0.22 micron filter.
Date Recue/Date Received 2020-11-19 Solution 7B can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 10 g of Polysorbate 80 and 50 g of Polysorbate 20.
The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 20.0 g of Pichia anomala extract. The solution is mixed until the Pichia anomala extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the above is added 1.98 g of Hypromellose E3 Premium. The solution is mixed until the Hypromellose E3 Premium dissolved.
6. The following ingredients are next added sequentially, allowing each to dissolve before adding the next: 2.50 grams Glycerin, 4.0 grams Boric acid, 0.22 gram Sodium Borate, 0.27gram Disodium Phosphate, 4.00 grams Sodium Citrate Dihydrate, 1 gram Potassium Chloride, 0.57 gram Sodium Lactate (50% aqueous), 0.13 gram Magnesium Chloride, 0.036 gram Glucose, 0.0002 gram Glycine, 0.0001 gram Ascorbic acid, 0.05 gram Disodium Edetate, 0.015 gram Polyquaternium-42 (33%aqueous), and 0.14 gram Sodium Chlorite.
7. The tonicity of the solution is determined and adjusted to 280 mOsm with Sodium Chloride.
8. The pH of the solution is measured and adjusted to 7.2 with 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
9. The solution is brought to a volume of 1,000.00 grams with Purified Water and mixed for 10 minutes.
10. The solution is filtered using a 0.22 micron filter.
Date Recue/Date Received 2020-11-19 Example 8 Table 3 illustrates the components of such formulations (as shown in formulations 8A
and 8B), which components can be incorporated as described below using conventional mixing technology.
Table 3 Useful for Relief of Useful for Relief of Dry Eye Irritation Dry Eye Irritation for Contact Lenses INGREDIENT %w/w amount %w/w amount per batch per (gms) batch (gms) Sodium 0.20 2.0 0.15 1.5 Hyaluronate Kiwi Extract 2.0 20.0 5.0 50.0 Polysorbate 80 1.0 10.0 2.0 20.0 Polysorbate 20 5.0 50.0 10.0 100.0 Polyethylene 0.25 2.5 0 0 Glycol 400 Boric Acid 0.60 6.0 0.60 6.0 Sodium Borate 0.05 0.50 0.05 0.50 Sodium Chloride*
Potassium 0.10 1.0 0.10 1.0 Chloride Calcium 0.006 0.06 0.006 0.06 Chloride Dihydrate Magnesium 0.006 0.06 0.006 0.06 Chloride Date Recue/Date Received 2020-11-19 Sodium 0.014 0.14 0.014 0.14 Chlorite Dihydrate Polyquatemium 0.0015 0.015 0.0015 0.015 (33%aqueous) Sodium 0.014 0.14 0.014 0.14 Chlorite Dihydrate 1N Sodium Hydroxide solution**
Hydrochloric Acid solution**
Purified Water***
total 100.00 1000.0 g 100.00 1000.00 * adjust to tonicity of 280-290 mOsm/Kg ** adjust to pH 7.2 *** q.s to 100%w/w For Examples 8A-8B: The Sodium Hyaluronate can be supplied by CONTIPRO A.S.
(DOLNI, DOBROUC, CZECH REPUBLIC) For Examples 8A and 8B: The Kiwi Extract (Pichia anomala yeast extract) can be supplied by SILAB (SAINT VIANCE, FRANCE).
For Examples 8A-8B: The Polysorbate 20 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 8A-8B: The Polysorbate 80 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 8A: The Polyethylene Glycol 400 can be supplied by Clariant Produkte (BURGKIRCHEN, GERMANY).
Date Recue/Date Received 2020-11-19 For Examples 8A-8B: The Boric Acid can be supplied by Merck KGaA (DARMSTADT, GERMANY).
For Examples 8A-8B: The Sodium Borate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 8A-8B: The Sodium Chloride can be supplied by Caldic (DUSSELDORF, GERMANY).
For Examples 8A-8B: The Potassium Chloride can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 8A-8B: The Calcium Chloride Dihydrate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 8A-8B: The Magnesium Chloride can be supplied by KGaA (DARMSTADT, GERMANY).
For Examples 8A-8B: The Polyquaternium-42 (33% aqueous) can be supplied by DSM
BIOMEDICAL (BERKELEY, CA, USA).
For Examples 8A-8B: The Sodium Chlorite Dihydrate can be supplied by Oxychem (WICHITA, KS, USA) For Examples 8A-8B: The 1N Sodium Hydroxide can be supplied by VWR (RADNER, PA, USA).
For Examples 8A-8B: The 1N Hydrochloric acid can be supplied by VWR (RADNER, PA, USA).
Solution 8A can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 10 g of Polysorbate 80 and 50 g of Polysorbate 20.
The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 20.0 g of Kiwi Extract. The solution is mixed until the Kiwi Extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the solution of Step 4 is added 2.0 grams of Sodium Hyaluronate. The solution is mixed to fully dissolve the Sodium Hyaluronate.
6. The following ingredients are next added sequentially, allowing for each to dissolve before adding the next: 2.5 grams Polyethylene Glycol 400, 6.0 grams Boric acid, 0.05gram Sodium Borate, 1.0 gram Potassium Chloride, 0.06 gram Calcium Chloride Date Recue/Date Received 2020-11-19 Dihydrate, 0.06 gram Magnesium Chloride, and 0.0015 grams Polyquatemium-42 (aqueous).
7. While continuing to mix, 0.14gram Sodium Chlorite Dihydrate is added and mixed to dissolve.
8. The tonicity of the formula is determined and adjusted to 280 mOsm/Kg with Sodium Chloride.
9. The pH of the formula is adjusted to pH of 7.2 using the 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
10. The solution is brought to 1000.0 grams using Purified Water USP and mixed for 10 minutes to be fully uniform.
11. The solution is filtered using a 0.22 micron filter.
Date Recue/Date Received 2020-11-19 Solution 8B can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 20 g of Polysorbate 10 and 100 g of Polysorbate 20. The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 50 g of Kiwi Extract. The solution is mixed until the Kiwi Extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the solution of Step 4 is added 1.5 grams of Sodium Hyaluronate. The solution is mixed to fully dissolve the Sodium Hyaluronate.
6. The following ingredients are next added sequentially, allowing for each to dissolve before adding the next: 6.0 grams Boric acid, 0.05 gram Sodium Borate, 1.0 gram Potassium Chloride, 0.06 gram Calcium Chloride Dihydrate, 0.06 gram Magnesium Chloride and 0.0015 grams Polyquaternium-42 (aqueous).
7. While continuing to mix, 0.14 gram Sodium Chlorite Dihydrate is added and mixed to dissolve.
8. The tonicity of the formula is determined and adjusted to 280 mOsm/Kg with Sodium Chloride.
9. The pH of the formula is adjusted to pH of 7.2 using the 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
10. The solution is brought to 1000.0 grams using Purified Water USP and mixed for 10 minutes to be fully uniform.
11. The solution is filtered using a 0.22 micron filter.
Example 9 Table 4 illustrates the components of formulations of the present invention (as shown in formulations 9A and 9B), which components can be incorporated as described below using conventional mixing technology.
Table 4 Useful for Relief of Dry Date Recue/Date Received 2020-11-19 Useful for Eye Irritation Relief of Dry for Contact Eye Irritation Lenses INGREDIENT %w/w amoun %w/w amoun t per t per batch batch (gms) (gms) Kiwi Extract 1.0 10.0 2.0 20.0 Polysorbate 80 1.0 10.0 1.0 10.0 Polysorbate 20 3.0 30.0 5.0 50.0 Glycerin 0.25 2.5 0.25 2.5 Hypromellose 0.198 1.98 0.198 1.98 Boric Acid 0.40 4.0 0.40 4.0 Sodium Borate 0.022 0.22 0.022 0.22 Disodium 0.027 0.27 0.027 0.27 Phosphate Sodium Citrate 0.40 4.0 0.40 4.0 Dihydrate Sodium Chloride*
Potassium 0.10 1.0 0.10 1.0 Chloride 50% Aqueous 0.057 0.57 0.057 0.57 Solution of Sodium Lactate Magnesium 0.013 0.13 0.013 0.13 Chloride Glucose 0.0036 0.036 0.0036 0.036 Glycine 0.0000 0.0002 0.0000 0.0002 Date Recue/Date Received 2020-11-19 Ascorbic Acid 0.0000 0.0001 0.0000 0.0001 Disodium 0.01 0.1 0.05 0.5 Edetate Polyquaternium 0.0030 0.030 0.0015 0.015 (33%aqueous) Sodium 0.014 0.14 0.014 0.14 Chlorite Dihydrate 1N Sodium Hydroxide solution**
Hydrochloric Acid solution**
Purified Water***
total 100.00 1000.0 100.00 1000.0 0 g * adjust to tonicity of 280-290 mOsm/Kg ** adjust to pH 7.2 *** q.s to 100.00% volume For Examples 9A and 9B: The Kiwi Extract (Pichia anomala yeast extract) can be supplied by SILAB (SAINT VIANCE, FRANCE).
For Examples 9A-9B: The Polysorbate 20 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 9A-9B: The Polysorbate 80 can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 9A-9B The Boric Acid can be supplied by Merck KGaA (DARMSTADT, GERMANY).
Date Recue/Date Received 2020-11-19 For Examples 9A-9B: The Sodium Borate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 9A-9B: The Sodium Chloride can be supplied by Caldic (DUSSELDORF, GERMANY).
For Examples 9A-9B: The Potassium Chloride can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 9A-9B: The Hypromellose E3 2910 can be supplied by DOW CHEMICAL
(PLAQUEMINE, LOUISIANA, USA).
For Examples 9A-9B: The Glycerin can be supplied by Emery Oleochemicals GmbH
(DUSSELDORF, GERMANY).
For Examples 9A-9B: The Disodium Phosphate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 9A-9B: The Sodium Citrate can be supplied by Merck KGaA
(DARMSTADT, GERMANY).
For Examples 9A-9B: The Sodium Lactate can be supplied as Sodium Lactate (50%
aqueous) by Merck KGaA (DARMSTADT, GERMANY).
For Examples 9A-9B: The Glucose can be supplied by Roquette Freres (LASTREM, FRANCE).
For Examples 9A-9B: The Glycine can be supplied by Merck KGaA (DARMSTADT, GERMANY).
For Examples 9A-9B: The Ascorbic Acid can be supplied by DSM NUTRITIONAL
Products (DRAKEMYRE, SCOTLAND, UK).
For Examples 9A-9B: The Polyquaternium 42 to be supplied as Polyquaternium 42 (33%
aqueous) by DSM BIOMEDICAL, (BERKELEY, CA).
For examples 9A-9B: The Disodium Edetate can be supplied by Merck NV/SA
(OVERUSE, BELGIUM).
For Examples 9A-9B: The 1N Sodium Hydroxide can be supplied by VWR (RADNER, PA, USA).
For Examples 9A-9B: The 1N Hydrochloric acid can be supplied by VWR (RADNER, PA, USA).
For Examples 9A-9B: The Sodium Chlorite Dihydrate to be supplied by Oxychem (WICHITA, KS, USA) Date Recue/Date Received 2020-11-19 Solution 9A can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 10 g of Polysorbate 80 and 30 g of Polysorbate 20.
The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 10.0 g of Kiwi Extract. The solution is mixed until the Kiwi Extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
5. To the above is added 1.98 g of Hypromellose E3 Premium. The solution is mixed until the Hypromellose E3 Premium dissolved.
6. The following ingredients are next added sequentially, allowing each to dissolve before adding the next: 2.50 grams Glycerin, 4.0 grams Boric acid, 0.22 gram Sodium Borate, 0.27gram Disodium Phosphate, 4.00 grams Sodium Citrate Dihydrate, 1 gram Potassium Chloride, 0.57 gram Sodium Lactate (50% aqueous), 0.13 gram Magnesium Chloride, 0.036 gram Glucose, 0.0002 gram Glycine, 0.0001 gram Ascorbic acid, 0.10 gram Disodium Edetate, 0.030 gram Polyquaternium-42 (33%aqueous), and 0.14 gram Sodium Chlorite.
7. The tonicity of the solution is determined and adjusted to 280 mOsm with Sodium Chloride.
8. The pH of the solution is measured and adjusted to 7.2 with 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
9. The solution is brought to a volume of 1,000.00 grams with Purified Water and mixed for 10 minutes.
10. The solution is filtered using a 0.22 micron filter.
Solution 9B can be prepared as follows:
1. To a 1500 ml beaker is added 800 grams of Purified Water USP.
2. To the above is added 10 g of Polysorbate 80 and 50 g of Polysorbate 20.
The solution is mixed until both are fully mixed and dissolved.
3. To the above is added 20.0 g of Kiwi Extract. The solution is mixed until the Kiwi Extract is dissolved.
4. The solution is filtered through a 0.45micron filter and returned to a 1500 ml beaker.
Date Recue/Date Received 2020-11-19 5. To the above is added 1.98 g of Hypromellose E3 Premium. The solution is mixed until the Hypromellose E3 Premium dissolved.
6. The following ingredients are next added sequentially, allowing each to dissolve before adding the next: 2.50 grams Glycerin, 4.0 grams Boric acid, 0.22 gram Sodium Borate, 0.27gram Disodium Phosphate, 4.00 grams Sodium Citrate Dihydrate, 1 gram Potassium Chloride, 0.57 gram Sodium Lactate (50% aqueous), 0.13 gram Magnesium Chloride, 0.036 gram Glucose, 0.0002 gram Glycine, 0.0001 gram Ascorbic acid, 0.05 gram Disodium Edetate, 0.015 gram Polyquaternium-42 (33%aqueous), and 0.14 gram Sodium Chlorite.
7. The tonicity of the solution is determined and adjusted to 280 mOsm with Sodium Chloride.
8. The pH of the solution is measured and adjusted to 7.2 with 1N Sodium Hydroxide and/or 1N Hydrochloric acid.
9. The solution is brought to a volume of 1,000.00 grams with Purified Water and mixed for 10 minutes.
10. The solution is filtered using a 0.22 micron filter.
Date Recue/Date Received 2020-11-19 Embodiments of the Present Invention 1. A microemulsion composition or microemulsion for treating the eye comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
2. The composition of embodiment 1 (or, any of the following embodiments), wherein the genus of Pichia is selected from Pichia anomala, Pichia guilhermondil, Pichia norvegensis, Pichia ohmeri and mixtures thereof 3. The composition of embodiments land/or 2 (or, any of the following embodiments), wherein the genus of Pichia is Pichia anomala.
4. The composition of any one of or combination of embodiments 1 to 3 (or, any of the following embodiments), where in the one or more extracts, or sources of extracts, of the genus Pichia are present at a concentration of from about 0.01% to about 100% by weight of the total composition.
5. The composition of any one of or combination of embodiments 1 to 4 (or, any of the following embodiments), where in the one or more extracts, or sources of extracts, of the genus Pichia are present at a concentration of from about 0.05% to about 95% by weight of the total composition.
6. The composition of any one of or combination of embodiments 1 to 5 (or, any of the following embodiments), where in the one or more extracts, or sources of extracts, of the genus Pichia are present at a concentration of from about 0.1% to about 90% by weight of the total composition.
7. The composition of any one of or combination of embodiments 1 to 6 (or, any of the following embodiments), comprising a permeation enhancer.
Date Recue/Date Received 2020-11-19 8. The composition of any one of or combination of embodiments 1 to 7 (or, any of the following embodiments), wherein the permeation enhancer is present at a concentration of from about 0.01% to about 20% (w/v) of the total composition.
9. The composition of any one of or combination of embodiments 1 to 8 (or, any of the following embodiments), wherein the permeation enhancer is present at a concentration of from about 0.1% to 10% (w/v) of the total composition.
10. The composition of any one of or combination of embodiments 1 to 9 (or, any of the following embodiments), wherein the permeation enhancer is present at a concentration of from about 0.25% to 5% (w/v) of the total composition, 11. The composition of any one of or combination of embodiments 1 to 10 (or, any of the following embodiments), wherein the permeation enhancer is selected from polyoxyethylene, polyoxyethylene ethers of fatty acids, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene monolaurate, polyoxyethylene sorbitan monolaurate, fusidic acid and derivatives thereof, EDTA, disodium EDTA, cholic acid, deoxycholic acid, glycocholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium cholate, sodium glycocholate, glycocholate, sodium deoxycholate, sodium taurocholate, sodium glycodeoxycholate, sodium taurodeoxycholate, chenodeoxycholic acid, urosdeoxycholic acid, saponins, glycyrrhizic acid, ammonium glycyrrhizide, decamethonium, decamethonium bromide, and dodecyltrimethylammonium bromide or mixtures of any of the above.
12. The composition of any one of or combination of embodiments 1 to 11 (or, any of the following embodiments), wherein the Pichia genus extract comprises oligosaccharides and polysaccharide having a weight average molecular weight of from about 180 to about 800,000 Da.
13. The composition of any one of or combination of embodiments 1 to 12 (or, any of the following embodiments), wherein the Pichia genus extract comprises Date Recue/Date Received 2020-11-19 oligosaccharides and polysaccharide having an average degree of polymerization of from DP 1 to DP 4444.
14. A method for producing/releasing/delivering/excreting mucin from and/or in the cornea comprising the step of administering a microemulsion composition comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
15. The method according to embodiment 14 (or, any of the following embodiments), wherein the genus of Pichia is selected from Pichia anomala, Pichia guilhermondil, Pichia norvegensis, Pichia ohmeri and mixtures thereof
16. The method according to embodiments 14 and/or 15 (or, any of the following embodiments), wherein the genus of Pichia is Pichia anomala.
17. A method for maintaining the concentration of MU5AC in tears within the range of equal to or greater than 8 nanograms to 15 nanograms per milligrams of protein, comprising the step of administering a microemulsion composition comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
18. A method for treating a patient having decreased or low-level production/release/delivery/excretion of mucin from and/or in the cornea comprising the step of topically administering to the eye the patient a microemultion composition comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) optionally, an ophthalmologically acceptable carrier Date Recue/Date Received 2020-11-19 wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) optionally, an ophthalmologically acceptable carrier Date Recue/Date Received 2020-11-19 wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
19. A method for promoting healing or increasing the rate of healing of wounds in and/or on the eye of a patient, comprising the step of administering a microemulsion composition comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
20. A method for improving the antimicrobial properties in tears of a patient, comprising the step of administering a microemulsion composition comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
21. A method for treating a patient having decreased or low-level production/release/delivery/excretion of hyaluronic acid from and/or in the cornea comprising the step of topically administering to the eye of the patient a microemulaion composition comprising:
i) a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia to achieve a Pichia genus extract concentration in the corneal fluid in the corneal tissues of the eye of at least about 0.3mg/m1;
ii) optionally, a safe and effective amount of a permeation enhancer; and iii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
i) a safe and effective amount of one or more extracts, or sources of extracts, of the genus Pichia to achieve a Pichia genus extract concentration in the corneal fluid in the corneal tissues of the eye of at least about 0.3mg/m1;
ii) optionally, a safe and effective amount of a permeation enhancer; and iii) optionally, an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
22. The method of embodiment 21 (or, any of the following embodiments), wherein the Pichia genus extract in the composition comprises oligosaccharides and Date Recue/Date Received 2020-11-19 polysaccharide having a weight average molecular weight of from about 180 to about 800,000 Da.
23. The method of embodiment 21 and/or 22 (or, any of the following embodiments), wherein the Pichia genus extract in the composition comprises oligosaccharides and polysaccharide having an average degree of polymerization of from DP 1 to DP
4444.
4444.
24. The method of any one of or combination of embodiments 21 to 23 (or, any of the following embodiments), wherein the composition comprises a permeation enhancer.
25. The method of any one of or combination of embodiments 21 to24 (or, any of the following embodiments), wherein the permeation enhancer is present at a concentration of from about 0.01% to about 20% (w/v) of the total composition.
26. The method of any one of or combination of embodiments 21 to 25 (or, any of the following embodiments), wherein the permeation enhancer is present at a concentration of from about 0.1% to 10% (w/v) of the total composition.
27. The method of any one of or combination of embodiments 21 to 26 (or, any of the following embodiments), wherein the permeation enhancer is present at a concentration of from about 0.25% to 5% (w/v) of the total composition,
28. The method of any one of or combination of embodiments 21 to 27 (or, any of the following embodiments), wherein the permeation enhancer is selected from polyoxyethylene, polyoxyethylene ethers of fatty acids, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene monolaurate, polyoxyethylene sorbitan monolaurate, fusidic acid and derivatives thereof, EDTA, disodium EDTA, cholic acid, deoxycholic acid, glycocholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium cholate, sodium glycocholate, glycocholate, sodium deoxycholate, sodium taurocholate, sodium glycodeoxycholate, sodium taurodeoxycholate, chenodeoxycholic acid, urosdeoxycholic acid, saponins, Date Recue/Date Received 2020-11-19 glycyrrhizic acid, ammonium glycyrrhizide, decamethonium, decamethonium bromide, and dodecyltrimethylammonium bromide or mixtures of any of the above.
29. The method of any one of or combination of embodiments 21 to 28 (or, any of the following embodiments), wherein the composition is administered when the hyaluronic acid concentration, in the patient's tears, is lower than about 10 nanograms per milligram of proteins.
30. The method of any one of or combination of embodiments 21 to 29 (or, any of the following embodiments), wherein the composition is administered when the hyaluronic acid concentration, in the patient's tears, is lower than about 15 nanograms per milligram of proteins.
31. The method of any one of or combination of embodiments 21 to 30 (or, any of the following embodiments), wherein the composition is administered when the hyaluronic acid concentration, in the patient's tears, is lower than about 20 nanograms per milligram of proteins.
32. The method of any one of or combination of embodiments 21 to 31 (or, any of the following embodiments), wherein the composition is administered when the hyaluronic acid concentration, in the patient's tears, is lower than about 25 nanograms per milligram of proteins.
33. The method of any one of or combination of embodiments 21 to 32 (or, any of the following embodiments), wherein the composition is administered to the patient's eye to raise the concentration of hyaluronic acid in the patient's tears to be equal to or greater than about 10 nanograms per milligram of proteins.
34. The method of any one of or combination of embodiments 21 to 33 (or, any of the following embodiments), wherein the composition is administered to the patient's eye to raise the concentration of hyaluronic acid in the patient's tears to be equal to or greater than about 15 nanograms per milligram of proteins.
Date Recue/Date Received 2020-11-19
Date Recue/Date Received 2020-11-19
35. The method of any one of or combination of embodiments 21 to 34 (or, any of the following embodiments), wherein the composition is administered to the patient's eye to raise the concentration of hyaluronic acid in the patient's tears to be equal to or greater than about 20 nanograms per milligram of proteins.
36. The method of any one of or combination of embodiments 21 to 35 (or, any of the following embodiments), wherein the composition is administered to the patient's eye to raise the concentration of hyaluronic acid in the patient's tears to be equal to or greater than about 25 nanograms per milligram of proteins.
Date Recue/Date Received 2020-11-19
Date Recue/Date Received 2020-11-19
Claims (13)
1. A microemulsion composition for treating the eye comprising:
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
i) one or more extracts, or sources of extracts, of the genus Pichia; and ii) an ophthalmologically acceptable carrier wherein the microemulsion droplets or particles have a maximum dimension of less than 1,500 A.
2. The composition according to claim 1, wherein the genus of Pichia is selected from Pichia anomala, Pichia guilhermondil, Pichia norvegensis, Pichia ohmeri and mixtures thereof
3. The composition according to claim 2, wherein the genus of Pichia is Pichia anomala.
4. The composition of claim 1, where in the one or more extracts, or sources of extracts, of the genus Pichia are present at a concentration of from about 0.001% to about 100% by weight of the total composition.
5. The composition of claim 1, where in the one or more extracts, or sources of extracts, of the genus Pichia are present at a concentration of from about 0.005% to about 95%
by weight of the total composition.
by weight of the total composition.
6. The composition of claim 1, where in the one or more extracts, or sources of extracts, of the genus Pichia are present at a concentration of from about 0.01% to about 90%
by weight of the total composition.
by weight of the total composition.
7. The composition according to claim 1, comprising a permeation enhancer.
Date Recue/Date Received 2020-11-19
Date Recue/Date Received 2020-11-19
8. The composition of claim 7 wherein the permeation enhancer is present at a concentration of from about 0.01% to about 20% (w/v) of the total composition.
9. The composition of claim 8 wherein the permeation enhancer is present at a concentration of from about 0.1% to 10% (w/v) of the total composition.
10. The composition of claim 9 wherein the permeation enhancer is present at a concentration of from about 0.25% to 5% (w/v) of the total composition,
11. The composition of claim 7 wherein the permeation enhancer is selected from polyoxyethylene, polyoxyethylene ethers of fatty acids, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene monolaurate, polyoxyethylene sorbitan monolaurate, fusidic acid and derivatives thereof, EDTA, disodium EDTA, cholic acid, deoxycholic acid, glycocholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium cholate, sodium glycocholate, glycocholate, sodium deoxycholate, sodium taurocholate, sodium glycodeoxycholate, sodium taurodeoxycholate, chenodeoxycholic acid, urosdeoxycholic acid, saponins, glycyrrhizic acid, ammonium glycyrrhizide, decamethonium, decamethonium bromide, and dodecyltrimethylammonium bromide or mixtures of any of the above.
12. The composition of claim 1 wherein the Pichia genus extract comprises oligosaccharides and polysaccharide having a weight average molecular weight of from about 180 to about 800,000 Da.
13. The composition of claim 1 wherein the Pichia genus extract comprises oligosaccharides and polysaccharide having an average degree of polymerization of from DP 1 to DP 4444.
Date Recue/Date Received 2020-11-19
Date Recue/Date Received 2020-11-19
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962937473P | 2019-11-19 | 2019-11-19 | |
US201962937458P | 2019-11-19 | 2019-11-19 | |
US62/937,458 | 2019-11-19 | ||
US62/937,473 | 2019-11-19 | ||
US17/099,185 | 2020-11-16 | ||
US17/099,185 US11969451B2 (en) | 2019-11-19 | 2020-11-16 | Compositions and methods for treating the eye |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3100032A1 true CA3100032A1 (en) | 2021-05-19 |
Family
ID=75964158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3100032A Pending CA3100032A1 (en) | 2019-11-19 | 2020-11-19 | Compositions and methods for treating the eye |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP2021080253A (en) |
KR (1) | KR20210061297A (en) |
CN (1) | CN112933118A (en) |
AU (2) | AU2020273321A1 (en) |
BR (1) | BR102020023560A8 (en) |
CA (1) | CA3100032A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117268877B (en) * | 2023-11-21 | 2024-02-20 | 军科正源(北京)药物研究有限责任公司 | Method for detecting nerve growth factor in human tear and method for treating tear |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1883469B (en) * | 2006-05-26 | 2011-07-20 | 武汉远大制药集团有限公司 | An ocular microemulsion containing Vitamin A and Vitamin E and preparation method thereof |
US8765931B2 (en) * | 2008-10-22 | 2014-07-01 | Quark Pharmaceuticals, Inc. | Double-stranded oligonucleotide compound for down-regulating the expression of CASP2 gene |
US20170128357A1 (en) * | 2015-11-06 | 2017-05-11 | Johnson & Johnson Consumer Inc. | Topical gel cream composition |
US20170172913A1 (en) * | 2015-12-17 | 2017-06-22 | Johnson & Johnson Consumer Inc. | Topical Compositions Comprising Pichia Anomala and Chicory Root Extracts |
ITUB20160543A1 (en) * | 2016-02-08 | 2017-08-08 | Sooft Italia S P A 63833 Montegiorgio Fermo / Italia | STABILIZING OPHTHALMIC AND REINTEGRATED COMPOSITION OF THE LACRIMAL FILM FOR USE IN THE PREVENTION OF VIRAL INFECTIONS |
US10206870B2 (en) * | 2016-12-12 | 2019-02-19 | Johnson & Johnson Consumer Inc. | Topical composition containing glycerin and yeast extract |
-
2020
- 2020-11-18 BR BR102020023560A patent/BR102020023560A8/en unknown
- 2020-11-18 JP JP2020191522A patent/JP2021080253A/en active Pending
- 2020-11-19 AU AU2020273321A patent/AU2020273321A1/en not_active Abandoned
- 2020-11-19 CA CA3100032A patent/CA3100032A1/en active Pending
- 2020-11-19 CN CN202011302835.4A patent/CN112933118A/en active Pending
- 2020-11-19 KR KR1020200155844A patent/KR20210061297A/en unknown
-
2022
- 2022-11-03 AU AU2022263530A patent/AU2022263530A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
BR102020023560A2 (en) | 2021-10-13 |
CN112933118A (en) | 2021-06-11 |
JP2021080253A (en) | 2021-05-27 |
BR102020023560A8 (en) | 2023-02-07 |
AU2020273321A1 (en) | 2021-06-03 |
AU2022263530A1 (en) | 2022-12-08 |
KR20210061297A (en) | 2021-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11357805B2 (en) | Compositions and methods for treating the eye | |
US11878042B2 (en) | Compositions and methods for treating the eye | |
AU2022246418B2 (en) | Compositions and methods for treating the eye | |
US11878041B2 (en) | Compositions and methods for treating the eye | |
US20210023037A1 (en) | Compositions and methods for treating the eye | |
EP3824895A1 (en) | Compositions and methods for treating the eye | |
AU2022263530A1 (en) | Compositions and methods for treating the eye | |
US11969451B2 (en) | Compositions and methods for treating the eye | |
EP3824877A1 (en) | Compositions and methods for treating the eye | |
RU2795913C2 (en) | Compositions and methods for treating eye disorders | |
RU2793736C2 (en) | Compositions and methods for eye treatment | |
RU2792627C2 (en) | Compositions and methods for treating eye disorders | |
RU2802625C2 (en) | Compositions and methods of treating eye disorders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20220707 |
|
EEER | Examination request |
Effective date: 20220707 |
|
EEER | Examination request |
Effective date: 20220707 |