CA2921176C - Unibody bypass plunger with centralized helix and crimple feature - Google Patents

Unibody bypass plunger with centralized helix and crimple feature Download PDF

Info

Publication number
CA2921176C
CA2921176C CA2921176A CA2921176A CA2921176C CA 2921176 C CA2921176 C CA 2921176C CA 2921176 A CA2921176 A CA 2921176A CA 2921176 A CA2921176 A CA 2921176A CA 2921176 C CA2921176 C CA 2921176C
Authority
CA
Canada
Prior art keywords
valve
plunger
valve cage
retaining nut
cage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2921176A
Other languages
French (fr)
Other versions
CA2921176A1 (en
Inventor
Garrett S. Boyd
Mitchell A. Boyd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flowco Production Solutions LLC
Original Assignee
Flowco Production Solutions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flowco Production Solutions LLC filed Critical Flowco Production Solutions LLC
Priority to CA3167165A priority Critical patent/CA3167165A1/en
Priority claimed from US15/048,408 external-priority patent/US9915133B2/en
Publication of CA2921176A1 publication Critical patent/CA2921176A1/en
Application granted granted Critical
Publication of CA2921176C publication Critical patent/CA2921176C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lift Valve (AREA)
  • Springs (AREA)
  • Soil Working Implements (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

A bypass plunger combines a unitary or one-piece hollow body-and-valve cage, retains a dart valve within the valve cage portion of the hollow body using a threaded retaining nut secured by crimple detents. A series of helical grooves surround the central portion of the outer surface of the hollow body of the plunger to control spin during descent. A canted-coil-spring disposed within the retaining nut functions as a clutch. The valve cage includes ports that may be configured to control flow through the plunger during ascent. Other embodiments include clutch assemblies using canted-coil springs with split bobbins, and valve stems surfaced to achieve specific functions. Combinations of these features provide enhanced performance, durability and reliability at reduced manufacturing cost, due primarily to the simplicity of its design.

Description

SPECIFICATION
Docket No. 26172.004 TO ALL WHOM IT MAY CONCERN:
BE IT KNOWN that we, Garrett S. Boyd and Mitchell A. Boyd, citizens of the United States of America, residing in the State of Texas, have invented new and useful improvements in a UNIBODY BYPASS PLUNGER WITH CENTRALIZED HELIX
AND CRIMPLE FEATURE
of which the following is a Specification:
2
3 1. Field of the Invention:
4 The present invention generally relates to gas lift devices for rejuvenating low-producing 6 or non-productive oil or gas wells, and more particularly to improvements in the design and 7 construction of bypass plungers.

9 2. Background of the Invention and Description of the Prior Art:
11 A conventional bypass plunger is a device that is configured to freely descend and ascend 12 within a well tubing, typically to restore production to a well having insufficient pressure to lift 13 the fluids to the surface. It may include a self-contained valve - also called a "dart" or a "dart 14 valve" in some embodiments - to control the descent and ascent.
Typically the valve is opened to permit fluids in the well to flow through the valve and passages in the plunger body as the 16 plunger descends through the well. Upon reaching the bottom of the well, the valve is closed, 17 converting the plunger into a piston by blocking the passages that allow fluids to flow through 18 the plunger. With the plunger converted to a piston, blocking the upward flow of fluids or gas, 19 the residual pressures in the well increase enough to lift the plunger and the volume of fluid above it toward the surface. Upon reaching the surface, the fluid is passed through a conduit for Date Recue/Date Received 2022-07-07 recovery, the valve in the plunger is opened by a striker mechanism, and the plunger descends to 2 repeat the cycle.
3 In a typical bypass plunger the valve is similar to a poppet valve, with a valve head 4 attached to one end of a valve stem, such as an intake valve of an internal combustion engine.
The valve head, at the inward end of the stem, may be configured to contact a valve seat within 6 the hollow body of the plunger. The stern protrudes outward of the bottom end of the plunger 7 body. A clutch device may surround the stem of the valve to retard and control the motion of the 8 stem and thereby maintain the valve in an open or closed configuration during respectively the 9 descent or ascent of the plunger. The valve thus moves between these two positions to open the flow passages at the surface when the plunger contacts the striker mechanism, and to close the ii bypass passages at the bottom of the well when the stem strikes the bottom, usually at a bumper 12 device positioned at the bottom of the well. Descent of the plunger is controlled by gravity, 13 which pulls it toward the bottom of the well when the valve is open.

This valve or "dart" may be held open or closed by the clutch ยจ typically a device that 16 exerts circumferential friction around the valve stem. The dart may be held within a hollow cage 17 attached to the plunger by a threaded retainer or end nut at the lower end of the plunger 18 assembly. Thus, the valve reciprocates between an internal valve seat (valve closed) in a hollow 19 space inside the cage and the inside surface of the lower end of the cage (valve open). A
conventional clutch is appropriate for some applications, especially when its assembly is well 21 controlled to produce uniform assemblies. Such a clutch may be formed of a bobbin split into 22 two hemispherical halves and surrounded by one or two ordinary coil springs that function as a 23 sort of garter to clamp the stem of the valve or dart between the two halves of the bobbin, 24 thereby resisting the sliding motion of the stem within the bobbin. The clutch assembly is typically held in a fixed position within the cage. Each 'garter' spring is wrapped around its 26 groove and the ends crimped together, typically in a hand operation that is subject to some 27 variability in the tension around the bobbin halves and possible failure of the crimped joint, 28 which could affect the reliability of the clutch when in a downhole environment.

2 While generally effective in lifting accumulated fluids and gas of unproductive wells 3 such conventional bypass plungers tend to be complex and suffer from reliability problems in an 4 environment that subjects them to high impact forces, very caustic fluids, elevated temperatures and the like. Various ways have been attempted to simplify construction of bypass plungers, 6 improve their reliability and performance, and to reduce the cost of manufacture. However, 7 failures remain common, and a substantial need exists to eliminate the causes of these failures.
8 What is needed is a bypass plunger design that solves the structural problems with existing 9 designs and provides a more reliable and efficient performance in the downhole environment.

Accordingly there is provided a bypass plunger comprising a unitary hollow plunger body and valve cage formed in one piece having first and second ends, the valve cage follned at the second end, and the valve cage having internal threads at its distal end for receiving a retaining nut having external threads at one end thereof; a poppet valve having a valve head connected to a valve stem, the poppet valve reciprocatingly disposed within the valve cage such that the valve head is oriented toward a valve seat formed within the hollow body; a retaining nut having external threads formed in the outer surface thereof and corresponding to internal threads formed in the distal end of the valve cage to retain the poppet valve within the valve cage; and at I
least one helical groove formed for at least one-half revolution around the outer surface of the hollow plunger body for a portion of the length of the hollow body approximately midway 13 between the first and second ends.

In another embodiment, there is provided a bypass plunger comprising a unitary hollow plunger body and cage, the valve cage formed at a lower end thereof and configured with internal threads at its lower end for receiving a retaining nut having external threads at one end thereof; a poppet valve having a valve head connected to a valve stem and reciprocatingly disposed within the valve cage; and a retaining nut having external threads for closing the lower end of the valve cage to retain the poppet valve within the valve cage; and at least two crimples 21 to lock the retaining nut to the valve cage.

In another embodiment there is provided a bypass plunger comprising a unitary hollow plunger body and valve cage, the valve cage formed at a lower end thereof and configured with internal threads at its lower end for receiving a retaining nut having external threads at one end thereof; a poppet valve having a valve head connected to a valve stem and reciprocatingly disposed within the valve cage; a retaining nut having external threads for closing the lower end of the valve cage to retain the poppet valve within the valve cage; a continuous helical groove
5 1- machined into a central portion of the hollow body midway between upper and lower ends 2 thereof and having a predetermined pitch, depth, and profile according to required spin and rate 3 of descent of the bypass plunger through a well tubing; first and second crimple detents 4 extending inward from the surface of the valve cage at the second end of hollow body and along first and second opposite radii of the valve cage into corresponding relieved spaces in the
6 proximate external threads formed in the outer surface of the retaining nut; and a canted coil
7 spring disposed within a circumferential groove formed into the inside wall of the retaining nut
8 such that the canted coil spring exerts a substantial radial clamping force on the stem of the
9 poppet valve, thereby forming a clutch to retard the motion of the poppet valve between open and closed positions.

12 Accordingly there is provided a clutch assembly for a bypass plunger having a valve cage 13 and a reciprocating dart valve, the dart valve having a round stem and disposed within the valve 14 cage, the clutch assembly comprising: a partition nut, threadably installed within an internal thread of an open end of the valve cage following installation of the dart valve in the valve cage;
16 a split bobbin assembly having first and second hemispherical halves, each half of the split 17 bobbin assembly having formed there around at least one circumferential groove, and the 18 assembly installed on the stem of the dart valve; a coil spring disposed in each circumferential 19 groove to secure the split bobbin assembly around a stem of the dart valve, thereby forming the clutch assembly; a retaining nut threadably installed within the internal thread of the valve cage 21 following installation of the clutch assembly within the valve cage; and at least first and second 22 crimples formed into the outer surface of the valve cage and extending into relieved spaces 23 formed in an external thread formed on each one of the retaining nut and the partition nut.

In another embodiment there is provided a clutch for a bypass plunger having a 26 reciprocating valve, comprising a clutch body formed as a circular split bobbin assembly having 27 first and second halves, the assembly defined by a central axis, an inside radius, an outside 28 radius, and first and second opposite faces normal to the central axis;
a circumferential groove = CA 02921176 2016-02-19 disposed in the surface defined by the outside radius of the split bobbin assembly; and a canted-.
2 coil spring disposed in the circumferential groove to secure the split bobbin assembly around a 3 valve stem.
4 Accordingly there is provided a dart valve for a bypass plunger, the dart valve disposed to move reciprocatingly within a valve cage of the bypass plunger between seated and unseated 6 positions and constrained by a clutch mechanism within the valve cage or its retaining nut, 7 comprising a poppet valve comprising a valve stem and a valve head; a valve head connected to 8 one end of the valve stem, the valve head including a sealing face to make sealing contact with a 9 valve seat within the bypass plunger; and the valve stem includes a predetermined surface profile for moderating tension produced by the clutch mechanism during the reciprocating 11 motion of the poppet valve.

13 In another embodiment there is provided an improved valve dart assembly for a one-14 piece hollow plunger body and valve cage of a bypass plunger, the valve cage formed at a lower end of the hollow plunger body and configured with internal threads at its open lower end, the 16 improvement comprising a poppet valve having a valve head connected to a valve stem and 17 reciprocatingly disposed within the valve cage; a retaining nut having external threads at one end 18 thereof for engaging internal threads formed in the open lower end of the valve cage to retain the 19 poppet valve within the valve cage; and a canted coil spring disposed within a circumferential groove formed into the inside wall of the retaining nut such that the canted coil spring exerts a 21 substantial radial clamping force on the stem of the poppet valve, thereby forming a clutch to 22 retard the motion of the poppet valve between open and closed positions.

BRIEF DESCRIPTION OF THE DRAWINGS

3 Figure 1 illustrates a side exploded view of one embodiment of a bypass plunger 4 according to the present invention;
6 Figure 2 illustrates a cross section view of the embodiment of Figure 1 as assembled;

8 Figure 3 illustrates a cross section detail view of the lower end of the embodiment of 9 Figure 2 with the valve shown in an open position;
11 Figure 4 illustrates a cross section detail view of the lower end of the embodiment of 12 Figure 2 with the valve shown in a closed position;

14 Figure 5 illustrates a side cross section detail of an end (retaining) nut and canted coil spring for use with the embodiment of Figures 1 - 4;

17 Figure 6 illustrates an end cross section detail of the end (retaining) nut and canted coil 18 spring depicted in Figure 5, for use with the embodiment of Figures 1 -4;

Figure 7 illustrates an enlarged version of Figure 3;

22 Figure 8 illustrates an end cross section view of the embodiment depicted in Figure 7;

24 Figure 9 illustrates a side view of a hollow body according to the present invention having a tight helix profile disposed in a central portion of the embodiment of Figure 1;

27 Figure 10 illustrates a side view of a hollow body according to the present invention 28 having an open helix profile disposed in a central portion of the embodiment of Figure 1;

2 Figure 11 illustrates a first example of an alternative embodiment of a plunger valve 3 clutch according to the present invention;

Figure 12 illustrates a second example of an alternative embodiment of a plunger valve 6 clutch according to the present invention;

8 Figure 13 illustrates a third example of an alternative embodiment of a plunger valve 9 clutch according to the present invention;
11 Figure 14 illustrates an alternate embodiment of the bypass plunger of Figure 1 that uses 12 a split bobbin clutch;

14 Figure 15 illustrates a first example of an alternate embodiment of a plunger valve dart according to the present invention;

17 Figure 16 illustrates a second example of an alternate embodiment of a plunger valve dart 18 according to the present invention;

Figure 17 illustrates a third example of an alternate embodiment of a plunger valve dart 21 according to the present invention;

23 Figure 18 illustrates a detail view of the profile of a feature of the embodiment of Figure 24 17;
26 Figure 19 illustrates a die for use in a press to form a crimple used in the embodiments of 27 Figures 3, 4, 7, and 8;

Figure 20 illustrates an alternate embodiment to Figure 4, showing a split bobbin clutch 2 assembly for a bypass plunger within a valve cage;
3 Figure 21 illustrates a cross section detail view of an alternate embodiment of the lower 4 end of the embodiment of Figure 3 with the valve shown in an open position; and 6 Figure 22 illustrates a cross section detail view of an alternate embodiment of the lower 7 end of the embodiment of Figure 4 with the valve shown in a closed position.

3 In an advance in the state of the art, the novel bypass plunger described herein with the aid of the 4 accompanying drawings yields improvements in a number of areas. The result is a novel combination of four essential features incorporated in a unibody bypass plunger (aka unibody 6 gas lift plunger) as disclosed herein. The principle components of the unibody bypass plunger 7 include the one-piece hollow plunger body and the integral valve cage fointed at its lower end.
8 The valve cage assembly includes a valve dart and a clutch mechanism enclosed within the cage.
9 A retaining nut (or end nut) that retains the valve dart and clutch mechanism within the cage completes the valve dart cage assembly. The novel features of the present invention provide 11 reduction of manufacturing costs, and enhanced perfolmance, durability, and reliability, 12 advantages that result through substantially greater simplicity of design and construction. The 13 features of this novel combination are described as follows.

One feature is a one piece or unitary hollow body and cage with flow ports in the integral 16 valve cage (disposed at the lower end of the plunger body) that can be altered to control the flow 17 of fluid through the plunger on descent. During descent, the plunger falls through the well and 18 any fluids therein. The fluids flow though the angled ports in the valve cage and the hollow 19 body of the plunger. The ports in the cage may be oriented at different angles, varied in number, relieved, etc. to adjust the rate of descent. This unitary design minimizes the number of parts and 21 the number of joints that must be knitted and secured. One principle benefit of the one-piece or 22 "unibody" construction is fewer parts to assemble and secure together, and the elimination of 23 failures in the mechanisms used to secure the parts together.

The valve cage at the lower end and the end cap (if used) at the upper end are mated to 26 the respective ends of the hollow plunger body with threaded joints and secured with a crimp 27 ("crimple") formed in at least two equally spaced locations around the hollow body. The crimple 28 functions as an inward-formed dent that effectively indents the wall of the valve cage portion of 1 the hollow body into a corresponding relief machined into the external threads of the (smaller) 2 outside diameter of the retaining nut. The retaining nut (alternately "end nut"), thus threadably 3 secured to the lower end of the valve cage, functions to close the open end of the valve cage and 4 retain the poppet valve within the valve cage. The crimple feature eliminates the need for separate parts such as pins, screws, ball detents, lock nuts or washers, etc, to lock a threaded joint 6 from loosening. The advantage of the crimple technique and mechanism is to more reliably 7 prevent the inadvertent disassembly of the components secured to the bypass plunger with screw 8 threads, thereby ensuring a true unibody bypass plunger that remains a single unit throughout 9 many cycles of use. The term crimple is a contraction of the terms crimp and dimple, to characterize the crimp as approximating a crimp at a defined point as compared with a 11 circumferential crimp.

13 The outer surface of the hollow plunger body of the present invention includes a series of 14 concentric rings or ridges machined into the outer surface of the hollow body for approximately one third the overall length of the hollow body at each end. The rings or ridges thus provided act 16 as a seal to minimize the clearance between the plunger and the inside of the well tubing through 17 which it descends and ascends. In the present invention, between these two groups of concentric 18 rings, one group at each end of the hollow body, is a series of concentric spiral (or helical) 19 grooves (not unlike the "valleys" of screw threads) machined into the central portion of the outer surface of the hollow body. The "central" portion may typically (but not exclusively) be 21 approximately the central one-third of the length of the hollow body.
The pitch and profile of 22 these spiral grooves may be varied between a tight helix and an open helix to vary the rate of 23 spin of the plunger as it descends and ascends. The purpose of spinning the plunger is to prevent 24 flat spots from forming on the outside surface of the plunger, which reduce the effectiveness and the useful life of the bypass plunger. The cross section profile of the grooves may also be varied 26 to facilitate the spin rate.

1 The "clutch" of one embodiment of the present invention consists of a canted-coil garter 2 spring disposed within a circumferential groove inside the end nut. In other words, no bobbin is 3 used, split or otherwise; just the canted coil spring that is disposed within its groove and wrapped 4 360 degrees around the stem of the valve dart. As used in the inventive plunger, the coils of the spring as formed are canted in the direction of its torroidal centerline (i.e., a line passing through 6 the center of each coil of the spring) in a circumferential direction around the stem diameter.
7 The coils of the canted coil spring, unlike a conventional coil spring in which the coils are 8 disposed substantially at right angles to the centerline of the spring, are disposed at an acute 9 angle relative to the centerline of the spring. This configuration allows the spring to exert tension at right angles to its centerline against the outside diameter surface of the valve dart 11 stem. This property is enhanced when the outer diameter of the canted-coil spring is constrained 12 by a cylindrical bore or in a groove surrounding the spring. The surface of the valve dart stem in 13 one embodiment is preferably machined to a surface roughness of approximately 8 to 50 14 microinches, a standard specification for a very smooth finish. The canted coil spring is supplied in a 360 degree form with its ends welded together (thereby forming a torroidal shape), enabling 16 it to be dimensioned to fit within a machined groove in the end or retaining nut. Advantages of 17 this design include elimination of the bobbin components and greater durability.

19 In the appended drawings, reference numbers that appear in more than one figure refer to the same structural feature. The drawings depict at least one example of each embodiment or 21 aspect to illustrate the features of the present invention and are not to be construed as limiting the 22 invention thereto. In addition, several alternative embodiments of a clutch mechanism for a 23 plunger valve that utilizes canted-coil springs, and several alternative embodiments of a plunger 24 valve dart having different valve stem profiles are included to suggest the scope of modifications that may be made to these components without departing from the concepts employed in the 26 present invention. It should be understood that the term "plunger dart"
or simply "dart" may also 27 be named a poppet valve or a valve dart herein, all of which refer to the same component.

Figure 1 illustrates a side exploded view of one embodiment of an integrated, unibody 2 bypass plunger according to the present invention. The unibody bypass plunger 10 is formed as 3 a single hollow plunger body 12 machined from a suitable material such as a stainless steel alloy.
4 Such materials are well known in the art. Forming the hollow plunger body as a single piece simplifies construction by reducing the number of parts to be connected together with screw 6 threads, thereby reducing the opportunities for failure when a threaded joint fails. Further, the 7 profiles of the flow ports in the cage 16, the sealing rings 22, 24, and the centralized helix 24 8 may all be readily tailored during manufacture for a specific application. The plunger body 9 includes the following defined sections: an ID fishing neck 14, an upper section of sealing rings 22, an intermediate or central section of helical ridges or grooves 24, a lower section of sealing 11 rings 26, and a valve cage 16 for enclosing and retaining a poppet valve or valve dart 32. The 12 valve cage 16 includes a plurality of flow ports 18 disposed at typically two to four equally-13 spaced radial locations around the valve cage 16. In the illustrated embodiment, two or more 14 crimples 20 to be described may be positioned as shown near the lower end of the hollow body 12 / cage 16 unit. The crimple 20 provides a mechanism to lock a retaining nut or end nut 40 16 threaded on the open, lower end of the valve cage 16. The hollow body 12 may further include 17 wear grooves 30 disposed at selected ones of the sealing rings 22, 26 as shown. Further, 18 disposed within the retaining or end nut 40 when the bypass plunger is assembled is a canted-coil 19 spring 42 that functions as a clutch. This novel clutch design, which does not require use of a bobbin or similar structure, will be described herein below.

22 Continuing with Figure 1, the assembly of the bypass plunger 10 includes a valve dart 32 23 inserted head-end first through the valve cage 16 into the lower end of the hollow body 12. The 24 valve head 36 and its sealing face 38 form a poppet valve head at the end of stem 34. When installed in the hollow body 12, the sealing face 38 of the poppet valve or dart 32 is shaped to 26 contact a valve seat 48 machined into the internal bore 52 of the hollow body 12 as shown in 27 Figure 4 that depicts the valve dart 32 in a closed position. The valve dart 32 may be retained 28 within the valve cage 16 by the end nut 40 that may be installed in the lower end of the valve cage 16 and secured by screw threads 28 (See Figure 7). The end nut 40 includes in this 2 embodiment an external circular groove 44 around part of its threaded portion. This groove 44 3 provides a relieved space so that a crimple 20 to be described may extend into the groove 44 to 4 lock the external threads of the end nut 40 to corresponding internal threads in the lower end of the valve cage 16. The end nut 40 also preferably includes a canted-coil spring 42 (to be 6 described) disposed into an internal circumferential groove 50 (See Figure 5). The canted-coil 7 spring 42 replaces a conventional clutch often used with dart-equipped plungers and provides a 8 simpler and more effective structure to retard or brake the motion of the valve stem as it moves 9 between open and closed positions.
Figure 2 illustrates a partial cross section view of the embodiment of Figure 1 as 11 assembled to depict the relationship of several internal features of the bypass plunger 10. The 12 valve dart 32, shown in its open position for descent, is confined within the valve cage 16 by the 13 retaining nut 40. The canted-coil spring 42 surrounds the stem 34 of the valve dart 32 to retard 14 its motion within the valve cage 16. The canted-coil spring 42 is retained within the circumferential groove 50 machined into the inner bore of the retaining nut 40, as more clearly 16 shown in Figures 3 -6. The inner bore 52 of the hollow body 12 includes valve seat 48 and flow 17 ports 18 cut through the wall of the valve cage 16. One example of the profiles of the sealing 18 rings 22, 26 and the helical grooves 24 are also depicted in Figure 2.

Figure 3 illustrates a cross section detail view of the lower (valve cage 16) end of the 21 embodiment of the bypass plunger 10 shown in Figure 2 with the valve dart 32 in an open 22 position. Figure 3 also depicts the use of a crimple 20 that deforms the wall of the valve cage 16 23 so that an extended portion of the crimple 20 - the crimp 21, formed as a dent in the outer surface 24 of the valve cage 16 - protrudes into a relieved portion 44 of the screw threads of the retaining or end nut 40. Persons skilled in the art will appreciate that the relieved portion 44 may be 26 machined as a drilled hole of limited depth or a punched opening that may be round, oval, or 27 rectangular in shape. In some cases, the formation of the crimple on the outer surface of the valve cage may extend into the threads of the retaining nut 40 sufficiently to prevent the 2 retaining nut from loosening.

The crimple 20 thus functions similar to a set screw or a pin to prevent the loosening of the screw threads. This feature is shown and described in greater detail for Figures 7 and 8. In the claims or in the description of the present invention, which includes a one-piece or "unitary"

hollow plunger body and valve cage, the crimple feature may be variously described and understood as being disposed in the 'hollow body" or in the "valve cage"
portion of the hollow body. Moreover, persons skilled in the art will recognize that the crimple feature is a technique that may be used in place of set screws, pins, etc., to secure threaded components from turning relative to each other. For example, end nuts at either end of a plunger body or a bumper spring or other similarly constructed device, may employ a crimple as described herein to useful 13 advantage.

Figure 4, which is similar to Figure 3, illustrates a cross section detail view of the lower end of the embodiment of the valve cage (16) portion of the bypass plunger shown in Figure 2 with the valve dart 32 in a closed or seated position, with the sealing face 38 of the valve head 36 seated against the valve seat 48 inside the valve cage 16, and the opposite end of the valve dart 32 slightly retracted - e.g., no more than about 0.030 inch - within the end of the retaining nut 40.

Figure 5 illustrates a side cross section detail of the end (retaining) nut 40 and the canted-coil spring 42 for use with the embodiment of Figures 1 - 4. In this illustrated embodiment the canted-coil spring 42 is disposed within a circumferential groove 50 inside the end nut 40. The canted-coil spring 42 provides a clutch action on the stem 34 of the valve dart 32 without using a bobbin, split or otherwise. Only the canted-coil spring 42 that is disposed within its groove 50 and wrapped 360 degrees around the stem 34 of the valve dart 32 acts to restrain the motion of the dart valve 32. As used in the illustrated bypass plunger 12, the coils of the spring 42 as 1 formed are canted in the direction of its centerline, that is, in a circumferential direction around 2 the stem 34 diameter.

4 The coils of the canted-coil spring, unlike a conventional coil spring in which the coils are disposed substantially at right angles to the centerline of the spring, are disposed at an acute 6 angle relative to the centerline of the spring 42. This configuration allows the canted coils of 7 spring 42 to exert tension radially inward at right angles to its centerline against the outer surface 8 of the valve stem 34. The particular specifications of the canted-coil spring, such as the 9 material used for the spring wire, its overall diameter, the diameter of the coils, the acute angle the coils form relative to the centerline of the spring, etc., may be selected to suit the particular 11 dimensions of the bypass plunger, its expected environment, and other conditions of use. The 12 performance of the canted-coil spring design is facilitated by the surface finish provided on the 13 surface of the stem 34. Optimum performance is provided when the surface finish, preferably 14 produced by machining, is held within the range of 8 to 50 microinches.
16 Advantages of this bobbinless, canted-coil spring design include at least the following:
17 (a) reduction in the number of components required to provide the clutch function; (b) the 18 canted-coil spring 42 is supported in a more confined space, reducing the likelihood of failure 19 during hard impacts; (c) the need to assemble a split bobbin-with-garter springs clutch is eliminated - the canted-coil spring is simply inserted into its circumferential groove 44; and (d) 21 the use of a conventional clutch bobbin assembly is eliminated. These advantages arise from 22 the simplicity and the construction of the canted-coil spring.

24 Unlike a typical garter spring, which as supplied is simply a coil spring that must be formed into a circle and the ends typically crimped together (a hand-assembly operation that is 26 prone to errors such as in cutting to length and crimping, etc.), the canted-coil spring 42 is 27 supplied to specification with the ends welded and the circular, torroidal-form coil properly 28 dimensioned and configured for the particular application. Also unlike the garter spring, the Date Recue/Date Received 2022-07-07 =
1.
canted-coil spring 42 need only be inserted into the circumferential groove 50 in the end nut 40, 2 while the garter spring must be assembled onto the split bobbin; again a more complex hand-3 assembly operation. Thus the use of the canted-coil spring 42 ensures a leaner manufacturing 4 process of a bypass plunger 10 that is substantially more reliable because of the more durable spring, and the more consistent tension it provides. These features markedly improve the impact 6 resistance of the shifting mechanism (the valve cage 16, end nut 40, and canted-coil spring 42) of 7 the unibody bypass plunger 10 disclosed herein.

9 Continuing with Figure 5, the surface of the stem 34 is preferably machined and finished to a surface roughness of approximately 8 to 50 microinches. The combination of the radial 11 tension and the specified surface finish provides the appropriate amount of friction to control the 12 motion of the valve dart 32 between the open and closed positions of the stem 34 of the valve 13 dart 32. As noted above, the advantages of this design include elimination of the bobbin 14 components and greater durability.
There are several alternate surface finishes to be illustrated and described (See Figures 15 16 through 18) - combinations of recesses, grooves, undercuts, and surface roughness - that may be 17 applied to the stem 34 of the valve dart 32 to limit or control the shifting of the valve dart 32 18 during operation of the bypass plunger 10. These features can improve the operation of the 19 bypass plunger under a variety of conditions while descending or ascending in the well tubing.
For example, recesses such as snap ring grooves may be located at strategic locations along the 21 stem 34 to prevent the stem 34 from sliding too easily within the canted-coil spring 42 or restrain 22 the sliding when the bypass plunger encounters a condition that it might otherwise interpret as 23 contacting the striker at the surface or the bumper spring at the bottom of the well.

Figure 6 illustrates an end cross section detail of the end (retaining) nut 40 and canted-26 coil spring 42 surrounding the stem 34 of the valve dart 32 for use with the embodiment of 27 Figures 1 - 4. As shown, the canted coil spring is supplied in a 360 degree form that is 28 dimensioned to fit within the machined groove 50 in the end nut 40.

Figure 7 illustrates an enlarged version of Figure 3 to depict the form of the crimple 20 used to lock the retaining or end nut 40 to the valve cage 16. The crimple embodiment is an effective technique for locking the threaded joint between the retaining or end nut 40 and the valve cage 16. This form of locking the joint also acts to prevent loosening, thereby extending the life of the joint. As shown, the crimple 20 is formed as a detent 20, 21 into the outer surface of the valve cage 16. The dent or crimple 20 extends radially inward through the threads 28 of the retaining or end nut 40 and valve cage 16 and into the circumferential recess 44 (shown in cross section in Figure 7). The detent 20, 21 may be approximately rectangular in cross section to enable the narrower dimension to extend more readily into the recess 44.

Alternatively, the profile of the detent 20, 21 may be approximately conical in form, as though formed by a center punch having a conical point. In practice, the crimple detent 20, 21 may be formed using a press as is well-known in the art. One preferred example of a die used in a press to form the crimple is illustrated in Figure 19 to be described. The detent 20, 21 is preferably placed in at least two locations, on opposite sides of the valve cage 16 - i.e., approximately 180 degrees apart around the body of the valve cage 16 as shown in Figure 8, 18 which illustrates an end cross section view of the embodiment depicted in Figure 7.

Figure 9 illustrates a side view of a hollow body bypass plunger 60 according to the present invention. The plunger of Figure 1 is depicted in Figure 9 with a groove surrounding the central portion of the body of the plunger and forming a tight helix profile 62. Figure 10 illustrates a side view of a hollow body bypass plunger 70 according to the present invention having a more open helix profile 72 formed of several grooves, also disposed in a central portion 24 of the plunger 70. The helical feature disposed in the central portion 24 of the plungers 60, 70 may be called a centralized helix that is formed to cause the plunger to rotate as it ascends and descends or travels up and down through the well bore. Since the seal provided by the sealing rings 22, 26 is not total, fluids and gases escape past the sealing rings 22, 26. As the plunger 60, 70 passes through the well bore, the fluids and gases impart a torque to the plunger 60, 70 by the 2 mechanism of the helical grooves 62, 72 respectively. The result is a reduction in the occurrence 3 of flat spots along the outside diameter of the sealing rings 22, 26 of the body of the plunger 60, 4 70 and consequent longer life.
6 The continuous helical groove machined into the central portion of the hollow body 7 midway between the upper and lower ends thereof may have a predetermined pitch, depth, and 8 profile. The variation in the pitch of the helical grooves 62, 72 as shown in Figures 9 and 10 9 provides a means of varying the rate of spin imparted to the bypass plungers 60, 70. In the example of Figure 9, a single helical groove 62 encircles the body of the plunger 60 from one up 11 to as many as eight times. Lengthening the fluid path around the plunger 60 tends to reduce the 12 spin rate of the plunger 60. In the example of Figure 10, a plurality of helical grooves, typically 13 three or four (but could be from one to as many as twelve) spaced at equal intervals around the 14 plunger body 60 provides a shorter fluid path around the plunger 70 to increase the spin rate of the plunger 70. In applications where the number of helical grooves is greater than the typical 16 number of three to four, the width of the helical grooves may be proportionately narrowed as the 17 number of grooves is increased.
18 It is important to note that the central helix 62, 72 is positioned mid-way between the 19 sealing rings so as not to impair the sealing function of the sealing rings 22, 26 yet still provide a mechanism to cause the plunger 60, 70 to rotate during its up-and-down travels. Moreover, 21 experience has shown that placing the helical grooves near the ends of the plunger body 60, 70 22 causes the outside diameter of the plunger to wear faster, reducing the profile depth and 23 effectiveness of the helical grooves and reducing the life of the bypass plunger 60, 70.

The concept of the centralized helix may also be used with good effect in sand plungers 26 used in sand-producing wells by improving the movement of the plunger through sand-bearing 27 fluid because of the rotation imparted to the sand plunger. The rotation may also tend to keep the helical grooves - and the space between the plunger body and the well tubing free of sand 2 build-up through the effects of centrifugal force.

4 One of the usual components of a dart or poppet valve as used in a bypass or gas-lift plunger is some form of clutch to restrain the motion of the dart, thereby ensuring the efficient 6 operation of the dart in controlling the operation of the plunger. A
conventional split-bobbin 7 clutch may employ a circular bobbin split into two equal hemispherical halves to enable 8 convenient assembly around the stem of the dart or poppet valve. The two halves are generally 9 held against the stem by one or more (usually two) so-called "garter springs" disposed in grooves surrounding the bobbin assembly. Each bobbin half encircles the stem for slightly less than a 11 full 180 degrees, so that the inside surface of each bobbin half may make direct contact with the 12 stem of the dart under the tension provided by the garter spring(s). The clutch assembly is 13 generally secured within the body of the plunger through which the dart reciprocates during its 14 use. The clutch, through the friction exerted against the stem, acts to damp the motion of the stem within the bypass plunger so that it remains in the required closed or opened position during 16 ascent or descent respectively through the well tubing.

18 Figures 11, 12, and 13 illustrate several alternative embodiments of a split-bobbin clutch 19 assembly for use with darts (or dart valves or poppet valves) to restrain the motion of the dart and to support the dart in its closed and open positions within a bypass plunger. These 21 embodiments differ from conventional clutches in the type of spring used in place of a garter 22 spring and the location of the canted-coil spring on the bobbin assembly. Conventional split 23 bobbin clutches typically use one or two ordinary coil springs that are wrapped around the 24 bobbin assembly and its ends crimped together to form a circular loop around the bobbin. The spring tension of an ordinary coil spring, that acts like a rubber band around the bobbin, exerts an 26 inward force to clamp the bobbin halves around the dart stem. In contrast, the springs used in the 27 clutches illustrated in Figures 11, 12, and 13 have their coils canted at an acute angle with the 28 centerline of the spring. That is, the coils of the spring all slant in the same direction, and the a ends of the canted-coil spring are permanently secured together by welding during the 2 manufacture of the canted-coil spring. The tension against the stem results from the inherent 3 tension of the slanted (canted) coils, not from the tension in a coil spring stretched around the 4 bobbin and stem. Thus, the spring merely needs to be looped over the bobbin halves during assembly. This results in uniform unit-to-unit clutch assemblies, which translates to greater 6 dependability of the clutch performance under downhole conditions.

8 The split bobbins of Figures 11, 12, and 13 differ from one another in the location of 9 grooves for supporting the canted-coil spring embodiment. Figure 11 has the grooves positioned in each side face of the bobbin halves as shown. Figure 12 depicts the grooves formed in the 11 faces of the bobbin but intersecting the outer diameter of the bobbin so that the grooves are 12 formed along the outer edges of the bobbin. Figure 13 shows a single groove formed around the 13 perimeter of the bobbin, with a canted-coil spring installed in the groove. In this embodiment, a 14 bobbin could be constructed with more than one spring installed; thus Figure 13 is provided here to illustrate the concept.

17 It is possible to use a conventional coil spring in the embodiments depicted in each 18 Figure 11, 12, and 13. However, several advantages are provided by the use of a canted-coil 19 spring to hold the bobbin halves together. (1) The manufacturing process of assembling the bobbins is much simpler, involving substantially less hand work and opportunity for errors in 21 assembly. (2) This configuration provides a more consistent tension because the variation 22 between individual ones of the canted-coil springs can be held to a much closer tolerance than 23 ordinary coil springs that must be individually assembled on the bobbin.
(3) The impact 24 resistance of the clutches assembled with canted-coil springs is greater because the springs can be specified with stronger spring constants, the ends are more securely fastened, and the inward 26 tension exerted by the canted-coil configuration can be greater and more closely controlled.
27 These advantages provide superior service life and reliability, and lower operating costs, a especially important in downhole conditions characterized by high impacts and corrosive 2 substances.

4 Figure 11 illustrates a first example of an alternative embodiment of a plunger valve clutch according to the present invention. The clutch 80 is assembled from first 82 and second 6 84 halves of a split bobbin assembly 86. A first canted-coil spring 88 installed in groove 90, and 7 a second canted-coil spring 92 is installed in a similar groove 94 that are visible in the cut-away 8 portion of the figure. When assembled on a valve stem the clutch 86 includes a gap 96 between 9 the first 82 and second 84 halves of the split bobbin assembly 86. The gap 96 ensures that the tension exerted on the stem by the clutch 80 will be maintained.

12 Figure 12 illustrates a second example of an alternative embodiment of a plunger valve 13 clutch according to the present invention. The clutch 98 is assembled from first 92 and second 14 94 halves of a split bobbin assembly 104. A first canted-coil spring 106 is installed in groove 108, and a second canted-coil spring 110 is installed in a similar groove 112 that is not fully 16 visible in Figure 12 because it is installed on the opposite face of the split bobbin assembly 104.
17 When assembled on a valve stem the clutch 98 includes a gap 114 between the first 100 and 18 second 102 halves of the bobbin assembly 104. The gap 114 ensures that the tension exerted on 19 the stem by the clutch 98 will be maintained.
21 Figure 13 illustrates a third example of an alternative embodiment of a plunger valve 22 clutch according to the present invention. The clutch 116 is assembled from first 118 and second 23 120 halves of a split bobbin assembly 122. A first canted-coil spring 124 is installed in groove 24 126. If another canted-coil spring is desired, a second groove would be required. When assembled on a valve stem the clutch 116 includes a gap 128 between the first 118 and second 26 120 halves of the spilt bobbin assembly 122. The gap 128 ensures that the tension exerted on the 27 stem by the clutch 116 will be maintained.

It should be appreciated by persons skilled in the art that a single canted-coil spring is adequate for most applications because the spring can be manufactured within a given size constraint and spring-constant as assembled to exert the required inward radial force and it is 4 thus not required to perform trial and error operations to select the proper springs.

Figure 14 illustrates an alternate embodiment of the present invention that is similar to the embodiment of Figure 1 except Figure 14 is shown with a split bobbin clutch instead of the canted coil spring 42 as shown in Figure 1. The clutch, an assembly of the split bobbin halves 140A, 140B is shown without a garter spring for clarity. The split bobbins may be encircled by one garter (or canted coil) spring as shown or two garter springs in the manner of Figures 11, 12, and 13. A partition nut 142, for retaining the bobbin assembly between the retaining or end nut 40 and the partition nut 142, is shown adjacent to the clutch bobbins. The partition nut 142 is provided to ensure the clutch assembly 140A, 140B (and garter or canted coil spring) remains in 14 position between the end nut 40 and the partition nut 142.

Figures 15 through 18 illustrate several embodiments of the valve stem 34 portion of the valve dart. These embodiments describe surface finishes or profiles including several examples of alternative surface profiles for moderating the reciprocating motion of the valve stem within 19 the clutch structure of the unibody bypass plunger 10.

Figure 15 illustrates a first example of an alternate embodiment of a plunger valve dart 150 according to the present invention. The valve dart 150 includes first 152 and second 154 grooves that encircle the stem 34 near each end of the stem 34. The grooves in the illustrated embodiment are formed as snap-ring grooves, a standard form for retaining snap rings that is easily produced during manufacture of the valve dart 150. In the illustrated embodiment, the snap-ring grooves, in cross section, may be formed as a 0.094 inch radius (R.094,"or, approximately 0.10") into the stem 34, to a depth of approximately 0.01 inch. For other embodiments requiring other bypass plunger body diameters, these dimensions may be varied or 1 scaled according to the dimensions of the bypass plunger and the canted-coil spring to be used 2 with the bypass plunger. The first groove 152 provides a retention feature to position the canted 3 coil spring 42 to retain the valve dart150 closed as the plunger ascends.
The first groove 152 4 acts to resist vibration effects that might tend to open the valve during ascent. Such intermittent opening and closing of the valve dart reduces the efficiency of the plunger in lifting the fluids 6 and gas to the surface. Similarly, the second groove 154 acts to resist vibration effects that might 7 tend to close the valve during descent. Such intermittent closing of the dart valve 150 reduces 8 the speed of the plunger as it descends from the surface to the bottom of the well to begin a new 9 lift cycle. The stem 34 is preferably machined to a surface roughness of 8 to 50 microinches as in the embodiment shown in Figure 5.

12 Figure 16 illustrates a second example of an alternate embodiment of a plunger dart valve 13 according to the present invention. The dart valve 160 includes first 162 and second 164 grooves 14 or recessed regions that encircle the stem 34 near each end of the stem 34. The first groove 162 in the illustrated embodiment is formed as a snap-ring groove, a standard form for retaining snap 16 rings that is easily produced during manufacture of the dart valve 160.
The first groove 162 is 17 provided to enable the canted-coil spring to retain the dart valve 160 in a closed position for 18 ascent of the plunger. The second groove or recessed region 164 at the other end of the stem 34 19 near the valve head 36, is similar to the first groove or recessed region 162 except that it is substantially wider along the length of the stem 34 to provide a predetermined amount of 21 freedom for the dart valve to open even if it contacts the striker at the surface with less than the 22 expected amount of upward-directed force. The longer intermediate length 166 of the stem 34 is 23 similarly recessed from the nominal stem diameter. This feature, by allowing the valve dart 160 24 to gain momentum as it moves within the valve cage 16, facilitates the movement of the stem 34 of the dart valve 160 through the restraining action of the canted-coil spring 42 as the dart valve 26 moves between open and closed positions. The surface is preferably machined to a surface 27 roughness of 8 to 50 microinches as in the embodiment shown in Figure 5.

1.
Figure 17 illustrates a third example of an alternate embodiment of a plunger dart valve according to the present invention. In this embodiment of the dart valve 170, substantially the entire length of the stem 34 includes a surface profile 172 foimed of closely-spaced alternating ribs and grooves having a substantially uniform profile - for instance resembling a sinusoidal wave in the illustrated example - as depicted in the detail view of Figure 18 to be described. This dart valve 170 is designed for use with the split bobbin clutch designs illustrated in Figures 11, 7 12, and 13 described herein above.

Figure 18 illustrates a detail view of the profile of a feature of the embodiment of Figure 16, wherein the alternating rib-and-groove profile is more clearly shown. The surface profile 172 of the stem 34, shown in cross section in Figure 17 illustrates both the ribs 174 and the grooves 176 formed according to a radius R and separated by a spacing S.
The radius R may be within the range of 0.020 inch to 0.150 inch and the spacing S between an adjacent crest and trough may be within the range of 0.020 inch to 0.075 inch. The values of R on a particular valve stem should be constant and the values of S on a particular valve stem should be constant.

Figure 19 illustrates one example of a die for use in a press to form a crimple used in the embodiments of Figures 3, 4, 7, and 8. The body 200 of the die includes a reduced diameter shank 202 that is shaped at its end to foini the crimple 20 in the outer surface of the valve cage 16 portion of the unibody bypass plunger body 12. The crimple 20 is shown in detail in Figures 3, 4 and 7, 8. The crimple 20, an indentation into the outer surface of the valve cage 16, is produced by the shape of the crimple blade 204. The crimple blade 204 as shaped includes a major radius 206, a minor radius 208, and a fillet radius 210. The major radius 206 shapes the blade 204 to the radius of the plunger body 12 at the location of the crimple 20. The major radius is formed to a radial dimension slightly larger than the body of the plunger to be formed.

Thus, when the blade 204 contacts the plunger body and begins to form the crimple 20, the stresses produced in the metal body of the plunger tend to flow outward, forming a smoother .1 crimple 20. Different plunger body diameters will, of course require separate dies having the 2 appropriate major radius for the work piece.
3 The minor radius 208 is provided for a similar reason - to allow the stresses of formation 4 to flow outward along the work piece. A small fillet radius 210 is provided on the outside edges of the blade 204 to reduce stress riser occurrence, a phenomenon well-understood in the machine 6 arts. The operation of the press with the die 200 installed proceeds in a slow, controlled manner, 7 after the work piece - the body 12 of the plunger - is supported in a fixture or vise (the vise is not 8 shown, as it is not part of the invention and is well known to persons skilled in the art) opposite 9 the die 200. This procedure achieves the desired crimp 21 into the recess 44 of the retaining nut 40. The curvatures of the major 206, minor 208, and fillet 210 radii, besides reducing stresses in 11 the metal also retard the formation of cracks, both during manufacturing and during use of the 12 bypass plungers in the field, where the plunger is subject to hard impacts under some conditions.

14 Figure 20 illustrates an alternate embodiment to Figure 4, showing a split bobbin clutch assembly for a bypass plunger as disposed within a valve cage. The clutch assembly is held in 16 place between the retaining or end nut 40 and a partition nut 142, both of which are locked in 17 position by the use of a crimple 20. The crimple 20 deforms the wall of the end nut 40 and the 18 valve cage 16, so that an extended portion of the crimples 20 - (same as the crimp 21 shown in 19 Figures 3 and 4) - protrudes into a respective relieved portion 44 of the screw threads of both the retaining or end nut 40 and the partition nut 142. The crimple 20 thus functions similar to a set 21 screw or a pin to prevent the loosening of the screw threads of the retaining or end nut 40 and the 22 partition nut 142.

24 The valve dart 170, shown in Figure 20 in the valve closed (valve seated as in Figure 4) position within the valve cage 16, has the structure shown in Figure 17. The surface profile 172 26 of the valve stem 34 portion of the valve dart 170 is depicted in Figure 18. The clutch bobbin 27 halves 140A and 140B are held against the stem 34 of the valve dart 170 by springs 144 (which 28 could be canted-coil or conventional coil springs) that are installed in the grooves 146 formed = 1 into the circumference of the bobbin halves 140A and 140B. Note that, when the valve dart 170 2 is seated inside the valve cage 16, the opposite end of the valve dart 170 slightly retracted - e.g., 3 no more than about 0.030 inch - within the end of the retaining nut 40.
4 Returning to Figures 3 and 4, which depict the open and closed state of the dart valves within the valve cage, an alternate embodiment of the valve dart assembly is depicted in Figures 6 21 and 22. The embodiments of Figures 3 and 4, and 21 and 22 illustrate dart valves equipped 7 with the canted coil spring that functions as the clutch mechanism. The alternate embodiment of 8 Figures 21 and 22 is preferred when the bypass plunger is used in downhole environments where 9 sand is frequently suspended in the fluids being lifted to the surface.
It is preferred in this o alternate embodiment of the present invention to provide seals on either side of the canted coil 11 spring to minimize the possibility for particles of sand to become lodged in the coils of the 12 canted-coil spring, thereby reducing its effectiveness as a clutch mechanism. The valve dart 232 13 within the valve cage 216 is shown in open and closed positions or states, respectively Figures 14 21 and 22. Included in Figures 21 and 22 are first and second "slipper seals" 244, 246, each one installed in respective circumferential grooves 252, 254 formed in the inside bore of the retaining 16 or end nut 240. The slipper seals 244, 246 are disposed on either side of the canted-coil spring 17 242 installed in its circumferential groove 250 formed in the end nut 240. Like the canted coil 18 spring 242, the slipper seals 244, 246 surround the stem 234 of the valve dart 232, thereby 19 forming a seal against sand or other types of particles becoming trapped within the canted coil spring 242.

22 The slipper seals 244, 246 may be formed from various ones of the PTFE
23 (polytetraflouroethylene) family of materials as 0-rings having a square (or round) cross section.
24 Alternatives are filled Nylon such as oil-filled Nylon 6 and equivalents Moly-filled Nylon 6, solid lubricant-filled Nylon 6. Other alternatives include semi-crystaline, high temperature 26 engineering plastics based on the PEEK (polyetheretherketone) or PAEK
(polyaryletherketone) 27 polymers.

=
1.
While the invention has been shown in only one of its forms, it is not thus limited but is 2 susceptible to various changes and modifications without departing from the spirit thereof. For 3 example, canted-coil springs may be used to advantage in split bobbin clutches as described 4 herein. Further, the profiles of the helical grooves and the flow ports in the cage, the surface finishes, the relative placements of the canted coil spring within the retaining nut attached to the 6 cage, the form of the poppet valve - its stem, valve head, and the corresponding valve seat in the plunger body, the number of canted coil springs used within the retaining nut or in a split bobbin 8 clutch assembly, the shape of the crimple and the die used to final it, are some illustrative 9 examples of variations that fall within the scope of the invention.
Moreover, the crimple feature is a technique that may be used in place of set screws, pins, etc., to secure threaded components 11 from turning relative to each other. For example, end nuts at either end of a plunger body or a 12 bumper spring or other similarly constructed device, may employ a crimple as described herein 13 to useful advantage. The canted-coil spring used as a clutch may also be used in other structures 14 for controlling sliding or reciprocating motion of a shaft within the bore of a corresponding structure of a device.

17 In regard to the use of a canted-coil spring in a clutchless embodiment of a valve dart 18 assembly, several of the disclosed embodiments may use split bobbin clutch assemblies in the 19 claimed combinations, wherein canted -coil springs or conventional coil springs may be used to hold the bobbin halves together around the stem of the valve dart, without departing from the 21 concepts of the invention as disclosed herein.

23 A final note about the drawings: detail features shown in the drawings may be enlarged to 24 more clearly depict the feature. Thus, several of the drawings are not precisely to scale.

Claims (18)

What is claimed is:
1. A bypass plunger, comprising:
a unitary hollow plunger body and valve cage formed in one piece having first and second ends, the valve cage formed at the second end, and the valve cage having internal threads at its distal end for receiving a retaining nut having external threads at one end thereof;
a poppet valve having a valve head connected to a valve stem, the poppet valve reciprocatingly disposed within the valve cage such that the valve head is oriented toward a valve seat formed within the hollow body;
the retaining nut having external threads formed in the outer surface thereof and corresponding to internal threads formed in the distal end of the valve cage to retain the poppet valve within the valve cage; and at least one helical groove formed for at least one-half revolution around the outer surface of the hollow plunger body for a portion of the length of the hollow body approximately midway between the first and second ends.
2. The bypass plunger of Claim 1, wherein the valve cage comprises:
a tubular portion of the lower end of the bypass plunger having a plurality of outward-angled ports in its walls to enable fluid flow there-through during descent of the bypass plunger;
wherein the ports are each disposed at an acute angle with the longitudinal axis of the valve cage and are separated by substantially equal angles around the wall of the valve cage.
3. The bypass plunger of Claim 1, wherein:
the poppet valve is disposed to move between a closed position in contact with the valve seat formed in the hollow body just above the valve cage portion of the hollow body and an open position disposed away ftom the valve seat; and the stem of the poppet valve comprises a smooth surface ground to a predetermined surface roughness.
Date Recue/Date Received 2022-07-07
4. The bypass plunger of Claim 1, wherein:
the retaining nut is locked from turning by first and second crimple detents extending inward from the surface of the valve cage at the second end of hollow body and along first and second opposite radii of the valve cage into corresponding relieved spaces in the proximate external threads formed in the outer surface of the retaining nut.
5. The bypass plunger of Claim 1, wherein the at least one helical groove comprises:
a continuous groove having a predetermined pitch, depth, and profile according to required spin and rate of descent of the bypass plunger through a well tubing.
6. The bypass plunger of Claim 1, wherein the at least one helical groove comprises:
a groove extending at least one full revolution around the outer surface of the hollow plunger body approximately midway between the first and second ends.
7. The bypass plunger of Claim 1, wherein the at least one helical groove comprises:
a groove extending at least one and up to six full revolutions around the outer surface of the hollow plunger body approximately midway between the first and second ends.
8. The bypass plunger of Claim 1, wherein the at least one helical groove comprises:
first and second helical grooves separated by a fixed spacing and disposed around the outer surface of the hollow plunger body approximately midway between the first and second ends thereof.
9. The bypass plunger of Claim 4, wherein each crimple detent comprises:
a formed dent in the wall of the hollow body extending inward from the surface of the valve cage end of the hollow body into the external threads of the retaining nut to lock the retaining nut to the hollow body.

Date Recue/Date Received 2022-07-07
10. The bypass plunger of Claim 1, wherein:
the retaining nut is locked from turning by first, second, and third crimple detents extending inward from the surface of the valve cage at the second end of hollow body and along equally-spaced radii of the valve cage into corresponding relieved spaces in the proximate external threads formed in the outer surface of the retaining nut.
11. The bypass plunger of Claim 1, wherein:
the retaining nut is locked from turning by at least one crimple detent extending inward from the surface of the valve cage at the second end of hollow body and along a radii of the valve cage into a corresponding relieved space in the proximate external threads formed in the outer surface of the retaining nut.
12. The bypass plunger of Claim 1, wherein the retaining nut further comprises:
a canted coil spring disposed within a circumferential groove formed within the retaining nut thereby forming a clutch for retarding the motion of the poppet valve.
13. The bypass plunger of Claim 12, wherein the retaining nut further comprises:
a slipper seal disposed within the circumferential groove formed within the retaining nut on either side of the canted coil spring thereby forming a seal against sand particles becoming trapped within the canted coil spring.
14. A bypass plunger, comprising:
a unitary hollow plunger body and valve cage, the valve cage formed at a lower end thereof and configured with internal threads at its lower end for receiving a retaining nut having external threads at one end thereof;
a poppet valve having a valve head connected to a valve stem and reciprocatingly disposed within the valve cage;
the retaining nut having external threads for closing the lower end of the valve cage to retain the poppet valve within the valve cage;

Date Recue/Date Received 2022-07-07 a continuous helical groove machined into a central portion of the hollow body midway between upper and lower ends thereof and having a predetermined pitch, depth, and profile according to required spin and rate of descent of the bypass plunger through a well tubing;
first and second crimple detents extending inward from the surface of the valve cage at the second end of hollow body and along first and second opposite radii of the valve cage into corresponding relieved spaces in the proximate external threads formed in the outer surface of the retaining nut; and a canted coil spring disposed within a circumferential groove formed into the inside wall of the retaining nut such that the canted coil spring exerts a substantial radial clamping force on the stem of the poppet valve, thereby forming a clutch to retard the motion of the poppet valve between open and closed positions.
15. The bypass plunger of Claim 14, wherein the continuous helical groove comprises:
a helical groove extending at least one and up to six full revolutions around the outer surface of the hollow plunger body approximately midway between the first and second ends.
16. The bypass plunger of Claim 14, wherein the continuous helical groove comprises:
a helical groove extending at least one and up to at least twelve full revolutions around the outer surface of the hollow plunger body approximately midway between the first and second ends of the hollow plunger body, wherein the width of the helical grooves is proportionately narrowed as the number of grooves is increased.
17. The bypass plunger of Claim 14, wherein the first and second crimple detents comprise:
a formed dent in the wall of the valve cage extending inward from the surface of the valve cage into the external threads of the retaining nut to lock the retaining nut to the valve cage.
18. The bypass plunger of Claim 14, wherein the canted coil spring comprises:
an elongated coil spring formed into a torus, the coils of the spring aligned along the axis of the torus wherein the coils of the coil spring are canted at an acute angle relative to the axis of the torus.

Date Recue/Date Received 2022-07-07
CA2921176A 2015-02-20 2016-02-19 Unibody bypass plunger with centralized helix and crimple feature Active CA2921176C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3167165A CA3167165A1 (en) 2015-02-20 2016-02-19 Unibody bypass plunger with centralized helix and crimple feature

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562118575P 2015-02-20 2015-02-20
US62/118,575 2015-02-20
US15/048,408 US9915133B2 (en) 2015-02-20 2016-02-19 Unibody bypass plunger with centralized helix and crimple feature
US15/048,408 2016-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA3167165A Division CA3167165A1 (en) 2015-02-20 2016-02-19 Unibody bypass plunger with centralized helix and crimple feature

Publications (2)

Publication Number Publication Date
CA2921176A1 CA2921176A1 (en) 2016-08-20
CA2921176C true CA2921176C (en) 2023-05-23

Family

ID=56684834

Family Applications (2)

Application Number Title Priority Date Filing Date
CA3167165A Pending CA3167165A1 (en) 2015-02-20 2016-02-19 Unibody bypass plunger with centralized helix and crimple feature
CA2921176A Active CA2921176C (en) 2015-02-20 2016-02-19 Unibody bypass plunger with centralized helix and crimple feature

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA3167165A Pending CA3167165A1 (en) 2015-02-20 2016-02-19 Unibody bypass plunger with centralized helix and crimple feature

Country Status (1)

Country Link
CA (2) CA3167165A1 (en)

Also Published As

Publication number Publication date
CA2921176A1 (en) 2016-08-20
CA3167165A1 (en) 2016-08-20

Similar Documents

Publication Publication Date Title
US11434733B2 (en) Unibody bypass plunger and valve cage
US11401789B2 (en) Unibody bypass plunger and valve cage with sealable ports
US9790772B2 (en) Plunger lift apparatus
US9677389B2 (en) Dart valve assembly for a bypass plunger
US9689242B2 (en) Dart plunger
US11578570B2 (en) Unibody bypass plunger and valve cage with sealable ports
WO2020056252A1 (en) Unibody bypass plunger with integral dart valve cage
US11920443B2 (en) Unibody bypass plunger and valve cage
US9869401B1 (en) Split bobbin clutch for bypass plungers
CA2921176C (en) Unibody bypass plunger with centralized helix and crimple feature
CA2921179C (en) Improved clutch assembly for bypass plungers
CA3093125C (en) Unibody bypass plunger and valve cage with sealable ports
US20220056785A1 (en) Unibody bypass plunger with integral dart valve cage
CA2940147C (en) Dart valve assembly for a bypass plunger
US20240068326A1 (en) Clutch Apparatuses, Systems and Methods

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20210122

EEER Examination request

Effective date: 20210122

EEER Examination request

Effective date: 20210122

EEER Examination request

Effective date: 20210122

EEER Examination request

Effective date: 20210122

EEER Examination request

Effective date: 20210122

EEER Examination request

Effective date: 20210122