CA3062799C - Apparatuses and methods for scraping - Google Patents

Apparatuses and methods for scraping Download PDF

Info

Publication number
CA3062799C
CA3062799C CA3062799A CA3062799A CA3062799C CA 3062799 C CA3062799 C CA 3062799C CA 3062799 A CA3062799 A CA 3062799A CA 3062799 A CA3062799 A CA 3062799A CA 3062799 C CA3062799 C CA 3062799C
Authority
CA
Canada
Prior art keywords
plunger
scraping
ridge
features
lift apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA3062799A
Other languages
French (fr)
Other versions
CA3062799A1 (en
Inventor
Garrett S. Boyd
Mitchell A. Boyd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flowco Production Solutions LLC
Original Assignee
Flowco Production Solutions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flowco Production Solutions LLC filed Critical Flowco Production Solutions LLC
Publication of CA3062799A1 publication Critical patent/CA3062799A1/en
Application granted granted Critical
Publication of CA3062799C publication Critical patent/CA3062799C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells
    • E21B37/02Scrapers specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells
    • E21B37/02Scrapers specially adapted therefor
    • E21B37/04Scrapers specially adapted therefor operated by fluid pressure, e.g. free-piston scrapers
    • E21B37/045Free-piston scrapers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Cleaning In General (AREA)

Abstract

Disclosed embodiments include an apparatus, such as a plunger for oil and/or gas wells, that includes one or more scraping features. The scraping feature may include at least one ridge configured to scrape material, such as paraffins, asphaltenes, salt, hydrates, debris, solids, etc., from an inner surface of a tubular body and direct the scraped material away from the plunger body. A disclosed method for scraping material from a tubular body includes releasing a plunger within the tubular body, the plunger having a body with an outer surface and a scraping feature on the outer surface that includes at least one ridge; scraping material from an inner surface of the tubular body with the ridge of the scraping feature; and directing the scraped material away from the plunger body.

Description

APPARATUSES AND METHODS FOR SCRAPING
FIELD OF THE INVENTION
[0001] This disclosure generally relates to scraping features located on an outer surface of an apparatus, for example, a plunger, that travels through oil and/or gas well tubing and is configured to scrape an inner surface of the tubing..
BACKGROUND OF THE INVENTION
[0002] For wells that have excess liquids or insufficient pressure, it is often desirable to use a plunger assembly that descends and ascends within well tubing or piping to restore production.
For example, pressure in oil or gas wells may naturally deplete over time, causing liquids to accumulate in the downhole tubing. This liquid accumulation creates a hydrostatic head that may exceed the well's natural pressure and cause production to decrease or cease altogether. A= plunger lift'system may be used to remove liquids and permit the well to continue production even after well pressure has diminished.
[0003] In a plunger lift system, a plunger travels down the well tubing where it contacts a bumper spring located in the downhole tubing. When the plunger contacts the bumper spring, a bypass valve withih the plunger is closed and a seal is created between the plunger and the tubing.
The plunger lift system is designed to have minimal clearance between the tubing and the plunger as it travels down the tubing such that the stop or plug can act as an effective seal to increase the backpressure within the well tubing.
[00041 When the downhole pressure reaches a preset or predetermined amount, a downstream surface valve is opened, pressure in the tubing above the plunger decreases, and the plunger ascends to the surface. The plunger is captured in a receiver that reopens the bypass valve, and well fluids flow through the tubing until the well pressure again decreases.
The surface valve is then closed and the cycle repeats as the plunger is released and descends through the well tubing.

Date Recue/Date Received 2021-06-16 [00051 In wells with decreases in pressure and temperature, heavier components, such as paraffin, have a tendency to precipitate and accumulate on tubing surfaces.
For example, paraffin may crystalize and deposit on inner walls of the well tubing when well fluids experience, for example, drops in temperature due to heat loss along a subsea pipeline and/or cooling due to gas expansion, as is common in wells with decreased pressure. Accumulation of solids on walls of the tubing may further decrease well production by choking flow through the tubing.
[00061 When using a plunger lift system to restore production, minimal clearances between the plunger and the tubing are essential to create the necessary seal for increasing pressure in the well. Due to the minimal clearance area between the tubing and the plunger, buildup of materials on the inner wall of the tubing may impede or prevent movement of the plunger within the well tubing. By applying a scraping feature to an outer surface of the plunger, the plunger may scrape the inner surface of the tubing walls, preventing and removing deposits of materials, such as paraffins, asphaltenes, salt, hydrates, debris, solids, etc. The removed deposits may then be carried up the tubing. The plunger may thus freely travel through the tubing and create a proper seal.
[00071 If deposited materials are not removed regularly, well production may be further reduced or completely inhibited. Conventionally, buildup on well tubing has been removed via slickline units, hot oiling, hot water, thermal treatment, chemical treatment, or a combination thereof. These treatments are expensive and typically involve shut-in of the well while the tubing is cleaned, which disrupts production and further increases the effective cost of removal. By using a plunger lift assembly that includes features designed to scrape and remove buildup on an inner surface of piping or tubing, in accordance with disclosed embodiments, well production may be restored and buildup removed and/or prevented in an affordable manner.
BRIEF DESCRIPTION OF THE DRAWINGS
[00081 The accompanying drawings are part of the present disclosure and are incorporated into the specification. The drawings illustrate examples of embodiments of the disclosure and, in conjunction with the description and claims, serve to explain various principles, features, or aspects of the disclosure. Certain embodiments of the disclosure are described more fully below with reference to the accompanying drawings. However, various aspects of the disclosure may be implemented in many different forms and should not be construed as being limited to the Date Recue/Date Received 2021-06-16 implementations set forth herein. Like numbers refer to like elements, but are not necessarily the same or identical elements throughout.
[0009] FIGS. lA and 1B illustrate an apparatus including scraping features in accordance with one or more embodiments of the disclosure.
[0010] FIGS. 2A to 2G are enlarged side views of a scraping feature in accordance with one or more embodiments of the disclosure.
[0011] FIGS. 3A to 3C are enlarged views of a scraping feature in accordance with one or more embodiments of the disclosure.
[0012] FIGS. 4A to 4J illustrate the apparatus of FIGS. 1A and 1B including one or more alternative scraping features in accordance with one or more embodiments of the disclosure.
[0013] FIGS. SA to 5D illustrate an apparatus including scraping features in accordance with one or more embodiments of the disclosure.
[0014] FIGS. 6A to 6F illustrate an apparatus including scraping features in accordance with one or more embodiments of the disclosure.
[0015] FIG. 7 illustrates an apparatus that includes scraping features in accordance with one or more embodiments of the disclosure.
[0016] FIG. 8 illustrates an apparatus that includes a scraping feature in accordance with one or more embodiments of the disclosure.
[0017] FIG. 9 illustrates an apparatus that includes a scraping feature in accordance with one or more embodiments of the disclosure.
[0018] FIG. 10 illustrates an apparatus that includes scraping features in accordance with one or more embodiments of the disclosure.
[0019] FIG. 11 illustrates an apparatus that includes a scraping feature in accordance with one or more embodiments of the disclosure.

Date Recue/Date Received 2021-06-16 [00201 FIG. 12 illustrates an apparatus that includes scraping features in accordance with one or more embodiments of the disclosure.
[0021] FIG. 13 illustrates an apparatus that includes scraping features in accordance with one or more embodiments of the disclosure.
[0022] FIGS. 14A and 14B illustrate an apparatus that includes scraping features in accordance with one or more embodiments of the disclosure.
DETAILED DESCRIPTION
[0023] Although this disclosure describes scraping features that may be used on various types of oil and/or gas well plungers, e.g., conventional, barstock/fast fall, sliding sleeve, bypass, etc., the present disclosure is not intended to be limited to such disclosed apparatuses or environments.
For example, the scraping features disclosed herein may be implemented on other equipment, e.g., pigs, and in any environment that may have material deposited on an inner surface thereon, e.g., production equipment.
[0024] FIGS. IA and 1B illustrate an example embodiment of the present disclosure that may be used in combination with a device, for example, plunger 10, in accordance with embodiments of the disclosure. A scraping feature 20 may facilitate removal of buildup on an inner surface of oil or gas well tubing. One or more scraping features 20 may be located at one or more locations along a length of the plunger 10, or along substantially an entire length of the plunger 10, and may be arranged either partially or completely around a circumference of the plunger 10, or may be used with another cleaning tool.
[0025] Conventional plungers typically include seals 30 with recesses 35 on either side of the seal 30. However, in wells that have material built up on the inner surface of the tubing, the built up material (e.g., paraffins) may become trapped in recesses 35, clogging the recesses 35 and thereby inhibiting operation of a conventional plunger. However, as shown in FIG. 2A, the scraping feature 20 of the present disclosure includes at least one groove 40 and at least one ridge or raised surface 50 that may facilitate scraping of sidewalls of well tubing, while preventing excess deposit or accumulation of displaced material within the grooves 40 or recesses 35 of the plunger 10. As shown in FIG. 1B, multiple ridges 50 and/or grooves 40 may be used in
4 Date Recue/Date Received 2021-06-16 _ combination. Widths and/or lengths of the ridges 50 and/or grooves 40 may be varied as needed for the intended application.
[0026] FIGS. 2A to 2G illustrate enlarged side views of a scraping feature 20 in accordance with one or more embodiments of the disclosure. Ridge 50 and groove 40 may include "U" (FIG.
2E), "V" (FIG. 2F), "W" (FIG. 2G), circular, oval, or diamond shapes, or combinations thereof.
Additionally, edges of the ridge 50 may include straight or curved portions, and/or a combination thereof For example, as shown in FIGS. 2A to 2G, edges of the ridge 50 (e.g., shapes of the edges around the perimeter of the ridge 50) may include a straight edge 55 (e.g., FIG. 2A), or may include a concave curved edge 56 (e.g., FIG. 2B), or may include a convex curved edge 57 (e.g., FIG. 2C).
Edges of the ridge 50 could also include portions that are both convex and concave (e.g., a wave form, not shown), or a combination of straight and curved portions (not shown).
[0027] For example, as shown in FIGS. 2A, 2F, and 2G, edges of the ridge 50 may include a combination of straight edges 55. As shown in FIG. 2B, edges of ridge 50 may include concave curved edges 56 or, as shown in FIGS. 2C and 2D, may include convex curved edges 57.
Alternatively, edges of ridge 50 may include a combination of convex edges 57 and straight edges 55, as shown in FIG. 2E. However, these shapes are not intended to be exhaustive or limiting, and any shape that permits scraping of sidewalls of the tubing and displacement of the scraped buildup material, preferably away from the plunger body, is considered to be within the scope of the present disclosure.
[0028] The ridges 50 may also be altered as needed. For example, angles between two surfaces of the ridges 50, e.g., an angle a between sides of the "V" (as shown in FIG.
3C) may be altered.
The angle a may be varied depending on the intended application and may be an acute angle, an obtuse angle, or a 90 degree angle, and may include a fillet. In addition, the ridge 50 may be formed integrally with the plunger 10 or, alternatively, may be a separate element that has been integrated into the plunger 10, or may be a separate element that may be removable from the plunger.
[0029] In an embodiment with diamond-shaped ridges 50, as shown in FIG. 2A, a leading edge 58 and/or a trailing edge of the ridge 50 may be oriented such that a narrowest portion of the ridge 50 is substantially pointed and located on a forwardmost and/or rearmost side of the plunger 10, Date Recue/Date Received 2021-06-16 depending on a direction of intended travel. The arrangement shown in FIG. 2A, for example, may facilitate removal of solids from the tubing during both forward and backward travel of the plunger 10 because the narrowest portion of the ridge 50 is pointed, forming a leading edge 58 during both forward and backward travel of the plunger 10 through the tubing.
[0030] In one example, the grooves 40 (e.g., as shown in FIG. 2A) may be located on a circumferential side of the ridges 50 and/or between the ridges 50 to facilitate displacement of the scraped buildup material around the ridge 50. The grooves 40 may also include sloped or tapered surfaces 45 (FIG. 2A) that further facilitate movement and removal of the scraped buildup material out of the groove 40 as additional scraped buildup material enters the groove 40. The tapered surfaces 45 may be of the edge of grooves 40 and/or may be located between the ridges 50 such that sides of the ridge 50 are sloped (e.g., FIG. 3A). Tapered surfaces 45 may be arranged at an obtuse angle with respect to a bottom surface of the groove 40, as shown in FIG. 3C; at an acute angle with respect to a bottom surface of the groove 40 (e.g., such that an undercut portion 46 is formed); or may include a combination of tapered surfaces 45 that are obtuse and acute with respect to a bottom surface of the groove 40 (e.g., FIG. 5B). In addition, the tapered surface 45 may extend to 'an outer surface 60 (FIG. 3A), or may stop below the outer surface 60 (FIG. 3B).
100311 As shown in FIG. 3A, the outer surface 60 of the ridge 50 may extend to a height that is substantially the same as an outer diameter of the plunger 10. In other embodiments, the outer surface 60 of the ridge 50 may extend to a height that is greater than the outer diameter of the plunger 10. Alternatively, the outer surface 60 of the ridge 50 may have a height that is less than the outer diameter of the plunger 10, or may have an outer surface 60 that varies along a length/width of the ridge 50 (e.g., FIG. 5A), such that portions of the height of the outer surface 60 could be a combination of lower than, greater than, and/or the same as an outer diameter of the plunger 10.
[0032] A depth of the grooves 40 may also be varied depending on the environment in which the scraping feature 20 is intended to be implemented. That is, the depth of grooves 40 may be chosen to ensure sufficient wall thickness for the intended application, e.g., high well pressures, corrosive environments, etc., while accounting for amounts of solid material that may be deposited on an inner surface of the tubing.

Date Recue/Date Received 2021-06-16 [00331 The depth of the grooves 40 may be chosen to ensure that a sufficient ratio of an outer diameter ("OD") of the plunger 10 to an inner diameter ("ID") of the plunger 10 is maintained according to the intended environment. For example, potentially corrosive environments will require a greater OD to ID ratio. However, a flow of fluids through the plunger 10 may be maximized by minimizing the OD to ID ratio, which may in turn permit the plunger 10 to travel through the well tubing more quickly and efficiently. In a non-limiting example, the ratio of the OD to ID may be in a range of approximately 1.2 to approximately 1.9.
[0034]
In operation, material such as paraffin that has built up on an inner surface of tubing comes in contact with the ridge 50 and is scraped free of the inner surface of the tubing by ridge 50. Scraped material may be pushed by the ridge 50 into the grooves 40 and displaced through the grooves 40 until the scraped buildup material exits the grooves 40.
Material may then be dispersed within the tubing and carried away by well fluids. In various embodiments, the scraping feature 20 may be designed to remove buildup in a forward/downward direction of the plunger 10, a backward/upward direction of the apparatus or plunger 10, or both. For example, as shown in FIG. 2A, scraping feature 20 may have ridges 50 with a diamond shape that is pointed in both a forward and rearward direction of the plunger 10, forming a leading edge 58 on each of opposite sides of the ridge 50. One leading edge 58 is thus able to scrape the inner surface of the tubing while traveling in either a forward or backward direction.
[0035]
FIG. 3C shows an enlarged detail view of a scraping feature in accordance with one or more embodiments of the disclosure. The grooves 40 and ridges 50 may be sized according to the intended environment in which the plunger 10 is configured to be used. In a non-limiting example, the ridges 50 may be arranged in a pattern that includes five or six ridges 50 that are arranged around a circumference of the plunger 10 by one to three ridges 50 that extend along a longitudinal length of the plunger 10. For example, the ridge 50 may extend along a length of the plunger 10 for approximately 1.75 inches to approximately 2.25 inches, and each ridge 50 may include a length L that is in a range of approximately 0.7 inches to approximately 1.75 inches, and a width W that is in a range of approximately 0.25 inches to approximately 0.35 inches.
[0036]
FIGS. 4A to 4J illustrate the plunger apparatus of FIGS. lA and 1B with one or more alternative embodiments of the scraping features in accordance with one or more embodiments of Date Recue/Date Received 2021-06-16 the disclosure. As shown in FIGS. 1A, 1B, and 4A to 4E1, the plunger 10 may include, for example, two or more areas which include a scraping feature 20. FIGS. 41 and 4J
illustrate embodiments that may include one scraping feature 20 along substantially an entire length of the body of plunger 10. However, as noted above, the present disclosure is not limited to the number of scraping features 20 that may be included on an apparatus, and use of one or more scraping features 20 on an apparatus are within the scope of the present disclosure. In addition, a width and/or length of each of the ridges 50 and grooves 40 (e.g., as shown in FIG. 3C) and/or the scraping feature 20 may vary according to the intended application.
[0037] FIGS. 5A to 14B illustrate additional apparatuses that include one or more scraping features in accordance with one or more embodiments of the disclosure. As shown in FIGS. 5A
to 14B, the scraping feature 20 may be used on conventional, bypass, barstock/fast fall, sliding sleeve, or pad type plunger, or any other plunger for use in a plunger lift system.
[0038] FIGS. 5A to 5D illustrate plungers 10 that include the scraping feature 20 in accordance with one or more embodiments of the disclosure. As shown in FIGS. 5A to 5D, the plunger 10 may include, for example, two or more areas which include scraping feature 20.
[0039] FIGS. 6A to 6F illustrate plungers 10 that include one or more scraping features 20 in accordance with one or more embodiments of the disclosure. As shown in FIGS.
6A and 6E, the plunger 10 may include three or more areas which each include scraping feature 20. Alternatively, the plunger may include two that include scraping feature 20, as shown in FIGS. 6B to 6D. In another embodiment, the plunger may include a scraping feature 20 along substantially an entire length of the plunger 10, as shown in FIG. 6F.
[0040] FIGS. 7 to 11 illustrate pad type plungers 10 that include one or more scraping features 20 in accordance with one or more embodiments of the disclosure. FIGS. 12 to 14B illustrate sliding sleeve plungers 10 that include one or more scraping features 20 in accordance with one or more embodiments of the disclosure. As shown in FIGS. 12 and 13, the plunger 10 may include, for example, three or more areas which include scraping feature 20.
Alternatively, the plunger may include two or more areas which include scraping feature 20, as shown in FIGS. 7, 10, 14A, and 14B. In another embodiment, the plunger may include a scraping feature 20 at one end of the plunger 10, which may be varied in length, as shown in FIGS. 8, 9, and 11.

Date Recue/Date Received 2021-06-16 the disclosure. As shown in FIGS. 1A, 1B, and 4A to 4E1, the plunger 10 may include, for example, two or more areas which include a scraping feature 20. FIGS. 41 and 4J
illustrate embodiments that may include one scraping feature 20 along substantially an entire length of the body of plunger 10. However, as noted above, the present disclosure is not limited to the number of scraping features 20 that may be included on an apparatus, and use of one or more scraping features 20 on an apparatus are within the scope of the present disclosure. In addition, a width and/or length of each of the ridges 50 and grooves 40 (e.g., as shown in FIG. 3C) and/or the scraping feature 20 may vary according to the intended application.
[0037] FIGS. 5A to 14B illustrate additional apparatuses that include one or more scraping features in accordance with one or more embodiments of the disclosure. As shown in FIGS. 5A
to 14B, the scraping feature 20 may be used on conventional, bypass, barstock/fast fall, sliding sleeve, or pad type plunger, or any other plunger for use in a plunger lift system.
[0038] FIGS. 5A to 5D illustrate plungers 10 that include the scraping feature 20 in accordance with one or more embodiments of the disclosure. As shown in FIGS. 5A to 5D, the plunger 10 may include, for example, two or more areas which include scraping feature 20.
[0039] FIGS. 6A to 6F illustrate plungers 10 that include one or more scraping features 20 in accordance with one or more embodiments of the disclosure. As shown in FIGS.
6A and 6E, the plunger 10 may include three or more areas which each include scraping feature 20. Alternatively, the plunger may include two that include scraping feature 20, as shown in FIGS. 6B to 6D. In another embodiment, the plunger may include a scraping feature 20 along substantially an entire length of the plunger 10, as shown in FIG. 6F.
[0040] FIGS. 7 to 11 illustrate pad type plungers 10 that include one or more scraping features 20 in accordance with one or more embodiments of the disclosure. FIGS. 12 to 14B illustrate sliding sleeve plungers 10 that include one or more scraping features 20 in accordance with one or more embodiments of the disclosure. As shown in FIGS. 12 and 13, the plunger 10 may include, for example, three or more areas which include scraping feature 20.
Alternatively, the plunger may include two or more areas which include scraping feature 20, as shown in FIGS. 7, 10, 14A, and 14B. In another embodiment, the plunger may include a scraping feature 20 at one end of the plunger 10, which may be varied in length, as shown in FIGS. 8, 9, and 11.

Date Recue/Date Received 2021-06-16 100411 As shown in the example embodiments of FIGS. 5A to 14B, the scraping features 20 may be located at one or more locations along a length of the plunger 10 and/or may extend along substantially an entire length of the plunger 10. For example, the scraping feature 20 may be included on at least one of a valve cage, a main body, a pad, and/or a tail piece of the plunger 10 (as shown, for example, in FIG. 1A), but a location of the scraping feature 20 is not limited to these examples. The location may be chosen according to the intended application and/or environment that the plunger 10 is to be implemented. For example and without limitation, the scraping feature 20 may be located on the valve cage and/or the tail piece 11 of the plunger 10 such that an initial contact surface of the plunger 10 with the tubing interior may include the scraping feature 20 (e.g., FIGS. 5A to 5D). In other examples, the scraping feature 20 may be located on a spring loaded pad section 12 of the plunger 10 (e.g., FIG. 10), which is biased outwardly against an inner wall of the well tubing to facilitate contact with well tubing that has deviations in size and/or shape.
[0042] In an example embodiment, a method for scraping material (e.g., paraffins) from a tubular body may include releasing the plunger 10 within a tubular body, the plunger 10 having a body with an outer surface and at least one scraping feature 20 located on the outer surface, the scraping feature including at least one ridge 50. The at least one ridge 50 is configured to scrape the material from an inner surface of the tubular body and direct the scraped material away from the plunger body. The scraped material may flow through the grooves 40 which may be located on a circumferential side of the at least one ridge 50.
[0043] By implementing the scraping feature 20 of the present disclosure, the associated apparatus, e.g., plunger, pig, etc., may scrape the tubing sidewalls while ascending and/or descending to clean and prevent buildup of solids in the tubing. The scraping feature 20 may also improve operation of the associated apparatus and maintain and/or restore well production.
100441 Conditional language, such as, "can," "could," "might," or "may,"
unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain implementations could, but do not necessarily, include certain features and/or elements while other implementations may not. Thus, such conditional language generally is not intended to imply that features and/or elements are in any way required for one or more implementations or that one or more implementations necessarily include these features and/or Date Recue/Date Received 2021-06-16 _ elements. It is also intended that, unless expressly stated, the features and/or elements presented in certain implementations may be used in combination with other features and/or elements disclosed herein.
[0045] The specification and annexed drawings disclose examples embodiments of the present disclosure. The examples illustrate various features of the disclosure, but those of ordinary skill in the art will recognize that many further combinations and permutations of the disclosed features are possible. Accordingly, various modifications may be made to the disclosure without departing from the scope or spirit thereof Further, other embodiments may be apparent from the specification and annexed drawings, and practice of disclosed embodiments as presented herein.
Examples disclosed in the specification and the annexed drawings should be considered, in all respects, as illustrative and not limiting. Although specific terms are employed herein, they are used in a generic and descriptive sense only, and not intended to the limit the present disclosure.
Date Recue/Date Received 2021-06-16

Claims (20)

= CLAIMS
What is claimed is:
1. = A plunger lift apparatus, comprising:
a prunger having a plunger body with an outer surface; and a plurality of scraping features formed integrally with the outer surface, disposed along a length of the plunger, and alternating with one or more sealing features each of which includes a plurality of seals alternating with a plurality of recesses, wherein each scraping feature includes at least one ridge that is configured to scrape material from an inner surface of a tubular body and direct the scraped material away from the plunger body.
2. The plunger lift apparatus of claim 1, wherein the at least one ridge includes a leading edge that faces a forward direction or a rearward direction of the plunger, the forward direction and the rearward direction being along a longitudinal axis of the plunger.
3. = The plunger lift apparatus of claim 1, wherein the at least one ridge has a U, V, W, circular, oval, or diamond shape.
4. The plunger lift apparatus of claim 1, wherein at least one of the scraping features further includes at least one groove.
5. The plunger lift apparatus of claim 4, wherein the at least one groove is located on a circumferential side of the at least one ridge.
6. The plunger lift apparatus of claim 4, wherein the at least one ridge comprises a first ridge and a second ridge, and wherein the at least one groove is located between the first ridge and the second ridge.
7. The plunger lift apparatus of claim 1, wherein the at least one ridge has an outer surface with a height that is substantially the same or greater than a height of the outer surface of the plunger.

Date Recue/Date Received 2021-06-16
8. The plunger lift apparatus of claim 1, wherein at least one of the scraping features is patterned around a circumference of the plunger.
9. The plunger lift apparatus of claim 1, wherein at least one of the scraping features is patterned along a length of the plunger.
10. A method for scraping material from a tubular body, comprising:
releasing a plunger within the tubular body, the plunger having a body with an outer surface and a plurality of scraping features formed integrally with the outer surface, disposed along a length of the plunger, and alternating with one or more sealing features each of which includes a plurality of seals alternating with a plurality of recesses, wherein each scraping feature includes at least one ridge that scrapes the material from an inner surface of the tubular body and directs the scraped material away from the plunger body.
11. The method of claim 10, wherein the at least one ridge includes a leading edge that faces a forward direction or a rearward direction of the plunger, the forward direction and the rearward direction being along a longitudinal axis of the plunger.
12. The method of claim 10, wherein the at least one ridge has a U, V, W, circular, oval, or diamond shape.
13. The method of claim 10, wherein the at least one of the scraping features further includes at least one groove.
14. The method of claim 13, wherein the at least one groove is located on a circumferential side of the at least one ridge.
15. The method of claim 13, wherein the at least one groove is located between two ridges of the at least one ridge.

Date Recue/Date Received 2021-06-16
16. The method of claim 10, wherein the at least one ridge has an outer surface with a height that is substantially the same or greater than an outer diameter of the outer surface of the plunger.
17. The method of claim 10, wherein at least one of the scraping features is patterned around a circumference of the plunger.
18. The method of claim 10, wherein at least one of the scraping features is patterned along a length of the plunger.
19. The method of claim 13, wherein the at least one groove has a sidewall that defines a tapered surface.
20. The plunger lift apparatus of claim 4, wherein the at least one groove has a sidewall that defines a tapered surface.
fl46374808 Date Recue/Date Received 2021-06-16
CA3062799A 2019-07-19 2019-11-26 Apparatuses and methods for scraping Active CA3062799C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962876155P 2019-07-19 2019-07-19
US62/876,155 2019-07-19

Publications (2)

Publication Number Publication Date
CA3062799A1 CA3062799A1 (en) 2020-05-30
CA3062799C true CA3062799C (en) 2021-12-14

Family

ID=78958248

Family Applications (1)

Application Number Title Priority Date Filing Date
CA3062799A Active CA3062799C (en) 2019-07-19 2019-11-26 Apparatuses and methods for scraping

Country Status (1)

Country Link
CA (1) CA3062799C (en)

Also Published As

Publication number Publication date
CA3062799A1 (en) 2020-05-30

Similar Documents

Publication Publication Date Title
US5533571A (en) Surface switchable down-jet/side-jet apparatus
US3651530A (en) Means for cleaning pipelines
EP1235971B1 (en) Reamer shoe
US20070261855A1 (en) Wellbore cleaning tool system and method of use
US4050514A (en) Paraffin sucker rod scraper and rod centralizer
US11293267B2 (en) Apparatuses and methods for scraping
US6758275B2 (en) Method of cleaning and refinishing tubulars
RU2538143C2 (en) Long-length pipeline, method of slug elimination in it and method of material transportation through it
WO2002081858A1 (en) Apparatus and method for collecting debris in a well bore
CA3062799C (en) Apparatuses and methods for scraping
US20230019562A1 (en) Casing cleaning tool
US6308363B1 (en) Modular multisize bidirection scraping device
AU2011320714B2 (en) Method and apparatus to remove deposits
US5358573A (en) Method of cleaning a pipe with a cylindrical pipe pig having pins in the central portion
US3399730A (en) Rod guide or paraffin scraper
US1770207A (en) Paraffin scraper for oil wells
US6227297B1 (en) Tube cleaning article and apparatus and method for use with a tube in a well
EP2009226B1 (en) Apparatus and method for sealing an annulus
RU2312969C1 (en) Sucker rod scratchalizer
GB2342372A (en) Apparatus for cleaning well casings or pipes
US7979944B1 (en) Tubular cleaning device
US20050022995A1 (en) Apparatus and methods of cleaning and refinishing tubulars
US8739345B2 (en) Down hole cleaning tool
US10018016B2 (en) Wireline fluid blasting tool and method
US4589483A (en) Rod centralizer