CA3038104C - Detection et fonctionnement de dispositifs dans un ecoulement laminaire - Google Patents
Detection et fonctionnement de dispositifs dans un ecoulement laminaire Download PDFInfo
- Publication number
- CA3038104C CA3038104C CA3038104A CA3038104A CA3038104C CA 3038104 C CA3038104 C CA 3038104C CA 3038104 A CA3038104 A CA 3038104A CA 3038104 A CA3038104 A CA 3038104A CA 3038104 C CA3038104 C CA 3038104C
- Authority
- CA
- Canada
- Prior art keywords
- fluid
- measurements
- feature
- vessel
- prescribed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/704—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
- G01F1/708—Measuring the time taken to traverse a fixed distance
- G01F1/712—Measuring the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/74—Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
- Measuring Volume Flow (AREA)
Abstract
Des dispositifs, y compris des dispositifs robotiques, qui fonctionnent dans un écoulement laminaire, peuvent utiliser des données de capteurs passifs recueillies pour représenter des paramètres de fluides à un moment précis afin de dériver des informations sur lécoulement, sur le mouvement et la position du dispositif, et sur des paramètres du système physique restreignant lécoulement. À laide de techniques danalyse quasi statiques, ainsi que de sélection de caractéristiques appropriée pour apprentissage automatique, des déterminations très précises peuvent être faites, généralement en temps réel, avec des exigences de calcul très modestes. Ces déterminations peuvent ensuite être utilisées pour cartographier des élaborer des systèmes, naviguer des dispositifs dans un système ou, autrement, contrôler les actions, de, par exemple, dispositifs robotiques pour le nettoyage, la détection de fuites ou dautres fonctions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3038104A CA3038104C (fr) | 2019-03-26 | 2019-03-26 | Detection et fonctionnement de dispositifs dans un ecoulement laminaire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3038104A CA3038104C (fr) | 2019-03-26 | 2019-03-26 | Detection et fonctionnement de dispositifs dans un ecoulement laminaire |
Publications (2)
Publication Number | Publication Date |
---|---|
CA3038104A1 CA3038104A1 (fr) | 2020-09-26 |
CA3038104C true CA3038104C (fr) | 2022-08-16 |
Family
ID=72603632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3038104A Active CA3038104C (fr) | 2019-03-26 | 2019-03-26 | Detection et fonctionnement de dispositifs dans un ecoulement laminaire |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA3038104C (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11526182B2 (en) | 2019-03-25 | 2022-12-13 | Cbn Nano Technologies Inc. | Sensing and operation of devices in viscous flow using derived parameters to reduce data-handling requirements |
-
2019
- 2019-03-26 CA CA3038104A patent/CA3038104C/fr active Active
Also Published As
Publication number | Publication date |
---|---|
CA3038104A1 (fr) | 2020-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11526182B2 (en) | Sensing and operation of devices in viscous flow using derived parameters to reduce data-handling requirements | |
Nnabuife et al. | Non-intrusive classification of gas-liquid flow regimes in an S-shaped pipeline riser using a Doppler ultrasonic sensor and deep neural networks | |
Minh et al. | An Enhancing Particle Swarm Optimization Algorithm (EHVPSO) for damage identification in 3D transmission tower | |
Pivarčiová et al. | Analysis of control and correction options of mobile robot trajectory by an inertial navigation system | |
US11377945B2 (en) | Method for automated crack detection and analysis using ultrasound images | |
CA3038104C (fr) | Detection et fonctionnement de dispositifs dans un ecoulement laminaire | |
Dabagh et al. | Localization of rolling and firm-adhesive interactions between circulating tumor cells and the microvasculature wall | |
Briane et al. | An overview of diffusion models for intracellular dynamics analysis | |
Yan et al. | Optimization and experimental verification of the vibro-impact capsule system in fluid pipeline | |
Kuang et al. | Gas-liquid flow regimes identification using non-intrusive Doppler ultrasonic sensor and convolutional recurrent neural networks in an s-shaped riser | |
Rallabandi et al. | Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow | |
Almalki et al. | Prediction of two-phase flow patterns using machine learning algorithms | |
Economides et al. | Hierarchical Bayesian uncertainty quantification for a model of the red blood cell | |
Muhammad et al. | Underwater map-based localization using flow features | |
Yao et al. | A novel PIG and an intelligent pigging scheme based on deep-learning technology | |
Bahrami et al. | Application of artificial neural network to multiphase flow metering: A review | |
Shang et al. | Signal Process of Ultrasonic Guided Wave for Damage Detection of Localized Defects in Plates: From Shallow Learning to Deep Learning | |
Alveringh et al. | Fluid classification with integrated flow and pressure sensors using machine learning | |
Shukla et al. | Unsupervised classification of flow-induced vibration signals to detect leakages in water distribution pipelines | |
Sun et al. | Gas-liquid two-phase flow pattern identification by differential pressure and ultrasonic echoes | |
Davis et al. | Matched asymptotics for a treadmilling low-Reynolds-number swimmer near a wall | |
Baltazar et al. | A study of chaotic searching paths for their application in an ultrasonic scanner | |
Li et al. | Helical-contact deformation measuring method in oil-gas pipelines | |
Hina et al. | Peristaltic transport of Johnson–Segalman fluid in a curved channel with compliant walls | |
Gaul et al. | Equilibrium interface position during operation of a fixed cylinder vortex separator |