CA3005541C - R-744 system with hot gas defrost by the transcritical compressors - Google Patents

R-744 system with hot gas defrost by the transcritical compressors Download PDF

Info

Publication number
CA3005541C
CA3005541C CA3005541A CA3005541A CA3005541C CA 3005541 C CA3005541 C CA 3005541C CA 3005541 A CA3005541 A CA 3005541A CA 3005541 A CA3005541 A CA 3005541A CA 3005541 C CA3005541 C CA 3005541C
Authority
CA
Canada
Prior art keywords
transcritical
refrigerant
pressure
medium temperature
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA3005541A
Other languages
French (fr)
Other versions
CA3005541A1 (en
Inventor
Gaetan Lesage
Jordan Kantchev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evapco Systems Lmp Ulc
Original Assignee
SYSTEMES LMP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYSTEMES LMP Inc filed Critical SYSTEMES LMP Inc
Priority to CA3005541A priority Critical patent/CA3005541C/en
Publication of CA3005541A1 publication Critical patent/CA3005541A1/en
Application granted granted Critical
Publication of CA3005541C publication Critical patent/CA3005541C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

A transcritical R-744 refrigeration system with a medium temperature section having a plurality of circuits, at least one evaporator receiving an R-744 refrigerant in a medium-pressure liquid state from a receiver and feeding at least one transcritical compressor to compress the R-744 refrigerant from a low-pressure gaseous state into a high-pressure gaseous state to feed a gas cooler and a throttling device to partially condense the R-744 refrigerant into a medium-pressure gaseous-liquid state, the system comprising a pressure reducing valve connected to a discharge conduit of the at least one transcritical compressor and feeding hot gas to a defrost manifold to defrost one of the plurality of circuits of the medium temperature section, wherein the hot gas being fed to the defrost manifold has a pressure value less than or equal to a maximum operating pressure of the at least one evaporator.

Description

TITLE OF THE INVENTION

COMPRESSORS
FIELD OF INVENTION
[0001] The present invention relates to transcritical R-744 refrigeration systems, and more specifically to transcritical R-744 refrigeration systems with hot gas defrost by the transcritical compressors.
BACKGROUND OF THE INVENTION
[0002] In typical R-744 refrigeration systems for applications such as supermarkets and warehouses, hot gas defrost is performed by the system's subcritical (or low temperature) compressors. These compressors are used mainly because their discharge pressure is within the limits of the evaporators' allowable working pressure. However, this arrangement has several disadvantages. Firstly, during defrost periods, the discharge pressure of the low temperature compressors must be increased in order to provide a sufficient pressure differential to facilitate the return of the defrost flow being fed to the receiver (or flash tank), and to ensure that the temperature inside the evaporator during the defrost periods is above the freezing point of water. The constant demand for defrosting, especially in supermarkets, ensures that the low temperature compressors must operate continuously at this higher discharge pressure, which results in lower energy efficiency. Secondly, typically the low temperature section of transcritical R-744 systems, especially in supermarkets, represents roughly 25 to 30 percent of the compressors' total capacity, and thus the mass flow of the low temperature (or subcritical) compressors is significantly lower than the flow of the transcritical (or medium temperature) ones.
As defrost efficiency is a function of the mass flow of the hot gas through the evaporator, the efficiency of larger refrigeration circuits suffers when defrosting is provided by low temperature R-744 compressors.
SUMMARY OF THE INVENTION
Date Recue/Date Received 2020-07-13
[0003]It is therefore a general object of the present invention to provide an improved transcritical R-744 refrigeration system and method that performs reliable and rapid hot gas defrost using only the transcritical compressors for this purpose.
[0004] In order to address the above and other drawbacks there is provided a transcritical R-744 refrigeration system with a medium temperature section having a plurality of circuits, at least one evaporator receiving an R-744 refrigerant in a medium-pressure liquid state from a receiver and feeding at least one transcritical compressor to compress the R-744 refrigerant from a low-pressure gaseous state into a high-pressure gaseous state to feed a gas cooler and a throttling device to partially condense the R-744 refrigerant into a medium-pressure gaseous-liquid state, the system comprising a pressure reducing valve connected to a discharge conduit of the at least one transcritical compressor and feeding hot gas to a defrost manifold to defrost one of the plurality of circuits of the medium temperature section, wherein the hot gas being fed to the defrost manifold has a pressure value less than or equal to a maximum operating pressure of the at least one evaporator.
[0005] In an embodiment, the transcritical R-744 refrigeration system further comprises a heat exchanger downstream of the pressure sensing valve, the heat exchanger transferring heat from the hot gas fed to the gas cooler to the gas exiting the pressure reducing valve.
[0006] In an embodiment, the receiver is a flash tank.
[0007]In an embodiment, the refrigerant exiting the at least one transcritical compressor passes through an oil separator before reaching the pressure reducing valve.
[0008]In an embodiment, the transcritical R-744 refrigeration system further comprises an additional defrost manifold in the medium temperature section.
[0009]In an embodiment, the transcritical R-744 refrigeration system further comprises a pressure regulating valve to regulate the pressure of the refrigerant before entering the receiver.
[0010]In an embodiment, the transcritical R-744 refrigeration system further comprises a plurality of check valves to prevent any hot gas from entering a liquid line.
[0011] In an embodiment, the transcritical R-744 refrigeration system further comprises a safety valve connected to the defrost manifold.
[0012]In an embodiment, the transcritical R-744 refrigeration system further comprises a low temperature section comprising an evaporator receiving an R-744 refrigerant from the receiver and feeding at least one subcritical compressor, wherein the hot gas is further fed to a defrost manifold in the low temperature section to defrost one of a plurality of circuits of the low temperature section.
[0013]In an embodiment, the transcritical R-744 refrigeration system further comprises an additional defrost manifold in the low temperature section.
[0014] There is also provided a method of defrosting one of a plurality of circuits of a transcritical R-744 refrigeration system with a medium temperature section having a plurality of circuits, at least one evaporator receiving an R-744 refrigerant in a medium-pressure liquid state from a receiver and feeding at least one transcritical compressor to compress the R-744 refrigerant from a low-pressure gaseous state into a high-pressure gaseous state to feed a gas cooler and a throttling device to partially condense the R-744 refrigerant into a medium-pressure gaseous-liquid state, the method comprising the steps of activating a pressure reducing valve connected to a discharge conduit of the at least one transcritical compressor, and feeding hot gas from the at least one transcritical compressor to a defrost manifold in the medium temperature section to defrost one of the plurality of circuits of the medium temperature section, wherein the hot gas being fed to the defrost manifold has a pressure value less than or equal to a maximum operating pressure of the at least one evaporator.
[0015] There is also provided a method of defrosting one of a plurality of circuits of a transcritical R-744 refrigeration system with a medium temperature section and a low temperature section each having a plurality of circuits, a plurality of evaporators receiving an R-744 refrigerant in a medium-pressure liquid state from a receiver and feeding at least one transcritical compressor and at least one subcritical compressor to compress the R-744 refrigerant from a low-pressure gaseous state into a high-pressure gaseous state to feed a gas cooler and a throttling device to partially condense the R-744 refrigerant into a medium-pressure gaseous-liquid state, the method comprising the steps of activating a pressure reducing valve connected to a discharge conduit of the at least one transcritical compressor, and feeding hot gas from the at least one transcritical compressor to at least one defrost manifold in at least one of the medium temperature section and the low temperature section to defrost one of the plurality of circuits, wherein the hot gas being fed to the at least one defrost manifold has a pressure value less than or equal to a maximum operating pressure of the plurality of evaporator.
[0016]An advantage of the present invention is that it is provides more efficient defrosting than previous R-744 refrigeration systems.
[0017]A further advantage of the present invention is that it is less costly than previous R-744 refrigeration systems as it requires less valves and no oil separator for the low temperature section.
[0018]A further advantage of the present invention is that it is less complicated than previous R-744 refrigeration systems and can defrost larger circuits, thus requiring less circuits overall.
[0019]A further advantage of the present invention is that, in the embodiment where the system comprises only a medium temperature section, the system requires less components as there is no need for a low temperature section.
BRIEF DESCRIPTION OF THE DRAWINGS
[0020] Figure 1 is a schematic view of a transcritical R-744 refrigeration system having hot gas defrost provided by the transcritical R-744 compressors, in accordance with an illustrative embodiment of the present invention.
DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS
[0021] Referring to Figure 1, there is shown a transcritical R-744 refrigeration system, generally referred to using the reference numeral 50, that uses the system's transcritical (or medium temperature) compressors to perform hot gas defrost, in accordance with an embodiment of the present invention. In an embodiment, system 50 comprises both a medium temperature (or transcritical) section 52 and a low temperature (or subcritical) section 54. In an alternate embodiment, system 50 comprises only a medium temperature section 52, thus negating then need for a low temperature section 54.
[0022] The refrigeration cycle begins at transcritical (or medium temperature) compressors 1, where refrigerant R-744 vapors are compressed by transcritical compressors 1 and then fed through conduit 2, oil separator 3, conduit 44, optional heat exchanger 43 (useful in applications such as large factories with low temperatures and large coils) and conduit 4 to gas cooler 5 where their temperature is reduced due to heat transfer with the ambient air. Then, the R-744 vapors, whose temperature has been reduced while pressure remains high, are fed through conduit 6 to throttling device 7, where both their pressure and temperature are reduced, thus provoking partial liquification. After the throttling device 7, the mixture of vapors and liquid are fed to the receiver 8 where separation of the vapors from the liquid occurs.
The vapors from receiver 8 are fed through pressure regulating valve 34 to the suction of the transcritical (or medium temperature) compressors 1. In alternate embodiments, receiver 8 is a flash tank and pressure regulating valve 34 is a flash gas bypass valve. The resulting liquid from receiver 8 is fed to the medium temperature section 52 of the system 50 through conduit 9, expansion valves 32 and medium temperature evaporators 11. As a person of ordinary skill in the art would understand, as the liquid refrigerant passes through evaporators 11, it absorbs heat from the ambient air and changes states back to vapor, thus cooling the ambient air.
Then, the R-744 vapors returns to transcritical (or medium temperature) compressors 1 to restart the refrigeration cycle.
[0023] In the embodiment where system 50 comprises a low temperature section 54, the resulting liquid from receiver 8 is also fed through conduit 10, expansion valves 33 and low temperature evaporators 12. After the evaporation process at evaporators 12 which provides refrigeration to the ambient air, low-pressure R-vapors are fed through suction manifold 15 and compressor suction conduit 16 to the Date Recue/Date Received 2020-07-13 suction port of low temperature or subcritical compressors 20. The R-744 vapors compressed by subcritical compressors 20 are fed through conduit 17 directly to the suction manifold 13 and through compressor suction conduits 14 to join the R-vapors from the medium temperature section 52 as they enter transcritical (or medium temperature) compressors 1 to restart the refrigeration cycle.
[0024] Still referring to FIG. 1, when defrosting is required for a given circuit in the system 50 in either the medium temperature section 52 or the low temperature section 54 (in the embodiment that comprises a low temperature section), an electronically operated pressure reducing valve 41 is activated. High temperature and high-pressure vapors are fed from transcritical (or medium temperature) compressors 1 through conduit 40 and pressure reducing valve 41, where their pressure is reduced to a level that is compatible with the certified maximum operating pressure of evaporators 11, 12 and that corresponds to a R-744 vapor condensing temperature that is higher than the freezing point of water.
[0025] As the vapors exit pressure reducing valve 41, their temperature is reduced due to throttling, which can influence the effectiveness of the defrosting process.
Thus, in an alternate embodiment, to recuperate a considerable portion of this temperature loss, the vapors from pressure reducing valve 41 are fed through conduit 42 to heat exchanger 43 where the vapors are reheated by heat transfer with the rest of the hot high-pressure vapors.
[0026] Still referring to FIG. 1, the R-744 vapors from pressure reducing valve 41 (or from heat exchanger 43 in the above-mentioned alternate embodiment) are fed through conduit 45, defrost manifold 18 or 19 and valve 31 to the suction line of the circuit requiring defrosting. At this point, the electronic expansion valves 32 or 33 and the suction stop valve 35 are closed. The R-744 vapors are then fed through evaporator 11 or 12, check valve 36, conduits 37, 38, defrost manifold 26 or
27 and conduit 28 to pressure regulating valve 29, and then through conduit 30 to the receiver (flash tank) 8. Check valve 39 is used to prevent the hot gas from entering the liquid line, which is necessary due to the low pressure of the R-744 refrigerant.
Valve 29 maintains the pressure in conduit 28 to be higher than the pressure in receiver (flash tank) 8 to ensure the return of the condensate from the circuit having Date Recue/Date Received 2020-07-13 been defrosted to the receiver 8. Valve 46 serves as a safety valve in case of a rapid surge of the defrost pressure.
[0027] Advantageously, transcritical R-744 refrigeration system 50 provides more efficient defrosting than previous R-744 refrigeration systems and is less costly as it requires less valves and no oil separator for the low temperature section 54.
Further, system 50 is less complicated than previous R-744 refrigeration systems and can defrost larger circuits, thus requiring less circuits overall. Further, in an alternative embodiment, as defrosting is provided by transcritical (or medium temperature) compressors 1, system 50 only comprises a medium temperature section 52, negating the use for low temperature section 54. Further, in the embodiment where the system 50 comprises only a medium temperature section 52, the system 50 requires less components as there is no need for a low temperature section 54.
[0028] The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.
Date Recue/Date Received 2020-07-13

Claims (12)

8
1. A transcritical R-744 refrigeration system (50) with a transcritical medium temperature section (52) having a plurality of circuits, at least one medium temperature evaporator (11) receiving an R-744 refrigerant in a medium-pressure liquid state from a receiver (8) and feeding at least one medium temperature compressor (1) to compress the R-744 refrigerant from a low-pressure gaseous state into a high-pressure gaseous state to feed a gas cooler (5) and a throttling device (7) to partially condense the R-744 refrigerant into a medium-pressure gaseous-liquid state, the system (50) comprising:
a pressure reducing valve (41) directly connected to a discharge conduit (2) of the at least one medium temperature compressor (1) and directly feeding said R-744 refrigerant in hot gas phase to a defrost manifold (19, 18) to defrost one of the plurality of circuits of the transcritical medium temperature section (52) or one of a plurality of circuits of a subcritical low temperature section (54);
wherein said hot gas phase of said R-744 refrigerant being fed to said defrost manifold (19, 18) has a pressure value less than or equal to a maximum operating pressure of the at least one medium temperature evaporator (11) or of at least one low temperature evaporator (12) of the subcritical low temperature section (54), respectively.
2. The transcritical R-744 refrigeration system (50) of claim 1, further comprising a heat exchanger (43) downstream of said pressure reducing valve (41), said heat exchanger (43) transferring heat from the high-pressure gaseous state of said R-744 refrigerant from the at least one medium temperature compressor (1) and fed to the gas cooler (5) to the hot gas phase of said R-refrigerant exiting said pressure reducing valve (41).
3. The transcritical R-744 refrigeration system (50) of claim 1, wherein the receiver (8) is a flash tank.
Date Recue/Date Received 2020-07-13
4. The transcritical R-744 refrigeration system (50) of claim 1, wherein the refrigerant exiting the at least one medium temperature compressor (1) passes through an oil separator (3) before reaching said pressure reducing valve (41).
5. The transcritical R-744 refrigeration system (50) of claim 1, further comprising an additional defrost manifold (27) in the transcritical medium temperature section (52) between said at least one medium temperature evaporator (11) and the receiver (8).
6. The transcritical R-744 refrigeration system (50) of claim 5, further comprising a pressure regulating valve (29) to regulate the pressure of the refrigerant in said additional defrost manifold (27) before entering the receiver (8).
7. The transcritical R-744 refrigeration system (50) of claim 1, further comprising a plurality of check valves (36, 39) to prevent any hot gas phase of said R-744 refrigerant from entering a liquid line.
8. The transcritical R-744 refrigeration system (50) of claim 1, further comprising a safety valve (46) connected to said defrost manifold (19).
9. The transcritical R-744 refrigeration system (50) of claim 1, wherein said at least one low temperature evaporator (12) receiving the R-744 refrigerant from the receiver (8) and feeding at least one low temperature compressor (20).
10. The transcritical R-744 refrigeration system (50) of claim 9, further comprising an additional defrost manifold (26) in the subcritical low temperature section (54) between said at least one low temperature evaporator (12) and the receiver (8).
11. A method of defrosting one of a plurality of circuits of a transcritical R-744 refrigeration system (50) with a transcritical medium temperature section (52) having a plurality of circuits, at least one medium temperature evaporator (11) Date Recue/Date Received 2020-07-13 receiving an R-744 refrigerant in a medium-pressure liquid state from a receiver (8) and feeding at least one medium temperature compressor (1) to compress the R-744 refrigerant from a low-pressure gaseous state into a high-pressure gaseous state to feed a gas cooler (5) and a throttling device (7) to partially condense the R-744 refrigerant into a medium-pressure gaseous-liquid state, the method comprising the steps of:
activating a pressure reducing valve (41) directly connected to a discharge conduit (2) of the at least one medium temperature compressor (1);
and directly feeding said R-744 refrigerant in hot gas phase from the at least one medium temperature compressor (1) to a defrost manifold (19, 18) in the transcritical medium temperature section (52) or a subcritical low temperature section (54) to defrost one of the plurality of circuits of the transcritical medium temperature section (52) or the subcritical low temperature section (54), respectively;
wherein said hot gas phase of said R-744 refrigerant being fed to said defrost manifold (19, 18) has a pressure value less than or equal to a maximum operating pressure of the at least one medium temperature evaporator (11) or of at least one low temperature evaporator (12) of the subcritical low temperature section (54), respectively.
12. A
method of defrosting one of a plurality of circuits of a transcritical R-744 refrigeration system (50) with a transcritical medium temperature section (52) and a subcritical low temperature section (54) each having a plurality of circuits, a plurality of medium temperature evaporators (11) and low temperature evaporators (12) receiving an R-744 refrigerant in a medium-pressure liquid state from a receiver (8) and feeding at least one medium temperature compressor (1) and at least one low temperature compressor (20) to compress the R-744 refrigerant from a low-pressure gaseous state into a high-pressure gaseous state to feed a gas cooler (5) and a throttling device (7) to partially condense the R-refrigerant into a medium-pressure gaseous-liquid state, the method comprising the steps of:
Date Recue/Date Received 2020-07-13 activating a pressure reducing valve (41) directly connected to a discharge conduit (2) of the at least one medium temperature compressor (1);
and directly feeding said R-744 refrigerant in hot gas phase from the at least one medium temperature compressor (1) to at least one defrost manifold (18, 19) in at least one of the transcritical medium temperature section (52) and the subcritical low temperature section (54) to defrost one of the plurality of circuits;
wherein said hot gas phase of said R-744 refrigerant being fed to said at least one defrost manifold (18, 19) has a pressure value less than or equal to a maximum operating pressure of the plurality of medium and low temperature evaporators (11, 12), respectively.
Date Recue/Date Received 2020-07-13
CA3005541A 2018-05-18 2018-05-18 R-744 system with hot gas defrost by the transcritical compressors Active CA3005541C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3005541A CA3005541C (en) 2018-05-18 2018-05-18 R-744 system with hot gas defrost by the transcritical compressors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA3005541A CA3005541C (en) 2018-05-18 2018-05-18 R-744 system with hot gas defrost by the transcritical compressors

Publications (2)

Publication Number Publication Date
CA3005541A1 CA3005541A1 (en) 2019-11-18
CA3005541C true CA3005541C (en) 2021-06-01

Family

ID=68615457

Family Applications (1)

Application Number Title Priority Date Filing Date
CA3005541A Active CA3005541C (en) 2018-05-18 2018-05-18 R-744 system with hot gas defrost by the transcritical compressors

Country Status (1)

Country Link
CA (1) CA3005541C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483510B (en) * 2021-07-20 2022-11-08 贵州省建筑设计研究院有限责任公司 Defrosting start-stop control method for air source heat pump

Also Published As

Publication number Publication date
CA3005541A1 (en) 2019-11-18

Similar Documents

Publication Publication Date Title
US9612042B2 (en) Method of operating a refrigeration system in a null cycle
KR102262722B1 (en) Cooling Cycle Apparatus for Refrigerator
US9200820B2 (en) Heat pump apparatus with ejector cycle
CN107024045B (en) Condenser evaporator system and method of operating same
US20070245768A1 (en) Refrigeration System
KR101566096B1 (en) Supercritical cycle and heat pump hot-water supplier using same
WO2007054095A1 (en) Defrost system
EP3762664A1 (en) Cascade system for use in economizer compressor and related methods
US20240093921A1 (en) Cooling system with flooded low side heat exchangers
CA3005541C (en) R-744 system with hot gas defrost by the transcritical compressors
EP3584519B1 (en) Cooling system
US11226144B2 (en) R-744 system with hot gas defrost by the transcritical compressors
KR20210096521A (en) Air conditioning apparatus
KR102477314B1 (en) A method for reducing the temperature of the coolant in the receiver of the refrigeration cycle system and improving the cooling performance of the evaporator
CN210425610U (en) Refrigeration system
EP2525168B1 (en) Supercritical steam compression heat pump and hot-water supply unit
CN113865089B (en) Double-condenser heat pump water heater system with auxiliary defrosting structure
US20240011690A1 (en) Refrigeration system with heat pump compression
US20080184726A1 (en) Defrost refrigeration system
CA2874135C (en) Transcritical r744 refrigeration system for skating rinks with total condensation and without flash-gas bypass
WO2022144946A4 (en) Improvement of reverse liquid defrosting system and method
CN115307323A (en) Refrigerating system capable of refrigerating in multiple temperature zones
KR20190030967A (en) Unit cooler with hotgas defrosting function and method of controlling the same
CA2577360A1 (en) Defrost refrigeration system