CA2954742A1 - Fluorinated carbonates comprising two oxygen bearing functional groups - Google Patents
Fluorinated carbonates comprising two oxygen bearing functional groups Download PDFInfo
- Publication number
- CA2954742A1 CA2954742A1 CA2954742A CA2954742A CA2954742A1 CA 2954742 A1 CA2954742 A1 CA 2954742A1 CA 2954742 A CA2954742 A CA 2954742A CA 2954742 A CA2954742 A CA 2954742A CA 2954742 A1 CA2954742 A1 CA 2954742A1
- Authority
- CA
- Canada
- Prior art keywords
- alkyl
- fluorosubstituted
- aryl
- hydrogen
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 title abstract description 6
- 239000001301 oxygen Substances 0.000 title abstract description 6
- 150000004649 carbonic acid derivatives Chemical class 0.000 title abstract description 5
- 125000000524 functional group Chemical group 0.000 title abstract description 5
- 239000002904 solvent Substances 0.000 claims abstract description 29
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 25
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000000654 additive Substances 0.000 claims abstract description 15
- 230000000996 additive effect Effects 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 69
- 150000001875 compounds Chemical class 0.000 claims description 55
- 125000003118 aryl group Chemical group 0.000 claims description 49
- 239000003792 electrolyte Substances 0.000 claims description 38
- 229910052739 hydrogen Inorganic materials 0.000 claims description 35
- 239000001257 hydrogen Substances 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 35
- -1 alkylyne Chemical group 0.000 claims description 25
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 24
- 229910052731 fluorine Inorganic materials 0.000 claims description 14
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical group FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 12
- 125000002947 alkylene group Chemical group 0.000 claims description 12
- 239000011737 fluorine Chemical group 0.000 claims description 12
- 229910052744 lithium Inorganic materials 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 12
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 claims description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 150000002431 hydrogen Chemical group 0.000 claims 11
- 238000002360 preparation method Methods 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 229910001290 LiPF6 Inorganic materials 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- CWKABIASOCPCAF-UHFFFAOYSA-N 6,11-difluoro-1,3,5-trioxacycloundecane-2,4-dione Chemical compound C1(=O)OC(CCCCC(F)OC(O1)=O)F CWKABIASOCPCAF-UHFFFAOYSA-N 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 238000004502 linear sweep voltammetry Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- NAKBHPIDKQIZDG-UHFFFAOYSA-N 1-fluoroethyl carbonofluoridate Chemical compound CC(F)OC(F)=O NAKBHPIDKQIZDG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229920006373 Solef Polymers 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 150000003948 formamides Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 150000005677 organic carbonates Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- LLGVRRKWELRATP-UHFFFAOYSA-N 1-fluoroethyl 2-methoxyethyl carbonate Chemical compound C(OC(C)F)(OCCOC)=O LLGVRRKWELRATP-UHFFFAOYSA-N 0.000 description 1
- NRKYWOKHZRQRJR-UHFFFAOYSA-N 2,2,2-trifluoroacetamide Chemical class NC(=O)C(F)(F)F NRKYWOKHZRQRJR-UHFFFAOYSA-N 0.000 description 1
- SYNPRNNJJLRHTI-UHFFFAOYSA-N 2-(hydroxymethyl)butane-1,4-diol Chemical compound OCCC(CO)CO SYNPRNNJJLRHTI-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical class O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000006022 2-methyl-2-propenyl group Chemical group 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- BUPLCMMXKFWTTA-UHFFFAOYSA-N 4-methylidene-1,3-dioxetan-2-one Chemical compound C=C1OC(=O)O1 BUPLCMMXKFWTTA-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910013462 LiC104 Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000003869 acetamides Chemical class 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 238000006136 alcoholysis reaction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 1
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000005910 alkyl carbonate group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- ABDBNWQRPYOPDF-UHFFFAOYSA-N carbonofluoridic acid Chemical class OC(F)=O ABDBNWQRPYOPDF-UHFFFAOYSA-N 0.000 description 1
- VTOKYGVCWVBIGE-UHFFFAOYSA-N carboxy 1-fluoroethyl carbonate Chemical compound CC(OC(=O)OC(=O)O)F VTOKYGVCWVBIGE-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 150000005682 diethyl carbonates Chemical class 0.000 description 1
- 150000005686 dimethyl carbonates Chemical class 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 150000005683 ethyl methyl carbonates Chemical class 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012025 fluorinating agent Substances 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- PIQRQRGUYXRTJJ-UHFFFAOYSA-N fluoromethyl methyl carbonate Chemical compound COC(=O)OCF PIQRQRGUYXRTJJ-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000004971 nitroalkyl group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical class O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L15/00—Indicators provided on the vehicle or train for signalling purposes
- B61L15/0058—On-board optimisation of vehicle or vehicle train operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L15/00—Indicators provided on the vehicle or train for signalling purposes
- B61L15/0062—On-board target speed calculation or supervision
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C68/00—Preparation of esters of carbonic or haloformic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/96—Esters of carbonic or haloformic acids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/60—Liquid electrolytes characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/62—Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/64—Liquid electrolytes characterised by additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Hybrid Cells (AREA)
Abstract
Fluorinated carbonates comprising two oxygen bearing functional groups, methods for the preparation thereof, and their use as solvent or solvent additive for lithium ion batteries and supercapacitors are disclosed.
Description
Fluorinated carbonates comprising two oxygen bearing functional groups This application claims priority to European application No. 14178916.4 filed 29t1 July 2014, the whole content of this application being incorporated herein by reference for all purposes. The present invention concerns fluorinated carbonates comprising two oxygen bearing functional groups, methods for the preparation thereof, and their use as solvent or solvent additive for lithium ion batteries and supercapacitors.
Lithium ion batteries, lithium air batteries and lithium sulfur batteries are well-known rechargeable means for storing electric energy. Lithium ion batteries comprise an electrolyte composition containing a solvent, a conductive salt and, often, additives. The solvent is an aprotic organic solvent which serves to dissolve the conductive salt. See, for example, WO 2007/042471 which provides information concerning suitable solvents. Suitable conductive salts are known in the art. LiPF6 is a preferred conductive salt.
Capacitors are widely used devices for storing electrical energy. Among the various types of capacitors are electrochemical capacitors and electrolytic capacitors.
A hybrid supercapacitor is an electrochemical energy storage device that employs two different electrode types, the difference between the electrodes generally being in capacity or composition, and an electrolyte composition.
The optimization of the electrolyte compositions in hybrid supercapacitors still offers a significant potential to improve the performance properties of such systems.
Additives improve the properties of lithium ion batteries, e.g. by extending the cycle life. Fluoroalkyl alkyl carbonates, e.g. fluoromethyl methyl carbonate, and carbamates are known solvent additives for lithium ion batteries.
Lithium ion batteries, lithium air batteries and lithium sulfur batteries are well-known rechargeable means for storing electric energy. Lithium ion batteries comprise an electrolyte composition containing a solvent, a conductive salt and, often, additives. The solvent is an aprotic organic solvent which serves to dissolve the conductive salt. See, for example, WO 2007/042471 which provides information concerning suitable solvents. Suitable conductive salts are known in the art. LiPF6 is a preferred conductive salt.
Capacitors are widely used devices for storing electrical energy. Among the various types of capacitors are electrochemical capacitors and electrolytic capacitors.
A hybrid supercapacitor is an electrochemical energy storage device that employs two different electrode types, the difference between the electrodes generally being in capacity or composition, and an electrolyte composition.
The optimization of the electrolyte compositions in hybrid supercapacitors still offers a significant potential to improve the performance properties of such systems.
Additives improve the properties of lithium ion batteries, e.g. by extending the cycle life. Fluoroalkyl alkyl carbonates, e.g. fluoromethyl methyl carbonate, and carbamates are known solvent additives for lithium ion batteries.
2 discloses the manufacture of 1-fluoroalkyl (fluoro)alkyl carbonates and carbamates. However, there is still a demand in the art for improved additives or solvents for lithium ion batteries.
Accordingly, the objective of the present invention is to provide improved additives for lithium ion batteries, lithium air batteries, lithium sulphur batteries or supercapacitors. The compounds of the present invention provide advantages like modifying the viscosity or reducing the flammability. Another advantage is the modification of the electrodes under formation of beneficial films or a solid electrolyte interphase (SEI). In this respect, the compounds of the present invention provide the advantage of two oxygen bearing functional groups and thus, a possible chelating effect, e.g. when in contact with the cathode material.
Furthermore, the compounds of the invention advantageously lead to a better wettability of materials used in lithium ion batteries such as in particular a separator. The compounds of the invention can suitably assist in the protection against over-charging, for example, by serving as a redox shuttle. Yet another advantage is an increase in stability of the electrolyte composition, e.g. in presence of copper anions, which can be formed by possible degradation of certain current collector materials.
Furthermore, the compounds of the present invention advantageously show a high stability towards reduction while having a relatively low stability towards oxidation. Alternatively, the compounds of the present invention advantageously show a high stability towards oxidation while having a relatively low stability towards reduction. This property can lead to an increased performance of the battery, e.g. by modifying the electrodes of the battery, specifically by the formation on a protective layer on the electrode.
Additionally, the compounds of the present invention may increase energy density of a supercapacitor, their power density or their cycle life.
Accordingly, a first aspect of the present invention concerns a compound of the general formula (I), R1CFY-0-C(0)-04(CX1X2)m0L-R2 (I), wherein R1 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, or fluorosubstituted aryl; Y is hydrogen, fluorine, or alkyl; R2 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, or -C(0)-0R2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl; X and Y are independently hydrogen, fluorine, or alkyl;
and m and n are independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
The term "fluorosubstituted alkyl" is intended to denote an alkyl group wherein at least one hydrogen atom is replaced by one fluorine atom.
The term "fluorosubstituted aryl" is intended to denote an aryl group wherein at least one hydrogen atom is replaced by one fluorine atom.
The term "aryl is intended to denote a monovalent radical derived from an aromatic nucleus such as, in particular, a C6-C10 aromatic nucleus, in particular phenyl or naphthyl. The aryl group can optionally be substituted, e.g.
substituted with at least one alkyl group.
Accordingly, the objective of the present invention is to provide improved additives for lithium ion batteries, lithium air batteries, lithium sulphur batteries or supercapacitors. The compounds of the present invention provide advantages like modifying the viscosity or reducing the flammability. Another advantage is the modification of the electrodes under formation of beneficial films or a solid electrolyte interphase (SEI). In this respect, the compounds of the present invention provide the advantage of two oxygen bearing functional groups and thus, a possible chelating effect, e.g. when in contact with the cathode material.
Furthermore, the compounds of the invention advantageously lead to a better wettability of materials used in lithium ion batteries such as in particular a separator. The compounds of the invention can suitably assist in the protection against over-charging, for example, by serving as a redox shuttle. Yet another advantage is an increase in stability of the electrolyte composition, e.g. in presence of copper anions, which can be formed by possible degradation of certain current collector materials.
Furthermore, the compounds of the present invention advantageously show a high stability towards reduction while having a relatively low stability towards oxidation. Alternatively, the compounds of the present invention advantageously show a high stability towards oxidation while having a relatively low stability towards reduction. This property can lead to an increased performance of the battery, e.g. by modifying the electrodes of the battery, specifically by the formation on a protective layer on the electrode.
Additionally, the compounds of the present invention may increase energy density of a supercapacitor, their power density or their cycle life.
Accordingly, a first aspect of the present invention concerns a compound of the general formula (I), R1CFY-0-C(0)-04(CX1X2)m0L-R2 (I), wherein R1 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, or fluorosubstituted aryl; Y is hydrogen, fluorine, or alkyl; R2 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, or -C(0)-0R2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl; X and Y are independently hydrogen, fluorine, or alkyl;
and m and n are independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
The term "fluorosubstituted alkyl" is intended to denote an alkyl group wherein at least one hydrogen atom is replaced by one fluorine atom.
The term "fluorosubstituted aryl" is intended to denote an aryl group wherein at least one hydrogen atom is replaced by one fluorine atom.
The term "aryl is intended to denote a monovalent radical derived from an aromatic nucleus such as, in particular, a C6-C10 aromatic nucleus, in particular phenyl or naphthyl. The aryl group can optionally be substituted, e.g.
substituted with at least one alkyl group.
- 3 -The term "alkyl group" is intended to denote an optionally substituted saturated monovalent hydrocarbon radical, such as, in particular, a Cl-C6 alkyl.
By way of example, mention may be made of methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, isopentyl and hexyl. The alkyl may be optionally substituted, e.g. with halogen, aryl, or heteroaryl. A preferred alkyl group is methyl. The term "alkyl" also encompasses cycloalkyl groups. Cycloalkyl groups are optionally substituted cycles of saturated hydrocarbon-based groups.
By way of example, mention may be made of cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
The term "alkenyl" is intended to denote a straight or branched acyclic monovalent hydrocarbon radical having one or more carbon-carbon double bonds of either E or Z stereochemistry where applicable. The term includes, for example, vinyl, allyl, 1-butenyl, 2-butenyl, and 2-methyl-2-propenyl.
The term "alkynyl" is intended to denote a straight or branched chain monovalent hydrocarbon radical having from two to six carbon atoms and at least one carbon-carbon triple bond and optionally one or more carbon-carbon double bonds. Examples include ethynyl, propynyl and 3,4-pentadiene-1-ynyl.
In a preferred embodiment R1 is hydrogen or alkyl, more preferably R1 is ethyl.
In another preferred embodiment R2 is alkyl, more preferably R2 is methyl.
In another preferred embodiment R2 is -C(0)-0R2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, more preferably R2' is fluorosubstituted alkyl, even more preferably R2' is -CHFCH3.
In another preferred embodiment m is 2.
In another preferred embodiment n is 1.
The alkylene bridge between the two oxygen bearing groups is preferably an unsubstituted alkylene bridge, e.g. -CH2-CH2- or -CH2-CH2-CH2-. Also preferably, the alkylene bridge is substituted with an alkyl group, more preferably with methyl, i.e. at least one of X and Y are alkyl, specifically methyl.
Advantageously, the bridge has the structure -C(CH3)H-CH2-. In a specifically preferred embodiment n is 1, m is 2, X and Y are hydrogen and the bridge has the structure -CH2-CH2-=
In specific embodiments, the invention relates to a compound of one of the following structures :
By way of example, mention may be made of methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, isopentyl and hexyl. The alkyl may be optionally substituted, e.g. with halogen, aryl, or heteroaryl. A preferred alkyl group is methyl. The term "alkyl" also encompasses cycloalkyl groups. Cycloalkyl groups are optionally substituted cycles of saturated hydrocarbon-based groups.
By way of example, mention may be made of cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
The term "alkenyl" is intended to denote a straight or branched acyclic monovalent hydrocarbon radical having one or more carbon-carbon double bonds of either E or Z stereochemistry where applicable. The term includes, for example, vinyl, allyl, 1-butenyl, 2-butenyl, and 2-methyl-2-propenyl.
The term "alkynyl" is intended to denote a straight or branched chain monovalent hydrocarbon radical having from two to six carbon atoms and at least one carbon-carbon triple bond and optionally one or more carbon-carbon double bonds. Examples include ethynyl, propynyl and 3,4-pentadiene-1-ynyl.
In a preferred embodiment R1 is hydrogen or alkyl, more preferably R1 is ethyl.
In another preferred embodiment R2 is alkyl, more preferably R2 is methyl.
In another preferred embodiment R2 is -C(0)-0R2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, more preferably R2' is fluorosubstituted alkyl, even more preferably R2' is -CHFCH3.
In another preferred embodiment m is 2.
In another preferred embodiment n is 1.
The alkylene bridge between the two oxygen bearing groups is preferably an unsubstituted alkylene bridge, e.g. -CH2-CH2- or -CH2-CH2-CH2-. Also preferably, the alkylene bridge is substituted with an alkyl group, more preferably with methyl, i.e. at least one of X and Y are alkyl, specifically methyl.
Advantageously, the bridge has the structure -C(CH3)H-CH2-. In a specifically preferred embodiment n is 1, m is 2, X and Y are hydrogen and the bridge has the structure -CH2-CH2-=
In specific embodiments, the invention relates to a compound of one of the following structures :
- 4 -A 0 =\.() HC) .-^,..õ.Ø., I
."'"L.. 0 ....õ,..-" F 0 O9 0 L 0 A /\.0Y0) ,FL w FL I 0Y0) :( 0 i 0c), j 1 J\O .(C) II I
j 1 0 10 ..)4 %N. 0 CF 3 L o A o .,o,cF3 o o ior o o o ?
o o o i 000T0,
."'"L.. 0 ....õ,..-" F 0 O9 0 L 0 A /\.0Y0) ,FL w FL I 0Y0) :( 0 i 0c), j 1 J\O .(C) II I
j 1 0 10 ..)4 %N. 0 CF 3 L o A o .,o,cF3 o o ior o o o ?
o o o i 000T0,
- 5 -In a second aspect, the present invention concerns a method for the manufacture of a compound of the general formula (I), R1CFY-0-C(0) u _1 -0-[(CX1x2)m--.._ R2, wherein R1 ishydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, or fluorosubstituted aryl; Y is hydrogen, fluorine, or alkyl; R2 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, or -C(0)-0R2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl; X and Y are independently hydrogen, fluorine, or alkyl; and m and n are independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
comprising a step of reacting a compound of general formula (II), R1CFY-0-C(0)-F (II) wherein R1 and Y have the meaning is given above;
with an compound of general formula (III), H01(CX1X2)õ10].-OH (III) wherein n, m, X1, and X2 have the meanings as given above.
Thus, according to this aspect of the invention, symmetrical compounds of general formula (I) can be prepared, i.e compounds bearing the same group on each side of the alkylene bridge.
Asymmetrical compounds of general formula (I) can be prepared by reacting a compound of formula (II) as described above with an alcohol of general formula (IV) : HO-[(CX1x2)..0 _1 --.._ R2(I), wherein R1 ishydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, or fluorosubstituted aryl;
Y is hydrogen, fluorine, or alkyl; R2 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, or -C(0)-0R2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl; X and Y are independently hydrogen, fluorine, or alkyl; and m and n are independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
Compounds general formula (IV) wherein R2 is -C(0)-0R2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, can advantageously be prepared by reacting a compound of general formula H0-[(CX1X2)õ10].-OH or H0-[(CX1X2)õ10].-0-PG, wherein PG is a hydroxyl-protecting group, with a compound of general structure Cl-C(0)-0R2' or F-C(0)-0R2' and, in case of H0-[(CX1X2)õ10].-0-PG, subsequent removal of the hydroxyl-protecting group. Hydroxyl-protecting group are known to the skilled person. Examples of suitable hydroxyl-protecting groups include silyl ethers and esters, e.g. acetate.
comprising a step of reacting a compound of general formula (II), R1CFY-0-C(0)-F (II) wherein R1 and Y have the meaning is given above;
with an compound of general formula (III), H01(CX1X2)õ10].-OH (III) wherein n, m, X1, and X2 have the meanings as given above.
Thus, according to this aspect of the invention, symmetrical compounds of general formula (I) can be prepared, i.e compounds bearing the same group on each side of the alkylene bridge.
Asymmetrical compounds of general formula (I) can be prepared by reacting a compound of formula (II) as described above with an alcohol of general formula (IV) : HO-[(CX1x2)..0 _1 --.._ R2(I), wherein R1 ishydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, or fluorosubstituted aryl;
Y is hydrogen, fluorine, or alkyl; R2 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, or -C(0)-0R2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl; X and Y are independently hydrogen, fluorine, or alkyl; and m and n are independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
Compounds general formula (IV) wherein R2 is -C(0)-0R2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, can advantageously be prepared by reacting a compound of general formula H0-[(CX1X2)õ10].-OH or H0-[(CX1X2)õ10].-0-PG, wherein PG is a hydroxyl-protecting group, with a compound of general structure Cl-C(0)-0R2' or F-C(0)-0R2' and, in case of H0-[(CX1X2)õ10].-0-PG, subsequent removal of the hydroxyl-protecting group. Hydroxyl-protecting group are known to the skilled person. Examples of suitable hydroxyl-protecting groups include silyl ethers and esters, e.g. acetate.
- 6 -Instead of the alcohol or diol, respectively, the corresponding alkali metal alkoxide can be applied, for example, the respective lithium, sodium, potassium or cesium alkoxide. The reaction can be performed in the presence of an HF
scavenger e.g. LiF, NaF, KF or CsF, or in the presence of base, e.g. in the presence of ammonia or a primary, secondary or tertiary amine, e.g. triethylamine or pyridine. Preferably, it is performed in the absence of a base.
The molar ratio between is preferably chosen to be 0.9:1.1 hydroxyl groups per formiate molecules. The reaction temperature during the alcoholysis reaction is not critical. The reaction can be performed in any suitable reactor, e.g.
in an autoclave. The reaction can be performed batch wise or continuously. The resulting reaction mixture can be separated by known methods, e.g. by distillation, precipitation and/or crystallization. If desired, the reaction mixture can be contacted with water to remove water-soluble constituents. Due to the specific type of reaction, organic carbonates with a higher degree of fluorination are formed, if at all, in only very minor proportions.
Compounds of general formula (II) can be prepared from the respective chloroalkyl chloroformates in a "Halex" type reaction, i.e. substitution of fluorine atoms for the chlorine atoms by fluorinating agents, as already described above, e.g. using a fluorinating reactant like alkali or alkaline earth metal fluorides, e.g. LiF, KF, CsF, NaF, NH4F or amine hydrofluorides, or the respective HF adducts. The chloroalkyl chloroformates themselves are available through the reaction between phosgene and an aldehyde as described in US patent 5,712,407.
Alternatively, compounds of general formula (II) can be prepared from carbonyl fluoride and an aldehyde as described in WO 2011/006822. A process for the manufacture of fluoroformates and of the specific example CH3CHFC(0)F is described in WO 2011/006822.
Asymmetrical compounds of general formula (I) can be prepared by reacting a compound of formula (II) as described above with an alcohol of general formula (IV) : HO-[(CX1x2)..0 _1 --.._ R2, wherein R1 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, or fluorosubstituted aryl;
Y is hydrogen, fluorine, or alkyl; R2 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, or -C(0)-0R2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl; X and Y are
scavenger e.g. LiF, NaF, KF or CsF, or in the presence of base, e.g. in the presence of ammonia or a primary, secondary or tertiary amine, e.g. triethylamine or pyridine. Preferably, it is performed in the absence of a base.
The molar ratio between is preferably chosen to be 0.9:1.1 hydroxyl groups per formiate molecules. The reaction temperature during the alcoholysis reaction is not critical. The reaction can be performed in any suitable reactor, e.g.
in an autoclave. The reaction can be performed batch wise or continuously. The resulting reaction mixture can be separated by known methods, e.g. by distillation, precipitation and/or crystallization. If desired, the reaction mixture can be contacted with water to remove water-soluble constituents. Due to the specific type of reaction, organic carbonates with a higher degree of fluorination are formed, if at all, in only very minor proportions.
Compounds of general formula (II) can be prepared from the respective chloroalkyl chloroformates in a "Halex" type reaction, i.e. substitution of fluorine atoms for the chlorine atoms by fluorinating agents, as already described above, e.g. using a fluorinating reactant like alkali or alkaline earth metal fluorides, e.g. LiF, KF, CsF, NaF, NH4F or amine hydrofluorides, or the respective HF adducts. The chloroalkyl chloroformates themselves are available through the reaction between phosgene and an aldehyde as described in US patent 5,712,407.
Alternatively, compounds of general formula (II) can be prepared from carbonyl fluoride and an aldehyde as described in WO 2011/006822. A process for the manufacture of fluoroformates and of the specific example CH3CHFC(0)F is described in WO 2011/006822.
Asymmetrical compounds of general formula (I) can be prepared by reacting a compound of formula (II) as described above with an alcohol of general formula (IV) : HO-[(CX1x2)..0 _1 --.._ R2, wherein R1 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, or fluorosubstituted aryl;
Y is hydrogen, fluorine, or alkyl; R2 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, or -C(0)-0R2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl; X and Y are
- 7 -independently hydrogen, fluorine, or alkyl; and m and n are independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
In a third aspect, the present invention relates to the use of a compound of general formula (I) as described above as a solvent additive or as solvent for lithium ion batteries, lithium air batteries, lithium sulphur batteries, supercapacitors or hybrid supercapacitors.
In a fourth aspect, the present invention concerns a solvent composition for lithium ion batteries, lithium air batteries, lithium sulfur batteries, supercapacitors or hybrid supercapacitors, comprising at least one solvent useful for lithium ion batteries, further comprising at least one compound of general formula (I) as described above.
The compounds of general formula (I) are advantageously applied in solvent compositions or in electrolyte compositions together with at least one suitable solvent known to the expert in the field of lithium ion batteries or supercapacitors. For example, organic carbonates, but also lactones, formamides, pyrrolidinones, oxazolidinones, nitroalkanes, N,N-substituted urethanes, sulfolane, dialkyl sulfoxides, dialkyl sulfites, acetates, nitriles, acetamides, glycol ethers, dioxolanes, dialkyloxyethanes, trifluoroacetamides, are very suitable as solvents.
Preferably, the aprotic organic solvent is selected from the group of dialkyl carbonates (which are linear) and alkylene carbonates (which are cyclic), ketones, and formamides. Dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, cyclic alkylene carbonates, e.g. ethylene carbonate, propylene carbonate, and vinylidene carbonate, are examples of suitable solvents.
Fluorosubstituted compounds different from the compounds of general formula (I) as described above, for example, fluorosubstituted ethylene carbonates, polyfluorosubstituted dimethyl carbonates, fluorosubstituted ethyl methyl carbonates, and fluorosubstituted diethyl carbonates are other suitable solvents or suitable additional additives in the electrolytic compositions.
Other suitable additional additives useful in the electrolyte compositions according to the present invention are those described in W02007/042471.
In a fifth aspect, present invention concerns an electrolyte composition for lithium ion batteries, lithium air batteries, lithium sulfur batteries, supercapacitors or hybrid supercapacitors, comprising at least one compound according to the invention, at least one solvent useful for lithium ion batteries or supercapacitors and at least one electrolyte salt.
In a third aspect, the present invention relates to the use of a compound of general formula (I) as described above as a solvent additive or as solvent for lithium ion batteries, lithium air batteries, lithium sulphur batteries, supercapacitors or hybrid supercapacitors.
In a fourth aspect, the present invention concerns a solvent composition for lithium ion batteries, lithium air batteries, lithium sulfur batteries, supercapacitors or hybrid supercapacitors, comprising at least one solvent useful for lithium ion batteries, further comprising at least one compound of general formula (I) as described above.
The compounds of general formula (I) are advantageously applied in solvent compositions or in electrolyte compositions together with at least one suitable solvent known to the expert in the field of lithium ion batteries or supercapacitors. For example, organic carbonates, but also lactones, formamides, pyrrolidinones, oxazolidinones, nitroalkanes, N,N-substituted urethanes, sulfolane, dialkyl sulfoxides, dialkyl sulfites, acetates, nitriles, acetamides, glycol ethers, dioxolanes, dialkyloxyethanes, trifluoroacetamides, are very suitable as solvents.
Preferably, the aprotic organic solvent is selected from the group of dialkyl carbonates (which are linear) and alkylene carbonates (which are cyclic), ketones, and formamides. Dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, cyclic alkylene carbonates, e.g. ethylene carbonate, propylene carbonate, and vinylidene carbonate, are examples of suitable solvents.
Fluorosubstituted compounds different from the compounds of general formula (I) as described above, for example, fluorosubstituted ethylene carbonates, polyfluorosubstituted dimethyl carbonates, fluorosubstituted ethyl methyl carbonates, and fluorosubstituted diethyl carbonates are other suitable solvents or suitable additional additives in the electrolytic compositions.
Other suitable additional additives useful in the electrolyte compositions according to the present invention are those described in W02007/042471.
In a fifth aspect, present invention concerns an electrolyte composition for lithium ion batteries, lithium air batteries, lithium sulfur batteries, supercapacitors or hybrid supercapacitors, comprising at least one compound according to the invention, at least one solvent useful for lithium ion batteries or supercapacitors and at least one electrolyte salt.
- 8 -The electrolyte composition, further to the at least one compound of general formula (I), comprises at least one dissolved electrolyte salt. Such salts have the general formula MaAb. M is a metal cation, and A is an anion. The overall charge of the salt MaAb is 0. M is preferably selected from Li+
and NR4+. Preferred anions are PF6-, P02F2-, AsF6-, BF4-, C104-, N(CF3502)2-, N(F502)2- and N(i-C3F7502)2-=
Preferably, M is Lit Especially preferably, M is Li + and the solution comprises at least one electrolyte salt selected from the group consisting of LiBF4, LiC104, LiAsF6, LiPF6, LiP02F2, LiN(CF3502)2, LiN(F502)2 and LiN(i-C3F7502)2. Lithium bis(oxalato)borate can be applied as an additional additive. The concentration of the electrolyte salt is preferably between 0.8 and 1.2 molar, more preferably 1.0 molar. Often, the electrolyte composition may comprise LiPF6 and LiP02F2.
The compounds of formula (I) can be introduced into the electrolyte composition separately or in the form of a mixture with other compounds, e.g.
as a mixture with one or more solvents used in the electrolyte composition or together with the electrolyte salt or together with other additives.
In a sixth aspect, the present invention relates to lithium ion batteries, lithium air batteries and lithium sulfur batteries comprising a solvent composition as outlined above or an electrolyte composition as outlined above.
The compounds according to this invention may advantageously be used as a solvent, a solvent additive or a co-solvent in a concentration from 1 to 15 wt %, preferably from 3 to 10 wt %, more preferably between 4 and 6 wt % and most preferably around 5 wt % relative to the total weight of the electrolyte composition.
Accordingly, another aspect of the invention concerns the use of a compound according to this invention in an electrolyte composition, in an electrolyte composition for Li ion batteries, Li air batteries or Li sulfur batteries, wherein the concentration of the compound according to any one of the claims 1 to 7 is from 1 to 15 wt %, preferably from 3 to 10 wt %, more preferably between 4 and 6 wt % and most preferably around 5 wt %; relative to the total weight of the electrolyte composition. Alternatively, the concentration is from 0.5 wt % to 1.5 wt %, specifically around 1 wt %.
Lithium ion batteries comprises an anode, preferably an anode made from carbon comprising a copper foil, a cathode, preferably a cathode made from lithium metal oxides comprising an aluminum foil, a separator, preferably a
and NR4+. Preferred anions are PF6-, P02F2-, AsF6-, BF4-, C104-, N(CF3502)2-, N(F502)2- and N(i-C3F7502)2-=
Preferably, M is Lit Especially preferably, M is Li + and the solution comprises at least one electrolyte salt selected from the group consisting of LiBF4, LiC104, LiAsF6, LiPF6, LiP02F2, LiN(CF3502)2, LiN(F502)2 and LiN(i-C3F7502)2. Lithium bis(oxalato)borate can be applied as an additional additive. The concentration of the electrolyte salt is preferably between 0.8 and 1.2 molar, more preferably 1.0 molar. Often, the electrolyte composition may comprise LiPF6 and LiP02F2.
The compounds of formula (I) can be introduced into the electrolyte composition separately or in the form of a mixture with other compounds, e.g.
as a mixture with one or more solvents used in the electrolyte composition or together with the electrolyte salt or together with other additives.
In a sixth aspect, the present invention relates to lithium ion batteries, lithium air batteries and lithium sulfur batteries comprising a solvent composition as outlined above or an electrolyte composition as outlined above.
The compounds according to this invention may advantageously be used as a solvent, a solvent additive or a co-solvent in a concentration from 1 to 15 wt %, preferably from 3 to 10 wt %, more preferably between 4 and 6 wt % and most preferably around 5 wt % relative to the total weight of the electrolyte composition.
Accordingly, another aspect of the invention concerns the use of a compound according to this invention in an electrolyte composition, in an electrolyte composition for Li ion batteries, Li air batteries or Li sulfur batteries, wherein the concentration of the compound according to any one of the claims 1 to 7 is from 1 to 15 wt %, preferably from 3 to 10 wt %, more preferably between 4 and 6 wt % and most preferably around 5 wt %; relative to the total weight of the electrolyte composition. Alternatively, the concentration is from 0.5 wt % to 1.5 wt %, specifically around 1 wt %.
Lithium ion batteries comprises an anode, preferably an anode made from carbon comprising a copper foil, a cathode, preferably a cathode made from lithium metal oxides comprising an aluminum foil, a separator, preferably a
9 separator made from an insulating polymer, and a solvent composition or an electrolyte composition as described above. The foils used for anode and cathode are also called current collectors.
Should the disclosure of any patents, patent applications, and publications which are incorporated herein by reference conflict with the description of the present application to the extent that it may render a term unclear, the present description shall take precedence.
The invention will now be further described in examples without intending to limit it.
Examples:
Example 1 : Synthesis of ethane-1,2-diyl-bis(1-fluoroethyl) dicarbonate A 2.5 1 PFA-reactor equipped with a temperated double mantle, a reflux condenser and a mechanical stirrer was charged with 1315 g 1-fluoroethyl fluoroformate. After chilling the material to 3 C, a mixture of 267 g pyridine and 288 g ethylene glycol was slowly added over a period of 2.5 hours. The reaction temperature was kept below 55 C. After cooling down to room temperature, the mixture was washed three times with citric acid solution (30 %
in deionized water, 200 g, 100 g, 100 g). After drying over molecular sieve (120 g) for 3 days followed by filtration, the product was obtained as a colourless liquid in a yield of 1031 g with a purity > 82 % (GC assay). The product can optionally be purified further by distillation giving a purity > 99.9 % (GC assay).
Example 2: 1-fluoroethyl 2-methoxyethyl carbonate A 2.5 1 PFA-reactor equipped with a temperated double mantle, a reflux condenser and a mechanical stirrer was charged with 1315 g 1-fluoroethyl fluoroformate. After chilling the material to 3 C, a mixture of 288 g pyridine and 800 g 2-methoxyethanol was slowly added over a period of 3 hours. The reaction temperature was kept below 45 C. After cooling down to room temperature, the mixture was washed three times with citric acid solution (30 %
in deionized water, 210 g, 130 g, 160 g). After drying over molecular sieve (140 g) for 3 days followed by filtration, the product was obtained as a colourless liquid in a yield of 1323 g (84 %) with a purity > 89 % (GC assay).
The product can optionally be purified further by distillation giving a purity > 99.9 % (GC assay).
Example 3 : Linear sweep voltammetry (LSV) Tests were performed in a beaker-type cell comprising three electrodes as
Should the disclosure of any patents, patent applications, and publications which are incorporated herein by reference conflict with the description of the present application to the extent that it may render a term unclear, the present description shall take precedence.
The invention will now be further described in examples without intending to limit it.
Examples:
Example 1 : Synthesis of ethane-1,2-diyl-bis(1-fluoroethyl) dicarbonate A 2.5 1 PFA-reactor equipped with a temperated double mantle, a reflux condenser and a mechanical stirrer was charged with 1315 g 1-fluoroethyl fluoroformate. After chilling the material to 3 C, a mixture of 267 g pyridine and 288 g ethylene glycol was slowly added over a period of 2.5 hours. The reaction temperature was kept below 55 C. After cooling down to room temperature, the mixture was washed three times with citric acid solution (30 %
in deionized water, 200 g, 100 g, 100 g). After drying over molecular sieve (120 g) for 3 days followed by filtration, the product was obtained as a colourless liquid in a yield of 1031 g with a purity > 82 % (GC assay). The product can optionally be purified further by distillation giving a purity > 99.9 % (GC assay).
Example 2: 1-fluoroethyl 2-methoxyethyl carbonate A 2.5 1 PFA-reactor equipped with a temperated double mantle, a reflux condenser and a mechanical stirrer was charged with 1315 g 1-fluoroethyl fluoroformate. After chilling the material to 3 C, a mixture of 288 g pyridine and 800 g 2-methoxyethanol was slowly added over a period of 3 hours. The reaction temperature was kept below 45 C. After cooling down to room temperature, the mixture was washed three times with citric acid solution (30 %
in deionized water, 210 g, 130 g, 160 g). After drying over molecular sieve (140 g) for 3 days followed by filtration, the product was obtained as a colourless liquid in a yield of 1323 g (84 %) with a purity > 89 % (GC assay).
The product can optionally be purified further by distillation giving a purity > 99.9 % (GC assay).
Example 3 : Linear sweep voltammetry (LSV) Tests were performed in a beaker-type cell comprising three electrodes as
- 10 -follows for measurement of the oxidation potential :
a) Li metal as reference electrode b) LiCo02 as working electrode c) Li metal as counter electrode A standard electrolyte (1.0 M LiPF6 in a 1:2 vol/vol % mixture of ethylene carbonate and dimethylcarbonate) was used. The respective inventive compound to be tested was added to this standard electrolyte at a concentration of 1 wt %.
Tests were performed using an electrochemical analyzer in a voltage range from 3.0 to 7.0 V with a scan rate of 0.1 mVs-1.
Figure 1 shows the results of the LSV testes.
Curve (1) : standard electrolyte Curve (2) : standard electrolyte with 1 wt % ethane-1,2-diyl-bis(1-fluoroethyl) dicarbonate During the LSV test with the electrolyte comprising ethane-1,2-diyl-bis(1-fluoroethyl) dicarbonate, decomposition of the electrolyte was suppressed as compared to the standard STD electrolyte.
Example 4: Cyclic voltammetry (CV) Tests were performed in a beaker-type cell comprising three electrodes as follows :
d) Li metal as reference electrode e) Artificial graphite (SCMG-AR) as working electrode f) Li metal as counter electrode A standard electrolyte (1.0 M LiPF6 in a 1:2 vol/vol % mixture of ethylene carbonate and dimethylcarbonate) was used. The respective inventive compound to be tested was added to this standard electrolyte at a concentration of 1 wt %.
Tests were performed for 3 cycles using an electrochemical analyzer in a voltage range from 3.0 to 0.0 V with a scan rate of 1.0 mVs-1.
Figure 2 shows the results (3 time cycles) of the CV test.
Curve (1) : standard electrolyte with 1 wt % ethane-1,2-diyl-bis(1-fluoroethyl) dicarbonate During the first cycle of the CV test, SEI formation (reduction) on the surface of the anode starting at 0.9V was shown. The electrolyte decomposition was therefore prevented in the second and third cycle.
Example 5 : Performance testing - Mono full cell Test system : Mono full cell consisting of: [LiNiii3Cov3Mni/302 (Ecopro) :
SuperP (conductive carbon black obtainable from MMM Carbon, Belgium) :
a) Li metal as reference electrode b) LiCo02 as working electrode c) Li metal as counter electrode A standard electrolyte (1.0 M LiPF6 in a 1:2 vol/vol % mixture of ethylene carbonate and dimethylcarbonate) was used. The respective inventive compound to be tested was added to this standard electrolyte at a concentration of 1 wt %.
Tests were performed using an electrochemical analyzer in a voltage range from 3.0 to 7.0 V with a scan rate of 0.1 mVs-1.
Figure 1 shows the results of the LSV testes.
Curve (1) : standard electrolyte Curve (2) : standard electrolyte with 1 wt % ethane-1,2-diyl-bis(1-fluoroethyl) dicarbonate During the LSV test with the electrolyte comprising ethane-1,2-diyl-bis(1-fluoroethyl) dicarbonate, decomposition of the electrolyte was suppressed as compared to the standard STD electrolyte.
Example 4: Cyclic voltammetry (CV) Tests were performed in a beaker-type cell comprising three electrodes as follows :
d) Li metal as reference electrode e) Artificial graphite (SCMG-AR) as working electrode f) Li metal as counter electrode A standard electrolyte (1.0 M LiPF6 in a 1:2 vol/vol % mixture of ethylene carbonate and dimethylcarbonate) was used. The respective inventive compound to be tested was added to this standard electrolyte at a concentration of 1 wt %.
Tests were performed for 3 cycles using an electrochemical analyzer in a voltage range from 3.0 to 0.0 V with a scan rate of 1.0 mVs-1.
Figure 2 shows the results (3 time cycles) of the CV test.
Curve (1) : standard electrolyte with 1 wt % ethane-1,2-diyl-bis(1-fluoroethyl) dicarbonate During the first cycle of the CV test, SEI formation (reduction) on the surface of the anode starting at 0.9V was shown. The electrolyte decomposition was therefore prevented in the second and third cycle.
Example 5 : Performance testing - Mono full cell Test system : Mono full cell consisting of: [LiNiii3Cov3Mni/302 (Ecopro) :
SuperP (conductive carbon black obtainable from MMM Carbon, Belgium) :
- 11 -PVdF (Solef 5130 from Solvay Specialty Polymers) binder = 92 : 4 : 4 (wt. %)]
as positive electrode and [SCMG-AR (artificial graphite obtainable from Showa Denko) : SuperP (conductive carbon black obtainable from MMM Carbon, Belgium) : PVdF (Solef 5130 from Solvay Specialty Polymers) binder = 90 : 4 : 6 (wt. %)] as negative electrode. Polyethylene was used as separator. A standard electrolyte composition [(1.0M LiPF6 / ethylene carbonate + dimethyl carbonate (1:2 (v/v)] was used to which the fluorinated additives according to the invention were added under dry room atmosphere.
The preparation of the mono full cells consisted of the following steps in that order : (1) mixing, (2) coating & drying, (3) pressing, (4) slitting, (5) tap welding, (6) pouch cutting, (7) assembly (stacking),(8) mono cell 2-side sealing, (9) electrolyte filling, and (10) vacuum sealing.
For the Cycle Performance, 200 cycles were performed in the range of 3.0V-4.4V under C-rate of 1Ø
Figure 3 shows the unexpected advantageous effect of ethan-1,2-diyl-bis(1-fluoroethyl dicarbonate) in a concentration of 1 wt % (x-axis : cycle number, y-axis : discharge capacity [mAh/g]) : initial discharge capacity was 152.2 (mAh/g) and after 200 discharge cycles, capacity was 144.3 (mAh/g). In a comparative example, use of the standard electrolyte composition resulted in an initial discharge capacity of 147.2 (mAh/g), and after 200 cycles, discharge capacity of 143.2 (mAh/g).
as positive electrode and [SCMG-AR (artificial graphite obtainable from Showa Denko) : SuperP (conductive carbon black obtainable from MMM Carbon, Belgium) : PVdF (Solef 5130 from Solvay Specialty Polymers) binder = 90 : 4 : 6 (wt. %)] as negative electrode. Polyethylene was used as separator. A standard electrolyte composition [(1.0M LiPF6 / ethylene carbonate + dimethyl carbonate (1:2 (v/v)] was used to which the fluorinated additives according to the invention were added under dry room atmosphere.
The preparation of the mono full cells consisted of the following steps in that order : (1) mixing, (2) coating & drying, (3) pressing, (4) slitting, (5) tap welding, (6) pouch cutting, (7) assembly (stacking),(8) mono cell 2-side sealing, (9) electrolyte filling, and (10) vacuum sealing.
For the Cycle Performance, 200 cycles were performed in the range of 3.0V-4.4V under C-rate of 1Ø
Figure 3 shows the unexpected advantageous effect of ethan-1,2-diyl-bis(1-fluoroethyl dicarbonate) in a concentration of 1 wt % (x-axis : cycle number, y-axis : discharge capacity [mAh/g]) : initial discharge capacity was 152.2 (mAh/g) and after 200 discharge cycles, capacity was 144.3 (mAh/g). In a comparative example, use of the standard electrolyte composition resulted in an initial discharge capacity of 147.2 (mAh/g), and after 200 cycles, discharge capacity of 143.2 (mAh/g).
Claims (15)
1. A compound of general formula (I), R1CFY-O-C(O)-O-[(CX1X2)m O]n-R2 (I) wherein R1 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, or fluorosubstituted aryl ;
Y is hydrogen, fluorine, or alkyl;
R2 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, or -C(O)-OR2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl; X and Y are independently hydrogen, fluorine, or alkyl; and m and n are independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
Y is hydrogen, fluorine, or alkyl;
R2 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, or -C(O)-OR2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl; X and Y are independently hydrogen, fluorine, or alkyl; and m and n are independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
2. The compound according to claim 1 wherein R1 is hydrogen or alkyl.
3. The compound according to claim 2 wherein R1 is methyl.
4. The compound according to any one of the claims 1 to 3 wherein R2 is alkyl, preferably R2 is methyl.
5. The compound according to any one of the claims 1 to 3 wherein R2 is -C(O)-OR2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl.
6. The compound according to claim 5 wherein R2' is fluorosubstituted alkyl, preferably R2' is -CHFCH3.
7. The compound according to any one of the claims 1 to 6 wherein m is 2.
8. The compound according to any one of the claims 1 to 7 wherein n is 1.
9. The compound according to any one of the claims 1 to 8 wherein X
and Y are hydrogen.
and Y are hydrogen.
10. The compound according to claim 1 wherein the structure of the compound is chosen from one of the following structures :
11. A method for the manufacture of a compound of general formula (I), R1CFY-O-C(O)-O-[(CX1X2)mO]n-R2 wherein R1 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, or fluorosubstituted aryl; Y is hydrogen, fluorine, or alkyl; R2 is hydrogen, alkyl, alkylene, alkylyne, aryl, fluorosubstituted alkyl, fluorosubstituted aryl, or -C(O)-OR2', wherein R2' is hydrogen, alkyl, aryl, fluorosubstituted alkyl, fluorosubstituted aryl; X and Y are independently hydrogen, fluorine, or alkyl;
and m and n are independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or 1 0;
comprising a step of reacting a compound of general formula (II), R1CFY-O-C(O)-F (II) wherein R1 and Y have the meaning is given above;
with an compound of general formula (III), HO-[(CX1X2)mO]n-OH (III) wherein n, m, X1, and X2 have the meanings as given above.
and m and n are independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or 1 0;
comprising a step of reacting a compound of general formula (II), R1CFY-O-C(O)-F (II) wherein R1 and Y have the meaning is given above;
with an compound of general formula (III), HO-[(CX1X2)mO]n-OH (III) wherein n, m, X1, and X2 have the meanings as given above.
12. Use of a compound according to any one of the claims 1 to 1 0 as a solvent additive or as solvent for lithium ion batteries, lithium air batteries, lithium sulphur batteries, supercapacitors or hybrid supercapacitors.
1 3. A solvent composition for lithium ion batteries, lithium air batteries, lithium sulfur batteries, supercapacitors or hybrid supercapacitors, comprising at least one of the compounds according to any one of the claims 1 to 10 and at least one solvent useful for lithium ion batteries or supercapacitors.
14. An electrolyte composition for lithium ion batteries, lithium air batteries, lithium sulfur batteries, supercapacitors or hybrid supercapacitors, comprising at least one of the compounds according to any one of the claims 1 to 10, at least one solvent useful for lithium ion batteries or supercapacitors and at least one electrolyte salt.
15. A lithium ion battery, a lithium air battery, a lithium sulfur battery, a supercapacitor or a hybrid supercapacitor containing at least one of the compounds according to any one of the claims 1 to 10.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14178916.4A EP2980063A1 (en) | 2014-07-29 | 2014-07-29 | Fluorinated carbonates comprising two oxygen bearing functional groups |
EP14178916.4 | 2014-07-29 | ||
PCT/EP2015/067408 WO2016016319A1 (en) | 2014-07-29 | 2015-07-29 | Fluorinated carbonates comprising two oxygen bearing functional groups |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2954742A1 true CA2954742A1 (en) | 2016-02-04 |
Family
ID=51298539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2954742A Abandoned CA2954742A1 (en) | 2014-07-29 | 2015-07-29 | Fluorinated carbonates comprising two oxygen bearing functional groups |
Country Status (7)
Country | Link |
---|---|
US (1) | US10497974B2 (en) |
EP (2) | EP2980063A1 (en) |
JP (1) | JP2017530091A (en) |
KR (1) | KR20170037977A (en) |
CN (1) | CN106575792A (en) |
CA (1) | CA2954742A1 (en) |
WO (1) | WO2016016319A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10279823B2 (en) * | 2016-08-08 | 2019-05-07 | General Electric Company | System for controlling or monitoring a vehicle system along a route |
CN108258317B (en) * | 2018-01-10 | 2021-01-01 | 江苏国泰超威新材料有限公司 | Lithium-sulfur battery |
JPWO2021230151A1 (en) * | 2020-05-11 | 2021-11-18 | ||
WO2023063648A1 (en) * | 2021-10-12 | 2023-04-20 | 주식회사 엘지에너지솔루션 | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same |
CN114940647B (en) * | 2022-06-06 | 2023-05-26 | 龙岩学院 | Method for synthesizing ethyl fluoroacetate by using double solvents |
WO2023240191A1 (en) * | 2022-06-10 | 2023-12-14 | Tesla, Inc. | Carbonate compounds for energy storage device electrolyte compositions, and methods thereof |
KR20240064422A (en) * | 2022-11-04 | 2024-05-13 | 주식회사 엘지에너지솔루션 | Lithium secondary battery |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2087390A1 (en) * | 1992-02-12 | 1993-08-13 | Jack E. Richman | Preparation of fluorinated functional compounds |
JP3432979B2 (en) * | 1995-11-17 | 2003-08-04 | 花王株式会社 | Cosmetics |
US5712407A (en) | 1997-01-14 | 1998-01-27 | Ppg Industries, Inc. | Method for the preparation of alpha-chlorinated chloroformates |
MY135964A (en) * | 1998-10-26 | 2008-07-31 | Du Pont | Ionomers and polymers for electrochemical uses |
JP2000228216A (en) | 1999-02-08 | 2000-08-15 | Denso Corp | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery |
JP2000327634A (en) | 1999-05-25 | 2000-11-28 | Hitachi Ltd | Fluorinated carbonate compound |
DE10008955C2 (en) * | 2000-02-25 | 2002-04-25 | Merck Patent Gmbh | Lithium fluoroalkyl phosphates, process for their preparation and their use as conductive salts |
JP2004010491A (en) * | 2002-06-03 | 2004-01-15 | Mitsubishi Chemicals Corp | Method for producing saturated fluorinated chain carbonate |
JP2006291008A (en) | 2005-04-08 | 2006-10-26 | Daikin Ind Ltd | Fluorine-contained solvent cleaner |
DE102005048802A1 (en) | 2005-10-10 | 2007-04-12 | Solvay Fluor Gmbh | Fluorinated additives for lithium-ion batteries |
JP5714578B2 (en) * | 2009-07-16 | 2015-05-07 | ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツングSolvay Fluor GmbH | Process for the preparation of fluoroalkyl (fluoro) alkyl carbonates and carbamates |
US9419282B2 (en) * | 2012-01-23 | 2016-08-16 | Uchicago Argonne, Llc | Organic active materials for batteries |
WO2013110741A1 (en) * | 2012-01-25 | 2013-08-01 | Solvay Sa | Fluorinated carbonates in hybrid supercapacitors |
-
2014
- 2014-07-29 EP EP14178916.4A patent/EP2980063A1/en not_active Ceased
-
2015
- 2015-07-29 US US15/329,388 patent/US10497974B2/en not_active Expired - Fee Related
- 2015-07-29 KR KR1020177003497A patent/KR20170037977A/en unknown
- 2015-07-29 CN CN201580041303.0A patent/CN106575792A/en active Pending
- 2015-07-29 JP JP2017504065A patent/JP2017530091A/en active Pending
- 2015-07-29 EP EP15750657.7A patent/EP3174846B1/en active Active
- 2015-07-29 CA CA2954742A patent/CA2954742A1/en not_active Abandoned
- 2015-07-29 WO PCT/EP2015/067408 patent/WO2016016319A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2017530091A (en) | 2017-10-12 |
EP3174846A1 (en) | 2017-06-07 |
CN106575792A (en) | 2017-04-19 |
WO2016016319A1 (en) | 2016-02-04 |
US20170214088A1 (en) | 2017-07-27 |
KR20170037977A (en) | 2017-04-05 |
EP3174846B1 (en) | 2020-01-01 |
EP2980063A1 (en) | 2016-02-03 |
US10497974B2 (en) | 2019-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3174846B1 (en) | Fluorinated carbonates comprising two oxygen bearing functional groups | |
EP2800197B1 (en) | Fluorinated carbonates as solvent for lithium sulfonimide-based electrolytes | |
EP3328845B1 (en) | Method for the manufacture of fluorinated cyclic carbonates and their use for lithium ion batteries | |
KR102440841B1 (en) | Nonaqueous electrolyte solution for secondary batteries, and secondary battery provided with same | |
US20190177264A1 (en) | Fluorinated carbonates comprising double bond-containing groups, methods for their manufacture and uses thereof | |
US20120225359A1 (en) | Electrolytes in Support of 5 V Li ion Chemistry | |
US9843074B2 (en) | Electrolyte salt for lithium-based energy stores | |
US9472831B2 (en) | Lithium-2-methoxy-1,1,2,2-tetrafluoro-ethanesulfonate and use thereof as conductive salt in lithium-based energy accumulators | |
EP3391453B1 (en) | Cyanoalkyl sulfonylfluorides for electrolyte compositions for high energy lithium-ion batteries | |
JP5877109B2 (en) | Phosphorus-containing sulfonic acid ester compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device | |
JPWO2020022452A1 (en) | Non-aqueous electrolyte for batteries and lithium secondary battery | |
EP2980906A1 (en) | Fluorinated carbamates as solvent for lithium-ion electrolytes | |
JP2000294274A (en) | Nonaqueous electrolyte and secondary battery using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Discontinued |
Effective date: 20211123 |
|
FZDE | Discontinued |
Effective date: 20211123 |