CA3038104C - Detection et fonctionnement de dispositifs dans un ecoulement laminaire - Google Patents

Detection et fonctionnement de dispositifs dans un ecoulement laminaire Download PDF

Info

Publication number
CA3038104C
CA3038104C CA3038104A CA3038104A CA3038104C CA 3038104 C CA3038104 C CA 3038104C CA 3038104 A CA3038104 A CA 3038104A CA 3038104 A CA3038104 A CA 3038104A CA 3038104 C CA3038104 C CA 3038104C
Authority
CA
Canada
Prior art keywords
fluid
measurements
feature
vessel
prescribed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA3038104A
Other languages
English (en)
Other versions
CA3038104A1 (fr
Inventor
Tad Hogg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBN Nano Technologies Inc
Original Assignee
CBN Nano Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CBN Nano Technologies Inc filed Critical CBN Nano Technologies Inc
Priority to CA3038104A priority Critical patent/CA3038104C/fr
Publication of CA3038104A1 publication Critical patent/CA3038104A1/fr
Application granted granted Critical
Publication of CA3038104C publication Critical patent/CA3038104C/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/712Measuring the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

Des dispositifs, y compris des dispositifs robotiques, qui fonctionnent dans un écoulement laminaire, peuvent utiliser des données de capteurs passifs recueillies pour représenter des paramètres de fluides à un moment précis afin de dériver des informations sur lécoulement, sur le mouvement et la position du dispositif, et sur des paramètres du système physique restreignant lécoulement. À laide de techniques danalyse quasi statiques, ainsi que de sélection de caractéristiques appropriée pour apprentissage automatique, des déterminations très précises peuvent être faites, généralement en temps réel, avec des exigences de calcul très modestes. Ces déterminations peuvent ensuite être utilisées pour cartographier des élaborer des systèmes, naviguer des dispositifs dans un système ou, autrement, contrôler les actions, de, par exemple, dispositifs robotiques pour le nettoyage, la détection de fuites ou dautres fonctions.
CA3038104A 2019-03-26 2019-03-26 Detection et fonctionnement de dispositifs dans un ecoulement laminaire Active CA3038104C (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3038104A CA3038104C (fr) 2019-03-26 2019-03-26 Detection et fonctionnement de dispositifs dans un ecoulement laminaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA3038104A CA3038104C (fr) 2019-03-26 2019-03-26 Detection et fonctionnement de dispositifs dans un ecoulement laminaire

Publications (2)

Publication Number Publication Date
CA3038104A1 CA3038104A1 (fr) 2020-09-26
CA3038104C true CA3038104C (fr) 2022-08-16

Family

ID=72603632

Family Applications (1)

Application Number Title Priority Date Filing Date
CA3038104A Active CA3038104C (fr) 2019-03-26 2019-03-26 Detection et fonctionnement de dispositifs dans un ecoulement laminaire

Country Status (1)

Country Link
CA (1) CA3038104C (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11526182B2 (en) 2019-03-25 2022-12-13 Cbn Nano Technologies Inc. Sensing and operation of devices in viscous flow using derived parameters to reduce data-handling requirements

Also Published As

Publication number Publication date
CA3038104A1 (fr) 2020-09-26

Similar Documents

Publication Publication Date Title
US11526182B2 (en) Sensing and operation of devices in viscous flow using derived parameters to reduce data-handling requirements
Nnabuife et al. Non-intrusive classification of gas-liquid flow regimes in an S-shaped pipeline riser using a Doppler ultrasonic sensor and deep neural networks
Minh et al. An Enhancing Particle Swarm Optimization Algorithm (EHVPSO) for damage identification in 3D transmission tower
US11377945B2 (en) Method for automated crack detection and analysis using ultrasound images
Pivarčiová et al. Analysis of control and correction options of mobile robot trajectory by an inertial navigation system
Briane et al. An overview of diffusion models for intracellular dynamics analysis
CA3038104C (fr) Detection et fonctionnement de dispositifs dans un ecoulement laminaire
Lenarda et al. Unraveling the vascular fate of deformable circulating tumor cells via a hierarchical computational model
Tabak et al. Computationally-validated surrogate models for optimal geometric design of bio-inspired swimming robots: Helical swimmers
Wijaya et al. Coupled acoustic-shell model for experimental study of cell stiffness under acoustophoresis
Yan et al. Optimization and experimental verification of the vibro-impact capsule system in fluid pipeline
Bahrami et al. Application of artificial neural network to multiphase flow metering: A review
Almalki et al. Prediction of two-phase flow patterns using machine learning algorithms
Economides et al. Hierarchical Bayesian uncertainty quantification for a model of the red blood cell
Rallabandi et al. Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow
Lin et al. A high-throughput method to characterize membrane viscosity of flowing microcapsules
Muhammad et al. Underwater map-based localization using flow features
Manikonda et al. Horizontal two-phase flow regime identification with machine learning classification models
Shang et al. Signal process of ultrasonic guided wave for damage detection of localized defects in plates: From shallow learning to deep learning
Shukla et al. Unsupervised classification of flow-induced vibration signals to detect leakages in water distribution pipelines
Hassanzadeh et al. Numerical study of elastic red blood cell motion and deformation using improved lattice Boltzmann-immersed boundary method
Elgaddafi et al. Modeling Two-Phase Flow in Vertical and Deviated Wellbores Using Machine Learning Method
Sun et al. Gas-liquid two-phase flow pattern identification by differential pressure and ultrasonic echoes
Kundacina et al. Advancing microfluidic design with machine learning: a Bayesian optimization approach
Davis et al. Matched asymptotics for a treadmilling low-Reynolds-number swimmer near a wall