CA2939561A1 - Methods and systems for implementing dynamic neural networks - Google Patents

Methods and systems for implementing dynamic neural networks Download PDF

Info

Publication number
CA2939561A1
CA2939561A1 CA2939561A CA2939561A CA2939561A1 CA 2939561 A1 CA2939561 A1 CA 2939561A1 CA 2939561 A CA2939561 A CA 2939561A CA 2939561 A CA2939561 A CA 2939561A CA 2939561 A1 CA2939561 A1 CA 2939561A1
Authority
CA
Canada
Prior art keywords
input
cndot
output
node
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA2939561A
Other languages
French (fr)
Inventor
Aaron R. Voelker
Christopher D. Eliasmith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Brain Research Inc
Original Assignee
Applied Brain Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Brain Research Inc filed Critical Applied Brain Research Inc
Priority to CA2939561A priority Critical patent/CA2939561A1/en
Publication of CA2939561A1 publication Critical patent/CA2939561A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/065Analogue means

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Complex Calculations (AREA)

Abstract

A method is described for designing systems that provide efficient implementations of feed-forward, recurrent, and deep networks that process dynamic signals using temporal filters and static or time-varying nonlinearities. A system design methodology is described that provides an engineered architecture. This architecture defines a core set of network components and operations for efficient computation of dynamic signals using temporal filters and static or time-varying nonlinearities. These methods apply to a wide variety of connected nonlinearities that include temporal filters in the connections. Here we apply the methods to synaptic models coupled with spiking and/or non-spiking neurons whose connection parameters are determined using a variety of methods of optimization.

Description

Methods And Systems For Implementing Dynamic Neural Networks Field of the Invention [0001] The invention relates generally to computing using single or multi-layer networks; and more particularly to a system and method for providing feed-forward, recurrent, and deep networks that process dynamic signals using temporal filters and static or time-varying nonlinearities.
Background
[0002] The majority of artificial neural networks (ANNs) in use today are applied to static inputs (e.g., images). However, processing dynamic inputs (e.g., movies, sound, sensory feedback) is critical for real-time interaction with the world in domains such as manufacturing, auditory processing, video processing, and robotics. Non-ANN prior art methods for processing dynamic inputs occasionally rely on future information for processing a current state.
This is sometimes called "acausal" filtering, and is typically physically implemented using delays (i.e. waiting until the future information is available before computing a response). Other state-of-the-art methods for processing dynamic inputs include nonlinear filtering, in which the output is not a linear function of the input. Both of these kinds of filtering are challenging for ANNs to realize. Currently, a dominant approach to processing temporal information in ANNs is to employ Long, Short-Term Memories (LSTMs; see S. Hochreiter and J. Schmidhuber, Long short-term memory. Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997.). LSTMs rely solely on recurrent connections to process information over time with no synaptic filtering.
[0003] Another class of dynamic ANNs are those that employ "reservoir computing" (RC; see M.
Lukogevielus and H. Jaeger, Reservoir computing approaches to recurrent neural network training.
Computer Science Review, vol. 3, no. 3, pp. 127-149, Aug. 2009.). Reservoir ANNs randomly connect large numbers of nonlinear nodes (i.e., neurons) recurrently, and then optimize (i.e., 'learn') a linear readout to perform dynamic signal processing. A neuron is said to be 'spiking' if its output consists of brief temporal pulses of output in response to its input. If the nodes in the reservoir are non-spiking (i.e., rate neurons), the method is called an Echo State Network (ESN; see H. Jaeger, The echo state approach to analysing and training recurrent neural networks.
German National Research Center for Information Technology Technical Report, vol. 148, p. 34, Jan. 2001.).
LSTMs and the majority of other ANNs use rate neurons. There are a variety of methods for determining the connection weights between neurons in these networks, including gradient descent on the output connection weights, the First-Order Reduced and Controlled Error (FORCE; see D.
Sussillo and L. F. Abbott, Generating coherent patterns of activity from chaotic neural networks.
Neuron, vol. 63, no. 4, pp. 544-557, Aug. 2009.) method on feedback connections, and unsupervised, error- driven Hebbian learning rules on the recurrent connections. Like LSTMs, ESNs and related methods rely solely on recurrent connections to process information over time. If the reservoir in an RC network uses spiking nodes, then the method is called a Liquid State Machine (LSM; see W. Maass, T. Natschlager, and H. Markram, Real- time computing without stable states: A new framework for neural computation based on perturbations.
Neural Computation, vol. 14, no. 11, pp. 2531-2560, Nov. 2002.). Liquid state machines are trained (i.e., optimized) in a similar manner to ESNs. Because of the spiking temporal representation, LSMs typically introduce a temporal filter (i.e., synapse) on the input to the nodes. This is most commonly a low-pass filter (i.e., decaying exponential), which smooths the spiking input before driving the neural non- linearity. LSMs usually use the same linear filter on all neurons, and they are usually first-order.
[0004] A different approach to building spiking and non-spiking dynamic neural networks is the Neural Engineering Framework (NEF; see C. Eliasmith and C. Anderson, Neural engineering:
Computation, representation, and dynamics in neurobiological systems. MIT
Press, 2003.). In this approach, the dynamics of the network are optimized to approximate a given function. This can be thought of as directly optimizing the "reservoir" in RC networks. The optimization can be done directly using a global optimizer, or during run-time using any of several learning rules. These networks usually assume a first-order low-pass temporal filter (i.e., synapse) as well.
[0005] Prior art approaches to implementing dynamic neural networks either do not have a synaptic filter (e.g., LSTMs, ESNs), or pick a simple filter (e.g., LSMs, NEF
networks). These approaches also assume that the same filter is used for the majority of synapses in the model.
Summary
[0006] In a first aspect, some embodiments of the invention provide a method for implementing single or multi-layer, feed-forward or recurrent neural networks for dynamic computations. The method includes defining any node response function that either exhibits brief temporal nonlinearities for representing state over time, often termed 'spikes', or exhibits a value at each time step or over continuous time (i.e., `rates'). These response functions are dynamic because they accept input over time and produce output over time. For spiking neurons, the nonlinearity is over both time and state, whereas for rate neurons it is largely over state. The method also includes defining one or more temporal filters (i.e., synapses) on the input and/or output of each node. These synapses serve to filter the input/output signal in various ways, either linearly or nonlinearly. This structure is then used to determine connection weights between layers of nodes for computing a specified dynamic function. Specification of the function can be performed either by writing it in closed form, or by providing sample points.
[0007] In some cases, the initial couplings and connection weights are determined using a neural compiler. Connection weights can be further trained either with online or offline optimization and learning methods.
[0008] In a second aspect, some embodiments of the invention provide a system for pattern classification, data representation, or signal processing in neural networks.
The system includes one or more input layers presenting a vector of one or more dimensions, as well as zero or more intermediate layers coupled via weight matrices to at least one of the input, other intermediate, or output layers, and one or more output layers generating a vector representation of the data presented at the input layer or computing a function of that data. Each layer comprises a plurality of nonlinear components, wherein each nonlinear component has zero or more temporal filters on its input and zero or more temporal filters on its output, with one or more filters associated with each component, and the component coupled to the layer's input and output by at least one weighted coupling. The output from each nonlinear component's temporal filter is weighted by the connection weights of the corresponding weighted couplings and the weighted outputs are provided to the layer's output.
The input to each nonlinear component's temporal filter is weighted by the connection weights of the corresponding weighted couplings and the weighted and filtered inputs are provided to the component. The connection weights are determined using methods of the first aspect.
[0009] In some cases, the input to the system is either discrete or continuous in time and/or space.
[00010] In some cases, the input to the system can be scalar or a multidimensional vector.
Brief Description of the Drawings
[00011] A preferred embodiment of the present invention will now be specified in detail with reference to the drawings.
[00012] FIG. 1 is a block diagram of layers and nonlinear elements in accordance with an example embodiment.
[00013] FIG. 2 is a diagram of the process involved in applying the method.
[00014] FIG. 3 shows an embodiment computing a 100ms delay with spiking neurons.
[00015] FIG. 4 shows improved accuracy of these methods over state-of-the-art methods.
[00016] FIG. 5 shows improved computational costs compared to state-of-the-art methods.
[00017] FIG. 6 shows an embodiment computing the acausal derivative filter.
[00018] FIG. 7 shows an embodiment with a controllable delay.
[00019] FIG. 8 shows an embodiment computing ten different delays within one network.
[00020] FIG. 9 shows results of computing the Fourier transform power, a nonlinear dynamic computation.
[00021] FIG. 10 shows trajectory generation using a controllable delay bank.
[00022] FIG. 11 is a diagram of an abstract characterization of the system with an arbitrary synaptic filter.
[00023] FIG. 12 shows improved accuracy in delay computation by including higher-order synapses.
[00024] FIG. 13 is a diagram of an abstract decomposition of the system into encoding and decoding filters.
[00025] FIG. 14 shows the ability to determine the optimal distribution of heterogeneous synapses to minimize error in computing a derivative.
Description of Exemplary Embodiments
[00026] Herein, specific details are set forth in order to provide a thorough understanding of the exemplary embodiments described. However, it will be understood by those of ordinary skill in the art that the embodiments described herein may be practiced without these specific details. In other instances, well-known methods, procedures and components have not been described in detail so as not to obscure the embodiments generally described herein. Furthermore, this description is not to be considered as limiting the scope of the embodiments described herein in any way, but rather as merely describing the implementation of various embodiments as presented here for illustration.
[00027] The embodiments of the systems and methods described herein may be implemented in hardware or software, or a combination of both. These embodiments may be implemented in computer programs executing on programmable computers, each computer including at least one processor, a data storage system (including volatile memory or non-volatile memory or other data storage elements or a combination thereof), and at least one communication interface.
[00028] Program code is applied to input data to perform the functions described herein and to generate output information. The output information is applied to one or more output devices, in known fashion.
[00029] Each program may be implemented in a high-level procedural or object-oriented programming or scripting language, or both, to communicate with a computer system. Alternatively the programs may be implemented in assembly or machine language, if desired.
The language may be a compiled or interpreted language. Each such computer program may be stored on a storage media or a device (e.g., read-only memory (ROM), magnetic disk, optical disc), readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. Embodiments of the system may also be considered to be implemented as a non-transitory computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.
[00030] Furthermore, the systems and methods of the described embodiments are capable of being distributed in a computer program product including a physical, non-transitory computer readable medium that bears computer useable instructions for one or more processors. The medium may be provided in various forms, including one or more diskettes, compact disks, tapes, chips, magnetic and electronic storage media, and the like. Non-transitory computer-readable media comprise all computer-readable media, with the exception being a transitory, propagating signal.
The term non-transitory is not intended to exclude computer readable media such as a volatile memory or random access memory (RAM), where the data stored thereon is only temporarily stored. The computer useable instructions may also be in various forms, including compiled and non-compiled code.
[00031] It should also be noted that, as used herein, the wording "and/or"
is to mean inclusive-or. That is, "X and/or Y" is intended to mean X or Y or both, for example. As a further example, "X, Y, and/or Z" is intended to mean X or Y or Z or any combination thereof.
[00032] Embodiments described herein generally relate to a system and method for designing and implementing a feed-forward or recurrent neural network for dynamic computation.
Such a system can be efficiently implemented on a wide variety of distributed systems that include a large number of nonlinear components whose individual outputs can be combined together to implement certain aspects of the system as will be described more fully herein below.
[00033] Examples of nonlinear components that can be used in various embodiments de-scribed herein include simulated/artificial neurons, field-programmable gate arrays (FPGAs), graphics processing units (GPUs), configurations of analog components and other physical primitives including but not limited to transistors, and/or other parallel computing systems.
Components of the system may also be implemented using a variety of standard techniques such as by using microcontrollers.
[00034] The systems described herein can be implemented in various forms including soft-ware simulations (using standard languages (e.g. Python, C, etc.) and more specialized implementations (e.g. Open Computing Language (OpenCL), Message Passing Interface (MPI), etc.), hardware, and/or any neuronal fabric. Examples of neuronal fabric mediums that can be used to implement the system designs described herein include Neurogrid (see S.
Choudhary, S. Sloan, S. Fok, A. Neckar, Eric, Trautmann, P. Gao, T. Stewart, C. Eliasmith, and K.
Boahen, Silicon neurons that compute, in International Conference on Artificial Neural Networks, pp. 121-128, 2012.), SpiNNaker (see M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E.
Painkras, and S. Furber, SpiNNaker: Mapping neural networks onto a massively-parallel chip multiprocessor. IEEE, Jun.
2008.), and TrueNorth (see P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A.
S. Cassidy, J. Sawada, F.
Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K.
Esser, R.
Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S.
Modha, Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, vol. 345, no. 6197, pp. 668-673, Aug. 2014.).
As used herein the term 'neuron' refers to spiking neurons, continuous rate neurons, and/or components of any arbitrary high-dimensional, nonlinear, distributed system.
[00035] To generate such systems, the system dynamics can be characterized at a high level of description, using available background information regarding function. A
low-level neural network structure can then be employed that includes a specific filter, or distribution of filters, on the inputs to the neurons in the network, and analytically relate the two.
Subsequently, it is possible to optimize the connections between the elements in the neural network to accurately compute the desired function using standard optimization methods. The challenge this addresses is one of identifying and efficiently exploiting low-level dynamics and network structure at the functional level for dynamic information processing.
[00036] FIG. 1 shows the general architecture of a layer of these networks.
Each layer (100) consists of several nodes (101) that can be either spiking or non-spiking. The overall network structure can be quite varied, with layers connecting within or back to themselves or to other layers earlier in the network (102; recurrent networks), or to layers later than them in the network.
Networks that connect only in one direction are called feed-forward networks.
Connections between layers may also be quite varied, including full connectivity, local connectivity, convolutional connectivity, or any other connectivity pattern known in the art. In addition, the networks considered introduce an explicit temporal filtering, some examples of which are denoted by black boxes (103), into the network. This filtering can take a variety of forms and be introduced in a variety of ways in each layer, including but not limited to same and/or different filters on inputs and/or outputs on each neuron, same and/or different filters on inputs and/or outputs on each dimension of the layer input/output vector (104, 105). Regardless of the topology, the overall network takes some form of vector input which it converts via its weighted, connected components to a different vector output, possibly changing the dimensionality. This figure represents the basic structure of the layers comprising the networks considered here.
[00037] Referring now to FIG. 2, there is shown a method for implementing single or multi-layer, feed-forward or recurrent spiking neural network dynamic computations.
[00038] At step 200, the method defines any node response function that exhibits brief temporal nonlinearities for representing state over time, i.e., 'spikes' or node response functions that elicit values at each time, i.e., 'rates'. There are a wide variety of example spiking nonlinearities in the literature, including the Hodgkin-Huxley neuron, the Fitzhugh-Nagumo neuron, the exponential neuron, the quadratic neuron, the theta neuron, the integrate-and-fire neuron, the leaky integrate-and-fire neuron, the Wilson neuron, and the Izhikevich neuron, among others.
Similarly, there are a wide variety of example rate nonlinearities, such as the family of sigmoidal curves, the tanh function, and/or the rectified linear neuron. Various hardware implementations of these and other nonlinearities have also been proposed for generating spike-like or rate-like outputs, any of which can be employed.
[00039] Steps 201-203 determine a plurality of input and/or output filters to be associated with the layer inputs. There are a wide variety of filters in the literature, many of which are considered models of synaptic response, including the exponential decay `low-pass', the delayed low-pass, the alpha synapse, the double exponential synapse, and conductance-based models.
These filters can be applied to each neuron input and/or output, or to each dimension of the input and/or output space being manipulated by the layer, and may be heterogeneous, as indicated at steps 204, 205.
[00040] At step 206, the method determines the dynamic function that is to be computed by the network. This function can be specified in closed form or defined with a set of example inputs and/or outputs.
[00041] Step 207 includes employing the chosen network structure to compute the specified dynamic function by finding the correct input and output weights. The novel approach proposed here for finding the weights is described in detail for several example embodiments below.
Optimization for the weights can be accomplished in a number of ways at step 208, including by direction optimization (e.g., as sometimes used in the NEF), by optimization based on example simulations of the network as per step 210, or using any of a variety of standard "learning rules" or optimization methods specified in the literature as per step 209. The proposed network construction method shows how these optimization methods can be effectively used for networks with the structure specified. With this method the weights determined in step four can be used in a dynamically implemented spiking or rate neural network to compute the function trained for. This consists in running the dynamic neural model, where each neuron is connected to others by the input/output filters weighted by the connection weights determined during optimization. As shown in the example embodiments, this set of steps allows for good performance on a wide variety of difficult dynamic computations.
[00042] In this method the input/output filters can be discrete or continuous. Many software and hardware implementations use discrete time steps to simulate dynamical systems or perform computation over time. As shown in the example embodiments, this method can account for discrete or continuous filtering. Accounting for discrete filtering can significantly improve the accuracy of discrete time step implementations.
[00043] In this method the optimization performed to determine the input/output weights can be performed either offline or online, determined in any of a number of ways. NEF methods fall into the former class, are very efficient and have strong convergence guarantees. In the example embodiments this is the most common method employed. However, some example embodiments use offline methods that require simulation of the network. Other work has shown how these same networks can be optimized using online methods as well (e.g., see T. Bekolay, Learning in large-scale spiking neural networks, Master's Thesis, University of Waterloo, Sep.
2011.).
[00044] In this method the input/output weights can often be combined between layers to determine a single large connection weight matrix, as is more common in standard neural networks.
This method can employ either factorized weights (i.e., separate input/output weights) or non-factorized weights (i.e., a single matrix). The optimization described can be performed on either factorized or non-factorized weights. Often factorized matrices are more computationally efficient to employ. The example embodiments use factorized matrices.
[00045] In this method the specified dynamic function can be continuously or discretely defined. Discretely defined functions are especially relevant for implementation of these methods in digital hardware and software.
[00046] In this method the specified dynamic function can be defined in a wide variety of ways. Most generally any linear or nonlinear differential equations in phase space can be specified.
Identifying such systems can include, but is not limited to writing the equations in closed form, specifying a transfer function form, or providing a set of input/output point pairs. Similarly, any function specified as a pure delay or definable in terms of pure delays (e.g., a finite impulse response filters) can be employed. Subsequent example embodiments demonstrate a variety of these methods, including pure delays and a variety of functions defined in terms of pure delays, including differentiation and computing spectral power.
[00047] In this method the specified dynamic function can be a controllable pure delay or definable in terms of a controllable pure delay. A controllable pure delay is shown in an example embodiment. This is a nonlinear filter that allows the amount of delay to change as a function of its input. As with non-controlled delays and linear filters, controlled delays can be used to define an extremely wide variety of nonlinear temporal filters.
[00048] In this method Pad& approximants can be used to implement the specified dynamic function, as can system identification methods. Fade approximants are a useful means of providing optimal approximations to filters defined over infinite states (like pure delays). An example embodiment demonstrates the use of this approximation for computing dynamic functions.
Similarly, approximating complex dynamic functions can be performed by using numerical methods for system identification.
Example embodiment: Acausal filtering
[00049] Past work has not demonstrated a general approach to performing acausal filtering in such networks. An acausal filter is a dynamical system that requires information from future times to determine the value of the filtered signal at the current time.
Acausal filtering is important for a wide variety of dynamic signal processing, including performing differentiation, highpass filtering, distortion reversal (and/or any other deconvolution), predicting future states of the system, among many others. Acausal filtering is closely related to prediction because it requires making estimates of future states. The methods described in this section address this problem for dynamic neural networks.
[00050] To perform acausal filtering, we need to know information that is not yet available to the system. Consequently, we wait for a period of time to gather sufficient information, and then compute the desired filter. To successfully pursue this approach, it is essential to be able to compute delayed versions of the input signal. Past work has not demonstrated how to construct such delays accurately and in general. We begin by addressing how to compute delays in dynamic neural networks.
[00051] Linear time-invariant (LTI) systems can be described by the state equations:
[00052] k(t) = Ax(t) + Bu(t)
[00053] y(t) = Cx(t) + Du(t) (1)
[00054] where the time-varying vector x represents the system state, y the output, u the input, and the time-invariant matrices (A, B, C, D) fully define the system dynamics. All causal finite-order LTI systems can be written in this form.
Accurate delays
[00055] In many scenarios, the transfer function is a more useful representation of the LTI
system. The transfer function is defined as ¨Y(s) Y where Y(s) and U(s) are the Laplace transforms of u(s output y(t) and input u(t) respectively. The variable s denotes a complex variable in the frequency domain, while t is a non-negative real variable in the time domain. The transfer function is related to the state-space representation (1) by the following equation:
[00056] F(s) = ¨Y(s) = C(s1 ¨ A)-1B + D. (2) u(s)
[00057] The transfer function for a pure delay of a seconds is:
[00058] F(s)_, e-s. (3)
[00059] A transfer function can be converted into state-space representation using (2) if and only if it can be written as a proper ratio of finite polynomials in s. The ratio is proper when the degree of the numerator does not exceed that of the denominator. In this case, the output will not depend on future input, and so the system is causal. The order of the denominator corresponds to the dimensionality of x, and therefore must be finite. Both of these conditions can be interpreted as physically realistic constraints where time may only progress forward, and neural resources are finite.
[00060] To approximate the irrational transfer function (3) as a ratio of finite polynomials, we use the Pade approximants of the exponential,
[00061] [pm e -as = QP(-as) (4) Qq(as)
[00062] (2k(s) (k\(p+q--0! si I (p+q)! * (5)
[00063] This gives the optimal approximation for a transfer function with order p in the numerator and order q in the denominator. After choosing suitable values for p < q, we can numerically find a state-space representation (A, B, C, D) that satisfies (2) using standard methods.
[00064] For the common case that p = q ¨ 1, we may bypass the need for any numerical methods by analytically finding a simple state-space representation. Consider the Pade approximants of (3) in the case where q ¨ 1 and q are the order of the numerator and denominator, respectively. We rewrite (4) by expanding (5) to get:
1g- 1(q71)(2q-i-iy(-Vaisi
[00065] [q ¨1/q]e-as = i=
(q.)(2q-1-waisi i=0 I
1 ,g-1 (q-1).!
[00066] = ag(g_i)4.1=0 sq+ 1 e-i q! (2_1_01aisi aq(q-1)! 1=0 (q-0!i!' /q-1 CiSi
[00067] i=0 sq-FE7:01 disi
[00068] where di - q(2q-1-1)! ai-cl and ci =
[00069] This transfer function is readily converted into a state-space representation in controllable canonical form:
-dq-i -dq-2 === -C10\
[00070] A = 1 0 = = = 0 0 1 oJ
[00071] B = (1 0 === 0)T
[00072] c (cq_i cq_2 = = = co)
[00073] D = 0.
[00074] However, the factorials in di and c, may introduce numerical issues. To simplify implementation we scale the th dimension of x by -dp_i. This is achieved without changing the transfer function by multiplying the ill' entry in B by -dq_j, the entry in C
by -1/dq_i, and the (i, jr entry in A by dq_i/dq_j, to obtain the equivalent state-space representation, -vo -120 = = = -vo v1 0 = = = 0
[00075] A =

i 0 Vq-i 0
[00076] B = (-1,0 0 === 0)T
[00077] C = (wo
[00078] D = 0, (6)
[00079] where vi = (q+i)(q-i) and w,i = (-1)q(i+i) ¨, for i = 0...q - 1.
This follows from noting that vo = dq_i and vi = dq_i_i/dq_i for i 1. This provides an exact solution for the Pade approximation of the delay.
[00080] With this description we can use the NEF methods to generate an example embodiment. FIG. 3 shows the results of performing a 100 ms delay on a random 10 Hz white noise signal with 400 spiking neurons using a first-order low-pass synaptic filter with a time constant of 5 ms. It is using a 4th-order approximation. The original input signal (300) is delayed and decoded (301) from the neural spikes generated by the recurrently connected neurons.
[00081]
Furthermore, these methods are significantly more accurate and far less computationally expensive than other state-of-the-art methods. Specifically, FIG. 4 demonstrates that in a network of 500 neurons computing delays from 50-100 ms on 8 Hz white noise, the NEF
methods (400) are 4x or more accurate than a liquid state machine (LSM), which is the spiking implementation of reservoir computing (401). Rate mode versions of NEF
compared to an echo state network (ESN), which is the non-spiking implementation of reservoir computing, have the same accuracy. However, as shown in FIG. 5 spiking and rate NEF networks are a factor 0(N) cheaper to compute (500, 501), with N as the number of neurons, because of their factored weight matrices compared to reservoir methods (502,503).
[00082] Another embodiment of the delay network allows us to introduce controlled delay into the network by noting that in (6) all terms in the feedback A matrix are a function of a.
Consequently, we can introduce an input that provides a on-the-fly, controlling the delay online.
This input is encoded into the state-space x and the product is computed in the recurrent connection. FIG. 6 is the same as the previous embodiment, but with 2000 spiking neurons and a controllable input. The original input signal (600) is delayed by an amount controlled by the delay input (601) which changes from 25 ms to 150 ms in steps of 25 ms in this figure (delay length is indicated by the shaded bars). The delayed signal (602) is decoded from the neural spiking activity.
Acausal filtering examples
[00083] An accurate method for generating a delayed version of a signal provides the basis for general acausal filtering. One embodiment of an acausal filtering network is the network that computes the derivative of the input signal. FIG. 7 shows the behaviour of a 400 neuron network that implements the acausal differentiation transfer function F (s) = Ts using a delay of 15 ms. The input signal (700) and the ideal derivative filter (701) are shown along with the decoded output (702) of the spiking recurrent neural network computation of that filter using a delay. Since the output is spikes, we filter it with a low-pass filter. The end result is therefore the highpass filter, TS
F = -, which smooths out the derivative. In this example r = 50 ms.
[00084] This embodiment network is one example of a general (acausal) deconvolution net-work with the specific transfer function F(s) =
Deconvolution can be instantiated with any LTI

that one wishes to invert, provided the delayed inverse can be accurately approximated.
[00085] To perform more complex acausal filtering, we need to generate many delayed versions of the input signal. It is known that any finite impulse response filter can be approximated by a weighted sum of delays. Consequently, another embodiment consists of creating many different delays in a network and weighting those to compute the filter. Such a delay bank is very flexible for computing a wide variety of dynamic functions using neural networks. Determining the output weights on the filter bank can be done using a wide variety of methods that employ either online or offline learning or optimization. More generally, such a filter bank allows for nonlinear combinations of delays and represented states.
[00086] FIG. 8 shows the output of a network instantiating a bank of delays separated by 15 ms each. The input signal (800) is a 10 Hz white noise signal and the output includes 9 delayed versions of that signal (801), computed with 5400 spiking neurons using 3rd-order delay approximations.
[00087] An example embodiment that employs a filter bank and is performing nonlinear filtering is demonstrated in FIG. 9. This network is computing the power of the Fourier transform at frequencies (900) which is compared to the ideal computation (901). The input signal is random 25 Hz white noise, and the network employs 22800 rate neurons with 20 delays spaced by 20 ms where p = q = 40.
[00088] The next embodiment we consider uses controlled delay and an arbitrary filter to perform trajectory generation is shown in FIG. 10. In this case, the input is a delta function and the output is an arbitrary trajectory over time, defined by the shape of the filter. The input (1000) causes the system to play back the trajectory (1001) using the delay bank. The speed and size of playback can be controlled by the delay input (1002) as shown. This example shows the same trajectory played 'big' and 'small' given the same delta function input, but for a different delay control input.
Example embodiment: Arbitrary synaptic filters Method 1: Using Taylor series approximations
[00089] Past work has not shown how to account for arbitrary synaptic filters in the implemented neural network. The NEF has demonstrated how to account for the special case of a first-order low-pass filter. The methods described in this section address the general problem. Some of these modifications improve network accuracy and reduce the number of network elements needed to perform a given computation effectively. These modifications also allow the efficient use of a wider variety of discrete and continuous synaptic filters.
[00090] Referring to FIG. 11 we consider appending some arbitrary transfer function G(s) (1100) to the feedback, so as to replace the integrator! (1101) with 11(s) =
G(s)-1 (1102). This system has transfer function C(-- I ¨ A)-1B + D = F (¨s() )= F(-11(9)), where F(s) =
G (s) Gs C(SI ¨ A)-1B D is the transfer function for (A, B, C, D).
[00091] To invert the change in dynamics introduced by appending G(s), we must compensate for the change of variables ¨ in the complex frequency domain. This involves finding the required F'(s) such that Fr is equal to the desired transfer function, F(s). Then the H (s state-space representation of F'(s) provides (A', B', , Dr) which implement the desired dynamics.
[00092] For example, if we replace the integrator with a low-pass filter, so that h(t) =
-e T, and set G (s) to unity then:
[00093] F'(s) = C(sI ¨ (TA + I)) 1(TB) + D = C' (sI ¨ TA')-1Br + D',
[00094] which is an alternative derivation of the mapping given by NEF methods.
However, this is the only form of H (s) solved for by the NEF. We extend this result to apply to a wider variety of filters. For instance, in the case of the alpha synapse model where H(s) =
(i-Frs)2 we can show that:
[00095] F'(s) = C (Nis/ ¨ (TA + 1)) (TB) + D.
[00096] Notably, this embodiment is nonlinear in s. We can use the Taylor series expansion
[00097] Nrs = 1 + - (s ¨ 1) + o(s)
[00098] to linearize 'Is in our characterization of F'(s), giving
[00099] F'(s) = C(s/ ¨ (2TA + /))-1(2TB) + D.
[000100] Another example embodiment is the case of a discrete low-pass filter with a z-_dt 1-a transform of H(z) = ¨, a , e T , z-a
[000101] F, ( ) z-a . F(z) .-a)
[000102] .4=> F'(z) = F(z(l ¨ a) + a)
[000103] = e((z(1 ¨ a) + a)(I ¨ A)-113 + 13
[000104] = C(z/ ¨ ¨1 (A ¨ a/))-1 (-1 B) + T) (7) 1-a 1-a (Af, /3 / , 0,5') ,_ (_i (A _ a!),_i R,C,T)), where (A,171,C,b) is the result of discretizing (A, \ 1-a 1-a B, C, D) with time step dt. Discrete filters are particularly relevant for hardware implementations which are clocked at a specific frequency, and hence have a built in dt, or software implementations that use a time step to approximate continuous dynamics. This embodiment can make such implementations more accurate.
[000105] A further example embodiment is one which compensates for a continuous feed-back delay of ,8 seconds, by setting G (s) = els, then
[000106] F' (¨_--es ps) = F(s) <=> F1(s) = F (1 Wo(13s)) (8)
[000107] where Wo(xex) = x is the principle branch of the Lambert-W
function, since Fl(se) = F( 731 W0(flsefis) = F(s). In this case, since Wo is nonlinear in s, the effect of the change of variables on the required state-space representation will depend on the desired transfer function F.
[000108] For this embodiment we consider the case of a synapse modeled by a low-pass filter with a pure delay of )8 seconds, to account for possible transmission time delays along e A
presynaptic axons. In this instance, H(s) = T-s+ 1, and let d= Ter. We can then show
[000109] F' (1-5 ) = F(s) p f3
[000110] <=> F' (h's + e( )vs+ = F (es)
[000111] 4=> F' (13 s + = F(Wo(ds))
[000112] <=>
F'(s) = F (¨Wo(ds) ¨ (9) )6'
[000113] So in the pure delay case when F(s) = e's is the desired transfer function, let a c = eT and r = ¨a so that -a(2:141,(ds)-
[000114] F'(s) = e T) = ce (10) ds -rWo(ds) = c (Wo(ds))r
[000115] is the required transfer function. Then we can numerically find the Pade approximants by using the Taylor series of (10).
F' (s) = c 0 r(i+r)i-1 (¨ds)i
[000116] (11)
[000117] As shown in FIG. 12 an instance of this embodiment can be used to provide a better approximation of an ideal delay (1200) if the synapses themselves include a delay (1201), than the previous embodiment that only assumed a first-order linear filter (1202). Because the synapses include a 10 ms delay, this result demonstrates that these methods can be used to amplify the low-level synaptic delay 10-fold, while resulting in an improvement of 3x on normalized root-mean-square error (NRMSE).
Method 2: Direct solution
[000118] Consider the Laplace transform of some k-order synapse:
[000119] H (s) = k Ei=0 cist
[000120] We wish to implement the desired nonlinear dynamical system:
[000121] = f (x, u)
[000122] using this synaptic filter. Letting w(t) = f'(x, u) and observing that in the actual system x(t) = (w * h)(t), we can write these dynamics in the Laplace domain:
x(s)
[000123] = ____ w(s)
[000124] <=> W(s) = X(s) Vic_o cisi = Elf_o ci [X(s)si]
[000125] since s is the differential operator. So the required function f' (x, u) for the recurrent connection, for any synapse, is:
[000126] f (x, u) = cix(0, (12)
[000127] where x(i) denotes the j1h derivative of x(t).
[000128] In the discrete case x[t + 11 = f (x, u):
[000129] f ' (x, Eix[t + i]. (13)
[000130] The proof for the discrete case is similar by use of the time-shift operator with the z-transform.
[000131] For the generalized alpha synapse (i.e., double exponential), we find
[000132] H (s) =
(1- + 1)(1-2. 3 +1) T1r2s2+(r1+T2)s+1
[000133] = f i(x, = x + (-r1 + 7-2)k + r1r2it äf(cu) .
[000134] -I- x (-t-i 1-2)f (x, + ir 2 (a f (x, u) f (x, af() + u)
[000135]
ax au [000135] (14)
[000136] This approach requires us to differentiate the desired system. If we are dealing with linear systems, then we can do this analytically to obtain a closed-form expression.
[000137] By induction it can be shown that:
[000138] x(i) = Aix +
[000139] Then by expanding and rewriting the summations:
[000140] f (x, = Vic_o cix(i)
[000141] = ci [Aix + B u(i)]
[000142] = (V_0 ciAt) x+ Ei.1_711 di). (15) Recurrent Matrix Input Matrices
[000143] This gives a matrix form for any LT1 system with a k-order synapse, provided we can determine each u(i) for 0 <j <k¨ 1.
[000144] As a demonstration, we can apply the above formula to the generalized alpha synapse, giving the following expression for any linear system:
[000145] f (x, = (r1T2A2 + (r1 + 2)A + 1)x + (7-1 + T2 + T1T2A)Bu + x1r2BU.
Example embodiment: Synaptic heterogeneity
[000146] Past work has not shown how to take advantage of having a variety of different synaptic filters within the implemented network. The methods described in this section address this general problem. Some of these modifications improve network accuracy for performing dynamic computation.
[000147] Introducing heterogeneous filters into the NEF significantly extends these methods.
As shown in FIG. 13 we can introduce an "encoding filter" Hi (1300) after the standard NEF
encoder ei (1301) that is distinct for each neuron and provides a specific processing of the time-varying vector x(t) (1302). The filter signal projects through the neural nonlinearity Gi (1303) resulting in neural activity that is decoded with linear decoders di (1304) and filtered by a standard NEF filter H (1305). In essence we have factorized the dynamics into encoding and decoding filters in a manner analogous to the factorization of the weight matrix into decoders and encoders in the NEF.
[000148] In the NEF, there is a single synaptic filter per projection between ensembles, resulting in the encoding given by:
[000149] Si = Gi[< eih(t) *x(t) > +Ji].
[000150] where Oi is the neural activity (rates or spikes) from neuron i, and Ji is a bias current. Here we have introduced the notion of defining one or more synaptic filter per neuron, as is shown in FIG. 13, giving:
[000151] Si = Gi[hi(t) *< ex(t) > +Ji],
[000152] or per dimension in the input space
[000153] Si =- eihi(t) * x(t) > +Jib
[000154] where hi(t) is a vector of D filters applied to their respective dimensions in the D-dimensional input vector x(t). This provides a wider variety of "temporal features" that are encoded by the neural population, allowing us to extend the NEF in a manner that provides better implementation of a broad class of dynamical computation.
[000155] In our example embodiment, we use heterogeneous first-order linear filters, but the methods apply to any linear filters. Here, we employ these methods to compute the differentiation operator. Specifically, we approximate the filter H(s) = 21-s/(rs + 1). This is the derivative s multiplied by a low-pass 1/(Ts + 1) (to make it causal) and scaled by Zr for normalization. We simulate a network of 1000 spiking neurons with 15 Hz white noise input, and vary the width of the distribution for the time constants of the input filters for each neuron. The time constants are picked from an even distribution with a lower bound of 0.2 ms and an upper bound that varies up to 10 ms.
FIG. 14 shows the results of these simulations, that demonstrate the importance of having a variety of time constants. Root mean-square-error (RMSE) is shown as a function of the change in distribution width (1400). In this instance, the optimal width is approximately 6 ms. Notably, the RMSE drops in half at the optimal value. Because there exists an optimal value, it is clear that the distribution is playing an important role (i.e., it is not merely because longer synapses are being introduced). Thus this extension to the NEF improves the ability of these networks to compute dynamical functions.

Discussion
[000156] The embodiments demonstrated here show the ability to compute a variety of linear and nonlinear dynamic functions, including accurate casual and acausal filters. Examples include specific applications to delays, discrete implementation, spectrographic power, derivatives, and Fourier transforms. Additional embodiments extend these results by showing how to employ a wide variety of synaptic filters, and how to exploit heterogeneous distributions of synaptic filters.
[000157] The example results shown demonstrate that the methods described in this invention allow us to improve RMSE and computation time compared to state-of-the-art approaches, and also show the applicability of these methods to a wide variety of neural networks, both spiking and non-spiking, for performing dynamical computation.
[000158] The methods described here can be used to develop additional embodiments not described in detail. These include exploitation of intrinsic neuron dynamics, such as using intrinsically bursting neurons to more efficiently implement oscillatory networks, or adapting neurons to more efficiently and accurately compute differentiation. Similarly, these methods can support dynamic processing, such as prediction (which reduces to differentiation for a wide variety of cases, e.g., as is evident from the Taylor series expansion of functions).
Some of the examples provided can be directly combined, such as using a controlled delay bank of filters for trajectory generation to produce useful networks. As well, the employment of nonlinear synaptic filters and nonlinear mixing of delays can be accomplished through direct applications of these methods.

Claims (24)

Claims:
1. A computer implemented method for implementing an artificial neural network for dynamic computing applications, the artificial neural network comprising a plurality of nodes, each node having an input and an output; the method comprising:
.cndot. defining a node response function which receives varying inputs over time at each node input and produces varying outputs over time at each node output;
.cndot. defining at least one temporal filter associated with each node input and/or output;
.cndot. using the node response function and each said temporal filter to determine connection weights between layers of nodes in the artificial neural network;
.cndot. computing a dynamic function based on the determined connection weights between layers of nodes in the artificial neural network.
2. The method according to claim 1, wherein said node response function exhibits either spikes in a period of time or a firing rate over a period of time.
3. The method according to claim 1 or 2, wherein the neural network is one of a single or multi-layer network and one of a feed-forward or recurrent network.
4. The method according to any one of claims 1 to 3, wherein the connection weights are determined using either an online or offline optimization method.
5. The method according to any one of claims 1 to 4, wherein the connection weights are factorized.
6. The method according to any one of claims 1 to 5, wherein the at least one filter is an arbitrary synaptic filter.
7. The method according to any one of claims 1 to 6, wherein the dynamic function being computed optionally includes a delay.
8. The method according to claim 7, wherein the delay is a controllable delay.
9. The method according to claim 7, further comprising a bank of controlled or non-controlled delays.
10. The method according to any one of claims 1 to 9, wherein the dynamic function is approximated using Padé approximants.
11. A system for pattern classification, data representation or signal processing in artificial neural networks comprising:
.cndot. a computer processor executing computer readable instructions stored on a computer readable medium;
.cndot. a data structure stored on the computer readable medium, and modified based on said computer processor executing said computer readable instructions; the data structure consisting of:
.cndot. at least one input layer defining a vector;
.cndot. at least one output layer generating a vector representation of data presented at the at least one input layer or computing a function of the data presented at the at least one input layer;
wherein .cndot. each of the input and output layers comprises a plurality of nodes;
.cndot. each node having at least one temporal filter on its input and/or output;
.cndot. each node coupled to the layer's input and output by at least one weighted coupling;
.cndot. the output from each node's temporal filter is weighted by connection weights of the corresponding weighted couplings; and, .cndot. the weighted and filtered inputs are communicated back to each node.
12. The system according to claim 11, further comprising at least one intermediate layer coupled via weight matrices to the at least one input layer and to the at least one output layer.
13. The system according to claim 11 or 12, wherein the at least one intermediate layer comprises a first intermediate layer is coupled via weight matrices to the at least one input layer, at least one second intermediate layer coupled via weight matrices to the first intermediate layer, and at least one third intermediate layer coupled via weight matrices to the at least one output layer.
14. The system according to any one of claims 11 to 13, wherein the connection weights are determine using either an online or offline optimization method.
15. The system according to any one of claims 11 to 14, wherein the connection weights are factorized.
16. The system according to any one of claims 11 to 15, wherein the at least one filter is an arbitrary synaptic filter.
17. The system according to any one of claims 11 to 16, wherein the dynamic function being computed includes a delay.
18. The system of according to claim 17, wherein the delay is a controllable delay.
19. The system according to claim 17, further comprising a bank of controlled or non-controlled delays.
20. The system according to any one of claims 11 to 19, wherein the dynamic function is approximated using Padé approximants.
21. The system according to any one of claims 11 to 20, wherein the input is either discrete or continuous in time and space.
22. The system according to any one of claims 11 to 21, wherein the input is a scalar or a multi-dimensional vector.
23. The system according to any one of claims 11 to 22, wherein the computer readable instructions are implemented in software or in hardware.
24. The system according to claim 23, wherein hardware is selected from the group consisting of neuromorphic hardware, digital hardware, analog hardware and combinations thereof.
CA2939561A 2016-08-22 2016-08-22 Methods and systems for implementing dynamic neural networks Pending CA2939561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2939561A CA2939561A1 (en) 2016-08-22 2016-08-22 Methods and systems for implementing dynamic neural networks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2939561A CA2939561A1 (en) 2016-08-22 2016-08-22 Methods and systems for implementing dynamic neural networks

Publications (1)

Publication Number Publication Date
CA2939561A1 true CA2939561A1 (en) 2018-02-22

Family

ID=61241980

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2939561A Pending CA2939561A1 (en) 2016-08-22 2016-08-22 Methods and systems for implementing dynamic neural networks

Country Status (1)

Country Link
CA (1) CA2939561A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113158567A (en) * 2021-04-21 2021-07-23 中国人民解放军国防科技大学 Software and hardware combined optimization method and system for communication in liquid state machine model

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113158567A (en) * 2021-04-21 2021-07-23 中国人民解放军国防科技大学 Software and hardware combined optimization method and system for communication in liquid state machine model
CN113158567B (en) * 2021-04-21 2022-05-03 中国人民解放军国防科技大学 Software and hardware combined optimization method and system for communication in liquid state machine model

Similar Documents

Publication Publication Date Title
US20220172053A1 (en) Methods and systems for implementing dynamic neural networks
Maass et al. On the computational power of circuits of spiking neurons
US9886663B2 (en) Compiling network descriptions to multiple platforms
US9558442B2 (en) Monitoring neural networks with shadow networks
KR101700145B1 (en) Automated method for modifying neural dynamics
US20150206048A1 (en) Configuring sparse neuronal networks
CN105224986A (en) Based on the deep neural network system of memory resistor
US9600762B2 (en) Defining dynamics of multiple neurons
Maassa et al. On the computational power of circuits of spiking neurons
US20150212861A1 (en) Value synchronization across neural processors
US20150317557A1 (en) Temporal spike encoding for temporal learning
US20150286925A1 (en) Modulating plasticity by global scalar values in a spiking neural network
US10552734B2 (en) Dynamic spatial target selection
EP3111378A2 (en) Method and apparatus for efficient implementation of common neuron models
KR101825937B1 (en) Plastic synapse management
CN105659261A (en) Congestion avoidance in networks of spiking neurons
US9536189B2 (en) Phase-coding for coordinate transformation
KR20210117331A (en) Legendre memory unit in regression neural network
CN104915714A (en) Predication method and device based on echo state network (ESN)
US9269045B2 (en) Auditory source separation in a spiking neural network
CA2939561A1 (en) Methods and systems for implementing dynamic neural networks
US20150262061A1 (en) Contextual real-time feedback for neuromorphic model development
Soures et al. Enabling on-device learning with deep spiking neural networks for speech recognition
US11836613B2 (en) Neural programmer interpreters with modeled primitives
Takano et al. A Deep Neural Network with Module Architecture for Model Reduction and its Application to Nonlinear System Identification

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20210820

EEER Examination request

Effective date: 20210820

EEER Examination request

Effective date: 20210820

EEER Examination request

Effective date: 20210820

EEER Examination request

Effective date: 20210820

EEER Examination request

Effective date: 20210820

EEER Examination request

Effective date: 20210820

EEER Examination request

Effective date: 20210820

EEER Examination request

Effective date: 20210820

EEER Examination request

Effective date: 20210820