CA3091892A1 - Compounds and compositions for the treatment of muscular disorders and bone disorders - Google Patents
Compounds and compositions for the treatment of muscular disorders and bone disorders Download PDFInfo
- Publication number
- CA3091892A1 CA3091892A1 CA3091892A CA3091892A CA3091892A1 CA 3091892 A1 CA3091892 A1 CA 3091892A1 CA 3091892 A CA3091892 A CA 3091892A CA 3091892 A CA3091892 A CA 3091892A CA 3091892 A1 CA3091892 A1 CA 3091892A1
- Authority
- CA
- Canada
- Prior art keywords
- epicatechin
- bone
- composition
- muscle
- weakness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 148
- 150000001875 compounds Chemical class 0.000 title claims abstract description 91
- 238000011282 treatment Methods 0.000 title description 47
- 208000021642 Muscular disease Diseases 0.000 title description 14
- 208000020084 Bone disease Diseases 0.000 title description 3
- PFTAWBLQPZVEMU-ZFWWWQNUSA-N (+)-epicatechin Chemical compound C1([C@@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-ZFWWWQNUSA-N 0.000 claims abstract description 252
- 150000002116 epicatechin Chemical class 0.000 claims abstract description 63
- 230000006378 damage Effects 0.000 claims abstract description 39
- 208000014674 injury Diseases 0.000 claims abstract description 39
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-3',4',5,7-Tetrahydroxy-2,3-trans-flavan-3-ol Natural products C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 claims abstract description 38
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 37
- PFTAWBLQPZVEMU-UKRRQHHQSA-N (-)-epicatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-UKRRQHHQSA-N 0.000 claims abstract description 33
- 235000007355 (-)-epicatechin Nutrition 0.000 claims abstract description 33
- 229930013783 (-)-epicatechin Natural products 0.000 claims abstract description 33
- 239000003814 drug Substances 0.000 claims abstract description 33
- 208000027418 Wounds and injury Diseases 0.000 claims abstract description 32
- 235000007246 (+)-epicatechin Nutrition 0.000 claims abstract description 30
- 208000010392 Bone Fractures Diseases 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 83
- 150000003839 salts Chemical class 0.000 claims description 76
- 239000000651 prodrug Substances 0.000 claims description 65
- 229940002612 prodrug Drugs 0.000 claims description 65
- 102000016970 Follistatin Human genes 0.000 claims description 55
- 108010014612 Follistatin Proteins 0.000 claims description 55
- 102000004169 proteins and genes Human genes 0.000 claims description 38
- 108090000623 proteins and genes Proteins 0.000 claims description 38
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 238000011069 regeneration method Methods 0.000 claims description 17
- 230000006735 deficit Effects 0.000 claims description 14
- 230000011164 ossification Effects 0.000 claims description 14
- 230000037396 body weight Effects 0.000 claims description 13
- 230000003387 muscular Effects 0.000 claims description 13
- 230000001413 cellular effect Effects 0.000 claims description 11
- 230000002441 reversible effect Effects 0.000 claims description 10
- 239000003246 corticosteroid Substances 0.000 claims description 9
- 229960001334 corticosteroids Drugs 0.000 claims description 9
- 208000001132 Osteoporosis Diseases 0.000 claims description 7
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 claims description 6
- 230000008468 bone growth Effects 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- 229930003316 Vitamin D Natural products 0.000 claims description 4
- 229940125681 anticonvulsant agent Drugs 0.000 claims description 4
- 239000001961 anticonvulsive agent Substances 0.000 claims description 4
- 230000010478 bone regeneration Effects 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 235000019166 vitamin D Nutrition 0.000 claims description 4
- 239000011710 vitamin D Substances 0.000 claims description 4
- 150000003710 vitamin D derivatives Chemical class 0.000 claims description 4
- 102000055006 Calcitonin Human genes 0.000 claims description 3
- 108060001064 Calcitonin Proteins 0.000 claims description 3
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 claims description 3
- 229960004015 calcitonin Drugs 0.000 claims description 3
- 229960005069 calcium Drugs 0.000 claims description 3
- 229940046008 vitamin d Drugs 0.000 claims description 3
- 238000011287 therapeutic dose Methods 0.000 claims 1
- LPTRNLNOHUVQMS-UHFFFAOYSA-N epicatechin Natural products Cc1cc(O)cc2OC(C(O)Cc12)c1ccc(O)c(O)c1 LPTRNLNOHUVQMS-UHFFFAOYSA-N 0.000 description 96
- 235000012734 epicatechin Nutrition 0.000 description 96
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 61
- 210000002027 skeletal muscle Anatomy 0.000 description 58
- 201000010099 disease Diseases 0.000 description 47
- 210000004165 myocardium Anatomy 0.000 description 44
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 38
- 230000006870 function Effects 0.000 description 37
- 210000003205 muscle Anatomy 0.000 description 36
- 230000001965 increasing effect Effects 0.000 description 35
- 235000018102 proteins Nutrition 0.000 description 34
- 102100039939 Growth/differentiation factor 8 Human genes 0.000 description 33
- 108010056852 Myostatin Proteins 0.000 description 33
- 235000015872 dietary supplement Nutrition 0.000 description 33
- 238000009472 formulation Methods 0.000 description 28
- 244000299461 Theobroma cacao Species 0.000 description 27
- 241001465754 Metazoa Species 0.000 description 26
- 230000000694 effects Effects 0.000 description 23
- 235000013305 food Nutrition 0.000 description 22
- 210000000663 muscle cell Anatomy 0.000 description 22
- -1 but not limited to Substances 0.000 description 19
- 210000002363 skeletal muscle cell Anatomy 0.000 description 19
- 210000004413 cardiac myocyte Anatomy 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 17
- 235000019219 chocolate Nutrition 0.000 description 17
- 239000004615 ingredient Substances 0.000 description 17
- 238000011084 recovery Methods 0.000 description 17
- 239000004480 active ingredient Substances 0.000 description 16
- 239000000284 extract Substances 0.000 description 15
- 239000007788 liquid Substances 0.000 description 15
- 230000001225 therapeutic effect Effects 0.000 description 15
- 208000035475 disorder Diseases 0.000 description 14
- 230000001771 impaired effect Effects 0.000 description 14
- 239000000843 powder Substances 0.000 description 14
- 230000008929 regeneration Effects 0.000 description 14
- 229940124597 therapeutic agent Drugs 0.000 description 14
- 241000699670 Mus sp. Species 0.000 description 12
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 12
- 208000029549 Muscle injury Diseases 0.000 description 11
- 239000002775 capsule Substances 0.000 description 11
- 229940079593 drug Drugs 0.000 description 11
- 239000003826 tablet Substances 0.000 description 11
- 208000029578 Muscle disease Diseases 0.000 description 10
- 235000009470 Theobroma cacao Nutrition 0.000 description 10
- 206010012601 diabetes mellitus Diseases 0.000 description 10
- 230000004064 dysfunction Effects 0.000 description 10
- 230000036541 health Effects 0.000 description 10
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 10
- 238000002560 therapeutic procedure Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 9
- 230000032683 aging Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 150000001720 carbohydrates Chemical class 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 9
- 230000036470 plasma concentration Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- ZGGHKIMDNBDHJB-NRFPMOEYSA-M (3R,5S)-fluvastatin sodium Chemical compound [Na+].C12=CC=CC=C2N(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)=C1C1=CC=C(F)C=C1 ZGGHKIMDNBDHJB-NRFPMOEYSA-M 0.000 description 8
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 8
- 108010083379 Sarcoglycans Proteins 0.000 description 8
- 239000000090 biomarker Substances 0.000 description 8
- 230000017531 blood circulation Effects 0.000 description 8
- 235000014633 carbohydrates Nutrition 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 235000016709 nutrition Nutrition 0.000 description 8
- 210000002381 plasma Anatomy 0.000 description 8
- 230000002265 prevention Effects 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 230000004913 activation Effects 0.000 description 7
- 235000013361 beverage Nutrition 0.000 description 7
- 230000004069 differentiation Effects 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 201000006938 muscular dystrophy Diseases 0.000 description 7
- 230000008520 organization Effects 0.000 description 7
- 230000008733 trauma Effects 0.000 description 7
- 206010019280 Heart failures Diseases 0.000 description 6
- 206010028372 Muscular weakness Diseases 0.000 description 6
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 description 6
- 230000005856 abnormality Effects 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 108010023082 activin A Proteins 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 230000003915 cell function Effects 0.000 description 6
- 235000009508 confectionery Nutrition 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- XMOCLSLCDHWDHP-IUODEOHRSA-N epi-Gallocatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-IUODEOHRSA-N 0.000 description 6
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 229960004844 lovastatin Drugs 0.000 description 6
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 6
- 235000010755 mineral Nutrition 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 210000003314 quadriceps muscle Anatomy 0.000 description 6
- 229960002855 simvastatin Drugs 0.000 description 6
- 230000000638 stimulation Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012549 training Methods 0.000 description 6
- 229940088594 vitamin Drugs 0.000 description 6
- 229930003231 vitamin Natural products 0.000 description 6
- 235000013343 vitamin Nutrition 0.000 description 6
- 239000011782 vitamin Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 5
- 102000001039 Dystrophin Human genes 0.000 description 5
- 108010069091 Dystrophin Proteins 0.000 description 5
- 206010017076 Fracture Diseases 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 102000008934 Muscle Proteins Human genes 0.000 description 5
- 108010074084 Muscle Proteins Proteins 0.000 description 5
- 208000010428 Muscle Weakness Diseases 0.000 description 5
- 208000000112 Myalgia Diseases 0.000 description 5
- 208000002193 Pain Diseases 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 102000007544 Whey Proteins Human genes 0.000 description 5
- 108010046377 Whey Proteins Proteins 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 230000037182 bone density Effects 0.000 description 5
- 230000000747 cardiac effect Effects 0.000 description 5
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 5
- 235000005487 catechin Nutrition 0.000 description 5
- 229950001002 cianidanol Drugs 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 235000005911 diet Nutrition 0.000 description 5
- 230000037213 diet Effects 0.000 description 5
- 239000003995 emulsifying agent Substances 0.000 description 5
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 5
- 229940088597 hormone Drugs 0.000 description 5
- 239000005556 hormone Substances 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 210000002997 osteoclast Anatomy 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 208000001076 sarcopenia Diseases 0.000 description 5
- 235000013616 tea Nutrition 0.000 description 5
- 235000019871 vegetable fat Nutrition 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 4
- XUKUURHRXDUEBC-UHFFFAOYSA-N Atorvastatin Natural products C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CCC(O)CC(O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 102000019326 Delta-sarcoglycan Human genes 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- WMBWREPUVVBILR-UHFFFAOYSA-N GCG Natural products C=1C(O)=C(O)C(O)=CC=1C1OC2=CC(O)=CC(O)=C2CC1OC(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-UHFFFAOYSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 208000002720 Malnutrition Diseases 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 4
- AJLFOPYRIVGYMJ-UHFFFAOYSA-N SJ000287055 Natural products C12C(OC(=O)C(C)CC)CCC=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 AJLFOPYRIVGYMJ-UHFFFAOYSA-N 0.000 description 4
- 102000006308 Sarcoglycans Human genes 0.000 description 4
- 244000269722 Thea sinensis Species 0.000 description 4
- PNAMDJVUJCJOIX-IUNFJCKHSA-N [(1s,3r,7s,8s,8ar)-8-[2-[(2r,4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl] 2,2-dimethylbutanoate;(3r,4s)-1-(4-fluorophenyl)-3-[(3s)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-hydroxyphenyl)azetidin-2-one Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1.N1([C@@H]([C@H](C1=O)CC[C@H](O)C=1C=CC(F)=CC=1)C=1C=CC(O)=CC=1)C1=CC=C(F)C=C1 PNAMDJVUJCJOIX-IUNFJCKHSA-N 0.000 description 4
- HTIQEAQVCYTUBX-UHFFFAOYSA-N amlodipine Chemical compound CCOC(=O)C1=C(COCCN)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1Cl HTIQEAQVCYTUBX-UHFFFAOYSA-N 0.000 description 4
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 4
- 239000003263 anabolic agent Substances 0.000 description 4
- 206010003246 arthritis Diseases 0.000 description 4
- 230000000386 athletic effect Effects 0.000 description 4
- 229960005370 atorvastatin Drugs 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000001506 calcium phosphate Substances 0.000 description 4
- 230000010261 cell growth Effects 0.000 description 4
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 4
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 4
- RMRCNWBMXRMIRW-BYFNXCQMSA-M cyanocobalamin Chemical compound N#C[Co+]N([C@]1([H])[C@H](CC(N)=O)[C@]\2(CCC(=O)NC[C@H](C)OP(O)(=O)OC3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)C)C/2=C(C)\C([C@H](C/2(C)C)CCC(N)=O)=N\C\2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O RMRCNWBMXRMIRW-BYFNXCQMSA-M 0.000 description 4
- 230000006806 disease prevention Effects 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000013265 extended release Methods 0.000 description 4
- 229960003765 fluvastatin Drugs 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 230000035876 healing Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 230000001071 malnutrition Effects 0.000 description 4
- 235000000824 malnutrition Nutrition 0.000 description 4
- 235000012054 meals Nutrition 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- AJLFOPYRIVGYMJ-INTXDZFKSA-N mevastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=CCC[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 AJLFOPYRIVGYMJ-INTXDZFKSA-N 0.000 description 4
- BOZILQFLQYBIIY-UHFFFAOYSA-N mevastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CCC=C21 BOZILQFLQYBIIY-UHFFFAOYSA-N 0.000 description 4
- 230000004220 muscle function Effects 0.000 description 4
- 230000037257 muscle growth Effects 0.000 description 4
- 230000000926 neurological effect Effects 0.000 description 4
- 208000015380 nutritional deficiency disease Diseases 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 210000000963 osteoblast Anatomy 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 230000002103 transcriptional effect Effects 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 150000000026 (+)-epicatechin Chemical class 0.000 description 3
- WMBWREPUVVBILR-WIYYLYMNSA-N (-)-Epigallocatechin-3-o-gallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@@H]1C=1C=C(O)C(O)=C(O)C=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-WIYYLYMNSA-N 0.000 description 3
- LSHVYAFMTMFKBA-TZIWHRDSSA-N (-)-epicatechin-3-O-gallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@@H]1C=1C=C(O)C(O)=CC=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 LSHVYAFMTMFKBA-TZIWHRDSSA-N 0.000 description 3
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- 102000016938 Catalase Human genes 0.000 description 3
- 108010053835 Catalase Proteins 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- 102000015781 Dietary Proteins Human genes 0.000 description 3
- 108010010256 Dietary Proteins Proteins 0.000 description 3
- LSHVYAFMTMFKBA-UHFFFAOYSA-N ECG Natural products C=1C=C(O)C(O)=CC=1C1OC2=CC(O)=CC(O)=C2CC1OC(=O)C1=CC(O)=C(O)C(O)=C1 LSHVYAFMTMFKBA-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010051696 Growth Hormone Proteins 0.000 description 3
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 3
- 208000026350 Inborn Genetic disease Diseases 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 229920002774 Maltodextrin Polymers 0.000 description 3
- 108010058682 Mitochondrial Proteins Proteins 0.000 description 3
- 102000006404 Mitochondrial Proteins Human genes 0.000 description 3
- 206010028289 Muscle atrophy Diseases 0.000 description 3
- 201000009623 Myopathy Diseases 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 208000025747 Rheumatic disease Diseases 0.000 description 3
- 102100038803 Somatotropin Human genes 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 235000009499 Vanilla fragrans Nutrition 0.000 description 3
- 244000263375 Vanilla tahitensis Species 0.000 description 3
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 3
- 230000001594 aberrant effect Effects 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 229940070021 anabolic steroids Drugs 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000003181 biological factor Substances 0.000 description 3
- 238000001574 biopsy Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000010072 bone remodeling Effects 0.000 description 3
- 108010033929 calcium caseinate Proteins 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 229940071162 caseinate Drugs 0.000 description 3
- 150000001766 catechin derivatives Chemical class 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000002512 chemotherapy Methods 0.000 description 3
- 235000019868 cocoa butter Nutrition 0.000 description 3
- 229940110456 cocoa butter Drugs 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 235000014510 cooky Nutrition 0.000 description 3
- 229960003957 dexamethasone Drugs 0.000 description 3
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 3
- 239000000104 diagnostic biomarker Substances 0.000 description 3
- 235000021245 dietary protein Nutrition 0.000 description 3
- 150000002117 epicatechin derivatives Chemical class 0.000 description 3
- 230000003203 everyday effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000003925 fat Substances 0.000 description 3
- 235000019197 fats Nutrition 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000013312 flour Nutrition 0.000 description 3
- 229960000304 folic acid Drugs 0.000 description 3
- 235000019152 folic acid Nutrition 0.000 description 3
- 239000011724 folic acid Substances 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 208000016361 genetic disease Diseases 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 239000000122 growth hormone Substances 0.000 description 3
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 208000028867 ischemia Diseases 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 239000000787 lecithin Substances 0.000 description 3
- 235000010445 lecithin Nutrition 0.000 description 3
- 229940067606 lecithin Drugs 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 235000001055 magnesium Nutrition 0.000 description 3
- 235000019359 magnesium stearate Nutrition 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 230000008437 mitochondrial biogenesis Effects 0.000 description 3
- 230000009756 muscle regeneration Effects 0.000 description 3
- 201000000585 muscular atrophy Diseases 0.000 description 3
- 210000003098 myoblast Anatomy 0.000 description 3
- 229930014626 natural product Natural products 0.000 description 3
- 230000035764 nutrition Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000036542 oxidative stress Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 208000005987 polymyositis Diseases 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229960004618 prednisone Drugs 0.000 description 3
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229940116540 protein supplement Drugs 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- ZUFQODAHGAHPFQ-UHFFFAOYSA-N pyridoxine hydrochloride Chemical compound Cl.CC1=NC=C(CO)C(CO)=C1O ZUFQODAHGAHPFQ-UHFFFAOYSA-N 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000000552 rheumatic effect Effects 0.000 description 3
- 235000014438 salad dressings Nutrition 0.000 description 3
- 210000002235 sarcomere Anatomy 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 210000001057 smooth muscle myoblast Anatomy 0.000 description 3
- 235000011888 snacks Nutrition 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 230000037078 sports performance Effects 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 208000011580 syndromic disease Diseases 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 235000021119 whey protein Nutrition 0.000 description 3
- PHIQHXFUZVPYII-ZCFIWIBFSA-N (R)-carnitine Chemical compound C[N+](C)(C)C[C@H](O)CC([O-])=O PHIQHXFUZVPYII-ZCFIWIBFSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 2
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- PMYDPQQPEAYXKD-UHFFFAOYSA-N 3-hydroxy-n-naphthalen-2-ylnaphthalene-2-carboxamide Chemical compound C1=CC=CC2=CC(NC(=O)C3=CC4=CC=CC=C4C=C3O)=CC=C21 PMYDPQQPEAYXKD-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 239000004135 Bone phosphate Substances 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 206010007559 Cardiac failure congestive Diseases 0.000 description 2
- 108010076119 Caseins Proteins 0.000 description 2
- 102000011632 Caseins Human genes 0.000 description 2
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 2
- VGMFHMLQOYWYHN-UHFFFAOYSA-N Compactin Natural products OCC1OC(OC2C(O)C(O)C(CO)OC2Oc3cc(O)c4C(=O)C(=COc4c3)c5ccc(O)c(O)c5)C(O)C(O)C1O VGMFHMLQOYWYHN-UHFFFAOYSA-N 0.000 description 2
- OCUCCJIRFHNWBP-IYEMJOQQSA-L Copper gluconate Chemical compound [Cu+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OCUCCJIRFHNWBP-IYEMJOQQSA-L 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 102000004420 Creatine Kinase Human genes 0.000 description 2
- 108010042126 Creatine kinase Proteins 0.000 description 2
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 2
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 101100239693 Dictyostelium discoideum myoD gene Proteins 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 102100029379 Follistatin-related protein 3 Human genes 0.000 description 2
- 208000024412 Friedreich ataxia Diseases 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 208000001019 Inborn Errors Metabolism Diseases 0.000 description 2
- XMOCLSLCDHWDHP-UHFFFAOYSA-N L-Epigallocatechin Natural products OC1CC2=C(O)C=C(O)C=C2OC1C1=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-UHFFFAOYSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 239000005913 Maltodextrin Substances 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- ABSPRNADVQNDOU-UHFFFAOYSA-N Menaquinone 1 Natural products C1=CC=C2C(=O)C(CC=C(C)C)=C(C)C(=O)C2=C1 ABSPRNADVQNDOU-UHFFFAOYSA-N 0.000 description 2
- 201000009906 Meningitis Diseases 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 208000009525 Myocarditis Diseases 0.000 description 2
- 102000004364 Myogenin Human genes 0.000 description 2
- 108010056785 Myogenin Proteins 0.000 description 2
- 102000036675 Myoglobin Human genes 0.000 description 2
- 108010062374 Myoglobin Proteins 0.000 description 2
- 201000002481 Myositis Diseases 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 208000005764 Peripheral Arterial Disease Diseases 0.000 description 2
- 208000030831 Peripheral arterial occlusive disease Diseases 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- 102100032891 Superoxide dismutase [Mn], mitochondrial Human genes 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 102000004903 Troponin Human genes 0.000 description 2
- 108090001027 Troponin Proteins 0.000 description 2
- 206010057469 Vascular stenosis Diseases 0.000 description 2
- 206010047115 Vasculitis Diseases 0.000 description 2
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 2
- 229930003268 Vitamin C Natural products 0.000 description 2
- 239000005862 Whey Substances 0.000 description 2
- YVPOVOVZCOOSBQ-AXHZAXLDSA-N [(1s,3r,7s,8s,8ar)-8-[2-[(2r,4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl] (2s)-2-methylbutanoate;pyridine-3-carboxylic acid Chemical compound OC(=O)C1=CC=CN=C1.C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 YVPOVOVZCOOSBQ-AXHZAXLDSA-N 0.000 description 2
- WNWXXAPGHTVCDL-OKDJMAGBSA-N [(1s,3r,7s,8s,8ar)-8-[2-[(2r,4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl] 2,2-dimethylbutanoate;pyridine-3-carboxylic acid Chemical compound OC(=O)C1=CC=CN=C1.C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 WNWXXAPGHTVCDL-OKDJMAGBSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 229940034653 advicor Drugs 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 2
- 229940027030 altoprev Drugs 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 229960000528 amlodipine Drugs 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 238000003149 assay kit Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 235000013734 beta-carotene Nutrition 0.000 description 2
- 239000011648 beta-carotene Substances 0.000 description 2
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 2
- 229960002747 betacarotene Drugs 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000033558 biomineral tissue development Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 235000015895 biscuits Nutrition 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000037118 bone strength Effects 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 229940022418 caduet Drugs 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 2
- 239000001639 calcium acetate Substances 0.000 description 2
- 235000011092 calcium acetate Nutrition 0.000 description 2
- 229960005147 calcium acetate Drugs 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 229960002079 calcium pantothenate Drugs 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000019522 cellular metabolic process Effects 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 229940108925 copper gluconate Drugs 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 229940099112 cornstarch Drugs 0.000 description 2
- 229960003624 creatine Drugs 0.000 description 2
- 239000006046 creatine Substances 0.000 description 2
- 229940109239 creatinine Drugs 0.000 description 2
- 229940066901 crestor Drugs 0.000 description 2
- 238000011461 current therapy Methods 0.000 description 2
- 235000000639 cyanocobalamin Nutrition 0.000 description 2
- 239000011666 cyanocobalamin Substances 0.000 description 2
- 229960002104 cyanocobalamin Drugs 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 235000013365 dairy product Nutrition 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000002638 denervation Effects 0.000 description 2
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 2
- BVTBRVFYZUCAKH-UHFFFAOYSA-L disodium selenite Chemical compound [Na+].[Na+].[O-][Se]([O-])=O BVTBRVFYZUCAKH-UHFFFAOYSA-L 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 239000008298 dragée Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 239000000890 drug combination Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000002702 enteric coating Substances 0.000 description 2
- 238000009505 enteric coating Methods 0.000 description 2
- DZYNKLUGCOSVKS-UHFFFAOYSA-N epigallocatechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3cc(O)c(O)c(O)c3 DZYNKLUGCOSVKS-UHFFFAOYSA-N 0.000 description 2
- 229940011871 estrogen Drugs 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 229940054572 ezetimibe / simvastatin Drugs 0.000 description 2
- 239000010685 fatty oil Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 239000003862 glucocorticoid Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 229960003180 glutathione Drugs 0.000 description 2
- BPMFZUMJYQTVII-UHFFFAOYSA-N guanidinoacetic acid Chemical compound NC(=N)NCC(O)=O BPMFZUMJYQTVII-UHFFFAOYSA-N 0.000 description 2
- 235000003642 hunger Nutrition 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000016245 inborn errors of metabolism Diseases 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 229940060367 inert ingredients Drugs 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 208000015978 inherited metabolic disease Diseases 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229960000367 inositol Drugs 0.000 description 2
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 2
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229940103465 juvisync Drugs 0.000 description 2
- 208000006443 lactic acidosis Diseases 0.000 description 2
- 229940095570 lescol Drugs 0.000 description 2
- 239000000865 liniment Substances 0.000 description 2
- AGBQKNBQESQNJD-UHFFFAOYSA-N lipoic acid Chemical compound OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 description 2
- 235000021056 liquid food Nutrition 0.000 description 2
- 229940092923 livalo Drugs 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical class [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229940035034 maltodextrin Drugs 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229960001810 meprednisone Drugs 0.000 description 2
- PIDANAQULIKBQS-RNUIGHNZSA-N meprednisone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)CC2=O PIDANAQULIKBQS-RNUIGHNZSA-N 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 229940099246 mevacor Drugs 0.000 description 2
- 229950009116 mevastatin Drugs 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 229940029985 mineral supplement Drugs 0.000 description 2
- 235000020786 mineral supplement Nutrition 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000021332 multicellular organism growth Effects 0.000 description 2
- 235000020772 multivitamin supplement Nutrition 0.000 description 2
- 208000013465 muscle pain Diseases 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 229960003966 nicotinamide Drugs 0.000 description 2
- 235000005152 nicotinamide Nutrition 0.000 description 2
- 239000011570 nicotinamide Substances 0.000 description 2
- 235000001968 nicotinic acid Nutrition 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 235000019520 non-alcoholic beverage Nutrition 0.000 description 2
- 235000014571 nuts Nutrition 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- 108010007425 oligomycin sensitivity conferring protein Proteins 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 235000021400 peanut butter Nutrition 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 2
- MBWXNTAXLNYFJB-NKFFZRIASA-N phylloquinone Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CCC[C@H](C)CCC[C@H](C)CCCC(C)C)=C(C)C(=O)C2=C1 MBWXNTAXLNYFJB-NKFFZRIASA-N 0.000 description 2
- 235000019175 phylloquinone Nutrition 0.000 description 2
- 239000011772 phylloquinone Substances 0.000 description 2
- 229960001898 phytomenadione Drugs 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229960002797 pitavastatin Drugs 0.000 description 2
- VGYFMXBACGZSIL-MCBHFWOFSA-N pitavastatin Chemical compound OC(=O)C[C@H](O)C[C@H](O)\C=C\C1=C(C2CC2)N=C2C=CC=CC2=C1C1=CC=C(F)C=C1 VGYFMXBACGZSIL-MCBHFWOFSA-N 0.000 description 2
- RHGYHLPFVJEAOC-FFNUKLMVSA-L pitavastatin calcium Chemical compound [Ca+2].[O-]C(=O)C[C@H](O)C[C@H](O)\C=C\C1=C(C2CC2)N=C2C=CC=CC2=C1C1=CC=C(F)C=C1.[O-]C(=O)C[C@H](O)C[C@H](O)\C=C\C1=C(C2CC2)N=C2C=CC=CC2=C1C1=CC=C(F)C=C1 RHGYHLPFVJEAOC-FFNUKLMVSA-L 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Substances [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 235000011056 potassium acetate Nutrition 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 229940089484 pravachol Drugs 0.000 description 2
- 229960002965 pravastatin Drugs 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 235000011962 puddings Nutrition 0.000 description 2
- 235000019171 pyridoxine hydrochloride Nutrition 0.000 description 2
- 239000011764 pyridoxine hydrochloride Substances 0.000 description 2
- 229960004172 pyridoxine hydrochloride Drugs 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 235000019192 riboflavin Nutrition 0.000 description 2
- 229960002477 riboflavin Drugs 0.000 description 2
- 239000002151 riboflavin Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 229960000672 rosuvastatin Drugs 0.000 description 2
- BPRHUIZQVSMCRT-VEUZHWNKSA-N rosuvastatin Chemical compound CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC(O)=O BPRHUIZQVSMCRT-VEUZHWNKSA-N 0.000 description 2
- LALFOYNTGMUKGG-BGRFNVSISA-L rosuvastatin calcium Chemical compound [Ca+2].CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O.CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O LALFOYNTGMUKGG-BGRFNVSISA-L 0.000 description 2
- 235000015067 sauces Nutrition 0.000 description 2
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 2
- 239000000849 selective androgen receptor modulator Substances 0.000 description 2
- 229940103449 simcor Drugs 0.000 description 2
- MFFMDFFZMYYVKS-SECBINFHSA-N sitagliptin Chemical compound C([C@H](CC(=O)N1CC=2N(C(=NN=2)C(F)(F)F)CC1)N)C1=CC(F)=C(F)C=C1F MFFMDFFZMYYVKS-SECBINFHSA-N 0.000 description 2
- 229960004034 sitagliptin Drugs 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011684 sodium molybdate Substances 0.000 description 2
- 235000015393 sodium molybdate Nutrition 0.000 description 2
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 2
- 239000011655 sodium selenate Substances 0.000 description 2
- 235000018716 sodium selenate Nutrition 0.000 description 2
- 229960001881 sodium selenate Drugs 0.000 description 2
- 239000011781 sodium selenite Substances 0.000 description 2
- 235000015921 sodium selenite Nutrition 0.000 description 2
- 229960001471 sodium selenite Drugs 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 231100001060 spine abnormality Toxicity 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 229940032147 starch Drugs 0.000 description 2
- 230000037351 starvation Effects 0.000 description 2
- 108010045815 superoxide dismutase 2 Proteins 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 229940037128 systemic glucocorticoids Drugs 0.000 description 2
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- UIERGBJEBXXIGO-UHFFFAOYSA-N thiamine mononitrate Chemical compound [O-][N+]([O-])=O.CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N UIERGBJEBXXIGO-UHFFFAOYSA-N 0.000 description 2
- 210000002303 tibia Anatomy 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 2
- 210000000689 upper leg Anatomy 0.000 description 2
- 235000019155 vitamin A Nutrition 0.000 description 2
- 239000011719 vitamin A Substances 0.000 description 2
- 235000019154 vitamin C Nutrition 0.000 description 2
- 239000011718 vitamin C Substances 0.000 description 2
- 235000005282 vitamin D3 Nutrition 0.000 description 2
- 239000011647 vitamin D3 Substances 0.000 description 2
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 2
- 229940045997 vitamin a Drugs 0.000 description 2
- 229940021056 vitamin d3 Drugs 0.000 description 2
- 239000000341 volatile oil Substances 0.000 description 2
- 229940009349 vytorin Drugs 0.000 description 2
- 235000019220 whole milk chocolate Nutrition 0.000 description 2
- 235000013618 yogurt Nutrition 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 description 2
- 229960001763 zinc sulfate Drugs 0.000 description 2
- 229940072168 zocor Drugs 0.000 description 2
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 2
- XMOCLSLCDHWDHP-SWLSCSKDSA-N (+)-Epigallocatechin Natural products C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-SWLSCSKDSA-N 0.000 description 1
- XMOCLSLCDHWDHP-WFASDCNBSA-N (+)-epigallocatechin Chemical compound C1([C@@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-WFASDCNBSA-N 0.000 description 1
- LSPHULWDVZXLIL-UHFFFAOYSA-N (+/-)-Camphoric acid Chemical compound CC1(C)C(C(O)=O)CCC1(C)C(O)=O LSPHULWDVZXLIL-UHFFFAOYSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- IWYDHOAUDWTVEP-ZETCQYMHSA-N (S)-mandelic acid Chemical compound OC(=O)[C@@H](O)C1=CC=CC=C1 IWYDHOAUDWTVEP-ZETCQYMHSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical class CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- LXFQSRIDYRFTJW-UHFFFAOYSA-M 2,4,6-trimethylbenzenesulfonate Chemical compound CC1=CC(C)=C(S([O-])(=O)=O)C(C)=C1 LXFQSRIDYRFTJW-UHFFFAOYSA-M 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- MEJYXFHCRXAUIL-UHFFFAOYSA-N 2-[carbamimidoyl(methyl)amino]acetic acid;hydrate Chemical compound O.NC(=N)N(C)CC(O)=O MEJYXFHCRXAUIL-UHFFFAOYSA-N 0.000 description 1
- 229940080296 2-naphthalenesulfonate Drugs 0.000 description 1
- WMPPDTMATNBGJN-UHFFFAOYSA-N 2-phenylethylbromide Chemical class BrCCC1=CC=CC=C1 WMPPDTMATNBGJN-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 description 1
- 102000018918 Activin Receptors Human genes 0.000 description 1
- 108010052946 Activin Receptors Proteins 0.000 description 1
- 108010059616 Activins Proteins 0.000 description 1
- 102000005606 Activins Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 102100033367 Appetite-regulating hormone Human genes 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 240000002999 Bacopa monnieri Species 0.000 description 1
- 235000015418 Bacopa monnieria Nutrition 0.000 description 1
- 241000220487 Bauhinia Species 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 229940122361 Bisphosphonate Drugs 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000208365 Celastraceae Species 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- 241000132536 Cirsium Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- BWLUMTFWVZZZND-UHFFFAOYSA-N Dibenzylamine Chemical compound C=1C=CC=CC=1CNCC1=CC=CC=C1 BWLUMTFWVZZZND-UHFFFAOYSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010066871 Disuse syndrome Diseases 0.000 description 1
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 1
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102000004168 Dysferlin Human genes 0.000 description 1
- 108090000620 Dysferlin Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 108010012820 Follistatin-Related Proteins Proteins 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 1
- 241000531753 Geranium robertianum Species 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-M Glycolate Chemical compound OCC([O-])=O AEMRFAOFKBGASW-UHFFFAOYSA-M 0.000 description 1
- 101710119601 Growth hormone-releasing peptides Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 101001062529 Homo sapiens Follistatin-related protein 3 Proteins 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- 206010060820 Joint injury Diseases 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 102000004407 Lactalbumin Human genes 0.000 description 1
- 108090000942 Lactalbumin Proteins 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 102100026639 MICOS complex subunit MIC60 Human genes 0.000 description 1
- 101710128942 MICOS complex subunit MIC60 Proteins 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 235000010654 Melissa officinalis Nutrition 0.000 description 1
- 244000062730 Melissa officinalis Species 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 240000009023 Myrrhis odorata Species 0.000 description 1
- 235000007265 Myrrhis odorata Nutrition 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- QIAFMBKCNZACKA-UHFFFAOYSA-N N-benzoylglycine Chemical compound OC(=O)CNC(=O)C1=CC=CC=C1 QIAFMBKCNZACKA-UHFFFAOYSA-N 0.000 description 1
- 229910020700 Na3VO4 Inorganic materials 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- 102100034404 Nuclear factor of activated T-cells, cytoplasmic 1 Human genes 0.000 description 1
- 101710151542 Nuclear factor of activated T-cells, cytoplasmic 1 Proteins 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 241000906034 Orthops Species 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 206010033307 Overweight Diseases 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 235000000556 Paullinia cupana Nutrition 0.000 description 1
- 240000003444 Paullinia cupana Species 0.000 description 1
- 235000008690 Pausinystalia yohimbe Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 208000001300 Perinatal Death Diseases 0.000 description 1
- 208000006735 Periostitis Diseases 0.000 description 1
- CXOFVDLJLONNDW-UHFFFAOYSA-N Phenytoin Chemical compound N1C(=O)NC(=O)C1(C=1C=CC=CC=1)C1=CC=CC=C1 CXOFVDLJLONNDW-UHFFFAOYSA-N 0.000 description 1
- 229940122907 Phosphatase inhibitor Drugs 0.000 description 1
- 235000012550 Pimpinella anisum Nutrition 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 108010013381 Porins Proteins 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241001165494 Rhodiola Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 239000004283 Sodium sorbate Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000000336 Solanum dulcamara Nutrition 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 108010049264 Teriparatide Proteins 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 235000018907 Tylosema fassoglense Nutrition 0.000 description 1
- 102000011856 Utrophin Human genes 0.000 description 1
- 108010075653 Utrophin Proteins 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 229920001938 Vegetable gum Polymers 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- LXNHXLLTXMVWPM-UHFFFAOYSA-N Vitamin B6 Natural products CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 1
- 235000019498 Walnut oil Nutrition 0.000 description 1
- IAIWVQXQOWNYOU-BAQGIRSFSA-N [(z)-(5-nitrofuran-2-yl)methylideneamino]urea Chemical compound NC(=O)N\N=C/C1=CC=C([N+]([O-])=O)O1 IAIWVQXQOWNYOU-BAQGIRSFSA-N 0.000 description 1
- VEUACKUBDLVUAC-UHFFFAOYSA-N [Na].[Ca] Chemical compound [Na].[Ca] VEUACKUBDLVUAC-UHFFFAOYSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 239000000619 acesulfame-K Substances 0.000 description 1
- 229960004308 acetylcysteine Drugs 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000488 activin Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000013334 alcoholic beverage Nutrition 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229940124325 anabolic agent Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000006053 animal diet Substances 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 238000011861 anti-inflammatory therapy Methods 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 235000015197 apple juice Nutrition 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 239000003886 aromatase inhibitor Substances 0.000 description 1
- 229940046844 aromatase inhibitors Drugs 0.000 description 1
- 239000008122 artificial sweetener Substances 0.000 description 1
- 235000021311 artificial sweeteners Nutrition 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- FQCKMBLVYCEXJB-MNSAWQCASA-L atorvastatin calcium Chemical compound [Ca+2].C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC([O-])=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1.C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC([O-])=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 FQCKMBLVYCEXJB-MNSAWQCASA-L 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 235000015173 baked goods and baking mixes Nutrition 0.000 description 1
- 229940002010 banana extract Drugs 0.000 description 1
- 239000010620 bay oil Substances 0.000 description 1
- 235000012677 beetroot red Nutrition 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 150000004663 bisphosphonates Chemical class 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 150000004648 butanoic acid derivatives Chemical class 0.000 description 1
- 235000015155 buttermilk Nutrition 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 235000012970 cakes Nutrition 0.000 description 1
- 229960003563 calcium carbonate Drugs 0.000 description 1
- 239000001201 calcium disodium ethylene diamine tetra-acetate Substances 0.000 description 1
- 235000011188 calcium disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- SHWNNYZBHZIQQV-UHFFFAOYSA-L calcium;disodium;2-[2-[bis(carboxylatomethyl)azaniumyl]ethyl-(carboxylatomethyl)azaniumyl]acetate Chemical compound [Na+].[Na+].[Ca+2].[O-]C(=O)C[NH+](CC([O-])=O)CC[NH+](CC([O-])=O)CC([O-])=O SHWNNYZBHZIQQV-UHFFFAOYSA-L 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229960004203 carnitine Drugs 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000010627 cedar oil Substances 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000010630 cinnamon oil Substances 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 239000001926 citrus aurantium l. subsp. bergamia wright et arn. oil Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000010634 clove oil Substances 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000019545 cooked cereal Nutrition 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229960004826 creatine monohydrate Drugs 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical class OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 235000019543 dairy drink Nutrition 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229960001145 deflazacort Drugs 0.000 description 1
- FBHSPRKOSMHSIF-GRMWVWQJSA-N deflazacort Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(C)=N[C@@]3(C(=O)COC(=O)C)[C@@]1(C)C[C@@H]2O FBHSPRKOSMHSIF-GRMWVWQJSA-N 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000020930 dietary requirements Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- GAFRWLVTHPVQGK-UHFFFAOYSA-N dipentyl sulfate Chemical class CCCCCOS(=O)(=O)OCCCCC GAFRWLVTHPVQGK-UHFFFAOYSA-N 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000001378 electrochemiluminescence detection Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 239000002834 estrogen receptor modulator Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 235000021050 feed intake Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000007897 gelcap Substances 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 229940114119 gentisate Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid Chemical compound OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 235000015201 grapefruit juice Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 235000013882 gravy Nutrition 0.000 description 1
- 239000003324 growth hormone secretagogue Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 235000015243 ice cream Nutrition 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000030214 innervation Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- GCHPUFAZSONQIV-UHFFFAOYSA-N isovaline Chemical compound CCC(C)(N)C(O)=O GCHPUFAZSONQIV-UHFFFAOYSA-N 0.000 description 1
- 208000018937 joint inflammation Diseases 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 235000015122 lemonade Nutrition 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 229940002661 lipitor Drugs 0.000 description 1
- 235000019136 lipoic acid Nutrition 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 235000004213 low-fat Nutrition 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 229940057948 magnesium stearate Drugs 0.000 description 1
- 229940091250 magnesium supplement Drugs 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 235000010746 mayonnaise Nutrition 0.000 description 1
- 239000008268 mayonnaise Substances 0.000 description 1
- 235000013622 meat product Nutrition 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000009245 menopause Effects 0.000 description 1
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 235000020166 milkshake Nutrition 0.000 description 1
- 230000004898 mitochondrial function Effects 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 230000020763 muscle atrophy Effects 0.000 description 1
- 238000001964 muscle biopsy Methods 0.000 description 1
- 210000003130 muscle precursor cell Anatomy 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ACTNHJDHMQSOGL-UHFFFAOYSA-N n',n'-dibenzylethane-1,2-diamine Chemical compound C=1C=CC=CC=1CN(CCN)CC1=CC=CC=C1 ACTNHJDHMQSOGL-UHFFFAOYSA-N 0.000 description 1
- UQEIFYRRSNJVDO-UHFFFAOYSA-N n,n-dibenzyl-2-phenylethanamine Chemical compound C=1C=CC=CC=1CN(CC=1C=CC=CC=1)CCC1=CC=CC=C1 UQEIFYRRSNJVDO-UHFFFAOYSA-N 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-M naphthalene-2-sulfonate Chemical compound C1=CC=CC2=CC(S(=O)(=O)[O-])=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-M 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000009806 oophorectomy Methods 0.000 description 1
- 238000003305 oral gavage Methods 0.000 description 1
- 235000015205 orange juice Nutrition 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 235000017802 other dietary supplement Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 235000021485 packed food Nutrition 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 235000020737 peppermint extract Nutrition 0.000 description 1
- 235000019477 peppermint oil Nutrition 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- 210000003460 periosteum Anatomy 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000008251 pharmaceutical emulsion Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000007971 pharmaceutical suspension Substances 0.000 description 1
- DDBREPKUVSBGFI-UHFFFAOYSA-N phenobarbital Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NC(=O)NC1=O DDBREPKUVSBGFI-UHFFFAOYSA-N 0.000 description 1
- 229960002695 phenobarbital Drugs 0.000 description 1
- 229960002036 phenytoin Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229940067631 phospholipid Drugs 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229940075930 picrate Drugs 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-M picrate anion Chemical compound [O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-M 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229940013712 pineapple extract Drugs 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 229950010765 pivalate Drugs 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 102000007739 porin activity proteins Human genes 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000004300 potassium benzoate Substances 0.000 description 1
- 235000010235 potassium benzoate Nutrition 0.000 description 1
- 229940103091 potassium benzoate Drugs 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- RADKZDMFGJYCBB-UHFFFAOYSA-N pyridoxal hydrochloride Natural products CC1=NC=C(CO)C(C=O)=C1O RADKZDMFGJYCBB-UHFFFAOYSA-N 0.000 description 1
- 229940043131 pyroglutamate Drugs 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 235000021309 simple sugar Nutrition 0.000 description 1
- 230000004096 skeletal muscle tissue growth Effects 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 229960003885 sodium benzoate Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 229940080237 sodium caseinate Drugs 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- LROWVYNUWKVTCU-STWYSWDKSA-M sodium sorbate Chemical compound [Na+].C\C=C\C=C\C([O-])=O LROWVYNUWKVTCU-STWYSWDKSA-M 0.000 description 1
- 235000019250 sodium sorbate Nutrition 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 235000013322 soy milk Nutrition 0.000 description 1
- 229940001941 soy protein Drugs 0.000 description 1
- 229940071440 soy protein isolate Drugs 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229960004274 stearic acid Drugs 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- OGBMKVWORPGQRR-UMXFMPSGSA-N teriparatide Chemical compound C([C@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)C(C)C)[C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CNC=N1 OGBMKVWORPGQRR-UMXFMPSGSA-N 0.000 description 1
- 229960005460 teriparatide Drugs 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229960002663 thioctic acid Drugs 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 235000015149 toffees Nutrition 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- 229940066528 trichloroacetate Drugs 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 1
- 230000001228 trophic effect Effects 0.000 description 1
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 235000019158 vitamin B6 Nutrition 0.000 description 1
- 239000011726 vitamin B6 Substances 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
- 239000008170 walnut oil Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 235000019222 white chocolate Nutrition 0.000 description 1
- 235000008924 yoghurt drink Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
- A61K31/353—3,4-Dihydrobenzopyrans, e.g. chroman, catechin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
- A61K31/573—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/59—Compounds containing 9, 10- seco- cyclopenta[a]hydrophenanthrene ring systems
- A61K31/593—9,10-Secocholestane derivatives, e.g. cholecalciferol, i.e. vitamin D3
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/06—Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/74—Benzo[b]pyrans, hydrogenated in the carbocyclic ring
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Physical Education & Sports Medicine (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present inventions relates to compounds and compositions and their applications as pharmaceuticals for ameliorating injury to, or weakness of, or loss of, bone, or to prevent bone fractures. Exemplified herein is the administration to a subject of a therapeutically effective dose of (+)-epicatechin and/or (-)-epicatechin, or a epicatechin derivative for ameliorating injury to, or weakness of, or loss of, bone, or to prevent bone fractures
Description
COMPOUNDS AND COMPOSITIONS FOR THE TREATMENT
OF MUSCULAR DISORDERS
Disclosed herein are compounds and compositions and their application as pharmaceuticals for treating, preventing, or reversing injury to skeletal or cardiac muscles, for treating or preventing diseases relating to the structure and function of skeletal or cardiac muscle, and for inducing regeneration or restructuring of skeletal or cardiac muscle as a means of treating diseases relating to abnormalities in skeletal or cardiac muscle structure and function in a human or animal subject. Also disclosed herein are methods for diagnosing injury to skeletal or cardiac muscle and for diagnosing the success or failure of therapeutics designed to treat, prevent, or reverse injury to skeletal muscle or cardiac muscle.
Strength and endurance of skeletal muscle is essential for gripping, carrying, walking, running, carrying or enabling numerous functions of everyday life. Strength and endurance of cardiac muscle is essential for the optimum delivery of oxygen and nutrients to all tissues containing blood vessels and for the carrying away of waste products of cell metabolism.
Injury to skeletal or cardiac muscle or diseases relating to abnormal structure or function of skeletal or cardiac muscle can make normal activities of everyday life difficult or impossible.
Further, injury to, or weakness of, skeletal muscle generally results in a loss of bone density in the bones to which that muscle is attached. In the case of generalized muscle weakness, reduction in bone density can be generalized, one of the causes of the bone disease known as osteoporosis. Bone formation or maintenance of healthy bone density is the net outcome of two opposing cellular processes. Ostoblasts form bone; they are derived from mesenchymal cell precursor cells. Osteoclasts degrade bone; they are formed from macrophage precursors. Bone diseases arise when these two cellular components of bone remodeling are imbalanced.
Excessive osteoclast activation or impaired osteoblast generation results in osteoporosis, a state in which bone is excessively susceptible to fracture (Raggatt, L et al, 2010, Cellular and molecular mechanisms of bone remodeling, J Biol Chem 285: 25103-25108).
Another cause of osteoporosis is chronic anti-inflammatory therapy with glucocorticoids, which also weaken muscle. Corticosteroids induce the activation of osteoclasts and stimulate apoptosis of osteoblasts, shifting the balance of bone remodeling toward a state of increased incidence of pahological fractures. Current therapies are limited with respect to efficacy, and primarily consist of bisphosphonates and anabolic agents such as teriparatide. Both classes of drugs carry significant side effects and safety risks, resulting in poor compliance of patients placed on these agents. There exists a significant need for additional agents to safely and effectively treat osteoporosis.
In addition to glucocorticoids , other factors known to activate osteoclasts include members of the transforming growth factor 0 family, including Activin A and myostatin.
Follistatin is a protein that serves as a naturally occuring inhibitor of myostatin and Activin A with respect to its stimulation of muscle regeneration and thus preventing or reversing the muscle atrophy associated with myostatin and Activin A. Follistatin has been shown to suppress the Activin A ¨
mediated stimulation of NFATc 1, a regulator of osteoclastogenesis ( Kajita, T
et al, 2018, Mechansisms involved in enhancement of osteoclast formation by activin-A, J
Cell Biochem 119:6974-6985;Kawao, N et al, 2018 Role of follistatin in muscle and bone alterations induced by gravity change in mice, J cell Physiol 233:1191-1201) Injury to skeletal or cardiac muscle can occur as a result of genetic mutations in proteins critical to the structure and function of skeletal muscle or cardiac muscle, inadequate or interrupted blood flow, inactivity due to joint injury or inflammation, as is seen with arthritis, excessive exposure to oxidation injury as a result of defective cell metabolism or inadequate blood flow, exposure to toxic organic or inorganic substances such as elevated glucose, heavy metals, or inflammatory products, trauma due to injury or excessive activity, or exposure to certain medications such as statins, corticosteroids, or chemotherapy, among other causes. Examples of inflammatory diseases associated with muscle disorders include polymyositis, polymyalgia rheumatic a, and systemic lupus erythematosus.
Injury to skeletal muscle and consequent weakness or atrophy can occur as a result of injury or disorders of the neurons subserving muscle function. Appropriate innervation is essential to
OF MUSCULAR DISORDERS
Disclosed herein are compounds and compositions and their application as pharmaceuticals for treating, preventing, or reversing injury to skeletal or cardiac muscles, for treating or preventing diseases relating to the structure and function of skeletal or cardiac muscle, and for inducing regeneration or restructuring of skeletal or cardiac muscle as a means of treating diseases relating to abnormalities in skeletal or cardiac muscle structure and function in a human or animal subject. Also disclosed herein are methods for diagnosing injury to skeletal or cardiac muscle and for diagnosing the success or failure of therapeutics designed to treat, prevent, or reverse injury to skeletal muscle or cardiac muscle.
Strength and endurance of skeletal muscle is essential for gripping, carrying, walking, running, carrying or enabling numerous functions of everyday life. Strength and endurance of cardiac muscle is essential for the optimum delivery of oxygen and nutrients to all tissues containing blood vessels and for the carrying away of waste products of cell metabolism.
Injury to skeletal or cardiac muscle or diseases relating to abnormal structure or function of skeletal or cardiac muscle can make normal activities of everyday life difficult or impossible.
Further, injury to, or weakness of, skeletal muscle generally results in a loss of bone density in the bones to which that muscle is attached. In the case of generalized muscle weakness, reduction in bone density can be generalized, one of the causes of the bone disease known as osteoporosis. Bone formation or maintenance of healthy bone density is the net outcome of two opposing cellular processes. Ostoblasts form bone; they are derived from mesenchymal cell precursor cells. Osteoclasts degrade bone; they are formed from macrophage precursors. Bone diseases arise when these two cellular components of bone remodeling are imbalanced.
Excessive osteoclast activation or impaired osteoblast generation results in osteoporosis, a state in which bone is excessively susceptible to fracture (Raggatt, L et al, 2010, Cellular and molecular mechanisms of bone remodeling, J Biol Chem 285: 25103-25108).
Another cause of osteoporosis is chronic anti-inflammatory therapy with glucocorticoids, which also weaken muscle. Corticosteroids induce the activation of osteoclasts and stimulate apoptosis of osteoblasts, shifting the balance of bone remodeling toward a state of increased incidence of pahological fractures. Current therapies are limited with respect to efficacy, and primarily consist of bisphosphonates and anabolic agents such as teriparatide. Both classes of drugs carry significant side effects and safety risks, resulting in poor compliance of patients placed on these agents. There exists a significant need for additional agents to safely and effectively treat osteoporosis.
In addition to glucocorticoids , other factors known to activate osteoclasts include members of the transforming growth factor 0 family, including Activin A and myostatin.
Follistatin is a protein that serves as a naturally occuring inhibitor of myostatin and Activin A with respect to its stimulation of muscle regeneration and thus preventing or reversing the muscle atrophy associated with myostatin and Activin A. Follistatin has been shown to suppress the Activin A ¨
mediated stimulation of NFATc 1, a regulator of osteoclastogenesis ( Kajita, T
et al, 2018, Mechansisms involved in enhancement of osteoclast formation by activin-A, J
Cell Biochem 119:6974-6985;Kawao, N et al, 2018 Role of follistatin in muscle and bone alterations induced by gravity change in mice, J cell Physiol 233:1191-1201) Injury to skeletal or cardiac muscle can occur as a result of genetic mutations in proteins critical to the structure and function of skeletal muscle or cardiac muscle, inadequate or interrupted blood flow, inactivity due to joint injury or inflammation, as is seen with arthritis, excessive exposure to oxidation injury as a result of defective cell metabolism or inadequate blood flow, exposure to toxic organic or inorganic substances such as elevated glucose, heavy metals, or inflammatory products, trauma due to injury or excessive activity, or exposure to certain medications such as statins, corticosteroids, or chemotherapy, among other causes. Examples of inflammatory diseases associated with muscle disorders include polymyositis, polymyalgia rheumatic a, and systemic lupus erythematosus.
Injury to skeletal muscle and consequent weakness or atrophy can occur as a result of injury or disorders of the neurons subserving muscle function. Appropriate innervation is essential to
2 skeletal muscle health and function. Neurodegenerative diseases amenable to treatment with agents stimulating muscle strength and neuromuscular health include amyotrophic lateral sclerosis (ALS), Parkinson's disease, Huntington's disease, spinal cord injury or abnormality, and peripheral and central neuropathies.
Currently therapies emphasize prevention, such as use of stents to improve blood flow through areas of vascular narrowing. There are general supportive interventions to help the muscle repair itself, such as the nutritional provision of muscle protein precursors such as amino acids or creatine. Current therapies may address the underlying disorder associated with cardiac or skeletal muscle dysfunction without directly treating the muscle cells themselves. The only accepted therapy directed at the muscles themselves is exercise. It has been demonstrated that regular, moderate activation of muscle cells can improve the structure and function of cardiac and skeletal muscle cells. However, this is often inadequate in restoring muscle cell health or function.
Complicating the potential therapies is the fact that neither skeletal muscle nor cardiac muscle cells are capable of sufficient proliferation in order to replace muscle cells previously damaged or destroyed. There may be some limited capacity of stem cells to proliferate but this is not generally sufficient to regenerate functionally significant replacement muscle. Skeletal muscle is known to contain primitive satellite cells, which can activate, enlarge, and differentiate into skeletal muscle tissue. The role of satellite cells in replacing cardiac cells is currently not well understood. Repair of muscles is enhanced by muscle cellular expression of follistatin, which allows for activation and differentiation of muscle precursor cells into mature, differentiated skeletal muscle cells. Repair of muscle cells or generation of new, differentiated muscle cells is inhibited by the expression of a negative regulatory factor known as myostatin.
Disclosed herein are methods for prophylactic and/or therapeutic treatment of skeletal or cardiac muscle dysfunction, injury, or diseases in a patient by administering epicatechin, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof. The methods and compositions described herein can assist in prevention of impaired skeletal and cardiac muscle function, recovery of skeletal or cardiac muscle health or function, or functionally significant regeneration of skeletal or cardiac muscle cells or function.
Currently therapies emphasize prevention, such as use of stents to improve blood flow through areas of vascular narrowing. There are general supportive interventions to help the muscle repair itself, such as the nutritional provision of muscle protein precursors such as amino acids or creatine. Current therapies may address the underlying disorder associated with cardiac or skeletal muscle dysfunction without directly treating the muscle cells themselves. The only accepted therapy directed at the muscles themselves is exercise. It has been demonstrated that regular, moderate activation of muscle cells can improve the structure and function of cardiac and skeletal muscle cells. However, this is often inadequate in restoring muscle cell health or function.
Complicating the potential therapies is the fact that neither skeletal muscle nor cardiac muscle cells are capable of sufficient proliferation in order to replace muscle cells previously damaged or destroyed. There may be some limited capacity of stem cells to proliferate but this is not generally sufficient to regenerate functionally significant replacement muscle. Skeletal muscle is known to contain primitive satellite cells, which can activate, enlarge, and differentiate into skeletal muscle tissue. The role of satellite cells in replacing cardiac cells is currently not well understood. Repair of muscles is enhanced by muscle cellular expression of follistatin, which allows for activation and differentiation of muscle precursor cells into mature, differentiated skeletal muscle cells. Repair of muscle cells or generation of new, differentiated muscle cells is inhibited by the expression of a negative regulatory factor known as myostatin.
Disclosed herein are methods for prophylactic and/or therapeutic treatment of skeletal or cardiac muscle dysfunction, injury, or diseases in a patient by administering epicatechin, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof. The methods and compositions described herein can assist in prevention of impaired skeletal and cardiac muscle function, recovery of skeletal or cardiac muscle health or function, or functionally significant regeneration of skeletal or cardiac muscle cells or function.
3
4 In certain embodiments, the present invention comprises administering a compound or composition disclosed herein in an amount effective to stimulate function, recovery, or regeneration of skeletal or cardiac muscle cells. Stimulation of muscle cell function, recovery, or regeneration may comprise increased expression of one or more of proteins having contractile, regulatory, transcriptional, or attachment functions. Stimulation of muscle cell function, recovery, or regeneration may comprise increased mitochondrial number and function. In certain embodiments, the compound or composition comprises a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In further embodiments, the present invention provides methods and compositions for preventing or treating adverse events or diseases associated with impaired skeletal muscle or cardiac muscle cell number or function. The methods comprise administering to a subject in need thereof one or more compounds or compositions disclosed herein. In further embodiments the method reduces symptoms of impaired skeletal or cardiac muscle cell number or function.
In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In certain embodiments, disclosed herein are methods and compositions for the treatment of diseases associated with loss of number, function, or correct, optimally efficient internal organization of skeletal muscle cells or cardiac muscle cells. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In further embodiments, disclosed herein are methods and compositions for the treatment of impaired skeletal or cardiac muscle function due to aging, obesity, disuse or inactivity, exposure to potentially toxic nutritional agents such as fructose, or exposure to inadequate nutrition such as starvation or malnutrition. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In further embodiments, disclosed herein are methods and compositions for the treatment of muscle-related side effects of athletic training or competition including soreness, cramping, weakness, pain, or injury. In certain embodiments, the method comprises administering, or the .. composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In further embodiments, disclosed herein are methods and compositions for the treatment of skeletal or cardiac muscle diseases associated with ischemia, or impaired or inadequate blood .. flow. Examples of such states include, but are not limited to, atherosclerosis, trauma, diabetes, vascular stenosis, peripheral arterial disease, vasculopathy, and vasculitis. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In further embodiments, disclosed herein are methods and compositions for the treatment of diseases associated with genetic disorders that directly or indirectly affect the number, structure, or function of cardiac muscle cells or skeletal muscle cells.
Examples of such states include, but are not limited to, the set of diseases broadly classified as muscular dystrophies and Friedreich's ataxia. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In further embodiments, disclosed herein are methods and compositions for the therapeutic treatment of diseases associated with impaired neurological control of muscular activity resulting in consequent abnormalities in structure and function of skeletal muscles due to inactivity, aberrant contractility, or contracted states. These include, but are not limited to, states associated with absent, diminished, or abnormal neurological activity including peripheral denervation syndromes, trauma, amyotrophic lateral sclerosis, meningitis, and structural
In further embodiments, the present invention provides methods and compositions for preventing or treating adverse events or diseases associated with impaired skeletal muscle or cardiac muscle cell number or function. The methods comprise administering to a subject in need thereof one or more compounds or compositions disclosed herein. In further embodiments the method reduces symptoms of impaired skeletal or cardiac muscle cell number or function.
In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In certain embodiments, disclosed herein are methods and compositions for the treatment of diseases associated with loss of number, function, or correct, optimally efficient internal organization of skeletal muscle cells or cardiac muscle cells. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In further embodiments, disclosed herein are methods and compositions for the treatment of impaired skeletal or cardiac muscle function due to aging, obesity, disuse or inactivity, exposure to potentially toxic nutritional agents such as fructose, or exposure to inadequate nutrition such as starvation or malnutrition. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In further embodiments, disclosed herein are methods and compositions for the treatment of muscle-related side effects of athletic training or competition including soreness, cramping, weakness, pain, or injury. In certain embodiments, the method comprises administering, or the .. composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In further embodiments, disclosed herein are methods and compositions for the treatment of skeletal or cardiac muscle diseases associated with ischemia, or impaired or inadequate blood .. flow. Examples of such states include, but are not limited to, atherosclerosis, trauma, diabetes, vascular stenosis, peripheral arterial disease, vasculopathy, and vasculitis. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In further embodiments, disclosed herein are methods and compositions for the treatment of diseases associated with genetic disorders that directly or indirectly affect the number, structure, or function of cardiac muscle cells or skeletal muscle cells.
Examples of such states include, but are not limited to, the set of diseases broadly classified as muscular dystrophies and Friedreich's ataxia. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In further embodiments, disclosed herein are methods and compositions for the therapeutic treatment of diseases associated with impaired neurological control of muscular activity resulting in consequent abnormalities in structure and function of skeletal muscles due to inactivity, aberrant contractility, or contracted states. These include, but are not limited to, states associated with absent, diminished, or abnormal neurological activity including peripheral denervation syndromes, trauma, amyotrophic lateral sclerosis, meningitis, and structural
5 abnormalities of the spine, whether congenital or acquired. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In certain embodiments, disclosed herein are methods and compositions for the treatment of diseases associated with loss of number, loss of function, or loss of correct, optimally efficient internal organization of skeletal muscle cells or cardiac muscle cells. Such diseases may eventuate in a state of functionally significant muscle wasting, which, in its most pronounced form, is termed sarcopenia. Sarcopenia may be secondary to a variety of disorders, including aging, diabetes or other abnormal metabolic conditions, infection, inflammation, autoimmune disease, cardiac dysfunction, or severe disuse syndromes or inactivity associated with arthritis.
Examples of such diseases include, but are not limited to, congestive heart failure, aging, myocarditis, myositis, polymyalgia rheumatic, polymyositis, HIV, cancer and/or the side effects of chemotherapy targeting the cancer, malnutrition, aging, inborn errors of metabolism, trauma, and stroke or other types of neurological impairment. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In certain embodiments, disclosed herein are methods and compositions for use in combination with exercise or programmatic sequences or intensities of exercise to optimize methods for the prophylactic or therapeutic treatment of diseases or disorders associated with loss of number, loss of function, or loss of correct, optimally efficient internal organization of skeletal muscle or cardiac muscle cells. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In certain embodiments, disclosed herein are methods and compositions for use to enhance sports performance and endurance, to build muscle shape and strength, and to facilitate recovery from the muscle related side effects of training or competition, such as soreness, weakness,
In certain embodiments, disclosed herein are methods and compositions for the treatment of diseases associated with loss of number, loss of function, or loss of correct, optimally efficient internal organization of skeletal muscle cells or cardiac muscle cells. Such diseases may eventuate in a state of functionally significant muscle wasting, which, in its most pronounced form, is termed sarcopenia. Sarcopenia may be secondary to a variety of disorders, including aging, diabetes or other abnormal metabolic conditions, infection, inflammation, autoimmune disease, cardiac dysfunction, or severe disuse syndromes or inactivity associated with arthritis.
Examples of such diseases include, but are not limited to, congestive heart failure, aging, myocarditis, myositis, polymyalgia rheumatic, polymyositis, HIV, cancer and/or the side effects of chemotherapy targeting the cancer, malnutrition, aging, inborn errors of metabolism, trauma, and stroke or other types of neurological impairment. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In certain embodiments, disclosed herein are methods and compositions for use in combination with exercise or programmatic sequences or intensities of exercise to optimize methods for the prophylactic or therapeutic treatment of diseases or disorders associated with loss of number, loss of function, or loss of correct, optimally efficient internal organization of skeletal muscle or cardiac muscle cells. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In certain embodiments, disclosed herein are methods and compositions for use to enhance sports performance and endurance, to build muscle shape and strength, and to facilitate recovery from the muscle related side effects of training or competition, such as soreness, weakness,
6 cramping, pain, or injury. In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In certain embodiments, disclosed herein are methods and compositions for use to prevent, ameliorate, or reverse muscle injury, weakness, or pain associated with the administration of certain medicines, including, but not limited to, corticosteroids such as prednisone, methyl prednisone, or halogenated derivatives thereof, chemotherapeutics such as doxorubicin or methotrexate, and inhibitors of HMG co-reductase, known as statins, that are frequently .. associated with muscle disorders or myopathy, including: Advicor" (niacin extended-release/lovastatin), Altoprev'" (lovastatin extended-release), Caduet'"
(amlodipine and atorvastatin), Crestor'" (rosuvastatin), Juvisync'" (sitagliptin/simvastatin), Lescol'" (fluvastatin), Lescol XL (fluvastatin extended-release), Lipitorf' (atorvastatin), Compactin (mevastatin), Livalo (pitavastatin), Mevacor" (lovastatin), Pravachol" (pravastatin), Simcor" (niacin extended- release/simvastatin), Vytorin" (ezetimibe/simvastatin), and Zocor"
(simvastatin).
In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In certain embodiments, disclosed herein are methods and compositions for use to prevent, ameliorate, or reverse muscle injury associated with medicines that damage mitochondria and/or cause myopathy as a secondary consequence.
In certain embodiments, a subject is selected for treatment with a compound or composition disclosed herein based on the occurrence of one or more physiological manifestations of skeletal or cardiac muscle injury or dysfunction in the subject. Such manifestations include elevations in biomarkers known to be related to injury of the heart or skeletal muscle.
Examples of such biomarkers include, but are not limited to, elevated plasma levels of cardiac or skeletal muscle enzymes or proteins, such as myoglobin, troponin, or creatine phosphokinase, lactic acidosis, and elevated serum creatinine.
In certain embodiments, disclosed herein are methods and compositions for use to prevent, ameliorate, or reverse muscle injury, weakness, or pain associated with the administration of certain medicines, including, but not limited to, corticosteroids such as prednisone, methyl prednisone, or halogenated derivatives thereof, chemotherapeutics such as doxorubicin or methotrexate, and inhibitors of HMG co-reductase, known as statins, that are frequently .. associated with muscle disorders or myopathy, including: Advicor" (niacin extended-release/lovastatin), Altoprev'" (lovastatin extended-release), Caduet'"
(amlodipine and atorvastatin), Crestor'" (rosuvastatin), Juvisync'" (sitagliptin/simvastatin), Lescol'" (fluvastatin), Lescol XL (fluvastatin extended-release), Lipitorf' (atorvastatin), Compactin (mevastatin), Livalo (pitavastatin), Mevacor" (lovastatin), Pravachol" (pravastatin), Simcor" (niacin extended- release/simvastatin), Vytorin" (ezetimibe/simvastatin), and Zocor"
(simvastatin).
In certain embodiments, the method comprises administering, or the composition comprises, a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof.
In certain embodiments, disclosed herein are methods and compositions for use to prevent, ameliorate, or reverse muscle injury associated with medicines that damage mitochondria and/or cause myopathy as a secondary consequence.
In certain embodiments, a subject is selected for treatment with a compound or composition disclosed herein based on the occurrence of one or more physiological manifestations of skeletal or cardiac muscle injury or dysfunction in the subject. Such manifestations include elevations in biomarkers known to be related to injury of the heart or skeletal muscle.
Examples of such biomarkers include, but are not limited to, elevated plasma levels of cardiac or skeletal muscle enzymes or proteins, such as myoglobin, troponin, or creatine phosphokinase, lactic acidosis, and elevated serum creatinine.
7 In certain embodiment, a compound or composition as disclosed herein is administered in an amount which stimulates increased number or function of skeletal muscle cells or contractile muscle cells. Such stimulation of muscle cells may comprise stimulation of one or more aspects of muscle cell function, including cell division, muscle cell regeneration, activation of .. muscle satellite cells and their differentiation into adult muscle cells, recovery from injury, increased number or function of mitochondria or processes serving mitochondrial function, increased expression of proteins contributing to contractility, regulation of biochemical or translational processes, mitoses, or transduction of mechanical energy via dystrophin or other attachment processes. The methods and compositions described herein can assist in prevention of the consequences of muscle injury or dysfunction which have not yet occurred, as well as provide for the active therapy of muscle injury, dysfunction, or diseases which have already occurred.
In certain embodiments, disclosed herein are methods to utilize the muscle proteins whose expression is stimulated by administration of compounds or compositions disclosed herein as diagnostic biomarkers by which to determine the time and degree of muscle response to the therapeutic methods and compositions disclosed herein. Such biomarkers may be determined by measuring in tissue, plasma, blood, or urine the proteins themselves or the DNA or RNA
nucleotides that encode for the proteins. In one embodiment, a decrease in the body of useful muscle proteins, such as dystrophin, or the presence of inhibitory proteins, such as thromobospondin, may be used to diagnose the severity of the abnormality of cardiac muscle structure or function or the probability of response to the therapeutic methods and compositions described herein. In another embodiment, changes in the levels of such biomarkers may be used to gauge the success or failure of certain therapeutic modalities, including those disclosed herein, in order to optimize the dose and to decide whether to maintain or change therapeutic methods and compositions.
In another embodiment, an increase in the plasma concentration of follistatin, or a decrease in myostatin, or an increase in the ratio of plasma follistatin to plasma myostatin, may be used as a diagnostic method to diagnose the degree of severity of a muscle disorder or the extent of response to therapy.
In certain embodiments, disclosed herein are methods to utilize the muscle proteins whose expression is stimulated by administration of compounds or compositions disclosed herein as diagnostic biomarkers by which to determine the time and degree of muscle response to the therapeutic methods and compositions disclosed herein. Such biomarkers may be determined by measuring in tissue, plasma, blood, or urine the proteins themselves or the DNA or RNA
nucleotides that encode for the proteins. In one embodiment, a decrease in the body of useful muscle proteins, such as dystrophin, or the presence of inhibitory proteins, such as thromobospondin, may be used to diagnose the severity of the abnormality of cardiac muscle structure or function or the probability of response to the therapeutic methods and compositions described herein. In another embodiment, changes in the levels of such biomarkers may be used to gauge the success or failure of certain therapeutic modalities, including those disclosed herein, in order to optimize the dose and to decide whether to maintain or change therapeutic methods and compositions.
In another embodiment, an increase in the plasma concentration of follistatin, or a decrease in myostatin, or an increase in the ratio of plasma follistatin to plasma myostatin, may be used as a diagnostic method to diagnose the degree of severity of a muscle disorder or the extent of response to therapy.
8 In certain embodiments, the methods disclosed herein comprise the administration to cells at least 0.1) 1M epicatechin or an epicatechin derivative, at least 0.25) 1M
epicatechin or an epicatechin derivative, at least 0.5) 1M epicatechin or an epicatechin derivative, and at least 1) 1M epicatechin or an epicatechin derivative.
In further embodiments, the methods disclosed herein comprise the administration of compounds of the disclosure in a total daily dose of about 0.1 mg/kg/dose to about 100 mg/kg/dose, alternately from about 0.3 mg/kg/dose to about 30 mg/kg/dose. In another embodiment the dose range is from about 0.5 to about 10 mg/kg/day. Alternately about 0.5 to about 1 mg/kg/day is administered. Generally, between about 25 mg and about 1 gram per day can be administered; alternately between about 25 mg and about 200 mg can be administered.
The dose may be administered in as many divided doses as is convenient.
In further embodiments, the methods disclosed herein comprise the administration of epicatechin, an epicatechin derivative, or a mixture thereof in a range of about 1 to about 1000 mg per kg body weight, about 1 to about 50 mg per kg body weight, or about 10 to about 100 mg per kg body weight of said subject.
In further embodiments, the desired concentration is maintained for at least 30 minutes, 1 hour, 3 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, or more. In yet further embodiments, the desired concentration is achieved at least once during each 12-hour period over at least 24 hours, 48 hours, 72 hours, 1 week, one month, or more; or at least once during each 24-hour period over at least 48 hours, 72 hours, 1 week, one month, or more. In order to maintain a desired concentration for a desired time, multiple doses of one or more compounds may be employed.
The dosing interval may be determined based on the clearance half-life for each compound of interest from the body.
In certain embodiments, the epicatechin or epicatechin derivative administered in a method disclosed herein is at least 90% pure relative to other compounds selected from the group consisting of epicatechin, an epicatechin derivative, catechin, or a catechin derivative. For example, if the compound is epicatechin, it contains no more than 10%
contamination with epicatechin derivatives, catechin, and catechin derivatives. In further embodiments the selected
epicatechin or an epicatechin derivative, at least 0.5) 1M epicatechin or an epicatechin derivative, and at least 1) 1M epicatechin or an epicatechin derivative.
In further embodiments, the methods disclosed herein comprise the administration of compounds of the disclosure in a total daily dose of about 0.1 mg/kg/dose to about 100 mg/kg/dose, alternately from about 0.3 mg/kg/dose to about 30 mg/kg/dose. In another embodiment the dose range is from about 0.5 to about 10 mg/kg/day. Alternately about 0.5 to about 1 mg/kg/day is administered. Generally, between about 25 mg and about 1 gram per day can be administered; alternately between about 25 mg and about 200 mg can be administered.
The dose may be administered in as many divided doses as is convenient.
In further embodiments, the methods disclosed herein comprise the administration of epicatechin, an epicatechin derivative, or a mixture thereof in a range of about 1 to about 1000 mg per kg body weight, about 1 to about 50 mg per kg body weight, or about 10 to about 100 mg per kg body weight of said subject.
In further embodiments, the desired concentration is maintained for at least 30 minutes, 1 hour, 3 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, or more. In yet further embodiments, the desired concentration is achieved at least once during each 12-hour period over at least 24 hours, 48 hours, 72 hours, 1 week, one month, or more; or at least once during each 24-hour period over at least 48 hours, 72 hours, 1 week, one month, or more. In order to maintain a desired concentration for a desired time, multiple doses of one or more compounds may be employed.
The dosing interval may be determined based on the clearance half-life for each compound of interest from the body.
In certain embodiments, the epicatechin or epicatechin derivative administered in a method disclosed herein is at least 90% pure relative to other compounds selected from the group consisting of epicatechin, an epicatechin derivative, catechin, or a catechin derivative. For example, if the compound is epicatechin, it contains no more than 10%
contamination with epicatechin derivatives, catechin, and catechin derivatives. In further embodiments the selected
9 epicatechin or epicatechin derivative is at least 95% pure relative to other compounds selected from the group consisting of epicatechin, an epicatechin derivative, catechin, or a catechin derivative. It is noted that this does not exclude combination with an additional therapeutic agent in substantial concentration.
In further embodiments, said epicatechin is (-)-epicatechin.
In further embodiments, said epicatechin is (+ )-epicatechin.
In further embodiments, said epicatechin is a racemic mixture of (-)-epicatechin and (+ )-epicatechin.
Also disclosed herein is a novel class of compounds that are the only known agents that, when administered, induce the production of circulating follistatin in the body of animals and humans.
Follistatin and its closely homologous (80% sequence homology) family of follistatin-like proteins are produced by numerous cell types in the body, including muscle cells and bone cells.
Follistatin is known to induce muscle regeneration in various disease states.
Follistatin-like protein 3 has recently been shown to stimulate bone regeneration and increase mechanical bone strength in exercise. See J Nam et. Al. Follistatin-like 3 is a mediator of exercise-driven bone formation and strengthening. Bone 2015 78:62-70 doi:10.1016/j.bone.2015.04.038. Exercise, which strengthens both muscle and bone, induces increased plasma levels of follistatin and its related, follistatin-like proteins. See Hansen J et al. Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. 2011 Endocrinology 152:164-171 Pub Med 21068158. Animals lacking follistatin display weak skeletal bone formation and profound muscle weakness. See Matzuk, MM et al.
Multuple defects and perinatal death in mice deficient in follistatin. Nature 1995 374:360-3. PubMed 7885475. Production of extracellular matrix and its mineralization are the essential components of new bone formation by osteoblasts. Follistatin stimulates both activities in cultures of human osteoblasts. See Eijken et al The activin A-follistatin system: potent regulator of human extracellular matrix mineralization Faseb J 2007 21:2949-60. During the healing of bone fractures, the expression of follistatin and its receptors are strongly increased in the periosteum near the ends of the bone fractures, indicating that follistatin is contributing to the formation and remodeling of bone during fracture healing. See Nagame T et al Immunochemical detection of activin A, follistatin, and activin receptors during fracture healing in the rat J Orthop Res 1998 16:314-21. Thus, any agent that stimulates follistatin production should be therapeutic in the context of the numerous diseases, conditions, drug side effects, and genetic defects that contribute to the development of osteoporosis and its attendant increased risk of bone fractures.
Some embodiments relate to a method to induce increased cellular or muscular or bodily production of follistatin and follistatin-like proteins in order to reverse or ameliorate injury to, or weakness of, or loss of, bone, or to prevent fractures, in a subject in need thereof, comprising administering to a subject a therapeutically effective dose of (+)-epicatechin and/or (-)-epicatechin or an epicatechin derivative of either (+)-epicatechin or (-)-epicatechin. In further embodiments, the (+)-epicatechin and/or (-)-epicatechin or an epicatechin derivative is administered orally or intravenously or intramuscularly, at 5 mg to 2 grams per day, in a single dose or in divided doses. In other embodiments, the (+)-epicatechin and/or the (-)-epicatechin or an epicatechin derivative is administered at a dose between 0.1 mg/kg of bodyweight per day to
In further embodiments, said epicatechin is (-)-epicatechin.
In further embodiments, said epicatechin is (+ )-epicatechin.
In further embodiments, said epicatechin is a racemic mixture of (-)-epicatechin and (+ )-epicatechin.
Also disclosed herein is a novel class of compounds that are the only known agents that, when administered, induce the production of circulating follistatin in the body of animals and humans.
Follistatin and its closely homologous (80% sequence homology) family of follistatin-like proteins are produced by numerous cell types in the body, including muscle cells and bone cells.
Follistatin is known to induce muscle regeneration in various disease states.
Follistatin-like protein 3 has recently been shown to stimulate bone regeneration and increase mechanical bone strength in exercise. See J Nam et. Al. Follistatin-like 3 is a mediator of exercise-driven bone formation and strengthening. Bone 2015 78:62-70 doi:10.1016/j.bone.2015.04.038. Exercise, which strengthens both muscle and bone, induces increased plasma levels of follistatin and its related, follistatin-like proteins. See Hansen J et al. Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. 2011 Endocrinology 152:164-171 Pub Med 21068158. Animals lacking follistatin display weak skeletal bone formation and profound muscle weakness. See Matzuk, MM et al.
Multuple defects and perinatal death in mice deficient in follistatin. Nature 1995 374:360-3. PubMed 7885475. Production of extracellular matrix and its mineralization are the essential components of new bone formation by osteoblasts. Follistatin stimulates both activities in cultures of human osteoblasts. See Eijken et al The activin A-follistatin system: potent regulator of human extracellular matrix mineralization Faseb J 2007 21:2949-60. During the healing of bone fractures, the expression of follistatin and its receptors are strongly increased in the periosteum near the ends of the bone fractures, indicating that follistatin is contributing to the formation and remodeling of bone during fracture healing. See Nagame T et al Immunochemical detection of activin A, follistatin, and activin receptors during fracture healing in the rat J Orthop Res 1998 16:314-21. Thus, any agent that stimulates follistatin production should be therapeutic in the context of the numerous diseases, conditions, drug side effects, and genetic defects that contribute to the development of osteoporosis and its attendant increased risk of bone fractures.
Some embodiments relate to a method to induce increased cellular or muscular or bodily production of follistatin and follistatin-like proteins in order to reverse or ameliorate injury to, or weakness of, or loss of, bone, or to prevent fractures, in a subject in need thereof, comprising administering to a subject a therapeutically effective dose of (+)-epicatechin and/or (-)-epicatechin or an epicatechin derivative of either (+)-epicatechin or (-)-epicatechin. In further embodiments, the (+)-epicatechin and/or (-)-epicatechin or an epicatechin derivative is administered orally or intravenously or intramuscularly, at 5 mg to 2 grams per day, in a single dose or in divided doses. In other embodiments, the (+)-epicatechin and/or the (-)-epicatechin or an epicatechin derivative is administered at a dose between 0.1 mg/kg of bodyweight per day to
10 mg/kg of bodyweight per day, orally or intravenously or intramuscularly, in a single dose or in divided doses. In still other embodiments, the method induces new bone formation or additional bone formation or stronger bone formation or regeneration of bone in order to prevent bone fractures.
Additional embodiments disclosed herein relate to a method to induce the increased cellular or muscular or bodily production of follistatin and follistatin-like proteins in order to reverse or ameliorate weakness of bone, thus preventing bone fractures, caused by administration of compounds known to induce weakness of or damage to bone, impairment of bone generation, or impairment of bone growth, including but not limited to corticosteroids such as prednisone, or deflazacort, anticonvulsants such as phenytoin and phenobarbital, chemotherapeutics such as aromatase inhibitors, and progestins. Further method aspects relate to a to induce the increased cellular or muscular or bodily production of follistatin or follistatin-like proteins in order to reverse or ameliorate weakness of bone strength, thus preventing bone fractures, associated with genetic predisposition, aging, inactive lifestyle, or low estrogen states such as menopause or post oophorectomy; a method to induce the increased cellular or muscular or bodily production of
Additional embodiments disclosed herein relate to a method to induce the increased cellular or muscular or bodily production of follistatin and follistatin-like proteins in order to reverse or ameliorate weakness of bone, thus preventing bone fractures, caused by administration of compounds known to induce weakness of or damage to bone, impairment of bone generation, or impairment of bone growth, including but not limited to corticosteroids such as prednisone, or deflazacort, anticonvulsants such as phenytoin and phenobarbital, chemotherapeutics such as aromatase inhibitors, and progestins. Further method aspects relate to a to induce the increased cellular or muscular or bodily production of follistatin or follistatin-like proteins in order to reverse or ameliorate weakness of bone strength, thus preventing bone fractures, associated with genetic predisposition, aging, inactive lifestyle, or low estrogen states such as menopause or post oophorectomy; a method to induce the increased cellular or muscular or bodily production of
11 follistatin or follistatin-like proteins in order to reverse or ameliorate weakness of bone caused by medical conditions known to be associated with weakness of, or damage to, bone, impairment of bone generation, or impairment of bone growth, such as celiac disease, kidney or liver disease, and inflammatory diseases such as systemic lupus erythematosus and rheumatoid arthritis; a method to induce the increased cellular or muscular or bodily production of follistatin or follistatin-like proteins in order to reverse or ameliorate weakness of bone in conjunction with the administration of other agents used to treat osteoporosis including calcium, Vitamin D, and calcitonin, in order to prevent bone fractures; a method to induce increased cellular or muscular or bodily production of follistatin or follistatin-like proteins as a therapeutic to accelerate the healing of bone fractures or to increase the degree of recovery from a bone fracture, such as those experienced in accidents, athletics, or combat; and a method to induce increased cellular or muscular or bodily production of follistatin or follistatin-like proteins in order to prevent systemic loss of bone density, and thus prevent subsequent bone fractures, during the recovery period after orthopedic surgery or after the onset of a disease or condition necessitating long periods of bed rest or physical inactivity, which are known to result in decreased bone density and muscle weakness.
In any of the aforementioned method embodiments, it is contemplated that the the (+)-epicatechin and/or (-)-epicatechin or an epicatechin derivative may optionally be administered orally or intravenously or intramuscularly; at 5 mg to 2 grams per day; and/or in a single dose or in divided doses.
DETAILED DESCRIPTION
Accordingly, provided herein is a method of treating, preventing, or reversing injury to skeletal or cardiac muscles, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating, preventing, or reversing injury to skeletal or cardiac muscles, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin
In any of the aforementioned method embodiments, it is contemplated that the the (+)-epicatechin and/or (-)-epicatechin or an epicatechin derivative may optionally be administered orally or intravenously or intramuscularly; at 5 mg to 2 grams per day; and/or in a single dose or in divided doses.
DETAILED DESCRIPTION
Accordingly, provided herein is a method of treating, preventing, or reversing injury to skeletal or cardiac muscles, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating, preventing, or reversing injury to skeletal or cardiac muscles, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin
12 derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
Also provided is a method of treating a disease relating to an impaired skeletal or cardiac muscle structure or function of skeletal or cardiac muscle, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating, preventing, or reversing injury to skeletal or cardiac muscles, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, said impairment is due to aging, obesity, disuse or inactivity, exposure to potentially toxic nutritional agents such as fructose, or exposure to inadequate nutrition such as starvation or malnutrition.
Also provided herein is a method of inducing regeneration or restructuring of skeletal or cardiac muscle, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for inducing regeneration or restructuring of skeletal or cardiac muscle, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
Also provided herein is a method of diagnosing injury to skeletal or cardiac muscle and for diagnosing the success or failure of therapeutics designed to treat, prevent, or reverse injury to skeletal muscle or cardiac muscle, comprising:
a. observing one or more physiological manifestations of skeletal or cardiac muscle injury or dysfunction in the subject;
Also provided is a method of treating a disease relating to an impaired skeletal or cardiac muscle structure or function of skeletal or cardiac muscle, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating, preventing, or reversing injury to skeletal or cardiac muscles, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, said impairment is due to aging, obesity, disuse or inactivity, exposure to potentially toxic nutritional agents such as fructose, or exposure to inadequate nutrition such as starvation or malnutrition.
Also provided herein is a method of inducing regeneration or restructuring of skeletal or cardiac muscle, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for inducing regeneration or restructuring of skeletal or cardiac muscle, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
Also provided herein is a method of diagnosing injury to skeletal or cardiac muscle and for diagnosing the success or failure of therapeutics designed to treat, prevent, or reverse injury to skeletal muscle or cardiac muscle, comprising:
a. observing one or more physiological manifestations of skeletal or cardiac muscle injury or dysfunction in the subject;
13
14 b. administering a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof; and c. observing a change or lack thereof in said physiological manifestations of skeletal or cardiac muscle injury or dysfunction.
Also provided herein is a method of improving muscle cell function, recovery, or regeneration, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for improving muscle cell function, recovery, or regeneration, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, improving of muscle cell function, recovery, or regeneration comprises increased mitochondrial number and function.
Also provided herein is a method of treating muscle-related side effects of athletic training or competition including soreness, cramping, weakness, pain, or injury, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating muscle-related side effects of athletic training or competition including soreness, cramping, weakness, pain, or injury, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
Also provided herein is a method of treating skeletal or cardiac muscle diseases associated with ischemia or impaired or inadequate blood flow, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating skeletal or cardiac muscle diseases associated with ischemia or impaired or inadequate blood flow, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, said diseases are selected from the group consisting of atherosclerosis, trauma, diabetes, vascular stenosis, peripheral arterial disease, vasculopathy, and vasculitis.
Also provided herein is a method of treating a disease associated with genetic disorders that directly or indirectly affect the number, structure, or function of cardiac muscle cells or skeletal muscle cells, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating diseases associated with genetic disorders that directly or indirectly affect the number, structure, or function of cardiac muscle cells or skeletal muscle cells, comprising therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, said diseases are selected from the group consisting of muscular dystrophies and Friedreich's ataxia.
Also provided herein is a method of treating diseases associated with impaired neurological control of muscular activity resulting in consequent abnormalities in structure and function of skeletal muscles due to inactivity, aberrant contractility, or contracted states, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating diseases associated with impaired neurological control of muscular activity resulting in consequent abnormalities in structure and function of skeletal muscles due to inactivity, aberrant contractility, or contracted states, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin der vative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, said diseases are selected from the group consisting of peripheral denervation syndromes, trauma, amyotrophic lateral sclerosis, meningitis, and structural abnormalities of the spine.
.. Also provided herein is a method of treating diseases associated with loss of number, loss of function, or loss of correct, optimally efficient internal organization of skeletal muscle cells or cardiac muscle cells, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers, or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating diseases associated with loss of number, loss of function, or loss of correct, optimally efficient internal organization of skeletal muscle cells or cardiac muscle cells, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers, or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, said disease is muscle wasting.
In certain embodiments, said disease is sarcopenia.
In certain embodiments, said sarcopenia is associated with aging, diabetes, abnormal metabolic conditions, infection, inflammation, autoimmune, disease, cardiac dysfunction, arthritis congestive heart failure, aging, myocarditis, myositis, polymyalgia rheumatic, polymyositis, HIV, cancer, side effects of chemotherapy, malnutrition, aging, inborn errors of metabolism, trauma, stroke, and neurological impairment.
In certain embodiments, the method of treating diseases associated with loss of number, loss of function, or loss of correct, optimally efficient internal organization of skeletal muscle cells or cardiac muscle cells further comprises exercise or programmatic sequences or intensities of exercise.
Also provided herein is a method of enhancing sports performance, endurance, building muscle shape or strength, or facilitating recovery from the effects of training or competition, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for enhancing sports performance, endurance, building muscle shape or strength, or facilitating recovery from the effects of training or competition, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
Also provided herein is a method of treating muscle injury, weakness, or pain associated with the administration of medicines, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating muscle injury, weakness, or .. pain associated with the administration of medicines, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, said medicine is selected from the group consisting of corticosteroids such as prednisone, methyl prednisone, or halogenated derivatives thereof, chemotherapeutics such as doxorubicin or methotrexate, and inhibitors of HMG co-reductase, known as statins, that are frequently associated with muscle disorders or myopathy, including:
Advicor" (niacin extended- release/lovastatin), Altoprev'" (lovastatin extended-release), Caduet'" (amlodipine and atorvastatin), Crestor'" (rosuvastatin), Juvisync'" (sitagliptin/simvastatin), Lescol (fluvastatin), Lescol XL (fluvastatin extended-release), Lipitor"
(atorvastatin), Compactin (mevastatin), Livalo (pitavastatin), Mevacor'" (lovastatin), Pravachol'"
(pravastatin), Simcor'"
(niacin extended-release/simvastatin), Vytorin" (ezetimibe/simvastatin), and Zocor (simvastatin).
In certain embodiments of anyone of the embodiments disclosed above, said epicatechin is substantially (-)-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said epicatechin is substantially (+)-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said epicatechin is a racemic mixture of (-)-epicatechin and (+ )-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said patient is selected for treatment based on the occurrence of one or more physiological manifestations of skeletal or cardiac muscle injury or dysfunction in the subject.
In further embodiments, said manifestation is elevation in a biomarker selected from the group .. consisting of elevated plasma levels of myoglobin, troponin, or creatine phosphokinase, lactic acidosis, and creatinine.
In certain embodiments of anyone of the embodiments disclosed above, a diagnostic biomarker is used to determine the time and degree of muscle response.
In further embodiments, said diagnostic biomarker is dystrophin or thromobospondin.
In certain embodiments of anyone of the embodiments disclosed above, epicatechin is administered.
In certain embodiments of anyone of the embodiments disclosed above, an epicatechin derivative is administered.
In further embodiments, said epicatechin, epicatechin derivative, pharmaceutically acceptable salts and prodrugs thereof, or combinations thereof, are administered orally.
In other embodiments, said epicatechin, epicatechin derivative, pharmaceutically acceptable salts and prodrugs thereof, or combinations thereof, are administered parenterally.
In other embodiments, said epicatechin, epicatechin derivative, pharmaceutically acceptable salts and prodrugs thereof, or combinations thereof, are administered as a neutraceutical.
In further embodiments, epicatechin, epicatechin derivatives, pharmaceutically acceptable salts and prodrugs thereof, or combinations thereof, are administered in combination with an additional therapeutics agent. Said additional therapeutic agent is selected from the group consisting of hormones which stimulate muscle cell growth, y-amino butyric acid or its derivatives, dietary protein supplements, anabolic steroids, biological factors known to enhance the growth, strength, endurance, or metabolism of skeletal or cardiac muscle, or recovery of skeletal muscle or cardiac muscle from injury or weakness, compounds known to be associated with increased nitric oxide production which promotes blood flow through muscles, extracts of natural products known to promote muscle strength or endurance, inhibitors of myostatin, and stimulators of folistatin expression.
Also provided herein is a method of diagnosing the degree of severity of a muscle disorder, comprising the step of measuring the plasma levels of follistatin, myostatin, or the ratio of follistatin to myostatin.
Also provided herein is a method of determining the extent of response to therapy for a muscle disorder, comprising the steps of:
a) measuring the pre-treatment plasma levels of follistatin, myostatin, or the ratio of follistatin to myostatin;
b) measuring the post-treatment plasma levels of follistatin, myostatin, or the ratio of follistatin to myostatin; and c) comparing the pre- and post-treatment levels of follistatin, myostatin, or the ratio of follistatin to myostatin.
Also provided herein is a method of treatment of a muscle disorder, comprising the steps of:
a) measuring the plasma levels of follistatin, myostatin, or the ratio of follistatin to myostatin a first time;
b) administering a first amount of epicatechin (either (+) or (-) enantiomers, or a combination of both), an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof;
c) measuring the post-treatment plasma levels of follistatin, myostatin, or the ratio of follistatin to myostatin;
d) comparing the pre- and post-treatment levels of follistatin, myostatin, or the ratio of follistatin to myostatin; and e) either:
i) increasing the dose of epicatechin (either (+) or (-) enantiomers, or a combination of both), an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof administered in step b when the measured follistatin concentration in the subject has increased, when the measured myostatin concentration in the subject has decreased, or when the ratio of plasma follistatin to plasma myostatin has increased; or ii) decreasing or maintaining the dose of epicatechin (either (+) or (-) enantiomers, or a combination of both), an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof administered in step b when the measured follistatin concentration in the subject has decreased, when the measured myostatin concentration in the subject has increased, or when the ratio of plasma follistatin to plasma myostatin has decreased.
In certain embodiments of anyone of the embodiments disclosed above, said epicatechin is a racemic mixture of greater than 50% (-)-epicatechin and less than 50% (+ )-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said a racemic mixture is greater than 75% (-)-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said a racemic mixture is greater than 90% (-)-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said a racemic mixture is greater than 75% (+ )-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said a racemic mixture greater than 90% (+ )-epicatechin.
Also provided herein is the use of epicatechin, (+ )-epicatechin, (-)-epicatechin, a combination of (+)- and (-)-epicatechin, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug of any of the foregoing, or a combination of any of the foregoing, in the manufacture of a medicament for the treatment of any of the diseases, or for the achievement of any therapeutic or functional endpoint, as disclosed herein.
As used herein, the terms below have the meanings indicated.
When ranges of values are disclosed, and the notation "from n, ... to n," or "between n, ... and n,"
is used, where n, and n2 are the numbers, then unless otherwise specified, this notation is intended to include the numbers themselves and the range between them. This range may be integral or continuous between and including the end values. By way of example, the range "from 2 to 6 carbons" is intended to include two, three, four, five, and six carbons, since carbons come in integer units. Compare, by way of example, the range "from 1 to 3 uM
(micromolar),"
which is intended to include 1 uM, 3 uM, and everything in between to any number of significant figures (e.g., 1.255 u.M, 2.1 uM, 2.9999 uM, etc.).
The term "about," as used herein, is intended to qualify the numerical values which it modifies, denoting such a value as variable within a margin of error. When no particular margin of error, such as a standard deviation to a mean value given in a chart or table of data, is recited, the term "about" should be understood to mean that range which would encompass the recited value and the range which would be included by rounding up or down to that figure as well, taking into account significant figures.
The term "disease" as used herein is intended to be generally synonymous, and is used interchangeably with, the terms "disorder," "syndrome," and "condition" (as in medical condition), in that all reflect an abnormal condition of the human or animal body or of one of its parts that impairs normal functioning, is typically manifested by distinguishing signs and symptoms, and causes the human or animal to have a reduced duration or quality of life.
The term "muscular diseases" refers to diseases associated with impaired skeletal muscle or cardiac muscle cell number or function.
The term "combination therapy" means the administration of two or more therapeutic agents to treat a therapeutic condition or disorder described in the present disclosure.
Such administration encompasses co-administration of these therapeutic agents in a substantially simultaneous manner, such as in a single capsule having a fixed ratio of active ingredients or in multiple, separate capsules for each active ingredient. In addition, such administration also encompasses use of each type of therapeutic agent in a sequential manner. In either case, the treatment regimen will provide beneficial effects of the drug combination in treating the conditions or disorders described herein. In certain embodiments, a combination of compounds is administered such that the clearance half-life of each compound from the body overlaps at least partially with one another. For example, a first pharmaceutical has a clearance half-life of 1 hour and is administered at time=0, and a second pharmaceutical has a clearance half-life of 1 hour and is administered at time=45 minutes.
The phrase "therapeutically effective" is intended to qualify the amount of active ingredients used in the treatment of a disease or disorder or on the effecting of a clinical endpoint.
The term "therapeutically acceptable" refers to those compounds (or salts, prodrugs, tautomers, zwitterionic forms, etc.) which are suitable for use in contact with the tissues of patients without undue toxicity, irritation, and allergic response, are commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
As used herein, reference to "treatment" of a patient is intended to include prophylaxis.
Treatment may also be preemptive in nature, i.e., it may include prevention of disease.
Prevention of a disease may involve complete protection from disease, for example as in the .. case of prevention of infection with a pathogen or may involve prevention of disease progression. For example, prevention of a disease may not mean complete foreclosure of any effect related to the diseases at any level, but instead may mean prevention of the symptoms of a disease to a clinically significant or detectable level. Prevention of diseases may also mean prevention of progression of a disease to a later stage of the disease.
The term "patient" is generally synonymous with the term "subject" and includes all mammals including humans. Examples of patients include humans, livestock such as cows, goats, sheep, pigs, and rabbits, and companion animals such as dogs, cats, rabbits, and horses. Preferably, the patient is a human.
The term "epicatechin" as used herein refers to (+ )-epicatechin (2R-3R), (-)-epicatechin (2S-.. 3S), or mixtures thereof. In certain embodiments, "epicatechin" refers to (+ )-epicatechin. In further embodiments, "epicatechin" refers to (-)- epicatechin. In further embodiments, "epicatechin" refers to a racemic mixture of (+ )-epicatechin and (-)-epicatechin.
The term "epicatechin derivative" as used herein refers to any compound which retains the ring structure and stereochemistry of epicatechin itself, but which contains one or more substituent .. groups relative to epicatechin. Certain naturally occurring epicatechin derivatives are known, such as (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin-3-gallate (EGCG), (+)- epigallocatechin (EGC), (+ )-epicatechin-3 -gallate (ECG), and (+)-epigallocatechin- 3-gallate (EGCG). The term also includes combination molecules or prodrugs that release epicatechin or a derivative thereof when administered to a subject. Such a combination molecule may include, for example, epicatechin and an agent joined by a hydrolysable linker group.
Epicatechin and its derivatives may be made synthetically or may be isolated from natural sources that contain these compounds, such as chocolate, tea, and nuts. The term "chocolate" as used herein refers to a solid or semi-plastic food and is intended to refer to all chocolate or chocolate-like compositions containing a dispersion of solids within a fat phase. The term is intended to include compositions conforming to the U.S. Standards of Identity (501), CODEX
Alimentarius and/or other international standards and compositions not conforming to the U.S. Standards of Identity or other international standards. The term "chocolate" encompasses sweet chocolate, bittersweet or semisweet chocolate, milk chocolate, buttermilk chocolate, skim milk chocolate, mixed dairy product chocolate, sweet cocoa and vegetable fat coating, sweet chocolate and vegetable fat coating, milk chocolate and vegetable fat coating, vegetable fat based coating, pastels including white chocolate or coating made with cocoa butter or vegetable fat or a combination of these, nutritionally modified chocolate-like compositions (chocolates or coatings made with reduced calorie ingredients), and low fat chocolates, unless specifically identified otherwise. See, e.g., U.S. Patent 6,312,753, which is hereby incorporated by reference herein. By way of example, epicatechin and its derivatives may be delivered by administration of tea extracts, cocoa components, partially and fully defatted cocoa solids, cocoa nibs and fractions derived therefrom, cocoa polyphenol extracts, cocoa butter, chocolate liquors, and mixtures thereof.
The term "prodrug" refers to a compound that is made more active in vivo.
Certain compounds disclosed herein may also exist as prodrugs, as described in Hydrolysis in Drug and Prodrug Metabolism: Chemistry, Biochemistry, and Enzymology (Testa, Bernard and Mayer, Joachim M. Wiley- VHCA, Zurich, Switzerland 2003). Prodrugs of the compounds described herein are structurally modified forms of the compound that readily undergo chemical changes under physiological conditions to provide the compound. Additionally, prodrugs can be converted to the compound by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to a compound when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent. Prodrugs are often useful because, in some situations, they may be easier to administer than the compound, or parent drug. They may, for instance, be bioavailable by oral administration whereas the parent drug is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent .. drug. A wide variety of prodrug derivatives are known in the art, such as those that rely on hydrolytic cleavage or oxidative activation of the prodrug. An example, without limitation, of a prodrug would be a compound which is administered as an ester (the "prodrug"), but then is metabolically hydrolyzed to the carboxylic acid, the active entity. Additional examples include peptidyl derivatives of a compound.
The compounds disclosed herein can exist as therapeutically acceptable salts.
The present invention includes compounds listed above in the form of salts, including acid addition salts.
Suitable salts include those formed with both organic and inorganic acids.
Such acid addition salts will normally be pharmaceutically acceptable. However, salts of non-pharmaceutically acceptable salts may be of utility in the preparation and purification of the compound in question. Basic addition salts may also be formed and be pharmaceutically acceptable. For a more complete discussion of the preparation and selection of salts, refer to Pharmaceutical Salts: Properties, Selection, and Use (Stahl, P. Heinrich. Wiley- VCHA, Zurich, Switzerland, 2002).
The term "therapeutically acceptable salt," as used herein, represents salts or zwitterionic forms of the compounds disclosed herein which are water or oil-soluble or dispersible and therapeutically acceptable as defined herein. The salts can be prepared during the final isolation and purification of the compounds or separately by reacting the appropriate compound in the form of the free base with a suitable acid. Representative acid addition salts include acetate, adipate, alginate, L- ascorbate, aspartate, benzoate, benzenesulfonate (besylate), bisulfate, butyrate, camphorate, camphorsulfonate, citrate, digluconate, formate, fumarate, gentisate, glutarate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethansulfonate (isethionate), lactate, maleate, malonate, DL-mandelate, mesitylenesulfonate, methane sulfonate, naphthy lenesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-phenylproprionate, phosphonate, picrate, pivalate, propionate, pyroglutamate, succinate, sulfonate, tartrate, L-tartrate, trichloroacetate, trifluoroacetate, phosphate, glutamate, bicarbonate, para-toluene sulfonate (p-tosylate), and undecanoate. Also, basic groups in the compounds disclosed herein can be quaternized with methyl, ethyl, propyl, and butyl chlorides, bromides, and iodides; dimethyl, diethyl, dibutyl, and diamyl sulfates; decyl, lauryl, myristyl, and steryl chlorides, bromides, and iodides; and benzyl and phenethyl bromides.
Examples of acids which can be employed to form therapeutically acceptable addition salts include inorganic acids such as hydrochloric, hydrobromic, sulfuric, and phosphoric, and organic acids such as oxalic, maleic, succinic, and citric. Salts can also be formed by -- coordination of the compounds with an alkali metal or alkaline earth ion.
Hence, the present invention contemplates sodium, potassium, magnesium, and calcium salts of the compounds disclosed herein, and the like.
Basic addition salts can be prepared during the final isolation and purification of the compounds by reacting a carboxy group with a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation or with ammonia or an organic primary, secondary, or tertiary amine. The cations of therapeutically acceptable salts include lithium, sodium, potassium, calcium, magnesium, and aluminum, as well as nontoxic quaternary amine cations such as ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethyIamine, trimethylamine, triethylamine, diethylamine, ethylamine, tributylamine, pyridine, N,N-dimethy laniline, N-methy 1piperidine, N-methylmorpholine, dicyclohexylamine, procaine, dibenzylamine, N,N-dibenzylphenethylamine, 1- ephenamine, and N,N-dibenzylethylenediamine. Other representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, and piperazine.
A salt of a compound can be made by reacting the appropriate compound in the form of the free base with the appropriate acid.
While it may be possible for the compounds of the subject invention to be administered as the raw chemical, it is also possible to present them as a pharmaceutical formulation. Accordingly, provided herein are pharmaceutical formulations which comprise one or more of certain compounds disclosed herein, or one or more pharmaceutically acceptable salts, esters, prodrugs, amides, or solvates thereof, together with one or more pharmaceutically acceptable carriers thereof and optionally one or more other therapeutic ingredients. The carrieres) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. Proper formulation is dependent upon the route of administration chosen. Any of the well-known techniques, carriers, and excipients may be used as suitable and as understood in the art; e.g., in Remington's Pharmaceutical Sciences. The pharmaceutical compositions disclosed herein may be manufactured in any manner known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or compression processes.
The formulations include those suitable for oral, parenteral (including subcutaneous, intradermal, intramuscular, intravenous, intraarticular, and intramedullary), intraperitoneal, transmucosal, transdermal, rectal and topical (including dermal, buccal, sublingual and intraocular) administration although the most suitable route may depend upon for example the condition and disorder of the recipient. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.
Typically, these methods include the step of bringing into association a compound of the subject invention or a pharmaceutically acceptable salt, ester, amide, prodrug or solvate thereof ("active ingredient") with the carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired formulation.
Formulations of the compounds disclosed herein suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non- aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oilliquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste.
Pharmaceutical preparations which can be used orally include tablets, push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. Tablets may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with binders, inert diluents, or lubricating, surface active or dispersing agents.
Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein. All formulations for oral administration should be in dosages suitable for such administration. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
In addition, stabilizers may be added. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
Specific sustained release formulations of the compounds disclosed herein are described in U.S.
Patent 6,410,052, which is hereby incorporated by reference.
The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in powder form or in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, saline or sterile pyrogen-free water, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
Formulations for parenteral administration include aqueous and non- aqueous (oily) sterile injection solutions of the active compounds which may contain antioxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
For buccal or sublingual administration, the compositions may take the form of tablets, lozenges, pastilles, or gels formulated in conventional manner. Such compositions may comprise the active ingredient in a flavored basis such as sucrose and acacia or tragacanth.
The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter, polyethylene glycol, or other glycerides.
Certain compounds disclosed herein may be administered topically, that is by non-systemic administration. This includes the application of a compound disclosed herein externally to the epidermis or the buccal cavity and the instillation of such a compound into the ear, eye and nose, such that the compound does not significantly enter the blood stream. In contrast, systemic administration refers to oral, intravenous, intraperitoneal and intramuscular administration.
Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin to the site of inflammation such as gels, liniments, lotions, creams, ointments or pastes, and drops suitable for administration to the eye, ear or nose.
The active ingredient for topical administration may comprise, for example, from 0.001 % to 10% w/w (by weight) of the formulation. In certain embodiments, the active ingredient may comprise as much as 10% w/w. In other embodiments, it may comprise less than 5% w/w. In certain embodiments, the active ingredient may comprise from 2% w/w to 5% w/w.
In other embodiments, it may comprise from 0.1% to 1% w/w of the formulation.
For administration by inhalation, compounds may be conveniently delivered from an insufflator, nebulizer pressurized packs or other convenient means of delivering an aerosol spray.
Pressurized packs may comprise a suitable propellant such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. Alternatively, for administration by inhalation or insufflation, the compounds according to the invention may take the form of a dry powder composition, for example a powder mix of the compound and a suitable powder base such as lactose or starch. The powder composition may be presented in unit dosage form, in for example, capsules, cartridges, gelatin or blister packs from which the powder may be administered with the aid of an inhalator or insufflator.
Preferred unit dosage formulations are those containing an effective dose, as herein below recited, or an appropriate fraction thereof, of the active ingredient.
It should be understood that in addition to the ingredients particularly mentioned above, the formulations described above may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
Compounds may be administered orally or via injection at a dose of from 0.1 to 500 mg/kg per day. The dose range for adult humans is generally from 5 mg to 2 g/day.
Tablets or other forms of presentation provided in discrete units may conveniently contain an amount of one or more compounds which is effective at such dosage or as a multiple of the same, for instance, units containing 5 mg to 500 mg, usually around 10 mg to 200 mg.
The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
The compounds can be administered in various modes, e.g. orally, topically, or by injection.
The precise amount of compound administered to a patient will be the responsibility of the attendant physician. The specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diets, time of administration, route of administration, rate of excretion, drug combination, the precise disorder being treated, and the severity of the indication or condition being treated. Also, the route of administration may vary depending on the condition and its severity.
In certain instances, it may be appropriate to administer at least one of the compounds described herein (or a pharmaceutically acceptable salt, ester, or prodrug thereof) in combination with another therapeutic agent. By way of example only, if one of the side effects experienced by a patient upon receiving one of the compounds herein is hypertension, then it may be appropriate to administer an anti-hypertensive agent in combination with the initial therapeutic agent. Or, by way of example only, the therapeutic effectiveness of one of the compounds described herein may be enhanced by administration of an adjuvant (i.e., by itself the adjuvant may only have minimal therapeutic benefit, but in combination with another therapeutic agent, the overall therapeutic benefit to the patient is enhanced). Or, by way of example only, the benefit of experienced by a patient may be increased by administering one of the compounds described herein with another therapeutic agent (which also includes a therapeutic regimen) that also has therapeutic benefit. By way of example only, in a treatment for diabetes involving administration of one of the compounds described herein, increased therapeutic benefit may result by also providing the patient with another therapeutic agent for diabetes. In any case, regardless of the disease, disorder or condition being treated, the overall benefit experienced by the patient may simply be additive of the two therapeutic agents or the patient may experience a synergistic benefit.
Specific, non-limiting examples of possible combination therapies include use of certain compounds of the invention with agents which allow or enhance improvements in the number, structure or function of skeletal muscle cells or cardiac muscle cells.
In further embodiments, such agents include hormones which stimulate muscle cell growth, butyric acid or its derivatives, dietary protein supplements, anabolic steroids, biological factors known to enhance the growth, strength, endurance, or metabolism of skeletal or cardiac muscle, or recovery of skeletal muscle or cardiac muscle from injury or weakness, compounds known to be associated with increased nitric oxide production which promotes blood flow through muscles, extracts of natural products known to promote muscle strength or endurance, inhibitors of myostatin, and stimulators of folistatin expression.
In further embodiments, hormones which stimulate muscle cell growth include, but are not limited to, growth hormone, growth hormone analogs, growth hormone releasing peptides or analogs thereof, growth hormone secretagogues, or other hormones such as somatatropin or mechano growth factor.
In further embodiments butyric acid derivatives include neurotransmitters that benefit muscles by modulating the pituitary gland.
In further embodiments, dietary protein supplements include, but are not limited to, proteins such as casein, amino acids precursors or derivatives thereof with known attributes of potentiating muscle growth, such as leucine, valine, isovaline, beta alanine, glutamine, glutamine dipeptide, or glycocyamine.
.. In further embodiments anabolic steroids, include, but are not limited to, testosterone or related steroid compounds with muscle growth inducing properties, such as cyclostanazol or methadrostenol, prohomones or derivatives thereof, modulators of estrogen, and selective androgen receptor modulators (SARMS).
In further embodiments, biological factors known to enhance the growth, strength, endurance, or metabolism of skeletal or cardiac muscle, or recovery of skeletal muscle or cardiac muscle from injury or weakness, include, but are not limited to, alpha-lipoic acid, taurine, caffeine, magnesium, niacin, folic acid, ornithine, vitamin B6, B12, or D, aspartate, creatine and its diverse salts such creatine monohydrate, betaine, N-acetyl cysteine, beta-hydroxyl methyl butyrate, lecithin, choline, phospholipid mixtures, phosphatidyl serine, carnitine, L-carnitine, and glycine proprionyl-L-carnitine.
In further embodiments, compounds known to be associated with increased nitric oxide production which promotes blood flow through muscles include, but are not limited to, arginine and citrulline.
In further embodiments, extracts of natural products known to promote muscle strength or endurance, include, but are not limited to, guarana, geranium Robertianum, Cirsium ologophyllum, Bauhinia purpureae, Yohimbe, Bacopa monniera, beet powder, rhodiola, or tea extracts.
In further embodiments, inhibitors of myostatin are proteins, antibodies, peptides, or small molecules.
In further embodiments, stimulators of folistatin expression or function are proteins, peptides, or small molecules.
.. In any case, the multiple therapeutic agents (at least one of which is a compound disclosed herein) may be administered in any order or even simultaneously. If simultaneously, the multiple therapeutic agents may be provided in a single, unified form, or in multiple forms (by way of example only, either as a single pill or as two separate pills). One of the therapeutic agents may be given in multiple doses, or both may be given as multiple doses. If not simultaneous, the timing between the multiple doses may be any duration of time ranging from a few minutes to four weeks.
Thus, in another aspect, certain embodiments provide methods for treating muscular diseases in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound disclosed herein effective to reduce or prevent said disorder in the subject, in combination with at least one additional agent for the treatment of said disorder that is known in the art. In a related aspect, certain embodiments provide therapeutic compositions comprising at least one compound disclosed herein in combination with one or more additional agents for the treatment of muscular diseases.
The compositions of the present invention may also be formulated as neutraceutical compositions. The term "neutraceutical composition" as used herein refers to a food product, foodstuff, dietary supplement, nutritional supplement or a supplement composition for a food product or a foodstuff comprising exogenously added catechin and/or epicatechin. Details on techniques for formulation and administration of such compositions may be found in Remington, The Science and Practice of Pharmacy 21st Edition (Mack Publishing Co., Easton, PA) and Nielloud and Marti-Mestres, Pharmaceutical Emulsions and Suspensions: 2nd Edition (Marcel Dekker, Inc, New York).
As used herein, the term food product refers to any food or feed suitable for consumption by humans or animals. The food product may be a prepared and packaged food (e.g., mayonnaise, salad dressing, bread, grain bar, beverage, etc.) or an animal feed (e.g., extruded and pelleted animal feed, coarse mixed feed or pet food composition). As used herein, the term foodstuff refers to any substance fit for human or animal consumption.
Food products or foodstuffs are for example beverages such as nonalcoholic and alcoholic drinks as well as liquid preparation to be added to drinking water and liquid food, non-alcoholic drinks are for instance soft drinks, sport drinks, fruit juices, such as for example orange juice, apple juice and grapefruit juice; lemonades, teas, near-water drinks and milk and other dairy drinks such as for example yoghurt drinks, and diet drinks. In another embodiment food products or foodstuffs refer to solid or semi-solid foods comprising the composition according to the invention. These forms can include, but are not limited to baked goods such as cakes and cookies, puddings, dairy products, confections, snack foods, or frozen confections or novelties (e.g., ice cream, milk shakes), prepared frozen meals, candy, snack products (e.g., chips), liquid food such as soups, spreads, sauces, salad dressings, prepared meat products, cheese, yogurt and any other fat or oil containing foods, and food ingredients (e.g., wheat flour).
Animal feed including pet food compositions advantageously include food intended to supply necessary dietary requirements, as well as treats (e.g., dog biscuits) or other food supplements.
The animal feed comprising the composition according to the invention may be in the form of a dry composition (for example, kibble), semi-moist composition, wet composition, or any mixture thereof. Alternatively or additionally, the animal feed is a supplement, such as a gravy, drinking water, yogurt, powder, suspension, chew, treat (e.g., biscuits) or any other delivery form.
The term "dietary supplement" refers to a small amount of a compound for supplementation of a human or animal diet packaged in single or multiple dose units.
Dietary supplements do not generally provide significant amounts of calories but may contain other micronutrients (e.g., vitamins or minerals). The term food products or foodstuffs also includes functional foods and prepared food products pre-packaged for human consumption.
The term nutritional supplement refers to a composition comprising a dietary supplement in combination with a source of calories. In some embodiments, nutritional supplements are meal replacements or supplements (e.g., nutrient or energy bars or nutrient beverages or concentrates).
Dietary supplements of the present invention may be delivered in any suitable format. In certain embodiments, dietary supplements are formulated for oral delivery. The ingredients of the dietary supplement of this invention are contained in acceptable excipients and/or carriers for oral consumption. The actual form of the carrier, and thus, the dietary supplement itself, is not critical. The carrier may be a liquid, gel, gelcap, capsule, powder, solid tablet (coated or noncoated), tea, or the like.
In certain embodiments, the dietary supplement is in the form of a tablet or capsule and in further embodiments is in the form of a hard (shell) capsule. Suitable excipient and/or carriers include maltodextrin, calcium carbonate, dicalcium phosphate, tricalcium phosphate, microcrystalline cellulose, dextrose, rice flour, magnesium stearate, stearic acid, croscarmellose sodium, sodium starch glycolate, crospovidone, sucrose, vegetable gums, lactose, methylcellulose, povidone, carboxymethylcellulose, com starch, and the like (including mixtures thereof). In certain embodiments, carriers include calcium carbonate, magnesium stearate, maltodextrin, and mixtures thereof. The various ingredients and the excipient and/or carrier are mixed and formed into the desired form using conventional techniques. The tablet or capsule of the present invention may be coated with an enteric coating that dissolves at a pH of about 6.0 to 7Ø A suitable enteric coating that dissolves in the small intestine but not in the stomach is cellulose acetate phthalate.
In other embodiments, the dietary supplement is provided as a powder or liquid suitable for adding by the consumer to a food or beverage. For example, in some embodiments, the dietary supplement can be administered to an individual in the form of a powder, for instance to be used by mixing into a beverage, or by stirring into a semi-solid food such as a pudding, topping, sauce, puree, cooked cereal, or salad dressing, for instance, or by otherwise adding to a food or the dietary supplement e.g. enclosed in caps of food or beverage container for release immediately before consumption. The dietary supplement may comprise one or more inert ingredients, especially if it is desirable to limit the number of calories added to the diet by the dietary supplement. For example, the dietary supplement of the present invention may also contain optional ingredients including, for example, herbs, vitamins, minerals, enhancers, colorants, sweeteners, flavorants, inert ingredients, and the like.
In some embodiments, the dietary supplements further comprise vitamins and minerals including, but not limited to, calcium phosphate or acetate, tribasic;
potassium phosphate, dibasic; magnesium sulfate or oxide; salt (sodium chloride); potassium chloride or acetate;
ascorbic acid; ferric orthophosphate; niacinamide; zinc sulfate or oxide;
calcium pantothenate;
copper gluconate; riboflavin; beta-carotene; pyridoxine hydrochloride; thiamin mononitrate;
folic acid; biotin; chromium chloride or picolonate; potassium iodide; sodium selenate; sodium molybdate; phylloquinone; vitamin D3; cyanocobalamin; sodium selenite; copper sulfate;
vitamin A; vitamin C; inositol; potassium iodide. Suitable dosages for vitamins and minerals may be obtained, for example, by consulting the U.S. RDA guidelines.
In other embodiments, the present invention provides nutritional supplements (e.g., energy bars or meal replacement bars or beverages) comprising the composition according to the invention. The nutritional supplement may serve as meal or snack replacement and generally provide nutrient calories. In certain embodiments, the nutritional supplements provide carbohydrates, proteins, and fats in balanced amounts. The nutritional supplement can further comprise carbohydrate, simple, medium chain length, or polysaccharides, or a combination thereof. A simple sugar can be chosen for desirable organoleptic properties.
Uncooked cornstarch is one example of a complex carbohydrate. If it is desired that it should maintain its high molecular weight structure, it should be included only in food formulations or portions thereof which are not cooked or heat processed since the heat will break down the complex carbohydrate into simple carbohydrates, wherein simple carbohydrates are mono or disaccharides. The nutritional supplement contains, in one embodiment, combinations of sources of carbohydrate of three levels of chain length (simple, medium and complex; e.g., sucrose, maltodextrins, and uncooked cornstarch).
Sources of protein to be incorporated into the nutritional supplement of the invention can be any suitable protein utilized in nutritional formulations and can include whey protein, whey protein concentrate, whey powder, egg, soy flour, soy milk soy protein, soy protein isolate, caseinate (e.g., sodium caseinate, sodium calcium caseinate, calcium caseinate, potassium caseinate), animal and vegetable protein and hydrolysates or mixtures thereof.
When choosing a protein source, the biological value of the protein should be considered first, with the highest biological values being found in caseinate, whey, lactalbumin, egg albumin and whole egg proteins. In an embodiment, the protein is a combination of whey protein concentrate and calcium caseinate. These proteins have high biological value; that is, they have a high proportion of the essential amino acids. See Modern Nutrition in Health and Disease, 8th ed., Lea & Febiger, 1986, especially Volume 1, pages 30-32.
The nutritional supplement can also contain other ingredients, such as one or a combination of other vitamins, minerals, antioxidants, fiber and other dietary supplements (e.g., protein, amino acids, choline, lecithin). Selection of one or several of these ingredients is a matter of formulation, design, consumer preferences and end user. The amounts of these ingredients added to the dietary supplements of this invention are readily known to the skilled artisan. Guidance to such amounts can be provided by the U.S. RDA doses for children and adults.
Further vitamins and minerals that can be added include, but are not limited to, calcium phosphate or acetate, tribasic; potassium phosphate, dibasic; magnesium sulfate or oxide; salt (sodium chloride);
potassium chloride or acetate; ascorbic acid; ferric orthophosphate;
niacinamide; zinc sulfate or oxide; calcium pantothenate; copper gluconate; riboflavin; beta-carotene;
pyridoxine hydrochloride; thiamin mononitrate; folic acid; biotin; chromium chloride or picolonate;
potassium iodide; sodium selenate; sodium molybdate; phylloquinone; vitamin D3 ;
cyanocobalamin; sodium selenite; copper sulfate; vitamin A; vitamin C;
inositol; potassium iodide.
The nutritional supplement can be provided in a variety of forms, and by a variety of production methods. In an embodiment, to manufacture a food bar, the liquid ingredients are cooked; the dry ingredients are added with the liquid ingredients in a mixer and mixed until the dough phase is reached; the dough is put into an extruder, and extruded;
the extruded dough is cut into appropriate lengths; and the product is cooled. The bars may contain other nutrients and fillers to enhance taste, in addition to the ingredients specifically listed herein.
It is understood by those of skill in the art that other ingredients can be added to those described herein, for example, fillers, emulsifiers, preservatives, etc. for the processing or manufacture of a nutritional supplement.
Additionally, flavors, coloring agents, spices, nuts and the like may be incorporated into the neutraceutical composition. Flavorings can be in the form of flavored extracts, volatile oils, chocolate flavorings, peanut butter flavoring, cookie crumbs, crisp rice, vanilla or any commercially available flavoring. Examples of useful flavoring include, but are not limited to, pure anise extract, imitation banana extract, imitation cherry extract, chocolate extract, pure lemon extract, pure orange extract, pure peppermint extract, imitation pineapple extract, imitation rum extract, imitation strawberry extract, or pure vanilla extract;
or volatile oils, such as balm oil, bay oil, bergamot oil, cedarwood oil, walnut oil, cherry oil, cinnamon oil, clove oil, or peppermint oil; peanut butter, chocolate flavoring, vanilla cookie crumb, butterscotch or toffee. In one embodiment, the dietary supplement contains cocoa or chocolate.
Emulsifiers may be added for stability of the neutraceutical compositions.
Examples of suitable emulsifiers include, but are not limited to, lecithin (e.g., from egg or soy), and/or mono and diglycerides. Other emulsifiers are readily apparent to the skilled artisan and selection of suitable emulsifier(s) will depend, in part, upon the formulation and final product.
Preservatives may also be added to the nutritional supplement to extend product shelf life. In certain embodiments, preservatives such as potassium sorbate, sodium sorbate, potassium benzoate, sodium benzoate or calcium disodium EDTA are used.
In addition to the carbohydrates described above, the neutraceutical composition can contain natural or artificial (preferably low calorie) sweeteners, e.g., saccharides, cyclamates, aspartamine, aspartame, acesulfame K, and/or sorbitol. Such artificial sweeteners can be desirable if the nutritional supplement is intended to be consumed by an overweight or obese individual, or an individual with type II diabetes who is prone to hyperglycemia.
Moreover, a multi-vitamin and mineral supplement may be added to the neutraceutical compositions of the present invention to obtain an adequate amount of an essential nutrient, which is missing in some diets. The multi-vitamin and mineral supplement may also be useful for disease prevention and protection against nutritional losses and deficiencies due to lifestyle patterns.
The dosage and ratios of catechin and/or epicatechin and additional components administered via a neutraceutical will vary depending upon known factors, such as the pharmaceutical characteristics of the particular composition and its mode and route of administration; the age, health and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; and the effect desired which can determined by the expert in the field with normal trials, or with the usual considerations regarding the formulation of a neutraceutical composition.
It will be understood, however, that the specific dose level for any particular patient will depend on a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex and diet of the individual being treated; the time and route of administration; the rate of excretion; other drugs which have previously been administered; and the severity of the particular disease undergoing therapy, as is well understood by those skilled in the art.
Specific diseases to be treated by the compounds, compositions, and methods disclosed herein include: impaired skeletal and cardiac muscle function, recovery of skeletal or cardiac muscle health or function, functionally significant regeneration of skeletal or cardiac muscle cells or function, and any other diseases disclosed herein.
Besides being useful for human treatment, certain compounds and formulations disclosed herein may also be useful for veterinary treatment of companion animals, exotic animals and farm animals, including mammals, rodents, and the like. More preferred animals include horses, dogs, and cats.
Biological Activity Assays Western Blot Assays:
Cells or skeletal muscle tissue samples were homogenized in 50 ul lysis buffer (1% triton X-100, mmol/L Tris, 140 mmol/L NaCI, 2 mmol/L EDTA, and 0.1 % SDS) with protease and phosphatase inhibitor cocktails supplemented with 1 mmol/L PMSF, 2 mmol/L
Na3VO4 and 1 mmol/L NaP. Homogenates were passed through an insulin syringe five times, sonicated for 30 min at 4DCand centrifuged (12,000 X g) for 10 min. The total protein content was measured in
Also provided herein is a method of improving muscle cell function, recovery, or regeneration, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for improving muscle cell function, recovery, or regeneration, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, improving of muscle cell function, recovery, or regeneration comprises increased mitochondrial number and function.
Also provided herein is a method of treating muscle-related side effects of athletic training or competition including soreness, cramping, weakness, pain, or injury, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating muscle-related side effects of athletic training or competition including soreness, cramping, weakness, pain, or injury, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
Also provided herein is a method of treating skeletal or cardiac muscle diseases associated with ischemia or impaired or inadequate blood flow, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating skeletal or cardiac muscle diseases associated with ischemia or impaired or inadequate blood flow, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, said diseases are selected from the group consisting of atherosclerosis, trauma, diabetes, vascular stenosis, peripheral arterial disease, vasculopathy, and vasculitis.
Also provided herein is a method of treating a disease associated with genetic disorders that directly or indirectly affect the number, structure, or function of cardiac muscle cells or skeletal muscle cells, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating diseases associated with genetic disorders that directly or indirectly affect the number, structure, or function of cardiac muscle cells or skeletal muscle cells, comprising therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, said diseases are selected from the group consisting of muscular dystrophies and Friedreich's ataxia.
Also provided herein is a method of treating diseases associated with impaired neurological control of muscular activity resulting in consequent abnormalities in structure and function of skeletal muscles due to inactivity, aberrant contractility, or contracted states, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating diseases associated with impaired neurological control of muscular activity resulting in consequent abnormalities in structure and function of skeletal muscles due to inactivity, aberrant contractility, or contracted states, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin der vative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, said diseases are selected from the group consisting of peripheral denervation syndromes, trauma, amyotrophic lateral sclerosis, meningitis, and structural abnormalities of the spine.
.. Also provided herein is a method of treating diseases associated with loss of number, loss of function, or loss of correct, optimally efficient internal organization of skeletal muscle cells or cardiac muscle cells, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers, or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating diseases associated with loss of number, loss of function, or loss of correct, optimally efficient internal organization of skeletal muscle cells or cardiac muscle cells, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers, or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, said disease is muscle wasting.
In certain embodiments, said disease is sarcopenia.
In certain embodiments, said sarcopenia is associated with aging, diabetes, abnormal metabolic conditions, infection, inflammation, autoimmune, disease, cardiac dysfunction, arthritis congestive heart failure, aging, myocarditis, myositis, polymyalgia rheumatic, polymyositis, HIV, cancer, side effects of chemotherapy, malnutrition, aging, inborn errors of metabolism, trauma, stroke, and neurological impairment.
In certain embodiments, the method of treating diseases associated with loss of number, loss of function, or loss of correct, optimally efficient internal organization of skeletal muscle cells or cardiac muscle cells further comprises exercise or programmatic sequences or intensities of exercise.
Also provided herein is a method of enhancing sports performance, endurance, building muscle shape or strength, or facilitating recovery from the effects of training or competition, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for enhancing sports performance, endurance, building muscle shape or strength, or facilitating recovery from the effects of training or competition, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
Also provided herein is a method of treating muscle injury, weakness, or pain associated with the administration of medicines, comprising the administration of a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof. Also provided is a composition for treating muscle injury, weakness, or .. pain associated with the administration of medicines, comprising a therapeutically effective amount of epicatechin, either (+) or (-) enantiomers or a combination of both, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug thereof, or combinations thereof to a patient in need thereof.
In certain embodiments, said medicine is selected from the group consisting of corticosteroids such as prednisone, methyl prednisone, or halogenated derivatives thereof, chemotherapeutics such as doxorubicin or methotrexate, and inhibitors of HMG co-reductase, known as statins, that are frequently associated with muscle disorders or myopathy, including:
Advicor" (niacin extended- release/lovastatin), Altoprev'" (lovastatin extended-release), Caduet'" (amlodipine and atorvastatin), Crestor'" (rosuvastatin), Juvisync'" (sitagliptin/simvastatin), Lescol (fluvastatin), Lescol XL (fluvastatin extended-release), Lipitor"
(atorvastatin), Compactin (mevastatin), Livalo (pitavastatin), Mevacor'" (lovastatin), Pravachol'"
(pravastatin), Simcor'"
(niacin extended-release/simvastatin), Vytorin" (ezetimibe/simvastatin), and Zocor (simvastatin).
In certain embodiments of anyone of the embodiments disclosed above, said epicatechin is substantially (-)-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said epicatechin is substantially (+)-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said epicatechin is a racemic mixture of (-)-epicatechin and (+ )-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said patient is selected for treatment based on the occurrence of one or more physiological manifestations of skeletal or cardiac muscle injury or dysfunction in the subject.
In further embodiments, said manifestation is elevation in a biomarker selected from the group .. consisting of elevated plasma levels of myoglobin, troponin, or creatine phosphokinase, lactic acidosis, and creatinine.
In certain embodiments of anyone of the embodiments disclosed above, a diagnostic biomarker is used to determine the time and degree of muscle response.
In further embodiments, said diagnostic biomarker is dystrophin or thromobospondin.
In certain embodiments of anyone of the embodiments disclosed above, epicatechin is administered.
In certain embodiments of anyone of the embodiments disclosed above, an epicatechin derivative is administered.
In further embodiments, said epicatechin, epicatechin derivative, pharmaceutically acceptable salts and prodrugs thereof, or combinations thereof, are administered orally.
In other embodiments, said epicatechin, epicatechin derivative, pharmaceutically acceptable salts and prodrugs thereof, or combinations thereof, are administered parenterally.
In other embodiments, said epicatechin, epicatechin derivative, pharmaceutically acceptable salts and prodrugs thereof, or combinations thereof, are administered as a neutraceutical.
In further embodiments, epicatechin, epicatechin derivatives, pharmaceutically acceptable salts and prodrugs thereof, or combinations thereof, are administered in combination with an additional therapeutics agent. Said additional therapeutic agent is selected from the group consisting of hormones which stimulate muscle cell growth, y-amino butyric acid or its derivatives, dietary protein supplements, anabolic steroids, biological factors known to enhance the growth, strength, endurance, or metabolism of skeletal or cardiac muscle, or recovery of skeletal muscle or cardiac muscle from injury or weakness, compounds known to be associated with increased nitric oxide production which promotes blood flow through muscles, extracts of natural products known to promote muscle strength or endurance, inhibitors of myostatin, and stimulators of folistatin expression.
Also provided herein is a method of diagnosing the degree of severity of a muscle disorder, comprising the step of measuring the plasma levels of follistatin, myostatin, or the ratio of follistatin to myostatin.
Also provided herein is a method of determining the extent of response to therapy for a muscle disorder, comprising the steps of:
a) measuring the pre-treatment plasma levels of follistatin, myostatin, or the ratio of follistatin to myostatin;
b) measuring the post-treatment plasma levels of follistatin, myostatin, or the ratio of follistatin to myostatin; and c) comparing the pre- and post-treatment levels of follistatin, myostatin, or the ratio of follistatin to myostatin.
Also provided herein is a method of treatment of a muscle disorder, comprising the steps of:
a) measuring the plasma levels of follistatin, myostatin, or the ratio of follistatin to myostatin a first time;
b) administering a first amount of epicatechin (either (+) or (-) enantiomers, or a combination of both), an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof;
c) measuring the post-treatment plasma levels of follistatin, myostatin, or the ratio of follistatin to myostatin;
d) comparing the pre- and post-treatment levels of follistatin, myostatin, or the ratio of follistatin to myostatin; and e) either:
i) increasing the dose of epicatechin (either (+) or (-) enantiomers, or a combination of both), an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof administered in step b when the measured follistatin concentration in the subject has increased, when the measured myostatin concentration in the subject has decreased, or when the ratio of plasma follistatin to plasma myostatin has increased; or ii) decreasing or maintaining the dose of epicatechin (either (+) or (-) enantiomers, or a combination of both), an epicatechin derivative, or a pharmaceutically acceptable salt or prodrug thereof administered in step b when the measured follistatin concentration in the subject has decreased, when the measured myostatin concentration in the subject has increased, or when the ratio of plasma follistatin to plasma myostatin has decreased.
In certain embodiments of anyone of the embodiments disclosed above, said epicatechin is a racemic mixture of greater than 50% (-)-epicatechin and less than 50% (+ )-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said a racemic mixture is greater than 75% (-)-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said a racemic mixture is greater than 90% (-)-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said a racemic mixture is greater than 75% (+ )-epicatechin.
In certain embodiments of anyone of the embodiments disclosed above, said a racemic mixture greater than 90% (+ )-epicatechin.
Also provided herein is the use of epicatechin, (+ )-epicatechin, (-)-epicatechin, a combination of (+)- and (-)-epicatechin, an epicatechin derivative, a pharmaceutically acceptable salt or prodrug of any of the foregoing, or a combination of any of the foregoing, in the manufacture of a medicament for the treatment of any of the diseases, or for the achievement of any therapeutic or functional endpoint, as disclosed herein.
As used herein, the terms below have the meanings indicated.
When ranges of values are disclosed, and the notation "from n, ... to n," or "between n, ... and n,"
is used, where n, and n2 are the numbers, then unless otherwise specified, this notation is intended to include the numbers themselves and the range between them. This range may be integral or continuous between and including the end values. By way of example, the range "from 2 to 6 carbons" is intended to include two, three, four, five, and six carbons, since carbons come in integer units. Compare, by way of example, the range "from 1 to 3 uM
(micromolar),"
which is intended to include 1 uM, 3 uM, and everything in between to any number of significant figures (e.g., 1.255 u.M, 2.1 uM, 2.9999 uM, etc.).
The term "about," as used herein, is intended to qualify the numerical values which it modifies, denoting such a value as variable within a margin of error. When no particular margin of error, such as a standard deviation to a mean value given in a chart or table of data, is recited, the term "about" should be understood to mean that range which would encompass the recited value and the range which would be included by rounding up or down to that figure as well, taking into account significant figures.
The term "disease" as used herein is intended to be generally synonymous, and is used interchangeably with, the terms "disorder," "syndrome," and "condition" (as in medical condition), in that all reflect an abnormal condition of the human or animal body or of one of its parts that impairs normal functioning, is typically manifested by distinguishing signs and symptoms, and causes the human or animal to have a reduced duration or quality of life.
The term "muscular diseases" refers to diseases associated with impaired skeletal muscle or cardiac muscle cell number or function.
The term "combination therapy" means the administration of two or more therapeutic agents to treat a therapeutic condition or disorder described in the present disclosure.
Such administration encompasses co-administration of these therapeutic agents in a substantially simultaneous manner, such as in a single capsule having a fixed ratio of active ingredients or in multiple, separate capsules for each active ingredient. In addition, such administration also encompasses use of each type of therapeutic agent in a sequential manner. In either case, the treatment regimen will provide beneficial effects of the drug combination in treating the conditions or disorders described herein. In certain embodiments, a combination of compounds is administered such that the clearance half-life of each compound from the body overlaps at least partially with one another. For example, a first pharmaceutical has a clearance half-life of 1 hour and is administered at time=0, and a second pharmaceutical has a clearance half-life of 1 hour and is administered at time=45 minutes.
The phrase "therapeutically effective" is intended to qualify the amount of active ingredients used in the treatment of a disease or disorder or on the effecting of a clinical endpoint.
The term "therapeutically acceptable" refers to those compounds (or salts, prodrugs, tautomers, zwitterionic forms, etc.) which are suitable for use in contact with the tissues of patients without undue toxicity, irritation, and allergic response, are commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
As used herein, reference to "treatment" of a patient is intended to include prophylaxis.
Treatment may also be preemptive in nature, i.e., it may include prevention of disease.
Prevention of a disease may involve complete protection from disease, for example as in the .. case of prevention of infection with a pathogen or may involve prevention of disease progression. For example, prevention of a disease may not mean complete foreclosure of any effect related to the diseases at any level, but instead may mean prevention of the symptoms of a disease to a clinically significant or detectable level. Prevention of diseases may also mean prevention of progression of a disease to a later stage of the disease.
The term "patient" is generally synonymous with the term "subject" and includes all mammals including humans. Examples of patients include humans, livestock such as cows, goats, sheep, pigs, and rabbits, and companion animals such as dogs, cats, rabbits, and horses. Preferably, the patient is a human.
The term "epicatechin" as used herein refers to (+ )-epicatechin (2R-3R), (-)-epicatechin (2S-.. 3S), or mixtures thereof. In certain embodiments, "epicatechin" refers to (+ )-epicatechin. In further embodiments, "epicatechin" refers to (-)- epicatechin. In further embodiments, "epicatechin" refers to a racemic mixture of (+ )-epicatechin and (-)-epicatechin.
The term "epicatechin derivative" as used herein refers to any compound which retains the ring structure and stereochemistry of epicatechin itself, but which contains one or more substituent .. groups relative to epicatechin. Certain naturally occurring epicatechin derivatives are known, such as (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin-3-gallate (EGCG), (+)- epigallocatechin (EGC), (+ )-epicatechin-3 -gallate (ECG), and (+)-epigallocatechin- 3-gallate (EGCG). The term also includes combination molecules or prodrugs that release epicatechin or a derivative thereof when administered to a subject. Such a combination molecule may include, for example, epicatechin and an agent joined by a hydrolysable linker group.
Epicatechin and its derivatives may be made synthetically or may be isolated from natural sources that contain these compounds, such as chocolate, tea, and nuts. The term "chocolate" as used herein refers to a solid or semi-plastic food and is intended to refer to all chocolate or chocolate-like compositions containing a dispersion of solids within a fat phase. The term is intended to include compositions conforming to the U.S. Standards of Identity (501), CODEX
Alimentarius and/or other international standards and compositions not conforming to the U.S. Standards of Identity or other international standards. The term "chocolate" encompasses sweet chocolate, bittersweet or semisweet chocolate, milk chocolate, buttermilk chocolate, skim milk chocolate, mixed dairy product chocolate, sweet cocoa and vegetable fat coating, sweet chocolate and vegetable fat coating, milk chocolate and vegetable fat coating, vegetable fat based coating, pastels including white chocolate or coating made with cocoa butter or vegetable fat or a combination of these, nutritionally modified chocolate-like compositions (chocolates or coatings made with reduced calorie ingredients), and low fat chocolates, unless specifically identified otherwise. See, e.g., U.S. Patent 6,312,753, which is hereby incorporated by reference herein. By way of example, epicatechin and its derivatives may be delivered by administration of tea extracts, cocoa components, partially and fully defatted cocoa solids, cocoa nibs and fractions derived therefrom, cocoa polyphenol extracts, cocoa butter, chocolate liquors, and mixtures thereof.
The term "prodrug" refers to a compound that is made more active in vivo.
Certain compounds disclosed herein may also exist as prodrugs, as described in Hydrolysis in Drug and Prodrug Metabolism: Chemistry, Biochemistry, and Enzymology (Testa, Bernard and Mayer, Joachim M. Wiley- VHCA, Zurich, Switzerland 2003). Prodrugs of the compounds described herein are structurally modified forms of the compound that readily undergo chemical changes under physiological conditions to provide the compound. Additionally, prodrugs can be converted to the compound by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to a compound when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent. Prodrugs are often useful because, in some situations, they may be easier to administer than the compound, or parent drug. They may, for instance, be bioavailable by oral administration whereas the parent drug is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent .. drug. A wide variety of prodrug derivatives are known in the art, such as those that rely on hydrolytic cleavage or oxidative activation of the prodrug. An example, without limitation, of a prodrug would be a compound which is administered as an ester (the "prodrug"), but then is metabolically hydrolyzed to the carboxylic acid, the active entity. Additional examples include peptidyl derivatives of a compound.
The compounds disclosed herein can exist as therapeutically acceptable salts.
The present invention includes compounds listed above in the form of salts, including acid addition salts.
Suitable salts include those formed with both organic and inorganic acids.
Such acid addition salts will normally be pharmaceutically acceptable. However, salts of non-pharmaceutically acceptable salts may be of utility in the preparation and purification of the compound in question. Basic addition salts may also be formed and be pharmaceutically acceptable. For a more complete discussion of the preparation and selection of salts, refer to Pharmaceutical Salts: Properties, Selection, and Use (Stahl, P. Heinrich. Wiley- VCHA, Zurich, Switzerland, 2002).
The term "therapeutically acceptable salt," as used herein, represents salts or zwitterionic forms of the compounds disclosed herein which are water or oil-soluble or dispersible and therapeutically acceptable as defined herein. The salts can be prepared during the final isolation and purification of the compounds or separately by reacting the appropriate compound in the form of the free base with a suitable acid. Representative acid addition salts include acetate, adipate, alginate, L- ascorbate, aspartate, benzoate, benzenesulfonate (besylate), bisulfate, butyrate, camphorate, camphorsulfonate, citrate, digluconate, formate, fumarate, gentisate, glutarate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethansulfonate (isethionate), lactate, maleate, malonate, DL-mandelate, mesitylenesulfonate, methane sulfonate, naphthy lenesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-phenylproprionate, phosphonate, picrate, pivalate, propionate, pyroglutamate, succinate, sulfonate, tartrate, L-tartrate, trichloroacetate, trifluoroacetate, phosphate, glutamate, bicarbonate, para-toluene sulfonate (p-tosylate), and undecanoate. Also, basic groups in the compounds disclosed herein can be quaternized with methyl, ethyl, propyl, and butyl chlorides, bromides, and iodides; dimethyl, diethyl, dibutyl, and diamyl sulfates; decyl, lauryl, myristyl, and steryl chlorides, bromides, and iodides; and benzyl and phenethyl bromides.
Examples of acids which can be employed to form therapeutically acceptable addition salts include inorganic acids such as hydrochloric, hydrobromic, sulfuric, and phosphoric, and organic acids such as oxalic, maleic, succinic, and citric. Salts can also be formed by -- coordination of the compounds with an alkali metal or alkaline earth ion.
Hence, the present invention contemplates sodium, potassium, magnesium, and calcium salts of the compounds disclosed herein, and the like.
Basic addition salts can be prepared during the final isolation and purification of the compounds by reacting a carboxy group with a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation or with ammonia or an organic primary, secondary, or tertiary amine. The cations of therapeutically acceptable salts include lithium, sodium, potassium, calcium, magnesium, and aluminum, as well as nontoxic quaternary amine cations such as ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethyIamine, trimethylamine, triethylamine, diethylamine, ethylamine, tributylamine, pyridine, N,N-dimethy laniline, N-methy 1piperidine, N-methylmorpholine, dicyclohexylamine, procaine, dibenzylamine, N,N-dibenzylphenethylamine, 1- ephenamine, and N,N-dibenzylethylenediamine. Other representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, and piperazine.
A salt of a compound can be made by reacting the appropriate compound in the form of the free base with the appropriate acid.
While it may be possible for the compounds of the subject invention to be administered as the raw chemical, it is also possible to present them as a pharmaceutical formulation. Accordingly, provided herein are pharmaceutical formulations which comprise one or more of certain compounds disclosed herein, or one or more pharmaceutically acceptable salts, esters, prodrugs, amides, or solvates thereof, together with one or more pharmaceutically acceptable carriers thereof and optionally one or more other therapeutic ingredients. The carrieres) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. Proper formulation is dependent upon the route of administration chosen. Any of the well-known techniques, carriers, and excipients may be used as suitable and as understood in the art; e.g., in Remington's Pharmaceutical Sciences. The pharmaceutical compositions disclosed herein may be manufactured in any manner known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or compression processes.
The formulations include those suitable for oral, parenteral (including subcutaneous, intradermal, intramuscular, intravenous, intraarticular, and intramedullary), intraperitoneal, transmucosal, transdermal, rectal and topical (including dermal, buccal, sublingual and intraocular) administration although the most suitable route may depend upon for example the condition and disorder of the recipient. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.
Typically, these methods include the step of bringing into association a compound of the subject invention or a pharmaceutically acceptable salt, ester, amide, prodrug or solvate thereof ("active ingredient") with the carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired formulation.
Formulations of the compounds disclosed herein suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non- aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oilliquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste.
Pharmaceutical preparations which can be used orally include tablets, push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. Tablets may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with binders, inert diluents, or lubricating, surface active or dispersing agents.
Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein. All formulations for oral administration should be in dosages suitable for such administration. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
In addition, stabilizers may be added. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
Specific sustained release formulations of the compounds disclosed herein are described in U.S.
Patent 6,410,052, which is hereby incorporated by reference.
The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in powder form or in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, saline or sterile pyrogen-free water, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
Formulations for parenteral administration include aqueous and non- aqueous (oily) sterile injection solutions of the active compounds which may contain antioxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
For buccal or sublingual administration, the compositions may take the form of tablets, lozenges, pastilles, or gels formulated in conventional manner. Such compositions may comprise the active ingredient in a flavored basis such as sucrose and acacia or tragacanth.
The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter, polyethylene glycol, or other glycerides.
Certain compounds disclosed herein may be administered topically, that is by non-systemic administration. This includes the application of a compound disclosed herein externally to the epidermis or the buccal cavity and the instillation of such a compound into the ear, eye and nose, such that the compound does not significantly enter the blood stream. In contrast, systemic administration refers to oral, intravenous, intraperitoneal and intramuscular administration.
Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin to the site of inflammation such as gels, liniments, lotions, creams, ointments or pastes, and drops suitable for administration to the eye, ear or nose.
The active ingredient for topical administration may comprise, for example, from 0.001 % to 10% w/w (by weight) of the formulation. In certain embodiments, the active ingredient may comprise as much as 10% w/w. In other embodiments, it may comprise less than 5% w/w. In certain embodiments, the active ingredient may comprise from 2% w/w to 5% w/w.
In other embodiments, it may comprise from 0.1% to 1% w/w of the formulation.
For administration by inhalation, compounds may be conveniently delivered from an insufflator, nebulizer pressurized packs or other convenient means of delivering an aerosol spray.
Pressurized packs may comprise a suitable propellant such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. Alternatively, for administration by inhalation or insufflation, the compounds according to the invention may take the form of a dry powder composition, for example a powder mix of the compound and a suitable powder base such as lactose or starch. The powder composition may be presented in unit dosage form, in for example, capsules, cartridges, gelatin or blister packs from which the powder may be administered with the aid of an inhalator or insufflator.
Preferred unit dosage formulations are those containing an effective dose, as herein below recited, or an appropriate fraction thereof, of the active ingredient.
It should be understood that in addition to the ingredients particularly mentioned above, the formulations described above may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
Compounds may be administered orally or via injection at a dose of from 0.1 to 500 mg/kg per day. The dose range for adult humans is generally from 5 mg to 2 g/day.
Tablets or other forms of presentation provided in discrete units may conveniently contain an amount of one or more compounds which is effective at such dosage or as a multiple of the same, for instance, units containing 5 mg to 500 mg, usually around 10 mg to 200 mg.
The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
The compounds can be administered in various modes, e.g. orally, topically, or by injection.
The precise amount of compound administered to a patient will be the responsibility of the attendant physician. The specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diets, time of administration, route of administration, rate of excretion, drug combination, the precise disorder being treated, and the severity of the indication or condition being treated. Also, the route of administration may vary depending on the condition and its severity.
In certain instances, it may be appropriate to administer at least one of the compounds described herein (or a pharmaceutically acceptable salt, ester, or prodrug thereof) in combination with another therapeutic agent. By way of example only, if one of the side effects experienced by a patient upon receiving one of the compounds herein is hypertension, then it may be appropriate to administer an anti-hypertensive agent in combination with the initial therapeutic agent. Or, by way of example only, the therapeutic effectiveness of one of the compounds described herein may be enhanced by administration of an adjuvant (i.e., by itself the adjuvant may only have minimal therapeutic benefit, but in combination with another therapeutic agent, the overall therapeutic benefit to the patient is enhanced). Or, by way of example only, the benefit of experienced by a patient may be increased by administering one of the compounds described herein with another therapeutic agent (which also includes a therapeutic regimen) that also has therapeutic benefit. By way of example only, in a treatment for diabetes involving administration of one of the compounds described herein, increased therapeutic benefit may result by also providing the patient with another therapeutic agent for diabetes. In any case, regardless of the disease, disorder or condition being treated, the overall benefit experienced by the patient may simply be additive of the two therapeutic agents or the patient may experience a synergistic benefit.
Specific, non-limiting examples of possible combination therapies include use of certain compounds of the invention with agents which allow or enhance improvements in the number, structure or function of skeletal muscle cells or cardiac muscle cells.
In further embodiments, such agents include hormones which stimulate muscle cell growth, butyric acid or its derivatives, dietary protein supplements, anabolic steroids, biological factors known to enhance the growth, strength, endurance, or metabolism of skeletal or cardiac muscle, or recovery of skeletal muscle or cardiac muscle from injury or weakness, compounds known to be associated with increased nitric oxide production which promotes blood flow through muscles, extracts of natural products known to promote muscle strength or endurance, inhibitors of myostatin, and stimulators of folistatin expression.
In further embodiments, hormones which stimulate muscle cell growth include, but are not limited to, growth hormone, growth hormone analogs, growth hormone releasing peptides or analogs thereof, growth hormone secretagogues, or other hormones such as somatatropin or mechano growth factor.
In further embodiments butyric acid derivatives include neurotransmitters that benefit muscles by modulating the pituitary gland.
In further embodiments, dietary protein supplements include, but are not limited to, proteins such as casein, amino acids precursors or derivatives thereof with known attributes of potentiating muscle growth, such as leucine, valine, isovaline, beta alanine, glutamine, glutamine dipeptide, or glycocyamine.
.. In further embodiments anabolic steroids, include, but are not limited to, testosterone or related steroid compounds with muscle growth inducing properties, such as cyclostanazol or methadrostenol, prohomones or derivatives thereof, modulators of estrogen, and selective androgen receptor modulators (SARMS).
In further embodiments, biological factors known to enhance the growth, strength, endurance, or metabolism of skeletal or cardiac muscle, or recovery of skeletal muscle or cardiac muscle from injury or weakness, include, but are not limited to, alpha-lipoic acid, taurine, caffeine, magnesium, niacin, folic acid, ornithine, vitamin B6, B12, or D, aspartate, creatine and its diverse salts such creatine monohydrate, betaine, N-acetyl cysteine, beta-hydroxyl methyl butyrate, lecithin, choline, phospholipid mixtures, phosphatidyl serine, carnitine, L-carnitine, and glycine proprionyl-L-carnitine.
In further embodiments, compounds known to be associated with increased nitric oxide production which promotes blood flow through muscles include, but are not limited to, arginine and citrulline.
In further embodiments, extracts of natural products known to promote muscle strength or endurance, include, but are not limited to, guarana, geranium Robertianum, Cirsium ologophyllum, Bauhinia purpureae, Yohimbe, Bacopa monniera, beet powder, rhodiola, or tea extracts.
In further embodiments, inhibitors of myostatin are proteins, antibodies, peptides, or small molecules.
In further embodiments, stimulators of folistatin expression or function are proteins, peptides, or small molecules.
.. In any case, the multiple therapeutic agents (at least one of which is a compound disclosed herein) may be administered in any order or even simultaneously. If simultaneously, the multiple therapeutic agents may be provided in a single, unified form, or in multiple forms (by way of example only, either as a single pill or as two separate pills). One of the therapeutic agents may be given in multiple doses, or both may be given as multiple doses. If not simultaneous, the timing between the multiple doses may be any duration of time ranging from a few minutes to four weeks.
Thus, in another aspect, certain embodiments provide methods for treating muscular diseases in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound disclosed herein effective to reduce or prevent said disorder in the subject, in combination with at least one additional agent for the treatment of said disorder that is known in the art. In a related aspect, certain embodiments provide therapeutic compositions comprising at least one compound disclosed herein in combination with one or more additional agents for the treatment of muscular diseases.
The compositions of the present invention may also be formulated as neutraceutical compositions. The term "neutraceutical composition" as used herein refers to a food product, foodstuff, dietary supplement, nutritional supplement or a supplement composition for a food product or a foodstuff comprising exogenously added catechin and/or epicatechin. Details on techniques for formulation and administration of such compositions may be found in Remington, The Science and Practice of Pharmacy 21st Edition (Mack Publishing Co., Easton, PA) and Nielloud and Marti-Mestres, Pharmaceutical Emulsions and Suspensions: 2nd Edition (Marcel Dekker, Inc, New York).
As used herein, the term food product refers to any food or feed suitable for consumption by humans or animals. The food product may be a prepared and packaged food (e.g., mayonnaise, salad dressing, bread, grain bar, beverage, etc.) or an animal feed (e.g., extruded and pelleted animal feed, coarse mixed feed or pet food composition). As used herein, the term foodstuff refers to any substance fit for human or animal consumption.
Food products or foodstuffs are for example beverages such as nonalcoholic and alcoholic drinks as well as liquid preparation to be added to drinking water and liquid food, non-alcoholic drinks are for instance soft drinks, sport drinks, fruit juices, such as for example orange juice, apple juice and grapefruit juice; lemonades, teas, near-water drinks and milk and other dairy drinks such as for example yoghurt drinks, and diet drinks. In another embodiment food products or foodstuffs refer to solid or semi-solid foods comprising the composition according to the invention. These forms can include, but are not limited to baked goods such as cakes and cookies, puddings, dairy products, confections, snack foods, or frozen confections or novelties (e.g., ice cream, milk shakes), prepared frozen meals, candy, snack products (e.g., chips), liquid food such as soups, spreads, sauces, salad dressings, prepared meat products, cheese, yogurt and any other fat or oil containing foods, and food ingredients (e.g., wheat flour).
Animal feed including pet food compositions advantageously include food intended to supply necessary dietary requirements, as well as treats (e.g., dog biscuits) or other food supplements.
The animal feed comprising the composition according to the invention may be in the form of a dry composition (for example, kibble), semi-moist composition, wet composition, or any mixture thereof. Alternatively or additionally, the animal feed is a supplement, such as a gravy, drinking water, yogurt, powder, suspension, chew, treat (e.g., biscuits) or any other delivery form.
The term "dietary supplement" refers to a small amount of a compound for supplementation of a human or animal diet packaged in single or multiple dose units.
Dietary supplements do not generally provide significant amounts of calories but may contain other micronutrients (e.g., vitamins or minerals). The term food products or foodstuffs also includes functional foods and prepared food products pre-packaged for human consumption.
The term nutritional supplement refers to a composition comprising a dietary supplement in combination with a source of calories. In some embodiments, nutritional supplements are meal replacements or supplements (e.g., nutrient or energy bars or nutrient beverages or concentrates).
Dietary supplements of the present invention may be delivered in any suitable format. In certain embodiments, dietary supplements are formulated for oral delivery. The ingredients of the dietary supplement of this invention are contained in acceptable excipients and/or carriers for oral consumption. The actual form of the carrier, and thus, the dietary supplement itself, is not critical. The carrier may be a liquid, gel, gelcap, capsule, powder, solid tablet (coated or noncoated), tea, or the like.
In certain embodiments, the dietary supplement is in the form of a tablet or capsule and in further embodiments is in the form of a hard (shell) capsule. Suitable excipient and/or carriers include maltodextrin, calcium carbonate, dicalcium phosphate, tricalcium phosphate, microcrystalline cellulose, dextrose, rice flour, magnesium stearate, stearic acid, croscarmellose sodium, sodium starch glycolate, crospovidone, sucrose, vegetable gums, lactose, methylcellulose, povidone, carboxymethylcellulose, com starch, and the like (including mixtures thereof). In certain embodiments, carriers include calcium carbonate, magnesium stearate, maltodextrin, and mixtures thereof. The various ingredients and the excipient and/or carrier are mixed and formed into the desired form using conventional techniques. The tablet or capsule of the present invention may be coated with an enteric coating that dissolves at a pH of about 6.0 to 7Ø A suitable enteric coating that dissolves in the small intestine but not in the stomach is cellulose acetate phthalate.
In other embodiments, the dietary supplement is provided as a powder or liquid suitable for adding by the consumer to a food or beverage. For example, in some embodiments, the dietary supplement can be administered to an individual in the form of a powder, for instance to be used by mixing into a beverage, or by stirring into a semi-solid food such as a pudding, topping, sauce, puree, cooked cereal, or salad dressing, for instance, or by otherwise adding to a food or the dietary supplement e.g. enclosed in caps of food or beverage container for release immediately before consumption. The dietary supplement may comprise one or more inert ingredients, especially if it is desirable to limit the number of calories added to the diet by the dietary supplement. For example, the dietary supplement of the present invention may also contain optional ingredients including, for example, herbs, vitamins, minerals, enhancers, colorants, sweeteners, flavorants, inert ingredients, and the like.
In some embodiments, the dietary supplements further comprise vitamins and minerals including, but not limited to, calcium phosphate or acetate, tribasic;
potassium phosphate, dibasic; magnesium sulfate or oxide; salt (sodium chloride); potassium chloride or acetate;
ascorbic acid; ferric orthophosphate; niacinamide; zinc sulfate or oxide;
calcium pantothenate;
copper gluconate; riboflavin; beta-carotene; pyridoxine hydrochloride; thiamin mononitrate;
folic acid; biotin; chromium chloride or picolonate; potassium iodide; sodium selenate; sodium molybdate; phylloquinone; vitamin D3; cyanocobalamin; sodium selenite; copper sulfate;
vitamin A; vitamin C; inositol; potassium iodide. Suitable dosages for vitamins and minerals may be obtained, for example, by consulting the U.S. RDA guidelines.
In other embodiments, the present invention provides nutritional supplements (e.g., energy bars or meal replacement bars or beverages) comprising the composition according to the invention. The nutritional supplement may serve as meal or snack replacement and generally provide nutrient calories. In certain embodiments, the nutritional supplements provide carbohydrates, proteins, and fats in balanced amounts. The nutritional supplement can further comprise carbohydrate, simple, medium chain length, or polysaccharides, or a combination thereof. A simple sugar can be chosen for desirable organoleptic properties.
Uncooked cornstarch is one example of a complex carbohydrate. If it is desired that it should maintain its high molecular weight structure, it should be included only in food formulations or portions thereof which are not cooked or heat processed since the heat will break down the complex carbohydrate into simple carbohydrates, wherein simple carbohydrates are mono or disaccharides. The nutritional supplement contains, in one embodiment, combinations of sources of carbohydrate of three levels of chain length (simple, medium and complex; e.g., sucrose, maltodextrins, and uncooked cornstarch).
Sources of protein to be incorporated into the nutritional supplement of the invention can be any suitable protein utilized in nutritional formulations and can include whey protein, whey protein concentrate, whey powder, egg, soy flour, soy milk soy protein, soy protein isolate, caseinate (e.g., sodium caseinate, sodium calcium caseinate, calcium caseinate, potassium caseinate), animal and vegetable protein and hydrolysates or mixtures thereof.
When choosing a protein source, the biological value of the protein should be considered first, with the highest biological values being found in caseinate, whey, lactalbumin, egg albumin and whole egg proteins. In an embodiment, the protein is a combination of whey protein concentrate and calcium caseinate. These proteins have high biological value; that is, they have a high proportion of the essential amino acids. See Modern Nutrition in Health and Disease, 8th ed., Lea & Febiger, 1986, especially Volume 1, pages 30-32.
The nutritional supplement can also contain other ingredients, such as one or a combination of other vitamins, minerals, antioxidants, fiber and other dietary supplements (e.g., protein, amino acids, choline, lecithin). Selection of one or several of these ingredients is a matter of formulation, design, consumer preferences and end user. The amounts of these ingredients added to the dietary supplements of this invention are readily known to the skilled artisan. Guidance to such amounts can be provided by the U.S. RDA doses for children and adults.
Further vitamins and minerals that can be added include, but are not limited to, calcium phosphate or acetate, tribasic; potassium phosphate, dibasic; magnesium sulfate or oxide; salt (sodium chloride);
potassium chloride or acetate; ascorbic acid; ferric orthophosphate;
niacinamide; zinc sulfate or oxide; calcium pantothenate; copper gluconate; riboflavin; beta-carotene;
pyridoxine hydrochloride; thiamin mononitrate; folic acid; biotin; chromium chloride or picolonate;
potassium iodide; sodium selenate; sodium molybdate; phylloquinone; vitamin D3 ;
cyanocobalamin; sodium selenite; copper sulfate; vitamin A; vitamin C;
inositol; potassium iodide.
The nutritional supplement can be provided in a variety of forms, and by a variety of production methods. In an embodiment, to manufacture a food bar, the liquid ingredients are cooked; the dry ingredients are added with the liquid ingredients in a mixer and mixed until the dough phase is reached; the dough is put into an extruder, and extruded;
the extruded dough is cut into appropriate lengths; and the product is cooled. The bars may contain other nutrients and fillers to enhance taste, in addition to the ingredients specifically listed herein.
It is understood by those of skill in the art that other ingredients can be added to those described herein, for example, fillers, emulsifiers, preservatives, etc. for the processing or manufacture of a nutritional supplement.
Additionally, flavors, coloring agents, spices, nuts and the like may be incorporated into the neutraceutical composition. Flavorings can be in the form of flavored extracts, volatile oils, chocolate flavorings, peanut butter flavoring, cookie crumbs, crisp rice, vanilla or any commercially available flavoring. Examples of useful flavoring include, but are not limited to, pure anise extract, imitation banana extract, imitation cherry extract, chocolate extract, pure lemon extract, pure orange extract, pure peppermint extract, imitation pineapple extract, imitation rum extract, imitation strawberry extract, or pure vanilla extract;
or volatile oils, such as balm oil, bay oil, bergamot oil, cedarwood oil, walnut oil, cherry oil, cinnamon oil, clove oil, or peppermint oil; peanut butter, chocolate flavoring, vanilla cookie crumb, butterscotch or toffee. In one embodiment, the dietary supplement contains cocoa or chocolate.
Emulsifiers may be added for stability of the neutraceutical compositions.
Examples of suitable emulsifiers include, but are not limited to, lecithin (e.g., from egg or soy), and/or mono and diglycerides. Other emulsifiers are readily apparent to the skilled artisan and selection of suitable emulsifier(s) will depend, in part, upon the formulation and final product.
Preservatives may also be added to the nutritional supplement to extend product shelf life. In certain embodiments, preservatives such as potassium sorbate, sodium sorbate, potassium benzoate, sodium benzoate or calcium disodium EDTA are used.
In addition to the carbohydrates described above, the neutraceutical composition can contain natural or artificial (preferably low calorie) sweeteners, e.g., saccharides, cyclamates, aspartamine, aspartame, acesulfame K, and/or sorbitol. Such artificial sweeteners can be desirable if the nutritional supplement is intended to be consumed by an overweight or obese individual, or an individual with type II diabetes who is prone to hyperglycemia.
Moreover, a multi-vitamin and mineral supplement may be added to the neutraceutical compositions of the present invention to obtain an adequate amount of an essential nutrient, which is missing in some diets. The multi-vitamin and mineral supplement may also be useful for disease prevention and protection against nutritional losses and deficiencies due to lifestyle patterns.
The dosage and ratios of catechin and/or epicatechin and additional components administered via a neutraceutical will vary depending upon known factors, such as the pharmaceutical characteristics of the particular composition and its mode and route of administration; the age, health and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; and the effect desired which can determined by the expert in the field with normal trials, or with the usual considerations regarding the formulation of a neutraceutical composition.
It will be understood, however, that the specific dose level for any particular patient will depend on a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex and diet of the individual being treated; the time and route of administration; the rate of excretion; other drugs which have previously been administered; and the severity of the particular disease undergoing therapy, as is well understood by those skilled in the art.
Specific diseases to be treated by the compounds, compositions, and methods disclosed herein include: impaired skeletal and cardiac muscle function, recovery of skeletal or cardiac muscle health or function, functionally significant regeneration of skeletal or cardiac muscle cells or function, and any other diseases disclosed herein.
Besides being useful for human treatment, certain compounds and formulations disclosed herein may also be useful for veterinary treatment of companion animals, exotic animals and farm animals, including mammals, rodents, and the like. More preferred animals include horses, dogs, and cats.
Biological Activity Assays Western Blot Assays:
Cells or skeletal muscle tissue samples were homogenized in 50 ul lysis buffer (1% triton X-100, mmol/L Tris, 140 mmol/L NaCI, 2 mmol/L EDTA, and 0.1 % SDS) with protease and phosphatase inhibitor cocktails supplemented with 1 mmol/L PMSF, 2 mmol/L
Na3VO4 and 1 mmol/L NaP. Homogenates were passed through an insulin syringe five times, sonicated for 30 min at 4DCand centrifuged (12,000 X g) for 10 min. The total protein content was measured in
15 the supernatant. A total of 40)1g of protein was loaded onto a 5% or 10%
SDS-PAGE, electrotransferred, incubated for 1 h in blocking solution (5% nonfat dry milk in TBS plus 0.1 % Tween 20 [TBS-T]), followed by either a 3-h incubation at room temperature or overnight incubation at 4DCwith primary antibodies. Primary antibodies were typically diluted 1:1000 or 1:2000 in TBS-T plus 5% bovine serum albumin. Membranes were washed (3X for 5 min) in 20 TBS-T and incubated 1 hat room temperature in the presence of HRP-conjugated secondary antibodies diluted 1:10,000 in blocking solution. Membranes were again washed 3 times in TBS- T, and the immunoblots were developed using an enhanced chemiluminescence detection kit. The band intensities were digitally quantified. All primary antibodies are commercially available.
Mouse Myoblast Assay Epicatechin induces follistatin expression, suppresses myostatin expression and accelerates the differentiation of cultured mouse myoblasts into myotubes. These phenomena are associated with increased expression of biomarkers of muscle differentiation, such as myogenin and myoD.
The mouse myoblast cell line, C2C12, was grown to semi-confluence in 6-well tissue culture plates and then exposed to epicatechin (100 nM) for three days using literature- standardized differentiation inducing media: DMEM supplemented with 2% horse serum.
Proteins were .. extracted, separated by conventional gel electrophoresis and stained as Western blots by reacting with commercially available antibodies specific for markers of muscle cell growth and differentiation. In experiments examining the comparative effects of (-) and (+) epicatechin enantiomers on muscle cells, the cells were grown to semi-confluence in 6 well plates, placed into literature-standardized differentiation medium containing horse serum, and then stimulated for 24 hours with (-) or (+) epicatechin enantiomers, at concentrations ranging from lOnM to 1000nM. The cells were then harvested as above, and Western blots were prepared to determine relative expression of PGCla and follistatin, using commercially available, specific, primary antibodies.
Treatment of Diabetic Patients with Epicatechin-Rich Cocoa Products Five patients with type 2 diabetes and heart failure were provided epicatechin-rich cocoa products (providing -100 mg epicatechiniday) every day for three months.
Epicatechin rich cocoa increased protein levels of the stimulator of skeletal muscle growth, follistatin, markers of muscle differentiation, (myogenin, myoD) and suppressed the expression of the inhibitory protein, myostatin in biopsy samples of human skeletal muscle after three months of treatment. Patients underwent biopsies of their quadriceps muscle before and after completing treatment. The biopsy material was analyzed by Western blots for the analysis of muscle protein content.
Electron micrographs of quadriceps muscle biopsy samples obtained before and after three months of treatment show a severe disruption and distortion of sarcomere ultrastructure in human skeletal muscle of diabetic patients with heart failure, consistent with sarcopenia ..
Treatment significantly restored sarcomere organization of skeletal muscle to near normal. This phenomenon was evidenced in all five patients as average histology score improved significantly.
Treatment with epicatechin induced increased expression of the activated form (de-acetylated) of PGC la, a transcriptional regulator of muscle repair and regeneration, as well as mitochondrial biogenesis, in the patients' quadriceps muscles. Treatment also increased the expression of elements of the sarcoglycan protein family, including dystrophin, dysferlin, and utrophin, consistent with the observed improvement in sarcomere morphology. Treatment also increased mitochondrial biogenesis, as evidenced by increased Electron Transport Complex proteins per mg of quadriceps tissue.
Baseline skeletal muscle thiollevels (by using a Cayman Inc. gluthatione assay kit) in diabetic patients with heart failure manifested a marked decrease evidencing significant tissue oxidative stress as compared to normal muscle. Treatment with epicatechin rich cocoa restored total thiollevels, an indication of a normalization of tissue oxidative stress levels.
Epicatechin treatment also increased quadriceps expression of superoxide dismutase and catalase, important enzymes that protect against oxidative muscle injury.
In-vivo Studies in Wild Mice and a Mouse Model of Muscular Dystrophy Wild type (i.e. normal) and delta sarcoglycan (8-SG) null mice which develop muscular dystrophy were treated by oral gavage for 30 days with epicatechin at 1 mg/kg twice a day, obtained from Sigma-Aldrich, or with water only (Control). Quadriceps muscle protein samples were analyzed by Western blots to assess for changes in protein levels of the mitochondrial proteins porin, mitofilin, complex V (CV), superoxide dismutase 2 (50D2), and catalase. In wild type mice, epicatechin treatment increases and in 8-SG null mice prevents the loss of mitochondrial proteins. In the muscular dystrophy mice, epicatechin increased the protein expression of both catalase and superoxide dismutase 2 in the heart and quadriceps muscle, important enzymes that counter the damaging effects of oxidation injury by decreasing the severity of oxidation injury.
Delta sarcoglycan (8-SG) muscular dystrophy mice exhibit reduced glutathione content (GSH, by using a Cayman Inc. gluthatione assay kit) in quadriceps muscle, evidencing enhanced tissue oxidative stress. Epicatechin treatment markedly increased muscle GSH levels in both wild type mice and delta sarcoglycan knock-out mice.
Delta sarcoglycan knock-out muscular dystrophy mice demonstrated a marked increase in PGC
la , a transcriptional factor that regulates muscle repair and regeneration, and regulates mitochondrial biogenesis, in skeletal muscle after treatment with oral epicatechin, 1 mg/kg twice a day for 4 weeks.
In one experiment, elderly wild type mice (26 months) with the muscle impairment of the elderly were treated for 2 weeks with epicatechin, 1 mg/kg twice a day for two weeks. They also demonstrated a significant increase in PGC lu in the skeletal muscle, with a correlative increase in mitochondrial protein expression.
In one experiment, mdx mice, characterized by the same dystrophin mutation as is seen with Duchenne's muscular dystrophy, were treated orally with epicatechin, 1 mg/kg twice a day for 4 weeks. They demonstrated an increase in muscle strength compared to controls treated with water, as determined by a standard timed hanging upside down test.
In the mouse myocyte cell line, C2C12, both (-) and (+) epicatechin enantiomers stimulated the expression of PGC lu and follistatin within 24 hr, consistent with activation of transcriptional pathways regulating muscle regeneration and expression of the muscle trophic hormone, follistatin.
Biomarkers The induction of follistatin, a muscle growth hormone and suppression of myostatin, an inhibitor of muscle growth, by epicatechin in vitro and in vivo suggest that these proteins might be useful biomarkers in monitoring the effects of epicatechin in vivo.
In diabetic patients with heart failure, the ratio of follistatin to myostatin was measured and calculated before and after treatment with epicatechin rich cocoa. There was a statistically significant increase in the folistatin/myostatin ratio associated with treatment, indicating an increase in follistatin and a decrease in its natural antagonist, myostatin.
Effect on Body Growth SD rats of the body weight 50-60 g and age 3-4 weeks were divided into 4 groups. Group A
animals were part of vehicle control group, Group B animals were administered Dexamethasone daily; Group C animals were dosed Epicatechin 3 mg/kg followed by dosing of Dexamethasone;
Group D animals were dosed 10 mg/kg Epicatechin followed by Dexamethasone. All dosing were by subcutaneous (SC) mode of administration. Dosing of animals was continued for 36 days. Body weight was measured every alternate day, overall length was measured weekly.
Animals were photographed periodically to further support data. Feed intake, general health and movement were assessed routinely. On 37th day animals were sacrificed and femur and tibia length were measured using Vernier Calipers. Blood was collected and stored.
It has been confirmed that follistatin can have a beneficial ameliorating effect on the decrease in body growth associated with the inhibition of bone formation secondary to the toxicity of corticosteroids, as shown in Table 1 below.
Data on growth of 4-week rates on de.xamethasone with or without additional concurrent treatment with epicatc.tchin.
Dex = L5 mpk Dex = 1 mpk Dex = 0.5 mpk WEIGHT (g) Day 1 Day 11 Day 23 Day 35 Rat. No Group Ind Avg Ind. Avg hid Avg Ind Avg 1 CONTROL 58.2 61.2 123.9 132.3 211.2 220.7 302.8 3184 64.2 140.7 230.2 333.9 55.4 59.3 91.1 g9A 88.0 85.7 103.9 96.1 4 57.7 84.3 80.0 93.1 5 64.8 9L9 89.0 91.5 6 DEX EPI(3) 59.9 59.2 85.6 84.8 104.0 103.5 185.1 183.3 7 55.4 8L2 105.2 181.7 8 67.7 87.6 101.3 183.1 9 DEX EPI(10) 54.6 60.3 76.9 86.1 93.3 103.8 189.4 199.3 10 65.9 95.3 114.3 209.1 Dex = 1.5 mpk Dex = 1 mpk Dex = 0.5 mpk LENGTH (cm) Day 1 Day 13 Day 23 Day 35 Rat. No Group Ind Avg Ind Avg Ind Avg Ind Avg DIVA0! 17.4 17.1 1.8.0 18,3 21,5 20.8
SDS-PAGE, electrotransferred, incubated for 1 h in blocking solution (5% nonfat dry milk in TBS plus 0.1 % Tween 20 [TBS-T]), followed by either a 3-h incubation at room temperature or overnight incubation at 4DCwith primary antibodies. Primary antibodies were typically diluted 1:1000 or 1:2000 in TBS-T plus 5% bovine serum albumin. Membranes were washed (3X for 5 min) in 20 TBS-T and incubated 1 hat room temperature in the presence of HRP-conjugated secondary antibodies diluted 1:10,000 in blocking solution. Membranes were again washed 3 times in TBS- T, and the immunoblots were developed using an enhanced chemiluminescence detection kit. The band intensities were digitally quantified. All primary antibodies are commercially available.
Mouse Myoblast Assay Epicatechin induces follistatin expression, suppresses myostatin expression and accelerates the differentiation of cultured mouse myoblasts into myotubes. These phenomena are associated with increased expression of biomarkers of muscle differentiation, such as myogenin and myoD.
The mouse myoblast cell line, C2C12, was grown to semi-confluence in 6-well tissue culture plates and then exposed to epicatechin (100 nM) for three days using literature- standardized differentiation inducing media: DMEM supplemented with 2% horse serum.
Proteins were .. extracted, separated by conventional gel electrophoresis and stained as Western blots by reacting with commercially available antibodies specific for markers of muscle cell growth and differentiation. In experiments examining the comparative effects of (-) and (+) epicatechin enantiomers on muscle cells, the cells were grown to semi-confluence in 6 well plates, placed into literature-standardized differentiation medium containing horse serum, and then stimulated for 24 hours with (-) or (+) epicatechin enantiomers, at concentrations ranging from lOnM to 1000nM. The cells were then harvested as above, and Western blots were prepared to determine relative expression of PGCla and follistatin, using commercially available, specific, primary antibodies.
Treatment of Diabetic Patients with Epicatechin-Rich Cocoa Products Five patients with type 2 diabetes and heart failure were provided epicatechin-rich cocoa products (providing -100 mg epicatechiniday) every day for three months.
Epicatechin rich cocoa increased protein levels of the stimulator of skeletal muscle growth, follistatin, markers of muscle differentiation, (myogenin, myoD) and suppressed the expression of the inhibitory protein, myostatin in biopsy samples of human skeletal muscle after three months of treatment. Patients underwent biopsies of their quadriceps muscle before and after completing treatment. The biopsy material was analyzed by Western blots for the analysis of muscle protein content.
Electron micrographs of quadriceps muscle biopsy samples obtained before and after three months of treatment show a severe disruption and distortion of sarcomere ultrastructure in human skeletal muscle of diabetic patients with heart failure, consistent with sarcopenia ..
Treatment significantly restored sarcomere organization of skeletal muscle to near normal. This phenomenon was evidenced in all five patients as average histology score improved significantly.
Treatment with epicatechin induced increased expression of the activated form (de-acetylated) of PGC la, a transcriptional regulator of muscle repair and regeneration, as well as mitochondrial biogenesis, in the patients' quadriceps muscles. Treatment also increased the expression of elements of the sarcoglycan protein family, including dystrophin, dysferlin, and utrophin, consistent with the observed improvement in sarcomere morphology. Treatment also increased mitochondrial biogenesis, as evidenced by increased Electron Transport Complex proteins per mg of quadriceps tissue.
Baseline skeletal muscle thiollevels (by using a Cayman Inc. gluthatione assay kit) in diabetic patients with heart failure manifested a marked decrease evidencing significant tissue oxidative stress as compared to normal muscle. Treatment with epicatechin rich cocoa restored total thiollevels, an indication of a normalization of tissue oxidative stress levels.
Epicatechin treatment also increased quadriceps expression of superoxide dismutase and catalase, important enzymes that protect against oxidative muscle injury.
In-vivo Studies in Wild Mice and a Mouse Model of Muscular Dystrophy Wild type (i.e. normal) and delta sarcoglycan (8-SG) null mice which develop muscular dystrophy were treated by oral gavage for 30 days with epicatechin at 1 mg/kg twice a day, obtained from Sigma-Aldrich, or with water only (Control). Quadriceps muscle protein samples were analyzed by Western blots to assess for changes in protein levels of the mitochondrial proteins porin, mitofilin, complex V (CV), superoxide dismutase 2 (50D2), and catalase. In wild type mice, epicatechin treatment increases and in 8-SG null mice prevents the loss of mitochondrial proteins. In the muscular dystrophy mice, epicatechin increased the protein expression of both catalase and superoxide dismutase 2 in the heart and quadriceps muscle, important enzymes that counter the damaging effects of oxidation injury by decreasing the severity of oxidation injury.
Delta sarcoglycan (8-SG) muscular dystrophy mice exhibit reduced glutathione content (GSH, by using a Cayman Inc. gluthatione assay kit) in quadriceps muscle, evidencing enhanced tissue oxidative stress. Epicatechin treatment markedly increased muscle GSH levels in both wild type mice and delta sarcoglycan knock-out mice.
Delta sarcoglycan knock-out muscular dystrophy mice demonstrated a marked increase in PGC
la , a transcriptional factor that regulates muscle repair and regeneration, and regulates mitochondrial biogenesis, in skeletal muscle after treatment with oral epicatechin, 1 mg/kg twice a day for 4 weeks.
In one experiment, elderly wild type mice (26 months) with the muscle impairment of the elderly were treated for 2 weeks with epicatechin, 1 mg/kg twice a day for two weeks. They also demonstrated a significant increase in PGC lu in the skeletal muscle, with a correlative increase in mitochondrial protein expression.
In one experiment, mdx mice, characterized by the same dystrophin mutation as is seen with Duchenne's muscular dystrophy, were treated orally with epicatechin, 1 mg/kg twice a day for 4 weeks. They demonstrated an increase in muscle strength compared to controls treated with water, as determined by a standard timed hanging upside down test.
In the mouse myocyte cell line, C2C12, both (-) and (+) epicatechin enantiomers stimulated the expression of PGC lu and follistatin within 24 hr, consistent with activation of transcriptional pathways regulating muscle regeneration and expression of the muscle trophic hormone, follistatin.
Biomarkers The induction of follistatin, a muscle growth hormone and suppression of myostatin, an inhibitor of muscle growth, by epicatechin in vitro and in vivo suggest that these proteins might be useful biomarkers in monitoring the effects of epicatechin in vivo.
In diabetic patients with heart failure, the ratio of follistatin to myostatin was measured and calculated before and after treatment with epicatechin rich cocoa. There was a statistically significant increase in the folistatin/myostatin ratio associated with treatment, indicating an increase in follistatin and a decrease in its natural antagonist, myostatin.
Effect on Body Growth SD rats of the body weight 50-60 g and age 3-4 weeks were divided into 4 groups. Group A
animals were part of vehicle control group, Group B animals were administered Dexamethasone daily; Group C animals were dosed Epicatechin 3 mg/kg followed by dosing of Dexamethasone;
Group D animals were dosed 10 mg/kg Epicatechin followed by Dexamethasone. All dosing were by subcutaneous (SC) mode of administration. Dosing of animals was continued for 36 days. Body weight was measured every alternate day, overall length was measured weekly.
Animals were photographed periodically to further support data. Feed intake, general health and movement were assessed routinely. On 37th day animals were sacrificed and femur and tibia length were measured using Vernier Calipers. Blood was collected and stored.
It has been confirmed that follistatin can have a beneficial ameliorating effect on the decrease in body growth associated with the inhibition of bone formation secondary to the toxicity of corticosteroids, as shown in Table 1 below.
Data on growth of 4-week rates on de.xamethasone with or without additional concurrent treatment with epicatc.tchin.
Dex = L5 mpk Dex = 1 mpk Dex = 0.5 mpk WEIGHT (g) Day 1 Day 11 Day 23 Day 35 Rat. No Group Ind Avg Ind. Avg hid Avg Ind Avg 1 CONTROL 58.2 61.2 123.9 132.3 211.2 220.7 302.8 3184 64.2 140.7 230.2 333.9 55.4 59.3 91.1 g9A 88.0 85.7 103.9 96.1 4 57.7 84.3 80.0 93.1 5 64.8 9L9 89.0 91.5 6 DEX EPI(3) 59.9 59.2 85.6 84.8 104.0 103.5 185.1 183.3 7 55.4 8L2 105.2 181.7 8 67.7 87.6 101.3 183.1 9 DEX EPI(10) 54.6 60.3 76.9 86.1 93.3 103.8 189.4 199.3 10 65.9 95.3 114.3 209.1 Dex = 1.5 mpk Dex = 1 mpk Dex = 0.5 mpk LENGTH (cm) Day 1 Day 13 Day 23 Day 35 Rat. No Group Ind Avg Ind Avg Ind Avg Ind Avg DIVA0! 17.4 17.1 1.8.0 18,3 21,5 20.8
16.7 18.5 20 #DIV/O! 15.4 15.3 14.5 14.2 14.5 14.2 4 15.1 14.0 14 15.3 14.0 14 6 DEX + EN(3) #DIV/01 15,2 1.5.1 15.0 14.8
17.5 17,7 7 15.1 15.0 17.5 8 15.1 14.5 18 9 DEX + EPI(110) #-DIV/0! 14.5 14.9 15.5 15.5
18.5 18.8 15.2 1.5,5 19 Bone Length (ram) Groups Femur Length (rnm) Tibia Length (nun) Group 1 - Vehicle Control 32.30 40.89 Group 2 - Dexastc 77.68 78.67 Group 3 - Epi 1-3 MPK. sic 29.57 34.91.
Group 4 - Epi 1-10 MPK sic 31.30 35.37
Group 4 - Epi 1-10 MPK sic 31.30 35.37
Claims (22)
1. A method to reverse or ameliorate injury to, or weakness of, or loss of, bone, or to prevent fractures, in a subject in need thereof, comprising administering to a subject a therapeutically effective dose of (+)-epicatechin and/or (-)-epicatechin, or a epicatechin derivative.
2. The method of Claim 1 wherein the (+)-epicatechin and/or (-)-epicatechin or an epicatechin derivative is administered orally or intravenously or intramuscularly, at 5 mg to 2 grams per day, in a single dose or in divided doses.
3. The method of Claim 1 wherein the (+)-epicatechin and/or the (-)-epicatechin or an epicatechin derivative is administered at a dose between 0.1 mg/kg of bodyweight per day to 10 mg/kg of bodyweight per day, orally or intravenously or intramuscularly, in a single dose or in divided doses.
4. The method of Claim 1 wherein the method induces new bone formation or additional bone formation or stronger bone formation or regeneration of bone in order to prevent bone fractures.
5. The method of claim 1, wherein the method reverses or ameliorates weakness of bone, thus preventing bone fractures, caused by administration of a compound known to induce weakness of or damage to bone, impairment of bone generation, or impairment of bone growth, wherein the compound is selected from the group consisting of corticosteroids anticonvulsants, chemotherapeutics.
6. The method of claim 1, wherein the weakness of bone is caused by medical conditions known to be associated with weakness of, or damage to, bone, impairment of bone generation, or impairment of bone growth.
7. The method of claim 1, wherein the (+)-epicatechin and/or (-)-epicatechin is co-administered with calcium, Vitamin D, or calcitonin.
8. The method of Claim 4 wherein the (+)-epicatechin and/or (-)-epicatechin or an epicatechin derivative is administered orally or intravenously or intramuscularly, at 5 mg to 2 grams per day, in a single dose or in divided doses.
9. The method of Claim 5 wherein the (+)-epicatechin and/or (-)-epicatechin or an epicatechin derivative is administered orally or intravenously or intramuscularly, at 5 mg to 2 grams per day, in a single dose or in divided doses.
10. The method of Claim 6 wherein the (+)-epicatechin and/or (-)-epicatechin or an epicatechin derivative is administered orally or intravenously or intramuscularly, at 5 mg to 2 grams per day, in a single dose or in divided doses.
11. The method of Claim 7 wherein the (+)-epicatechin and/or (-)-epicatechin or an epicatechin derivative is administered orally or intravenously or intramuscularly, at 5 mg to 2 grams per day, in a single dose or in divided doses.
12. A composition comprising or consisting of (+)-epicatechin, (-)-epicatechin or a mixture of both or a pharmaceutically acceptable salt or prodrug thereof for use as a medicament for (a) reversing or ameliorating injury to, or weakness of, or loss of, bone, or to prevent fractures, and/or (b) preventing, treating or curing osteoporosis.
13. The composition of Claim 12 characterized in that the (+)-epicatechin, (-)-epicatechin or a mixture of both or a pharmaceutically acceptable salt or prodrug thereof is administered orally or intravenously or intramuscularly,
14. The composition of Claim 12 and/or 13, characterized in that the (+)-epicatechin, (-)-epicatechin or a mixture of both or a pharmaceutically acceptable salt or prodrug thereof is administered at 5 mg to 2 grams per day, in a single dose or in divided doses.
15. The composition of any of the preceding Claims 12 to 14, characterized in that the (+)-epicatechin, (-)-epicatechin or a mixture of both or a pharmaceutically acceptable salt or prodrug thereof is administered at a dose between 0.1 mg/kg of bodyweight per day to 10 mg/kg of bodyweight per day, orally or intravenously or intramuscularly, in a single dose or in divided doses.
16. The composition of any of the preceding Claims 12 to 15, characterized in that said composition is inducing new bone formation or additional bone formation or stronger bone formation or regeneration of bone in order to prevent bone fractures.
17. The composition of any of the preceding Claims 12 to 16, characterized in that the weakness of, or loss of bone is caused by administration of a compound known to induce weakness of or damage to bone, impairment of bone generation, or impairment of bone growth, wherein the compound is selected from the group consisting of corticosteroids anticonvulsants, and chemotherapeutics or mixtures thereof.
18. The composition of any of the preceding Claims 12 to 17, characterized in that the weakness of bone is caused by medical conditions known to be associated with weakness of, or damage to, bone, impairment of bone generation, or impairment of bone growth.
19. The composition of any of the preceding Claims 12-18 characterized in that said composition further comprises calcium, Vitamin D, or calcitonin, or mixtures thereof.
20. The composition of any of the preceding Claims 12 to 19, characterized in that said composition further comprises corticosteroids anticonvulsants, chemotherapeutics or mixtures thereof.
21. The composition of any of the preceding claims 12-20, characterized in that said composition increases cellular or muscular or bodily production of follistatin and follistatin-like proteins.
22. The method of claim 1, wherein the therapeutic dose increases cellular or muscular or bodily production of follistatin and follistatin-like proteins.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/900,533 | 2018-02-20 | ||
US15/900,533 US20180193306A1 (en) | 2012-03-23 | 2018-02-20 | Compounds and compositions for the treatment of muscular disorders and bone disorders |
PCT/US2019/018730 WO2019164914A1 (en) | 2018-02-20 | 2019-02-20 | Compounds and compositions for the treatment of muscular disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3091892A1 true CA3091892A1 (en) | 2019-08-29 |
Family
ID=67687368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3091892A Pending CA3091892A1 (en) | 2018-02-20 | 2019-02-20 | Compounds and compositions for the treatment of muscular disorders and bone disorders |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP3755319A4 (en) |
JP (1) | JP2021514380A (en) |
CN (1) | CN111989098A (en) |
AU (1) | AU2019224003A1 (en) |
BR (1) | BR112020016923A2 (en) |
CA (1) | CA3091892A1 (en) |
IL (1) | IL276786A (en) |
WO (1) | WO2019164914A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10052316B2 (en) | 2011-06-06 | 2018-08-21 | Cardero Therapeutics, Inc. | Methods and compositions for treatment of mitochondrial toxicity |
CN109415400A (en) | 2016-06-21 | 2019-03-01 | 斯法尔制药私人有限公司 | The purposes of (+) epicatechin and the like |
US11918570B2 (en) | 2020-04-13 | 2024-03-05 | The Research Foundation For The State University Of New York | Method of treatment for prevention of glucocorticoid toxicity and/or enhancement of muscle regeneration via neutrophil elastase inhibition |
WO2024036225A1 (en) * | 2022-08-10 | 2024-02-15 | Epirium Bio Inc. | Epicatechin for inhibiting glutamate toxicity |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003216345A1 (en) * | 2002-02-21 | 2003-09-09 | Wyeth | Follistatin domain containing proteins |
JP2004161669A (en) * | 2002-11-13 | 2004-06-10 | Ito En Ltd | Osteogenic promoter |
CN100361655C (en) * | 2005-09-05 | 2008-01-16 | 中山大学 | (-)-epigallocatechin gallate-calcium complex solid dispersion and its prepn and application |
JP2010538244A (en) * | 2007-06-20 | 2010-12-09 | ガラパゴス・ナムローゼ・フェンノートシャップ | Molecular targets and compounds useful for the treatment of bone and joint degenerative diseases and methods for identification thereof |
BRPI0911960B1 (en) * | 2008-05-14 | 2022-03-22 | Agriculture Victoria Services Pty Limited | Use of angiogenin in the preparation of a composition, food supplement or nutraceutical to promote muscle growth and improvement |
JP2010095474A (en) * | 2008-10-17 | 2010-04-30 | Ito En Ltd | Calcium absorption-promoting composition and calcium absorption-promoting food and drink |
KR101096574B1 (en) * | 2008-12-12 | 2011-12-20 | 에이치 엘 지노믹스(주) | Pharmaceutical composition for preventing or treating osteoporosis comprising Vitis vinifera pip extract |
JP2011006355A (en) * | 2009-06-25 | 2011-01-13 | Ito En Ltd | Composition and food and drink for improving bone density |
JP2013051920A (en) * | 2011-09-05 | 2013-03-21 | Ishikawa Prefectural Public Univ Corp | Bone density improving supplement |
EP2827856A4 (en) * | 2012-03-23 | 2016-03-09 | Cardero Therapeutics Inc | Compounds and compositions for the treatment of muscular disorders |
JP2015532104A (en) * | 2012-10-04 | 2015-11-09 | アボット・ラボラトリーズAbbott Laboratories | Method for enhancing the effect of EGCG on alleviating skeletal muscle loss |
CA3025292C (en) * | 2014-06-16 | 2019-11-12 | Unigen, Inc. | Compositions and methods for managing or improving bone disorders, cartilage disorders, or both |
-
2019
- 2019-02-20 CA CA3091892A patent/CA3091892A1/en active Pending
- 2019-02-20 AU AU2019224003A patent/AU2019224003A1/en active Pending
- 2019-02-20 JP JP2020544632A patent/JP2021514380A/en active Pending
- 2019-02-20 EP EP19756654.0A patent/EP3755319A4/en not_active Withdrawn
- 2019-02-20 BR BR112020016923-4A patent/BR112020016923A2/en not_active Application Discontinuation
- 2019-02-20 CN CN201980026811.XA patent/CN111989098A/en active Pending
- 2019-02-20 WO PCT/US2019/018730 patent/WO2019164914A1/en unknown
-
2020
- 2020-08-18 IL IL276786A patent/IL276786A/en unknown
Also Published As
Publication number | Publication date |
---|---|
IL276786A (en) | 2020-10-29 |
BR112020016923A2 (en) | 2020-12-15 |
EP3755319A4 (en) | 2021-12-01 |
WO2019164914A1 (en) | 2019-08-29 |
JP2021514380A (en) | 2021-06-10 |
AU2019224003A1 (en) | 2020-10-08 |
CN111989098A (en) | 2020-11-24 |
EP3755319A1 (en) | 2020-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9901564B2 (en) | Compounds and compositions for the treatment of muscular disorders | |
US20220401409A1 (en) | Compounds and compositions for the treatment of muscular disorders and bone disorders | |
US20220105117A1 (en) | Compositions comprising nicotinamide riboside and a urolithin | |
CA3091892A1 (en) | Compounds and compositions for the treatment of muscular disorders and bone disorders | |
AU2007275561B2 (en) | Improvement of arginase levels/activity | |
KR20210153027A (en) | Anti-aging agents and anti-aging methods | |
US20220378731A1 (en) | Composition For Treating Tauopathy In The Brain, Brain Stem and Spinal Column | |
KR20100094485A (en) | Anti-fatigue agent comprising amino acid composition | |
US20230255238A2 (en) | Compositions and methods using at least one of oleuropein or a metabolite thereof to treat or prevent muscle fatigue from exercise and/or for resistance to muscle fatigue from exercise | |
EP3897617A1 (en) | Novel polymethoxyflavone compounds for skeletal muscle modulation, methods and uses thereof | |
US20220218793A1 (en) | Use of composition for preventing, ameliorating, or treating bone loss disorders, comprising cyclo-hispro (chp) and parathyroid hormone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20240220 |