CA2987367A1 - Shoe with intervertebral disc material damping element - Google Patents

Shoe with intervertebral disc material damping element Download PDF

Info

Publication number
CA2987367A1
CA2987367A1 CA2987367A CA2987367A CA2987367A1 CA 2987367 A1 CA2987367 A1 CA 2987367A1 CA 2987367 A CA2987367 A CA 2987367A CA 2987367 A CA2987367 A CA 2987367A CA 2987367 A1 CA2987367 A1 CA 2987367A1
Authority
CA
Canada
Prior art keywords
heel
shoe
damping element
insole
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2987367A
Other languages
French (fr)
Inventor
Jacqueline Yildirim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jacq GmbH
Original Assignee
Jacq GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jacq GmbH filed Critical Jacq GmbH
Publication of CA2987367A1 publication Critical patent/CA2987367A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • A43B13/188Differential cushioning regions
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B21/00Heels; Top-pieces or top-lifts
    • A43B21/02Heels; Top-pieces or top-lifts characterised by the material
    • A43B21/20Heels; Top-pieces or top-lifts characterised by the material plastics
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B21/00Heels; Top-pieces or top-lifts
    • A43B21/24Heels; Top-pieces or top-lifts characterised by the constructive form
    • A43B21/26Resilient heels
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • A43B7/1405Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form
    • A43B7/1415Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form characterised by the location under the foot
    • A43B7/1425Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form characterised by the location under the foot situated under the ball of the foot, i.e. the joint between the first metatarsal and first phalange
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • A43B7/1405Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form
    • A43B7/1415Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form characterised by the location under the foot
    • A43B7/144Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form characterised by the location under the foot situated under the heel, i.e. the calcaneus bone
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • A43B7/1405Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form
    • A43B7/1415Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form characterised by the location under the foot
    • A43B7/1445Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form characterised by the location under the foot situated under the midfoot, i.e. the second, third or fourth metatarsal

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

The invention relates to a shoe (1), in particular a pump, high heel shoe, or stiletto, having an insole (3) and a heel (2), wherein in the heel (2) and/or in the insole (3), in particular in the heel and/or the ball region, at least one damping element (5, 5`, 5a, 5b, 5c, 5c`) is integrated. The invention is characterized in that the damping element has a shore d hardness in the range of 28-33, a modulus of elasticity in the range of 28-38 MPa, and a tensile stress of 9-11 at 600% elongation. In this way, a shoe is realized that is elegantly fashioned and can be provided with a high-quality design without having to compromise on comfort and convenience.

Description

Stuttgart 03.03.2015 Shoe with intervertebral disc material damping element Background of the invention The invention relates to a shoe, in patticular a pump, high-heel shoe or stiletto, having an insole and a heel, wherein a damping element is integrated in the heel and/or in the in-sole, in particular in the region of the heel and/or the ball of the foot.
A shoe having rubber elements arranged in the insole is known from US 2007/0151124 Al.
Damping soles are used in particular in sports shoes in order to damp the forces which act on the body when running and jumping. Since sports shoes can have very thick soles, corre-spondingly large quantities of different damping materials can be used.
Particularly with elegant ladies' shoes (high heels), however, this is =not possible since the design does not permit the use of large quantities of damping material. In addition, feet and joints are subjected to different loads when walking in high heels from those when jogging or walking. Ladies who like to wear high heels therefore have to live with side-effects such as pain in the front foot ("burning of the balls of the feet"), blisters, swollen feet, up to long-term damage for the joints and back.
It is known to place gel inlays at the painful locations in the shoe. However, this impairs the fit of the shoe in most
- 2 -cases. Often gel inlays are recommended as products to pre-vent sliding or for an increase in retention in high or ex-cessively large shoes. In addition, they are intended to help to prevent pressure locations and also to bring relief in re-gions which are subjected to significant loads. Current gel inlays are in most cases silicon inlays whose damping proper-ties are, however, rather low or not present.
US 2007/0151124 Al discloses a shoe in which there are pro-vided in the insole recesses in which inserts of thermo-plastic rubber material are inserted. In order to achieve a noticeable damping effect, the thickness of the inserts is selected to be greater than the height of the recess within the insole. However, this results in the inserts being able to be perceived as foreign bodies which is haptically gener-ally perceived to be unnatural and disruptive, in particular during walking.
Object of the invention An object of the invention is to provide a shoe, in particu-lar a ladies' shoe with a high heel, which is constructed in an elegant manner and which can be provided with a high-quality design without having to forego comfort and conven-ience.
Statement of invention This object is achieved according to the invention in that the damping element has a Shore D hardness in the range from 28 to 33, preferably in the range from 28.5 to 29.5, a modu-lus of elasticity in the range from 28 to 38 MPa, preferably in the range from 32 to 36 MPa, and a tensile stress of from
- 3 -9 to 11; preferably from 9.5 to 10.5 MPa, at 600% extension.
Such damping elements are referred to below as BSW elastomers (intervertebrate disc material elastomer) damping elements.
The combination of these properties results in the BSW damp-ing element, on the one hand, feeling (in contrast to conven-tional damping elements used in shoes) hard, with a high pressure loading, as is the case, for example, in shoes with high narrow heels, but absorbing a large portion of the ener-gy which is introduced and consequently bringing about relief of the foot joints, knee joints and the spine. As a result of the selected hardness and the restoring and force action be-haviour resulting from the parameters according to the inven-tion, the BSW damping elements can also be effectively used in elegant ladies' shoes with high heels which was only pos-sible in a limited manner with conventional soft damping ele-ments since these either (as a result of the limited space) have too little damping or (as a result of the soft material) are too unstable to ensure secure movement while wearing the shoes.
The BSW damping elements have similar mechanical properties to an intervertebral disc implant. As a result of the use of such BSW damping elements in the insole of shoes, pressure differences can be compensated for in an optimum manner and excellent shock absorption is achieved. In particular, the damping element according to the invention is distinguished by a high resilience, a high stress crack resistance and a high abrasion resistance. The shoe according to the invention consequently allows damping of the pressure on the front foot (balls of feet) and the heel.
Preferred embodiments of the invention
- 4 -In a special embodiment, the BSW damping element is con-structed as an insole or as part of the insole. The BSW damp-ing element thus not only performs the function of damping, but also (at least partially) performs the functions of an insole (connection between the outer sole and cover sole or upper shoe).
Alternatively, the insole may have at least one recess, wherein the damping element(s) is/are arranged in the at least one recess. The insole preferably comprises a common insole material, for example, leather, "leather fibre materi-als, synthetic fibre fabric, etcetera.
The advantages of the invention are particularly evident in shoes with high heels (high heels), preferably higher than 9 cm, and/or shoes with small heel surfaces (stilettos), pref-erably 1 cm2 (spike heel), since in this instance particular-ly large forces/pressure act(s) on the ball region or a par-ticularly high pressure acts in the heel region.
In addition to the BSW damping elements in the insole, with the shoe according to the invention additional BSW damping elements may be integrated in the heel, wherein in the con-text of the invention "integrated" is not intended to mean that the damping element has to be arranged inside the heel, but instead forms the heel of the shoe together with other heel elements.
Preferably, the damping element is produced from an admixture of at least two thermoplastic elastomers.
- 5 -Preferably, the thermoplastic elastomers differ in terms of their Shore D hardness and/or their modulus of elasticity and/or in terms of their tensile stress. Consequently, these properties can be influenced in a selective manner by the formulation of the different elastomers and consequently can be adapted to different requirements in order to obtain simi-lar mechanical properties to those found in a human or arti-ficial intervertebral disc.
It is particularly advantageous for the damping element to have a bending modulus of elasticity (Young's modulus) in the range from 28 to 38 MPa.
In a particularly preferred embodiment of the shoe according to the invention, the thermoplastic elastomers are thermo-plastic elastomers based on copolymers, in particular with polyether soft segments. Particularly advantageous properties are produced, for example, when poly(ether-ester) copolymers with Shore D hardnesses between 25 and 33 in admixture ratios of 70:30 to 30:70, in particular in a ratio of 60:40 to 50:50, are used.
Alternatively, the thermoplastic elastomers may also be ther-moplastic polyurethanes.
The BSW damping elements are preferably produced by means of extrusion in an injection-moulding method.
Preferably, the BSW damping elements are securely fixed in the insole, in particular adhesively bonded.
Preferably, at least one BSW damping element is integrated in the insole, that is to say, the insole has a recess in which
- 6 -the damping element is inserted in such a manner that the damping element ends flush with the insole. The depth of the recess and the thickness of the damping element are thus adapted to each other. To this end, it is advantageous for the damping element to have a constant thickness of a few millimetres, in particular 5.5 mm, preferably 3 mm. As a result of the BSW damping elements according to the invention, effective damping can be achieved even with such a small thickness. By using BSW damping elements with a constant thickness, the wear comfort of the shoe is not influenced in a negative manner by the shape of the damping elements. The wearer does not feel and see the BSW damping element since these are an integral component of the insole and ends flush with the surface thereof.
In a particularly preferred embodiment of the shoe according the invention, the heel is constructed partially as a damping element which is arranged between two portions of a heel base member.
In a particularly preferred embodiment, the heel damping ele-ment has a continuous vertical recess, through which a fixing element can be introduced in order to fix the heel damping element to the two portions of the heel base member 6.
The heel BSW damping element preferably has a thickness of a few millimetres, in particular at least 5.5 mm.
It is particularly advantageous for the portion of the heel which is constructed as a BSW damping element to be covered in an annular manner. The damping element is consequently protected from external influences. Furthermore, the annular cover indicates the effect of the BSW material and indicates
- 7 -the extension of the intervertebral disc which is responsible for the "comfort/convenience". The cover may be constructed as a coating, for example, of leather, or as a removable clip.
In order to increase the stability of the heel, the heel of the shoe may be at least partially produced from carbon. The heel may thus have, for example, a frame construction of car-bon.
The invention also relates to the use of an admixture of dif-ferent elastomers, in particular based on copolymers, with polyether soft segments for damping elements in shoes, in particular in pumps, high-heel shoes or stiletto shoes. How-ever, the BSW damping elements may also be advantageously used in leisure shoes, shoes for men, and in flat ladies' shoes, such as ballerina shoes, with or without a high heel.
The invention also relates to a method for producing a shoe, in particular a pump, high-heel shoe or stiletto shoe, where-in BSW damping elements comprising an admixture of at least two different elastomers are first produced. An insole and/or a heel is/are provided with at least one recess in which the damping element is finally introduced and secured as an inte-gral component of the insole/heel. To this end, the insole material is first fulled and cut on the shoe tree. The mate-rial thickness of the insoles corresponds in this instance to that of the BSW damping elements. At the points of impact un-der the heel and ball, the insoles are cut so that these por-tions of the insoles can be removed. The recesses which are thereby produced are processed in such a manner that the BSW
damping elements can be inserted in a precisely fitting man-ner. In the ball region, the fitting damping elements are then adhesively bonded. In the heel region, however, the cut-
- 8 -out portions of the base member of the insole are first in-serted again (where applicable, only lightly adhesively bond-ed to the cut faces so that they do not fall out during the remainder of the production of the shoes but can be removed again without being destroyed). This is very important since the heels subsequently have to be screwed through the insole after removal from the shoe tree without the damping element being screwed, in order not to impair the damping properties.
After a filling has been introduced and the heels have been assembled, soles are applied and the shoe tree is removed from the shoes. Subsequently, in the heel region, the por-tions which have been cut out from the insole are lifted out.
The heels are screwed through the insoles, the damping ele-ments are inserted into the corresponding recesses and adhe-sively bonded. The insoles are glued in.
The shoe according to the invention comprises a sole with BSW
damping elements for pressure absorption which are integrated in the insole or are part of the insole, wherein the BSW
damping elements imitate mechanical properties of an inter-vertebral disc implant and acting as an insole or an integral component of the insole results in particular in high heels being able to be worn over a longer period of time with a high degree of wearing comfort and convenience. The biome-chanics of the BSW material which is unique in the shoe sec-tor brings about an effective reduction of the action of force on specific loading locations in the foot and thus pro-vides a remedy for the unpleasant symptoms and long-term side-effects, such as, for example, pressure marks and the deformation of the feet. A wearer using the invention de-scribed here can walk longer in high heels without any pain.
- 9 -Other advantages of the invention will be appreciated from the description and the drawings. The features which are men-tioned above and those set out in greater detail below can also be used according to the invention individually per se or together in any combination. The embodiments shown and de-scribed are not intended to be understood to be a definitive listing but are instead of an exemplary nature to describe the invention.
Detailed description of the invention and drawings Figure la is an exploded view of a ladies' shoe according to the invention, wherein the elements of the shoe are illus-trated in a transparent manner, Figure lb is a side view of the shoe according to the inven-tion from Figure la, Figures 2a, b are a perspective view and a side view of a ball damping element for a shoe according to the invention;
Figures 3a, b are a perspective view and a side view of a heel damping element for a shoe according to the invention;
Figures 4a, b are a perspective view, a plan view and a sec-tioned illustration of a heel damping element for a shoe ac-cording to the invention, Figure 5a shows a BSW damping element which is constructed as an insole, and Figure 5b shows a BSW damping element which is constructed as a part-sole.
Figure 1 shows a ladies' shoe 1 with a high heel 2. The shoe 1 has an insole 3 which is provided with recesses 4a, 4b in the ball region and heel region. Damping elements 5a, 5b are arranged in the recesses 4a, 4b. The recesses 4a, 4b of the insole 3 are precisely so large that the damping elements 5a, 5b can be received in the non-loaded state. The insole 3 with
- 10 -the damping elements 5a, 5b is covered with a cover sole 9.
The heel 2 comprises a base member 6 which is interrupted in the lower third by a further recess 4c. In the further recess 4c, there is arranged a further damping element 5c (heel damping element) which is secured to the base member 6 of the heel 2 and which forms the heel 2 therewith. The heel damping element 5c is covered in the example shown in Figure lb by an annular cover 8.
In Figures 2 to 5, a preferred embodiment of the individual damping elements 5a, 5b, 5c' is illustrated in detail. The damping elements 5a, 5b which are intended to be arranged in the recesses 4a, 4b have a uniform thickness.
Figures 5a, 5b show embodiments of the BSW damping element 5, 5' according to the invention which are not arranged in re-cesses of the insole, but instead are themselves constructed as an insole or portion of the insole.
The heel damping element 5c' has in the example shown the same cross-section as the base member 6 of the heel 2 in the region of the interruption, wherein (in contrast to the heel damping element 5c shown in Figures la, lb) there is provided a continuous vertical recess 7 (that is to say, in the direc-tion of the longitudinal extent of the heel 2), through which a fixing element can be introduced for fixing the two por-tions of the heel base member 6 to the heel damping element 5c. The insertion of the heel damping element 5c may, for ex-ample, be carried out by the base member of the heel 2 being separated all the way around, but without separating an in-ternal metal sleeve (fixing element). The heel damping ele-ment 5c is, for example, separated at the front side with a cut and inserted into the gap between the two components of
- 11 -the base member 6 and adhesively bonded. The heel damping el-ement 5c is consequently arranged in a sandwich-like manner between the two components of the base member 6 of the heel 2.
=
- 12 -List of reference numerals 1 Shoe 2 Heel 3 Insole 4a, 4b Recesses in insole 4c Recess in heel (interruption of the heel base mem-ber) 5a, 5b Damping elements for region of heel and ball of foot 5c, 5c' Heel damping element Damping element which is constructed as a sole 5' Damping element which is constructed as a part-sole 6 Base member of the heel 7 Recess in the heel damping element 8 Cover 9 Cover sole =

Claims (15)

Claims
1. Shoe (1), in particular a pump, high-heel shoe or stiletto, having an insole (3) and a heel (2), wherein at least one damping element (5, 5', 5a, 5b, 5c, 5c') is integrated in the heel (2) and/or in the insole (3), in particular in the re-gion of the heel and/or the ball of the foot, characterised in that the damping element has a Shore D hardness in the range from 28 to 33, a modulus of elasticity in the range from 28 to 38 MPa, and a tensile stress of from 9 to 11 at 600% extension.
2. Shoe (1) according to claim 1, characterised in that the damping element (5, 5') is constructed as an insole (3) or as part of the insole (3).
3. Shoe (1) according to claim 1, characterised in that the insole (3) has at least one recess (4a, 4b), wherein the damping element(s) (5a, 5b) is/are arranged in the at least one recess (4a, 4b).
4. Shoe (1) according to any one of the preceding claims, characterised in that the damping element (5, 5', 5a, 5b, 5c, 5c') is produced from an admixture of at least two thermo-plastic elastomers.
5. Shoe (1) according to claim 4, characterised in that the thermoplastic elastomers differ in terms of their Shore D
hardness and/or their modulus of elasticity and/or in terms of their tensile stress.
6. Shoe (1) according to any one of claims 1 to 5, character-ised in that the thermoplastic elastomers are thermoplastic elastomers based on copolymers, in particular with polyether soft segments.
7. Shoe (1) according to any one of claims 1 to 5, character-ised in that the thermoplastic elastomers are thermoplastic polyurethanes.
8. Shoe (1) according to any one of the preceding claims, characterised in that the damping elements (5a, 5b, 5c, 5c') are securely connected to the insole (3), in particular adhe-sively bonded.
9. Shoe (1) according to any one of the preceding claims, characterised in that the damping elements (5, 5', 5a, 5b, 5c, 5c') have a constant thickness of a few millimetres, in par-ticular 5.5 mm, preferably <= 3 mm.
10. Shoe (1) according to any one of the preceding claims, characterised in that the heel (2) is constructed partially as a damping element (5c, 5c') which is arranged between two portions of a heel base member (6).
11. Shoe (1) according to claim 10, characterised in that the heel damping element (5c') has a continuous vertical recess (7), through which a fixing element can be introduced in or-der to fix the heel damping element (5c') to the two portions of the heel base member (6).
12. Shoe (1) according to claim 10 or 11, characterised in that the portion of the heel (2) which is constructed as a damping element (5c, 5c') is covered in an annular manner.
13. Shoe (1) according to any one of the preceding claims, characterised in that the heel (2) has a frame construction of carbon.
14. Use of a material with a Shore hardness in the range from 28 to 33, preferably in the range from 28.5 to 29.5, an modu-lus of elasticity in the range from 28 to 38 MPa, preferably in the range from 32 to 36 MPa, and a tensile stress of from 9 to 11, preferably from 9.5 to 10.5 MPa at 600% extension for damping elements (5, 5', 5a, 5b, 5c, 5c') in shoes (1), in particular in pumps, high-heel shoes or stilettos.
15. Use according to claim 14, characterised in that the ma-terial contains an admixture of different elastomers, in par-ticular based on copolymers, with polyether soft segments.
CA2987367A 2015-03-19 2016-03-03 Shoe with intervertebral disc material damping element Abandoned CA2987367A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015204927.2 2015-03-19
DE102015204927.2A DE102015204927A1 (en) 2015-03-19 2015-03-19 Shoe with BSW cushioning element
PCT/EP2016/054558 WO2016146397A1 (en) 2015-03-19 2016-03-03 Shoe having a spinal disk material damping element

Publications (1)

Publication Number Publication Date
CA2987367A1 true CA2987367A1 (en) 2016-09-22

Family

ID=55451222

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2987367A Abandoned CA2987367A1 (en) 2015-03-19 2016-03-03 Shoe with intervertebral disc material damping element

Country Status (6)

Country Link
US (1) US20180064206A1 (en)
EP (1) EP3270727B1 (en)
CA (1) CA2987367A1 (en)
DE (2) DE102015204927A1 (en)
ES (1) ES2739696T3 (en)
WO (1) WO2016146397A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170119099A1 (en) * 2015-11-02 2017-05-04 Beverly FERGUSON Shoe Heel With Shock Absorbent Feature
US10624416B2 (en) * 2017-06-01 2020-04-21 Vionic Group LLC Footwear and the manufacture thereof
RU2729645C1 (en) * 2019-09-23 2020-08-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет технологий и управления имени К.Г. Разумовского (ПКУ)" Health-saving footwear design on high and superhigh heel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2908023A1 (en) * 1979-03-01 1980-09-04 Wolff System Service Gmbh Composite high heel for ladies shoes - has shock-absorbing resilient intermediate layer fixed to prevent horizontal displacement
US5603170A (en) * 1992-09-03 1997-02-18 Hiro International Co., Ltd. Fiber reinforced resin lift for shoes
US6029962A (en) * 1997-10-24 2000-02-29 Retama Technology Corporation Shock absorbing component and construction method
DE10359024A1 (en) * 2003-12-15 2005-07-21 Basf Ag Tin-free polyurethane foam, e.g. for production of shoe soles, obtained by reacting polyisocyanate with isocyanate-reactive compounds in presence of alkali metal carboxylate as catalyst, e.g. potassium acetate
US20070151124A1 (en) 2006-01-05 2007-07-05 Wen-Chieh Chan Woman's shoe
DE202009007303U1 (en) * 2009-05-20 2009-08-06 SCHÜRR-Schuhvertieb GmbH Shoe, in particular Beufs- and safety shoe
DE102011007623A1 (en) * 2011-04-18 2012-10-18 Gabriela Rupprecht High-heel shoe i.e. athletic shoe, has damping device comprising damping element, which has different damping effect cross-sections along heel longitudinal axis and/or freely more deformable in direction vertical to longitudinal axis

Also Published As

Publication number Publication date
US20180064206A1 (en) 2018-03-08
EP3270727A1 (en) 2018-01-24
DE202016101153U1 (en) 2016-03-29
ES2739696T3 (en) 2020-02-03
WO2016146397A1 (en) 2016-09-22
EP3270727B1 (en) 2019-05-01
DE102015204927A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
EP3854250B1 (en) Sole for a shoe
US8959798B2 (en) Shoe sole element
EP2132999B1 (en) Shoe sole element
EP2684479B1 (en) Article of footwear with sole projections
US7905034B2 (en) Golf shoe outsole
US8707587B2 (en) Sole and article of footwear
KR100884659B1 (en) Mid-sole for a shoes with impact dispersion and round walking function
GB2425242A (en) Shoe sole product and method
CN102939023A (en) High foot mobility shoe
WO1999039601A1 (en) Shoe sole
CN108577026A (en) Sole with protrusion and article of footwear
US20170360147A1 (en) High heel shoe
US20170095030A1 (en) Shoe, In Particular a Running Shoe
US9717306B2 (en) Cleat assembly for an athletic shoe and an athletic shoe comprising same
US20180064206A1 (en) Shoe having a spinal disk material damping element
AU2007222648B2 (en) Shoe, in particular sports shoe
CN215913496U (en) Article of footwear
US20160286895A1 (en) Footwear
EP1854371A1 (en) The insole
US9974355B2 (en) Padded foot support with a ball of foot depression
KR200226004Y1 (en) Footwear shock absorber
WO2005079616A1 (en) Sports footwear
US20230180883A1 (en) Footwear system and method having footwear upper linings for cushioning and shock absorption
KR102129565B1 (en) footwear-sole without midsole
KR20110062034A (en) Comportble shoe for ball

Legal Events

Date Code Title Description
FZDE Dead

Effective date: 20200304