CA2916287A1 - Process, apparatus and system for creating extrudable material having color effects and products made with extrudable material created with same - Google Patents
Process, apparatus and system for creating extrudable material having color effects and products made with extrudable material created with same Download PDFInfo
- Publication number
- CA2916287A1 CA2916287A1 CA2916287A CA2916287A CA2916287A1 CA 2916287 A1 CA2916287 A1 CA 2916287A1 CA 2916287 A CA2916287 A CA 2916287A CA 2916287 A CA2916287 A CA 2916287A CA 2916287 A1 CA2916287 A1 CA 2916287A1
- Authority
- CA
- Canada
- Prior art keywords
- viscous material
- flow
- color
- stream
- rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/17—Articles comprising two or more components, e.g. co-extruded layers the components having different colours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/21—Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/304—Extrusion nozzles or dies specially adapted for bringing together components, e.g. melts within the die
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/362—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using static mixing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/49—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle
- B29C48/495—Feed-blocks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/695—Flow dividers, e.g. breaker plates
- B29C48/70—Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows
- B29C48/71—Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows for layer multiplication
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
A process and associated system for creating color effects in extrudable material, such as plastic and metal for example, are presented. Flows of first and second viscous materials of respective colors are provided and then combined in a predetermined pattern to form a stream of combined viscous material. In a first aspect, the flow rate of the first viscous material is caused to vary over time in order to vary an amount of the first viscous material in the stream. In a second aspect, which may be used alone or in combination with the first aspect, the first and second viscous materials have distinct viscosities to reduce an amount of color blending between the first color and the second color in the stream of combined viscous material. A static mixer may then be used to apply a predetermined dividing, overturning and combining motion to the stream of combined viscous material to partially mix the first viscous material and the second viscous material, such that upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material. Sheets of extrudable material may be created using such process and used in the manufacturing of many different products including for example kayaks and stand-up paddle boards.
Description
86331-77(CA) TITLE: PROCESS, APPARATUS AND SYSTEM FOR CREATING EXTRUDABLE
MATERIAL HAVING COLOR EFFECTS AND PRODUCTS MADE WITH
EXTRUDABLE MATERIAL CREATED WITH SAME
FIELD OF THE INVENTION
The present invention relates generally to the field of extrusion processes and extrudable materials created using such processes, including for example plastic or metal materials. More specifically, the present invention relates to processes and associated apparatuses and systems for creating extrudable materials having color effects as well as to products made with extrudable materials having color effects created using such processes.
BACKGROUND
Extrusion processes are commonly used in a variety of different industries, and with a multitude of different types and grades of material, for forming and shaping these materials into articles.
Extruded products, whether plastic, metal or some other material, are often uniform in color. In some cases, the extruded products are formed of several layers of material, including one or more visible, outer layers and one or more hidden, inner layers, where these layers may differ in color.
In today's competitive market place, it is important for companies to have an edge that distinguishes their product from a competitor's product. One way to create a product that distinguishes itself from a competitor's product is to provide the product with an aesthetically pleasing and/or original appearance. Consumers are typically attracted to products having a visually appealing look.
In the field of extruded products, one method for giving the end products a visually appealing look is to create special color effects in the material of the product.
Existing methods for 86331-77(CA) producing color effects in extruded material, such as plastic for example, include lamination techniques, wherein multiple different layers of colored material are joined together to form a multi-colored sheet, and imprinting techniques wherein an imprinted film is adhered to the material. Unfortunately, these processes require treating the material after it has been extruded and formed. This can be both costly and time consuming.
Other methods, such as the one described for example in U.S. patent no.
7,204,944, allow producing color effects in the form of color bands in the extruded material by combining flows of viscous material of multiple colors during the extrusion process to form a stream of viscous material characterized by bands of different colors. While approaches of the type described above may allow creating extruded material having a pleasing and original visual appearance, the visual effects that may be produced tend to be limited. In order to attract the attention of consumers, it is desirable to create a variety of original color effects in extruded materials include some that may differ from those that may be created by methods of the type proposed in U.S. patent no. 7,204,944.
As such, a need exists in the industry to provide methods for producing visually appealing color effects in extrudable material, such as plastic and metal.
SUMMARY
In accordance with a first aspect, a process for creating color effects in extrudable material is described. The process comprises providing a flow of a first viscous material of a first color, wherein the flow of the first viscous material is associated with a first rate of flow and wherein providing the flow of the first viscous material of the first color includes varying the first rate of flow over time. The process also comprises providing a flow of a second viscous material of a second color different from the first color, wherein the flow of the second viscous material is associated with a second rate of flow. The process also comprises combining in a predetermined pattern the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material.
MATERIAL HAVING COLOR EFFECTS AND PRODUCTS MADE WITH
EXTRUDABLE MATERIAL CREATED WITH SAME
FIELD OF THE INVENTION
The present invention relates generally to the field of extrusion processes and extrudable materials created using such processes, including for example plastic or metal materials. More specifically, the present invention relates to processes and associated apparatuses and systems for creating extrudable materials having color effects as well as to products made with extrudable materials having color effects created using such processes.
BACKGROUND
Extrusion processes are commonly used in a variety of different industries, and with a multitude of different types and grades of material, for forming and shaping these materials into articles.
Extruded products, whether plastic, metal or some other material, are often uniform in color. In some cases, the extruded products are formed of several layers of material, including one or more visible, outer layers and one or more hidden, inner layers, where these layers may differ in color.
In today's competitive market place, it is important for companies to have an edge that distinguishes their product from a competitor's product. One way to create a product that distinguishes itself from a competitor's product is to provide the product with an aesthetically pleasing and/or original appearance. Consumers are typically attracted to products having a visually appealing look.
In the field of extruded products, one method for giving the end products a visually appealing look is to create special color effects in the material of the product.
Existing methods for 86331-77(CA) producing color effects in extruded material, such as plastic for example, include lamination techniques, wherein multiple different layers of colored material are joined together to form a multi-colored sheet, and imprinting techniques wherein an imprinted film is adhered to the material. Unfortunately, these processes require treating the material after it has been extruded and formed. This can be both costly and time consuming.
Other methods, such as the one described for example in U.S. patent no.
7,204,944, allow producing color effects in the form of color bands in the extruded material by combining flows of viscous material of multiple colors during the extrusion process to form a stream of viscous material characterized by bands of different colors. While approaches of the type described above may allow creating extruded material having a pleasing and original visual appearance, the visual effects that may be produced tend to be limited. In order to attract the attention of consumers, it is desirable to create a variety of original color effects in extruded materials include some that may differ from those that may be created by methods of the type proposed in U.S. patent no. 7,204,944.
As such, a need exists in the industry to provide methods for producing visually appealing color effects in extrudable material, such as plastic and metal.
SUMMARY
In accordance with a first aspect, a process for creating color effects in extrudable material is described. The process comprises providing a flow of a first viscous material of a first color, wherein the flow of the first viscous material is associated with a first rate of flow and wherein providing the flow of the first viscous material of the first color includes varying the first rate of flow over time. The process also comprises providing a flow of a second viscous material of a second color different from the first color, wherein the flow of the second viscous material is associated with a second rate of flow. The process also comprises combining in a predetermined pattern the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material.
-2-86331-77(CA) Varying the rate of flow of the first viscous material over time may allow modulating over time an amount of the first viscous material, relative to an amount of the second viscous material, that finds itself in the stream of combined viscous material at different moments in time, which may allow the color effects created to vary over time and may allow creating wave-like color gradation effects.
In some specific practical implementations, varying the first rate of flow over time may include causing the first rate of flow to oscillate between a lower flow rate threshold and an upper flow rate threshold over a time interval. The time interval may have any suitable duration. In specific non-limiting implementations, the duration has ranged between at least about 20 seconds and about 1 minute however any suitable duration for the time interval may be contemplated including shorter and intervals or more lengthy intervals. Optionally, in some embodiments, the process may include setting the lower flow rate threshold and/or the upper flow rate threshold and/or the time interval in order to control at least in part visual characteristics of the color pattern in the stream of combined viscous material. In specific practical implementations, any suitable mechanism may be provided to enable a user to provide control command for setting or modifying the lower flow rate threshold and/or the upper flow rate threshold and/or the time interval. Such suitable mechanism may include, without being limited to, providing user operable controls in communication with an electronic control element.
In some specific practical implementations, the second rate of flow associated with the flow of the second viscous material may be kept substantially constant over time.
Alternatively, the second rate of flow may also be caused to vary over a time period so that the flows of both the first viscous material and the second viscous material are caused to vary over time. In such alternative implementations, the time intervals over which the first viscous material and the second viscous material vary need not be the same.
In some specific practical implementations, varying the first rate of flow over time may include causing the first rate of flow to oscillate between a lower flow rate threshold and an upper flow rate threshold over a time interval. The time interval may have any suitable duration. In specific non-limiting implementations, the duration has ranged between at least about 20 seconds and about 1 minute however any suitable duration for the time interval may be contemplated including shorter and intervals or more lengthy intervals. Optionally, in some embodiments, the process may include setting the lower flow rate threshold and/or the upper flow rate threshold and/or the time interval in order to control at least in part visual characteristics of the color pattern in the stream of combined viscous material. In specific practical implementations, any suitable mechanism may be provided to enable a user to provide control command for setting or modifying the lower flow rate threshold and/or the upper flow rate threshold and/or the time interval. Such suitable mechanism may include, without being limited to, providing user operable controls in communication with an electronic control element.
In some specific practical implementations, the second rate of flow associated with the flow of the second viscous material may be kept substantially constant over time.
Alternatively, the second rate of flow may also be caused to vary over a time period so that the flows of both the first viscous material and the second viscous material are caused to vary over time. In such alternative implementations, the time intervals over which the first viscous material and the second viscous material vary need not be the same.
-3-86331-77(CA) In some specific practical implementations, the second rate of flow associated with the second viscous material of the second color may be lower than the first rate of flow.
In such implementations, the first viscous material constitutes a larger portion of the resulting stream of combined viscous material than the second viscous material.
In specific practical implementations, the second rate of flow may be no more than 50% of the first rate of flow, preferably no more than 30% of the first rate of flow and more preferably no more than 20% of the first rate of flow.
In some specific practical implementations, the first viscous material has a first viscosity and the second viscous material has a second viscosity, wherein first viscosity may be distinct from the second viscosity to reduce an amount of color blending between the first color and the second color in the stream of combined viscous material.
In some specific practical implementations, the first viscous material is associated with a first high load melt index (first HLMI) and the second viscous material is associated with a second high load melt index (second HLMI), where the first HLMI may be greater than the second HLMI. The difference between the high load melt indices of the first and second viscous mates may be selected in such a way as to control the amount of blending that may occur between the different colors of the first and second viscous materials. In specific practical implementations, the first HLMI may be at least about ten times (10x) the second HLMI; the first HLMI may also be at least about twenty times (20x) the second HLMI; the first HLMI may also be at least about one hundred times (100x) the second HLMI. Typically, the greater the difference between the HLMIs the lesser the extent of the color blending in the stream of combined viscous material.
In some specific practical implementations, the first viscous material and the second viscous material may be viscous plastic materials, metal materials or some other viscous materials.
In some specific practical implementation, the first color of the first viscous material may be a translucent color.
In such implementations, the first viscous material constitutes a larger portion of the resulting stream of combined viscous material than the second viscous material.
In specific practical implementations, the second rate of flow may be no more than 50% of the first rate of flow, preferably no more than 30% of the first rate of flow and more preferably no more than 20% of the first rate of flow.
In some specific practical implementations, the first viscous material has a first viscosity and the second viscous material has a second viscosity, wherein first viscosity may be distinct from the second viscosity to reduce an amount of color blending between the first color and the second color in the stream of combined viscous material.
In some specific practical implementations, the first viscous material is associated with a first high load melt index (first HLMI) and the second viscous material is associated with a second high load melt index (second HLMI), where the first HLMI may be greater than the second HLMI. The difference between the high load melt indices of the first and second viscous mates may be selected in such a way as to control the amount of blending that may occur between the different colors of the first and second viscous materials. In specific practical implementations, the first HLMI may be at least about ten times (10x) the second HLMI; the first HLMI may also be at least about twenty times (20x) the second HLMI; the first HLMI may also be at least about one hundred times (100x) the second HLMI. Typically, the greater the difference between the HLMIs the lesser the extent of the color blending in the stream of combined viscous material.
In some specific practical implementations, the first viscous material and the second viscous material may be viscous plastic materials, metal materials or some other viscous materials.
In some specific practical implementation, the first color of the first viscous material may be a translucent color.
-4-86331-77(CA) In some specific implementations, the process may also comprises using a static mixer to apply a predetermined dividing, overturning and combining motion to the stream of combined viscous material to partially mix the first viscous material and the second viscous material, such that upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material.
In a specific practical implementation, the static mixer may include a helical mixer.
In some specific implementations, after applying the dividing, overturning and combining motion, the process may include the step of forming the stream of combined viscous material into a sheet or, alternatively, forming the stream of combined viscous material into a tube.
In some specific implementations, after applying the dividing, overturning and combining motion, the process may include feeding the stream of combined viscous material through a die for forming a sheet of material comprising a wave-like color gradation effect.
In accordance with a second aspect, a process for creating color effects in extrudable material is described comprising providing a flow of a first viscous material of a first color and providing a flow of a second viscous material of a second color different from the first color. The process also comprises combining in a predetermined pattern the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material. The process also comprises using a static mixer to apply a predetermined dividing, overturning and combining motion to the stream of combined viscous material to partially mix the first viscous material and the second viscous material, such that the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material, wherein:
i) the flow of the first viscous material is associated with a first viscosity; and ii) the flow of the second viscous material is associated with a second viscosity, the first viscosity being distinct from the second viscosity to reduce an amount of color blending between the first color and the second color in the stream of combined
In a specific practical implementation, the static mixer may include a helical mixer.
In some specific implementations, after applying the dividing, overturning and combining motion, the process may include the step of forming the stream of combined viscous material into a sheet or, alternatively, forming the stream of combined viscous material into a tube.
In some specific implementations, after applying the dividing, overturning and combining motion, the process may include feeding the stream of combined viscous material through a die for forming a sheet of material comprising a wave-like color gradation effect.
In accordance with a second aspect, a process for creating color effects in extrudable material is described comprising providing a flow of a first viscous material of a first color and providing a flow of a second viscous material of a second color different from the first color. The process also comprises combining in a predetermined pattern the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material. The process also comprises using a static mixer to apply a predetermined dividing, overturning and combining motion to the stream of combined viscous material to partially mix the first viscous material and the second viscous material, such that the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material, wherein:
i) the flow of the first viscous material is associated with a first viscosity; and ii) the flow of the second viscous material is associated with a second viscosity, the first viscosity being distinct from the second viscosity to reduce an amount of color blending between the first color and the second color in the stream of combined
-5-86331-77(CA) viscous material when the static mixer applies the predetermined dividing, overturning and combining motion to the stream of combined viscous material.
In some specific practical implementations, the first viscous material is associated with a first high load melt index (first HLMI) and the second viscous material is associated with a second high load melt index (second HLMI), where the first HLMI may be greater than the second HLMI. The difference between the high load melt indices of the first and second viscous mates may be selected in such a way as to control the amount of blending that may occur between the different colors of the first and second viscous materials. In specific practical implementations, the first HLMI may be at least about ten times (10x) the second HLMI; the first HLMI may also be at least about twenty times (20x) the second HLMI; the first HLMI may also be at least about one hundred times (100x) the second HLMI. Typically, the greater the difference between the HLMIs the lesser the extent of the color blending in the stream of combined viscous material.
In a specific, non-limiting example of implementation, processes of the type described above may be implemented in a system for manufacturing plastic sheets. The system may include a die, a feed block and at least two extruders. The extruders may each be configured to mix and heat plastic granules, for producing a generally homogeneous, viscous plastic mixture. In the context of the present invention, at least two of the extruders produce plastic mixtures of different colors and of different viscosities. The feed block is configured to combine the flows of viscous plastic released by the different extruders into a single stream of combined viscous material. The single stream of viscous plastic generated by the feed block may be fed through a static mixer pipe. The static mixer pipe is configured to act on the single stream of combined viscous material to partially mix the stream and create a color pattern in the stream of combined viscous material.
The die receives the partially mixed stream of combined viscous material from the static mixer pipe, and may be configured to shape the stream into its final product form, such as a sheet or a tube, among many other possibilities.
In accordance with a third aspect, a system for creating color effects in extrudable material is provided, the system comprising a first extruder for providing a flow of a first viscous material
In some specific practical implementations, the first viscous material is associated with a first high load melt index (first HLMI) and the second viscous material is associated with a second high load melt index (second HLMI), where the first HLMI may be greater than the second HLMI. The difference between the high load melt indices of the first and second viscous mates may be selected in such a way as to control the amount of blending that may occur between the different colors of the first and second viscous materials. In specific practical implementations, the first HLMI may be at least about ten times (10x) the second HLMI; the first HLMI may also be at least about twenty times (20x) the second HLMI; the first HLMI may also be at least about one hundred times (100x) the second HLMI. Typically, the greater the difference between the HLMIs the lesser the extent of the color blending in the stream of combined viscous material.
In a specific, non-limiting example of implementation, processes of the type described above may be implemented in a system for manufacturing plastic sheets. The system may include a die, a feed block and at least two extruders. The extruders may each be configured to mix and heat plastic granules, for producing a generally homogeneous, viscous plastic mixture. In the context of the present invention, at least two of the extruders produce plastic mixtures of different colors and of different viscosities. The feed block is configured to combine the flows of viscous plastic released by the different extruders into a single stream of combined viscous material. The single stream of viscous plastic generated by the feed block may be fed through a static mixer pipe. The static mixer pipe is configured to act on the single stream of combined viscous material to partially mix the stream and create a color pattern in the stream of combined viscous material.
The die receives the partially mixed stream of combined viscous material from the static mixer pipe, and may be configured to shape the stream into its final product form, such as a sheet or a tube, among many other possibilities.
In accordance with a third aspect, a system for creating color effects in extrudable material is provided, the system comprising a first extruder for providing a flow of a first viscous material
-6-86331-77(CA) of a first color, the first extruder providing the flow of the first viscous material at a first rate of flow, the first extruder being in communication with a flow rate controller configured for varying the first rate of flow over time. The system further comprises a second extruder for providing a flow of a second viscous material of a second color different from the first color, the second extruder providing the flow of the second viscous material at a second rate of flow. The system further comprises a feed block for combining the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material.
In some specific practical implementations, the flow rate controller associated with the first extruder may include an electronic control element configured for causing the first rate of flow to vary over time at least in part by causing a variation in a speed of operation of an extruder screw in the first extruder. More specifically, the flow rate controller may include a variable speed motor configured for operating the extruder screw of the first extruder and an electronic control element programmed for controlling the variable speed motor. The electronic control element may be programmed to cause the first rate of flow to vary over time at least in part by causing the variable speed motor to vary the speed of operation of the extruder screw.
In a specific practical implementation, the flow rate controller may be configured for varying the first rate of flow over time at least in part by causing the first rate of flow to oscillate between a lower flow rate threshold and an upper flow rate threshold over a time interval. Optionally, in some embodiments, the flow rate controller may provide one or more user operable controls for allowing a user to set the lower flow rate threshold and/or the upper flow rate threshold and/or the time interval in order to control at least in part visual characteristics of the color pattern in the stream of combined viscous material exiting the system.
In some specific practical implementations, the second rate of flow associated with the flow of the second viscous material may be kept substantially constant over time.
Alternatively, the second rate of flow may also be caused to vary over a time period so that the flows of both the first viscous material and the second viscous material are caused to vary over time. In such
In some specific practical implementations, the flow rate controller associated with the first extruder may include an electronic control element configured for causing the first rate of flow to vary over time at least in part by causing a variation in a speed of operation of an extruder screw in the first extruder. More specifically, the flow rate controller may include a variable speed motor configured for operating the extruder screw of the first extruder and an electronic control element programmed for controlling the variable speed motor. The electronic control element may be programmed to cause the first rate of flow to vary over time at least in part by causing the variable speed motor to vary the speed of operation of the extruder screw.
In a specific practical implementation, the flow rate controller may be configured for varying the first rate of flow over time at least in part by causing the first rate of flow to oscillate between a lower flow rate threshold and an upper flow rate threshold over a time interval. Optionally, in some embodiments, the flow rate controller may provide one or more user operable controls for allowing a user to set the lower flow rate threshold and/or the upper flow rate threshold and/or the time interval in order to control at least in part visual characteristics of the color pattern in the stream of combined viscous material exiting the system.
In some specific practical implementations, the second rate of flow associated with the flow of the second viscous material may be kept substantially constant over time.
Alternatively, the second rate of flow may also be caused to vary over a time period so that the flows of both the first viscous material and the second viscous material are caused to vary over time. In such
-7-86331-77(CA) alternative implementations, the time intervals over which the first viscous material and the second viscous material vary need not be the same.
In some specific practical implementations, the second rate of flow associated with the second viscous material of the second color may be lower than the first rate of flow.
In such implementations, the first viscous material constitutes a larger portion of the resulting stream of combined viscous material than the second viscous material.
In specific practical implementations, the second rate of flow may be no more than 50% of the first rate of flow, preferably no more than 30% of the first rate of flow and more preferably no more than 20% of the first rate of flow.
In some specific practical implementations, the system may further comprise a static mixer for receiving the stream of combined viscous material from the feed block. The static mixer is configured to apply a predetermined dividing, overturning and combining motion to the stream of combined viscous material to partially mix the first viscous material and the second viscous material such that, upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material.
In some specific practical implementations, the system may further comprise a die for receiving the stream of combined viscous material from the static mixer, the die being configured for forming the stream of combined viscous material into a sheet or into a tube.
In some specific practical implementations, the system may further comprise at least one additional extruder for providing at least one additional flow of a third viscous material and a combining device for combining the stream of combined viscous material released by the static mixer with the at least one additional stream of the third viscous material provided by the at least one additional extruder. The combining device may be configured for forming a co-extruded
In some specific practical implementations, the second rate of flow associated with the second viscous material of the second color may be lower than the first rate of flow.
In such implementations, the first viscous material constitutes a larger portion of the resulting stream of combined viscous material than the second viscous material.
In specific practical implementations, the second rate of flow may be no more than 50% of the first rate of flow, preferably no more than 30% of the first rate of flow and more preferably no more than 20% of the first rate of flow.
In some specific practical implementations, the system may further comprise a static mixer for receiving the stream of combined viscous material from the feed block. The static mixer is configured to apply a predetermined dividing, overturning and combining motion to the stream of combined viscous material to partially mix the first viscous material and the second viscous material such that, upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material.
In some specific practical implementations, the system may further comprise a die for receiving the stream of combined viscous material from the static mixer, the die being configured for forming the stream of combined viscous material into a sheet or into a tube.
In some specific practical implementations, the system may further comprise at least one additional extruder for providing at least one additional flow of a third viscous material and a combining device for combining the stream of combined viscous material released by the static mixer with the at least one additional stream of the third viscous material provided by the at least one additional extruder. The combining device may be configured for forming a co-extruded
-8-86331-77(CA) stream having at least two layers using the stream of the third viscous material and the stream of combined viscous material.
In accordance with a fourth aspect, a system for creating color effects in extrudable material is provided. The system comprises a first extruder for providing a flow of a first viscous material of a first color and a second extruder for providing a second viscous material of a second color different from the first color. The system further comprises a feed block for combining the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material. The system further comprises a static mixer for receiving the stream 119 of combined viscous material from the feed block, wherein the static mixer is configured to apply a predetermined dividing, overturning and combining motion to said stream of combined viscous material to partially mix the first viscous material and the second viscous material such that, upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material. The flow of the first viscous material is associated with a first viscosity and the flow of the second viscous material is associated with a second viscosity, the first viscosity being distinct from the second viscosity to reduce an amount of color blending between the first color and the second color in the stream of combined viscous material when the static mixer applies the predetermined dividing, overturning and combining motion to the stream of combined viscous material.
In accordance with another aspect, a process for manufacturing a plastic article comprising color effects is presented. The process comprises molding two or more of the manufactured sheets of extrudable material using thermoforming to shape the two of more manufactured sheets into a kayak shape, at least one of the two or more of the manufactured sheets having color effects created using a process of the type described above.
In specific practical implementations, an other one of the two or more of the manufactured sheets may have a uniform color or, alternatively, may also have color effects created using a process of the type described above.
In accordance with a fourth aspect, a system for creating color effects in extrudable material is provided. The system comprises a first extruder for providing a flow of a first viscous material of a first color and a second extruder for providing a second viscous material of a second color different from the first color. The system further comprises a feed block for combining the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material. The system further comprises a static mixer for receiving the stream 119 of combined viscous material from the feed block, wherein the static mixer is configured to apply a predetermined dividing, overturning and combining motion to said stream of combined viscous material to partially mix the first viscous material and the second viscous material such that, upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material. The flow of the first viscous material is associated with a first viscosity and the flow of the second viscous material is associated with a second viscosity, the first viscosity being distinct from the second viscosity to reduce an amount of color blending between the first color and the second color in the stream of combined viscous material when the static mixer applies the predetermined dividing, overturning and combining motion to the stream of combined viscous material.
In accordance with another aspect, a process for manufacturing a plastic article comprising color effects is presented. The process comprises molding two or more of the manufactured sheets of extrudable material using thermoforming to shape the two of more manufactured sheets into a kayak shape, at least one of the two or more of the manufactured sheets having color effects created using a process of the type described above.
In specific practical implementations, an other one of the two or more of the manufactured sheets may have a uniform color or, alternatively, may also have color effects created using a process of the type described above.
-9-86331-77(CA) In specific practical implementations, the process may be suitable for use during manufacturing of many different types of products including, but without being limited to, kayaks, sleds and stand-up paddle boards amongst many others.
In accordance with another aspect, a sheet of extrudable material having color effects is presented, the sheet of extrudable material being comprised of a first viscous material of a first color and a second viscous material of a second color different from the first color, wherein the first viscous material has a first viscosity and the second viscous material has a second viscosity, the first viscosity being distinct from the second viscosity to reduce an amount of color blending between the first color and the second color in the sheet.
In some specific practical implementations, the first viscous material of the sheet is associated with a first high load melt index (first HLMI) and the second viscous material is associated with a second high load melt index (second HLMI), where the first HLMI may be greater than the second HLMI. The difference between the high load melt indices of the first and second viscous mates may be selected in such a way as to control the amount of blending that may occur between the different colors of the first and second viscous materials. In specific practical implementations, the first HLMI may be at least about ten times (10x) the second HLMI; the first HLMI may also be at least about twenty times (20x) the second HLMI; the first HLMI may also be at least about one hundred times (100x) the second HLMI.
In accordance with another aspect, a process for creating color effects in extrudable material is described in which the process comprises:
a) providing a flow of a first viscous material of a first color;
b) providing a flow of a second viscous material of a second color different from the first color;
c) combining in a predetermined pattern the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material;
In accordance with another aspect, a sheet of extrudable material having color effects is presented, the sheet of extrudable material being comprised of a first viscous material of a first color and a second viscous material of a second color different from the first color, wherein the first viscous material has a first viscosity and the second viscous material has a second viscosity, the first viscosity being distinct from the second viscosity to reduce an amount of color blending between the first color and the second color in the sheet.
In some specific practical implementations, the first viscous material of the sheet is associated with a first high load melt index (first HLMI) and the second viscous material is associated with a second high load melt index (second HLMI), where the first HLMI may be greater than the second HLMI. The difference between the high load melt indices of the first and second viscous mates may be selected in such a way as to control the amount of blending that may occur between the different colors of the first and second viscous materials. In specific practical implementations, the first HLMI may be at least about ten times (10x) the second HLMI; the first HLMI may also be at least about twenty times (20x) the second HLMI; the first HLMI may also be at least about one hundred times (100x) the second HLMI.
In accordance with another aspect, a process for creating color effects in extrudable material is described in which the process comprises:
a) providing a flow of a first viscous material of a first color;
b) providing a flow of a second viscous material of a second color different from the first color;
c) combining in a predetermined pattern the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material;
-10-86331-77(CA) d) using a static mixer applying a predetermined dividing, overturning and combining motion to said stream of combined viscous material to partially mix the first viscous material and the second viscous material, such that such that upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material, wherein the color pattern in the stream is configured at least in part based on a radial orientation of the static mixer.
In some specific practical implementations, the process may comprise altering the color pattern in the stream by performing a rotation of the static mixer by a pre-determined rotation amount to change the radial orientation of the static mixer. In specific practical implementation, the pre-determined rotation amount may be established based on an internal structure of the static mixer such that upon exiting the static mixer a desired effect may be achieved in the stream of viscous material. In specific practical implementations, the pre-determined rotation amount may be a rotation of about 45', 90 , 135' or 180 .
All features of embodiments which are described in this disclosure and are not mutually exclusive can be combined with one another. Elements of one embodiment can be utilized in the other embodiments without further mention.
Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
A detailed description of specific embodiments of the present invention is provided herein below with reference to the accompanying drawings in which:
In some specific practical implementations, the process may comprise altering the color pattern in the stream by performing a rotation of the static mixer by a pre-determined rotation amount to change the radial orientation of the static mixer. In specific practical implementation, the pre-determined rotation amount may be established based on an internal structure of the static mixer such that upon exiting the static mixer a desired effect may be achieved in the stream of viscous material. In specific practical implementations, the pre-determined rotation amount may be a rotation of about 45', 90 , 135' or 180 .
All features of embodiments which are described in this disclosure and are not mutually exclusive can be combined with one another. Elements of one embodiment can be utilized in the other embodiments without further mention.
Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
A detailed description of specific embodiments of the present invention is provided herein below with reference to the accompanying drawings in which:
-11-86331-77(CA) Figure 1 illustrates a system for manufacturing plastic sheets, according to a non-limiting example of implementation of the present invention;
Figure 2 depicts components of a flow rate controller that may be used in connection with an extruder of the system of Figure 1;
Figure 3 depicts an electronic control element of the flow rate controller of Figure 2 in accordance with a non-limiting embodiment of the present invention;
to Figures 4A and 4B are charts illustrating variations in a speed of operation of an extruder screw in order to cause variation in a flow rate in connection with an extruder of the system of Figure 1;
Figure 5A shows color effects that may be produced in extrudable plastic material using a system of the type shown in Figure 1 in which the flow rate controller maintains a constant flow rate;
Figure 5B shows color effects that may be produced in extrudable plastic material using a system of the type shown in Figure 1 in which the flow rate controller varies the flow rate over time of the material released by an extruder;
Figure 6 depicts an example of a possible structural configuration for a feed block shown in Figure 1;
Figure 7 is a perspective view of a helical static mixer;
Figure 8 is a perspective view of a different type of static mixer;
Figure 9A shows examples cross-sectional views of combined streams of viscous material entering the static mixer 108 of the system 100 shown in Figure 1 in accordance with non-
Figure 2 depicts components of a flow rate controller that may be used in connection with an extruder of the system of Figure 1;
Figure 3 depicts an electronic control element of the flow rate controller of Figure 2 in accordance with a non-limiting embodiment of the present invention;
to Figures 4A and 4B are charts illustrating variations in a speed of operation of an extruder screw in order to cause variation in a flow rate in connection with an extruder of the system of Figure 1;
Figure 5A shows color effects that may be produced in extrudable plastic material using a system of the type shown in Figure 1 in which the flow rate controller maintains a constant flow rate;
Figure 5B shows color effects that may be produced in extrudable plastic material using a system of the type shown in Figure 1 in which the flow rate controller varies the flow rate over time of the material released by an extruder;
Figure 6 depicts an example of a possible structural configuration for a feed block shown in Figure 1;
Figure 7 is a perspective view of a helical static mixer;
Figure 8 is a perspective view of a different type of static mixer;
Figure 9A shows examples cross-sectional views of combined streams of viscous material entering the static mixer 108 of the system 100 shown in Figure 1 in accordance with non-
-12-86331-77(CA) limiting examples of implementation, the examples including (a) a first viscous material ("A") only; (b) first viscous material (`A") and second viscous material ("D"); and (c) first viscous material ("A"), second viscous material ("D") and third viscous material ("E");
Figures 9B, 9C and 9D shows other examples of cross-sectional views of combined streams of viscous material entering the static mixer 108 of the system 100 shown in Figure 1 in accordance with non-limiting examples of implementation;
Figure 10 illustrates a combined stream of viscous material as it exits the static mixer in accordance with a non-limiting implementation;
Figure 11A depicts a sheet of plastic with wave-like color gradation effects created in accordance with a non-liming example of implementation of the invention;
Figure 11B depicts a tube of plastic with wave-like color gradation effects in accordance with another non-liming example of implementation of the invention;
Figure 12 is a flowchart illustrating a process for creating color effects in extruded material according to an example of implementation of the present invention; and Figure 13 depicts a system for manufacturing plastic sheets according to a variant of implementation of the present invention;
Fig. 14A shows kayaks manufactured using plastic sheets of extrudable material created using a process embodying aspects of the invention;
Fig. 14B and 14C show top plan and side views respectively of a stand-up paddle board (SUP) manufactured using plastic sheets of extrudable material created using a process embodying aspects of the invention.
Figures 9B, 9C and 9D shows other examples of cross-sectional views of combined streams of viscous material entering the static mixer 108 of the system 100 shown in Figure 1 in accordance with non-limiting examples of implementation;
Figure 10 illustrates a combined stream of viscous material as it exits the static mixer in accordance with a non-limiting implementation;
Figure 11A depicts a sheet of plastic with wave-like color gradation effects created in accordance with a non-liming example of implementation of the invention;
Figure 11B depicts a tube of plastic with wave-like color gradation effects in accordance with another non-liming example of implementation of the invention;
Figure 12 is a flowchart illustrating a process for creating color effects in extruded material according to an example of implementation of the present invention; and Figure 13 depicts a system for manufacturing plastic sheets according to a variant of implementation of the present invention;
Fig. 14A shows kayaks manufactured using plastic sheets of extrudable material created using a process embodying aspects of the invention;
Fig. 14B and 14C show top plan and side views respectively of a stand-up paddle board (SUP) manufactured using plastic sheets of extrudable material created using a process embodying aspects of the invention.
-13-86331-77(CA) In the drawings, embodiments of the invention are illustrated by way of examples. It is to be expressly understood that the description and drawings are only for the purpose of illustration and are an aid for understanding. They are not intended to be a definition of the limits of the invention.
DETAILED DESCRIPTION
The present invention is directed to a process and apparatus for creating color effects in extruded material, such as plastic or metal.
In the following examples of implementation, the present invention will be described for use in creating color effects in extruded plastic material. However, it is to be appreciated that the invention is not limited to any particular type of material. Rather, the concepts described in the present document may be applied to different types and grades of extrudable material.
Figure 1 depicts a system 100 for manufacturing plastic sheets, according to a non-limiting example of implementation of the present invention. The system 100 shown is formed of several components, including a die 102, a feed block 104, a first (primary) extruder 106 for providing a first material (-A") and one or more secondary extruders 1201,...,120N, where the number N of secondary extruders 1201,...,120N in the system 100 is at least one.
Note that, in alternative embodiments, the system 100 may include two or more secondary extruders 1201,...,120N.
Extruder 106 and each extruder 1201,...120N is operative to mix and heat plastic granules. The granules are heated to a predetermined temperature, sufficient to cause melting of the granules for producing a homogeneous, viscous plastic mixture.
Examples of the different types of thermoplastics that can be extruded include: LDPE, HDPE, ABS, polystyrene, polypropylene, acetates, butyrates, nylons, polyphenylene sulfides, acetals, polycarbonates and thermoplastic rubbers and polyesters, among other possibilities.
DETAILED DESCRIPTION
The present invention is directed to a process and apparatus for creating color effects in extruded material, such as plastic or metal.
In the following examples of implementation, the present invention will be described for use in creating color effects in extruded plastic material. However, it is to be appreciated that the invention is not limited to any particular type of material. Rather, the concepts described in the present document may be applied to different types and grades of extrudable material.
Figure 1 depicts a system 100 for manufacturing plastic sheets, according to a non-limiting example of implementation of the present invention. The system 100 shown is formed of several components, including a die 102, a feed block 104, a first (primary) extruder 106 for providing a first material (-A") and one or more secondary extruders 1201,...,120N, where the number N of secondary extruders 1201,...,120N in the system 100 is at least one.
Note that, in alternative embodiments, the system 100 may include two or more secondary extruders 1201,...,120N.
Extruder 106 and each extruder 1201,...120N is operative to mix and heat plastic granules. The granules are heated to a predetermined temperature, sufficient to cause melting of the granules for producing a homogeneous, viscous plastic mixture.
Examples of the different types of thermoplastics that can be extruded include: LDPE, HDPE, ABS, polystyrene, polypropylene, acetates, butyrates, nylons, polyphenylene sulfides, acetals, polycarbonates and thermoplastic rubbers and polyesters, among other possibilities.
-14-86331-77(CA) Typically, a controlled amount of colorant is added to the mixture in extruder 106 and in each extruder 1201,...,120N, for obtaining viscous plastic mixtures of respective specific colors.
Different techniques, known in the art, may be used to color the plastic mixtures in the extruders 106 and 1201,...,120N. In one example, colorant in the form of granules is added to and mixed with the plastic granules before they are fed into the extruders 106 and 1201,...,120N for melting.
In another example, colorant in liquid form may be fed into the extruders for mixing with the plastic granules. Alternatively, the non-recycled plastic granules themselves can be pre-colored such that it is not necessary to add colorant to the mixture. In another alternative, recycled plastic granules of a specific color may be used in the extruders 106 1201,...,120N, such that the addition of a colorant is not required.
In a specific practical implementation, the mixture "A" used in the primary extruder 106 may be a translucent material and the mixture "D" in the secondary extruders 1201 may be a mixture of a specific color. Similarly, the mixture "E" in another secondary extruder 120N
may be a mixture of a specific color, which may be the same or distinct from the color of mixture "D" used in the secondary extruder 1201.
The primary extruder 106 is configured to melt and mix the plastic granules such that the mixture 110, which is released from extruder 106, is perfectly melted and homogeneous, both in temperature and in color, upon its exit from the extruder 106.
Similarly, a secondary extruder 120 is configured to melt and mix the plastic granules such that the mixture 122, which is released from a secondary extruder 120, is also perfectly melted and homogeneous, both in temperature and in color, upon exit from the extruder 120.
Note that, with regard to the plastic mixture released by the primary extruder 106, the term "melted" implies that the mixture is characterized by a viscous or semi-fluid flow. The plastic mixture 110 released is also referred to herein as a flow of a first viscous material 110. The
Different techniques, known in the art, may be used to color the plastic mixtures in the extruders 106 and 1201,...,120N. In one example, colorant in the form of granules is added to and mixed with the plastic granules before they are fed into the extruders 106 and 1201,...,120N for melting.
In another example, colorant in liquid form may be fed into the extruders for mixing with the plastic granules. Alternatively, the non-recycled plastic granules themselves can be pre-colored such that it is not necessary to add colorant to the mixture. In another alternative, recycled plastic granules of a specific color may be used in the extruders 106 1201,...,120N, such that the addition of a colorant is not required.
In a specific practical implementation, the mixture "A" used in the primary extruder 106 may be a translucent material and the mixture "D" in the secondary extruders 1201 may be a mixture of a specific color. Similarly, the mixture "E" in another secondary extruder 120N
may be a mixture of a specific color, which may be the same or distinct from the color of mixture "D" used in the secondary extruder 1201.
The primary extruder 106 is configured to melt and mix the plastic granules such that the mixture 110, which is released from extruder 106, is perfectly melted and homogeneous, both in temperature and in color, upon its exit from the extruder 106.
Similarly, a secondary extruder 120 is configured to melt and mix the plastic granules such that the mixture 122, which is released from a secondary extruder 120, is also perfectly melted and homogeneous, both in temperature and in color, upon exit from the extruder 120.
Note that, with regard to the plastic mixture released by the primary extruder 106, the term "melted" implies that the mixture is characterized by a viscous or semi-fluid flow. The plastic mixture 110 released is also referred to herein as a flow of a first viscous material 110. The
-15-86331-77(CA) extruder 106 releases the flow of the first viscous material at a first rate of flow. The first rate of flow may be any suitable rate flow depending on the type of extrudable material that is being created by the system 100, for example 400 kg/hr, 300 kg/hr, 100 kg/hr or 50 kg/hr, among many other possibilities. As will be described in greater detail later on in the present document, the flow of the first viscous material 110 may be provided at a first rate of flow that can be caused to vary over time.
With regard to the plastic mixture output by the secondary extruders 1201,...,120N, the term "melted" also implies that the mixture is characterized by a viscous or semi-fluid flow. The plastic mixture 122 output by each extruder 120 is also referred to herein as a flow of a (second) viscous material 122. Each one of the secondary extruders 120 may be set to a respective rate of flow, for example 400 kg/hr, 300 kg/hr, 100 kg/hr, 50 kg,/hr, 25 kg/hr or 10 kg/hr among many other possibilities. In the embodiment shown in Figure 1, during the creation of an extruded material, the secondary extruders 1201,...,120N may be set to operate such as to release the plastic mixtures 122 at respective rates of flow that are kept substantially constant over time. It is however to be appreciated that, in alternate embodiments, the rates of flow of material released by any of the secondary extruders 1201,...,120N may be caused to vary over a time period so that flows of both the viscous material released by the primary extruder 106 and one or more of the secondary extruders 1201,...,120N are caused to vary over time. It is also to be appreciated that, in such alternative embodiments, the time intervals over which the viscous material released by the primary extruder 106 and the viscous material released by or more of the secondary extruders 1201,...,120N are caused to vary need not be the same.
The structure and functionality of extruders are well known to those skilled in the art, and will not be described in further detail.
In the embodiment depicted in Figure 1, the primary extruder 106 is in communication with a flow rate controller 152 configured for varying over time the rate of flow of the viscous material 110 released by the primary extruder 106.
With regard to the plastic mixture output by the secondary extruders 1201,...,120N, the term "melted" also implies that the mixture is characterized by a viscous or semi-fluid flow. The plastic mixture 122 output by each extruder 120 is also referred to herein as a flow of a (second) viscous material 122. Each one of the secondary extruders 120 may be set to a respective rate of flow, for example 400 kg/hr, 300 kg/hr, 100 kg/hr, 50 kg,/hr, 25 kg/hr or 10 kg/hr among many other possibilities. In the embodiment shown in Figure 1, during the creation of an extruded material, the secondary extruders 1201,...,120N may be set to operate such as to release the plastic mixtures 122 at respective rates of flow that are kept substantially constant over time. It is however to be appreciated that, in alternate embodiments, the rates of flow of material released by any of the secondary extruders 1201,...,120N may be caused to vary over a time period so that flows of both the viscous material released by the primary extruder 106 and one or more of the secondary extruders 1201,...,120N are caused to vary over time. It is also to be appreciated that, in such alternative embodiments, the time intervals over which the viscous material released by the primary extruder 106 and the viscous material released by or more of the secondary extruders 1201,...,120N are caused to vary need not be the same.
The structure and functionality of extruders are well known to those skilled in the art, and will not be described in further detail.
In the embodiment depicted in Figure 1, the primary extruder 106 is in communication with a flow rate controller 152 configured for varying over time the rate of flow of the viscous material 110 released by the primary extruder 106.
-16-86331-77(CA) As depicted in Figure 2, the flow rate controller 152 associated with the primary extruder 106 may include an electronic control element 606 configured for causing the first rate of flow of the viscous material 110 to vary over time. More specifically, and as shown in the specific embodiment depicted, the flow rate controller 152 may include a variable speed motor 604 configured for operating at different speeds an extruder screw 602 in the extruder 106. In this embodiment, the electronic control element 606 includes a processor (not shown) programmed for releasing control signals for controlling the speed of operation of the variable speed motor 604, which in turn causes a variation in a speed of rotation of the extruder screw 602 in the primary extruder 106. Any suitable manner for controlling the speed of operation of the variable speed motor 604 may be used and such manners are known in the art and will not be described further here.
In a specific practical implementation, the flow rate controller 152 may be configured for varying the first rate of flow over time at least in part by causing the first rate of flow to oscillate between a lower flow rate threshold and an upper flow rate threshold over a certain time interval.
In specific practical implementation, the lower flow rate threshold, the upper flow rate threshold and/or the time period may be preset, for example by a programmed element stored in the flow rate controller 152. Optionally, the lower flow rate threshold and/or the upper flow rate threshold and/or the time period may be set (or modified) by an operator of the system 100 in order to control at least in part visual characteristics of the color pattern in the stream of combined viscous material that will be generated by the system 100. For example by shortening the time period, more compact visual wave-like effects may be caused in the resulting output stream of combined viscous material while extending the time period may allow smoother/software visual wave-like effects to be created. The time period may be set to any suitable duration in dependence on the desired visual effect to be created in the extrudable material. In non-limiting practical implementations, the time interval used tends to range between about 20 seconds and about 1 minute. If we look now to the flow rate thresholds,
In a specific practical implementation, the flow rate controller 152 may be configured for varying the first rate of flow over time at least in part by causing the first rate of flow to oscillate between a lower flow rate threshold and an upper flow rate threshold over a certain time interval.
In specific practical implementation, the lower flow rate threshold, the upper flow rate threshold and/or the time period may be preset, for example by a programmed element stored in the flow rate controller 152. Optionally, the lower flow rate threshold and/or the upper flow rate threshold and/or the time period may be set (or modified) by an operator of the system 100 in order to control at least in part visual characteristics of the color pattern in the stream of combined viscous material that will be generated by the system 100. For example by shortening the time period, more compact visual wave-like effects may be caused in the resulting output stream of combined viscous material while extending the time period may allow smoother/software visual wave-like effects to be created. The time period may be set to any suitable duration in dependence on the desired visual effect to be created in the extrudable material. In non-limiting practical implementations, the time interval used tends to range between about 20 seconds and about 1 minute. If we look now to the flow rate thresholds,
-17-86331-77(CA) increasing the upper flow rate threshold would tend to cause an increased volume of the first viscous material ("A") to be pushed towards the feed block 104, which in turn causes a greater amount of this substance to find itself in the resulting output stream of combined viscous material. Analogously, decreasing the lower flow rate threshold would tend to cause a reduced volume of the first viscous material ("A") to be pushed towards the feed block 104, which in turn causes a lesser amount of this substance to find itself in the resulting output stream of combined viscous material. Other variations can be made in the same manner to achieve different color patterns.
In the embodiment depicted in Figure 2, the control of the first flow rate may be achieved by operating the variable speed motor 604 such as to cause the extruder screw 602 to vary its speed of rotation between an upper threshold and a lower threshold over a time period. Figs. 4A and 4B
show charts illustrating variations of the speed of operation of the extruder screw 602 over time in connection with extruder 106. It is to be appreciated that the examples shown in Figures 4A
and 4B have been set forth for the purpose of illustration only and that many other suitable manners of varying over time the rate of flow of the viscous material 110 released by the primary extruder 106 may be contemplated and will become apparent to the person skilled in the art in view of the present description.
Optionally in some embodiments, such as the specific one depicted in Figure 3, the electronic control element 606 of the flow rate controller 152 may provide one or more user operable controls 700 702 732 for allowing a user to set the lower flow rate threshold and/or the upper flow rate threshold and/or the time interval in order to control at least in part visual characteristics of the color pattern in the stream of combined viscous material exiting the system.
The user operable controls 700 702 732 may include mechanically actuated switches that allow a user to providing control commands to increase or decrease a corresponding flow control parameter (for e.g. the lower flow rate threshold, the upper flow rate threshold or the time period). Optionally, display areas 704 708 734 may be provided showing values of the flow control parameters. It is to be appreciate that, although the electronic control element 606 shown
In the embodiment depicted in Figure 2, the control of the first flow rate may be achieved by operating the variable speed motor 604 such as to cause the extruder screw 602 to vary its speed of rotation between an upper threshold and a lower threshold over a time period. Figs. 4A and 4B
show charts illustrating variations of the speed of operation of the extruder screw 602 over time in connection with extruder 106. It is to be appreciated that the examples shown in Figures 4A
and 4B have been set forth for the purpose of illustration only and that many other suitable manners of varying over time the rate of flow of the viscous material 110 released by the primary extruder 106 may be contemplated and will become apparent to the person skilled in the art in view of the present description.
Optionally in some embodiments, such as the specific one depicted in Figure 3, the electronic control element 606 of the flow rate controller 152 may provide one or more user operable controls 700 702 732 for allowing a user to set the lower flow rate threshold and/or the upper flow rate threshold and/or the time interval in order to control at least in part visual characteristics of the color pattern in the stream of combined viscous material exiting the system.
The user operable controls 700 702 732 may include mechanically actuated switches that allow a user to providing control commands to increase or decrease a corresponding flow control parameter (for e.g. the lower flow rate threshold, the upper flow rate threshold or the time period). Optionally, display areas 704 708 734 may be provided showing values of the flow control parameters. It is to be appreciate that, although the electronic control element 606 shown
-18-86331-77(CA) in Figure 3 has been shown as including a dedicated control interface incorporating user operable controls, in alternative embodiment such control interface may be provided on the display screen of a general purpose computing device in communication with the electronic control element 606 and programmed to display a control interface including user operable controls of the type described above.
In the context of the present invention, the extruder 106 and one or more of extruders 1201,...,120N produce plastic mixtures 110 122 of different colors and, optionally different viscosities. In a specific, non-limiting example, the system 100 may include a extruder 106 and one secondary extruder 1201 which producing plastic mixtures 110 122. In another example, the system 100 may include one primary extruder 106 and two secondary extruders 1201 1202 each of which is producing a plastic mixture of a different color and, optionally different viscosity.
In a practical embodiment, the plastic mixture 110 released by the (primary) extruder 106 is characterized by a first viscosity and the plastic mixture 122 released by the (secondary) extruder 120 has a second viscosity. The first viscosity and the second viscosity may be essentially the same or may be distinct from one another. The first viscosity may be lower (or higher) than the second viscosity. In embodiments in which there may be multiple (secondary) extruders 120, the plastic mixtures released by each (secondary) extruder may have the same (or similar) viscosity or, alternatively, may each have a distinct viscosity.
The use of materials having different viscosities may reduce an amount of color blending between the first color and the second color when the materials are combined in the feedblock 104 and static mixer 108 as will be described later on in the present document. The respective viscosities of the materials released by the (primary) extruder 106 and the (secondary) extruder(s) 120 may also be expressed in terms of high load melt index (HLMI).
In this regard, the first viscous material may be associated with a first high load melt index (first HLMI) and the second viscous material may be associated with a second high load melt index (second HLMI).
The first HLMI may be greater (or less) than the second HLMI.
In the context of the present invention, the extruder 106 and one or more of extruders 1201,...,120N produce plastic mixtures 110 122 of different colors and, optionally different viscosities. In a specific, non-limiting example, the system 100 may include a extruder 106 and one secondary extruder 1201 which producing plastic mixtures 110 122. In another example, the system 100 may include one primary extruder 106 and two secondary extruders 1201 1202 each of which is producing a plastic mixture of a different color and, optionally different viscosity.
In a practical embodiment, the plastic mixture 110 released by the (primary) extruder 106 is characterized by a first viscosity and the plastic mixture 122 released by the (secondary) extruder 120 has a second viscosity. The first viscosity and the second viscosity may be essentially the same or may be distinct from one another. The first viscosity may be lower (or higher) than the second viscosity. In embodiments in which there may be multiple (secondary) extruders 120, the plastic mixtures released by each (secondary) extruder may have the same (or similar) viscosity or, alternatively, may each have a distinct viscosity.
The use of materials having different viscosities may reduce an amount of color blending between the first color and the second color when the materials are combined in the feedblock 104 and static mixer 108 as will be described later on in the present document. The respective viscosities of the materials released by the (primary) extruder 106 and the (secondary) extruder(s) 120 may also be expressed in terms of high load melt index (HLMI).
In this regard, the first viscous material may be associated with a first high load melt index (first HLMI) and the second viscous material may be associated with a second high load melt index (second HLMI).
The first HLMI may be greater (or less) than the second HLMI.
-19-86331-77(CA) It has been observed that using materials with differing HLMIs reduces the amount of blending between the materials. The greater the difference in high load melt index, the lesser the amount of blending appears to occur. The first HLMI may be at least about ten times (10x); at least about twenty times (20x); or at least about one hundred times (100x) the second HLMI. It is to be appreciated that, in practical implementations, the use of material having different viscosities may achieve different color effects compared to the use of materials of uniform viscosities and that such materials may be use alone or in combination with the variation in flow rate of the flow released by the primary extruder 106.
The plastic mixture 110 released by the (primary) extruder 106 and the one or more plastic mixtures 122 released by the one or more (secondary) extruders 1201,...,120N
are then provided to the feed block 104.
The feed block 104 is configured for combining the flows 110 122 of viscous plastic output by the different extruders 106 1201,...,120N into a single patterned stream of combined viscous plastic, as will be discussed further below.
In the example depicted, the feed block 104 is comprised of multiple sequence feed blocks 1041 ... 104N where each feed block injects an additional stream of viscous material released by a respective secondary extruder 1201,...,120N into the stream of viscous material released by first (primary) extruder 106 or released by a previous feed block in the sequence.
It will however be appreciated that other configurations for feed block 104 are possible in alternative implementations. For example, feed block 104 may be comprised of a single modules having N+1 input streams, where N corresponds for the number of secondary extruders 1201,...,120N in the system.
Figure 6 illustrates a non-limiting example of a possible configuration for the feed block 104, for the case in which the system 100 is formed of one primary extruder 106 and two secondary
The plastic mixture 110 released by the (primary) extruder 106 and the one or more plastic mixtures 122 released by the one or more (secondary) extruders 1201,...,120N
are then provided to the feed block 104.
The feed block 104 is configured for combining the flows 110 122 of viscous plastic output by the different extruders 106 1201,...,120N into a single patterned stream of combined viscous plastic, as will be discussed further below.
In the example depicted, the feed block 104 is comprised of multiple sequence feed blocks 1041 ... 104N where each feed block injects an additional stream of viscous material released by a respective secondary extruder 1201,...,120N into the stream of viscous material released by first (primary) extruder 106 or released by a previous feed block in the sequence.
It will however be appreciated that other configurations for feed block 104 are possible in alternative implementations. For example, feed block 104 may be comprised of a single modules having N+1 input streams, where N corresponds for the number of secondary extruders 1201,...,120N in the system.
Figure 6 illustrates a non-limiting example of a possible configuration for the feed block 104, for the case in which the system 100 is formed of one primary extruder 106 and two secondary
-20-86331-77(CA) extruders 1201 and 120N, wherein the primary extruder 106 releases a flow 110 of viscous material of a greater size than the flows 122 released by each of the secondary extruders 1201 and 120N. Thus, the feed block 104 receives three distinct flows 110 122 of viscous plastic, each of which is input to the feed block 104 from the associated extruder 106 and 1201 and 120N via a respective feed port 270 200.
The feed block 104 also includes a programming section 202, which receives the flows 110 and 122 from the feed ports 270 200 into corresponding channels 284 204. This programming section 202 is operative to shape and position the flows 110 and 122 according to a predetermined pattern, whereby the flows undergo a programming of sorts within the channels 284 204 in order to produce a desired pattern for the stream of combined viscous material. In the example shown in Figure 6, the channels 284 204 of the programming section 202 are designed to produce a pattern of layers where the layer associated with the flow 110 is shown as having a greater volume/size that the layers associated with the flows 122 to accommodate the higher flow rate of the first viscous material in the present example. It is to be appreciated that different sizes, shapes and layouts for the channels 284 204 of the programming section 202 may also be used, in order to produce different patterns for the stream of combined viscous material.
Note that the programming section 202 of the feed block 104 may be designed to divide a particular flow 110 or 122 into two or more sub-flows, for producing a different pattern for the stream of combined viscous material. In a specific example, assume the feed block 104 receives two flows 110 and 122, one that flow 110 is translucent in color and that flow 122 is red in color.
The programming section 202 may divide the red flow 122 into two red sub-flows, and orient these sub-flows such that the translucent flow 110 is sandwiched between the two red sub-flows, according to a particular layout and pattern.
Finally, the feed block 104 includes a transition section 206, operative to fuse together the separate flows 110 and 122, for generating the patterned stream of combined viscous material.
As seen in Figure 6, the channels 288 208 of the transition section 206 are oriented such that
The feed block 104 also includes a programming section 202, which receives the flows 110 and 122 from the feed ports 270 200 into corresponding channels 284 204. This programming section 202 is operative to shape and position the flows 110 and 122 according to a predetermined pattern, whereby the flows undergo a programming of sorts within the channels 284 204 in order to produce a desired pattern for the stream of combined viscous material. In the example shown in Figure 6, the channels 284 204 of the programming section 202 are designed to produce a pattern of layers where the layer associated with the flow 110 is shown as having a greater volume/size that the layers associated with the flows 122 to accommodate the higher flow rate of the first viscous material in the present example. It is to be appreciated that different sizes, shapes and layouts for the channels 284 204 of the programming section 202 may also be used, in order to produce different patterns for the stream of combined viscous material.
Note that the programming section 202 of the feed block 104 may be designed to divide a particular flow 110 or 122 into two or more sub-flows, for producing a different pattern for the stream of combined viscous material. In a specific example, assume the feed block 104 receives two flows 110 and 122, one that flow 110 is translucent in color and that flow 122 is red in color.
The programming section 202 may divide the red flow 122 into two red sub-flows, and orient these sub-flows such that the translucent flow 110 is sandwiched between the two red sub-flows, according to a particular layout and pattern.
Finally, the feed block 104 includes a transition section 206, operative to fuse together the separate flows 110 and 122, for generating the patterned stream of combined viscous material.
As seen in Figure 6, the channels 288 208 of the transition section 206 are oriented such that
-21-86331-77(CA) their output ports 210 are located immediately adjacent one another. As the distinct flows 110 and 122 exit the respective output ports 210, the flows of the viscous plastics, fuse together into a single, combined stream of viscous plastic.
In the context of the present invention, the stream of combined viscous material generated by the feed block 104 is characterized by zones of material having different colors and, optionally, different viscosities. More specifically, at least one zone of material may be formed of a first viscous plastic material of a first color and first viscosity (material "A") and another zone may be formed of a second viscous plastic of a second color and second viscosity (material "D").
As mentioned above, the stream of combined viscous material released by the feed block 104 may take on different patterns, without departing from the scope of the present invention. Rather than a horizontal layer pattern, the feed block 104 may combine the different flows 110 122 according to a vertical layer pattern, a ring pattern, a tube pattern or a pie chart pattern, among many other possibilities. In the case of the ring pattern, each separate flow 110 122 of viscous plastic may be formed into a concentric ring, where the rings of different colors and sizes are fused together to form a tube of combined viscous plastic characterized by adjacent zones of different colors and, optionally, different viscosities. In the case of the tube pattern, the separate flows 110 122 may be positioned with respect to one another such that, when fused together, they form an elongate tube, characterized by adjacent zones of different colors and, optionally, different viscosities.
Figures 9A, 9B, 9C and 9D show examples of cross-sections of combined streams of viscous material that may be generated using different practical embodiments of the feed block 104. For example, Figure 9A shows examples of cross-sections including (a) a first viscous material ("A") only; (b) first viscous material ("A") and second viscous material ("D"); and (c) first viscous material ("A"), second viscous material ("D") and third viscous material ("E"). It is to be understood that there is a myriad of other possible configurations and that the examples here have been shown for the purpose of illustration only.
In the context of the present invention, the stream of combined viscous material generated by the feed block 104 is characterized by zones of material having different colors and, optionally, different viscosities. More specifically, at least one zone of material may be formed of a first viscous plastic material of a first color and first viscosity (material "A") and another zone may be formed of a second viscous plastic of a second color and second viscosity (material "D").
As mentioned above, the stream of combined viscous material released by the feed block 104 may take on different patterns, without departing from the scope of the present invention. Rather than a horizontal layer pattern, the feed block 104 may combine the different flows 110 122 according to a vertical layer pattern, a ring pattern, a tube pattern or a pie chart pattern, among many other possibilities. In the case of the ring pattern, each separate flow 110 122 of viscous plastic may be formed into a concentric ring, where the rings of different colors and sizes are fused together to form a tube of combined viscous plastic characterized by adjacent zones of different colors and, optionally, different viscosities. In the case of the tube pattern, the separate flows 110 122 may be positioned with respect to one another such that, when fused together, they form an elongate tube, characterized by adjacent zones of different colors and, optionally, different viscosities.
Figures 9A, 9B, 9C and 9D show examples of cross-sections of combined streams of viscous material that may be generated using different practical embodiments of the feed block 104. For example, Figure 9A shows examples of cross-sections including (a) a first viscous material ("A") only; (b) first viscous material ("A") and second viscous material ("D"); and (c) first viscous material ("A"), second viscous material ("D") and third viscous material ("E"). It is to be understood that there is a myriad of other possible configurations and that the examples here have been shown for the purpose of illustration only.
-22-86331-77(CA) Note that a generally uniform transition of the flows 110 122 from the extruders 106 120 to the feed ports 270 200 of the feed block 104, as well as from one component to another within the feed block 104, without any brusque variations in the channel dimensions may assist in reducing the likelihood of stagnation of the viscous plastic material within the feed block 104.
The use of feed blocks in extrusion processes is well known in the art and, as such, additional details pertaining to the feed block structure and functionality will not be described in further detail herein.
Specific to the present invention, the stream of combined viscous material released by the feed block 104 is fed through a static mixer pipe 108. The static mixer 108 is operative to act on the stream of combined viscous material for partially mixing the adjacent zones of different colors (and optionally different viscosities) in order to create color effects in the stream of combined viscous material.
Static mixers are known in the industry to be useful for effectively mixing fluids, by executing the operations of division of flow, radial mixing and flow reversal. The most common type of static mixer is the helical static mixer, as seen in the example of Figure 7, which includes a series of static elements positioned adjacent another. Each element may be formed of a rectangular plate twisted by 180 degrees, which splits the oncoming flow in half and then turns it through 180 degrees. Each element in the series may be rotated 90 degrees with respect to the preceding element, so as to constantly subdivide the flow. When two fluids of different colors enter a static helical mixer pipe, the dividing and overturning motion applied to the fluids by the elements of the mixer results in a gradual blending of the two fluids. More specifically, as the fluids go along the curves of each element, they are rotated radially towards the pipe wall, or rotated back to the center. Furthermore, as the fluids pass from one element to the next, the fluids are bisected and they change direction to the right or to the left, the force of inertia that suddenly occurs creating a strong flow reversal motion that results in stirring and mixing of the fluids.
The use of feed blocks in extrusion processes is well known in the art and, as such, additional details pertaining to the feed block structure and functionality will not be described in further detail herein.
Specific to the present invention, the stream of combined viscous material released by the feed block 104 is fed through a static mixer pipe 108. The static mixer 108 is operative to act on the stream of combined viscous material for partially mixing the adjacent zones of different colors (and optionally different viscosities) in order to create color effects in the stream of combined viscous material.
Static mixers are known in the industry to be useful for effectively mixing fluids, by executing the operations of division of flow, radial mixing and flow reversal. The most common type of static mixer is the helical static mixer, as seen in the example of Figure 7, which includes a series of static elements positioned adjacent another. Each element may be formed of a rectangular plate twisted by 180 degrees, which splits the oncoming flow in half and then turns it through 180 degrees. Each element in the series may be rotated 90 degrees with respect to the preceding element, so as to constantly subdivide the flow. When two fluids of different colors enter a static helical mixer pipe, the dividing and overturning motion applied to the fluids by the elements of the mixer results in a gradual blending of the two fluids. More specifically, as the fluids go along the curves of each element, they are rotated radially towards the pipe wall, or rotated back to the center. Furthermore, as the fluids pass from one element to the next, the fluids are bisected and they change direction to the right or to the left, the force of inertia that suddenly occurs creating a strong flow reversal motion that results in stirring and mixing of the fluids.
-23-86331-77(CA) The color pattern in the stream released by the static mixer 108 is configured at least in part based on a radial orientation of the static mixer. The color pattern in the stream may be altered by performing a rotation of the static mixer 108 by a pre-determined rotation amount. The pre-determined rotation amount may be established based on an internal structure of the static mixer 108 such that upon exiting the static mixer a desired effect may be achieved in the stream of viscous material. In specific practical implementations, the pre-determined rotation amount may be a rotation of about 45 , 90 , 135 or 180 however other rotation amount may also be suitable for other static mixers.
Note that, for fluids of different types and/or viscosity, a different number of elements may be required in the static mixer in order to obtain a complete mixing of the two or more fluids from entry into the static mixer to output from the static mixer.
Different types of static mixers exist for uniformly mixing fluids in order to produce a homogenous mixture, such as the example shown in Figure 8. Such static mixers are all designed around the same principle, notably passing the viscous fluids through a series of elements that cause the fluids to undergo different flow patterns resulting in the mixing of the fluids. The present invention is not limited to any particular type or design of static mixer.
Under the present invention, the static mixer 108 may be characterized by a specific number of elements, such that, upon exit from the static mixer 108, only a partial mixing of the different colored zones of the stream of combined viscous material has occurred, creating a blended, gradation in the colors of the stream of combined viscous material.
More specifically, upon entering the static mixer pipe 108, the stream of combined viscous material includes adjacent zones of first and second colors (and optionally first and second viscosities) respectively. The static mixer 108 is operative to mix together a portion of the zones such that, when the stream of combined viscous material exits the static mixer 108, the stream of
Note that, for fluids of different types and/or viscosity, a different number of elements may be required in the static mixer in order to obtain a complete mixing of the two or more fluids from entry into the static mixer to output from the static mixer.
Different types of static mixers exist for uniformly mixing fluids in order to produce a homogenous mixture, such as the example shown in Figure 8. Such static mixers are all designed around the same principle, notably passing the viscous fluids through a series of elements that cause the fluids to undergo different flow patterns resulting in the mixing of the fluids. The present invention is not limited to any particular type or design of static mixer.
Under the present invention, the static mixer 108 may be characterized by a specific number of elements, such that, upon exit from the static mixer 108, only a partial mixing of the different colored zones of the stream of combined viscous material has occurred, creating a blended, gradation in the colors of the stream of combined viscous material.
More specifically, upon entering the static mixer pipe 108, the stream of combined viscous material includes adjacent zones of first and second colors (and optionally first and second viscosities) respectively. The static mixer 108 is operative to mix together a portion of the zones such that, when the stream of combined viscous material exits the static mixer 108, the stream of
-24-86331-77(CA) combined viscous material may be characterized by zones of a third color, different from the first and second colors. It should be understood that the zones of color that exit the static mixer 108 are not necessarily clearly defined zones. In a first embodiment there can be a sharp transition between the color of one zone and the color of an adjacent zone, thereby creating clearly defined zones. However in an alternate embodiment, there can be a slow color gradation from the color of one zone to the color of an adjacent zone, such that the border between the two zones is not clearly defined. In addition, the shapes of the zones can vary. For example, the zones can be substantially straight, or can be wavy or curved. Likewise, the zones can be horizontally oriented, vertically oriented, or diagonally oriented at any angle between horizontally oriented and vertically oriented.
Typically, when the stream of combined viscous material exits the static mixer 108, the third zone of a third color is a combination of the colors of the first and second zones. For example, if the stream of combined viscous material that enters the static mixer 108 includes a first zone that is yellow and a second zone that is red, then typically, the stream of combined viscous material that exits the static mixer may include a third zone that is a shade of orange.
Alternatively, when the stream of combined viscous material exits the static mixer 108, the third zone of the third color is not necessarily located between the first and second zones of the first and second color. Instead, it is possible that the third zone of the third color is located between two zones of the first color, or two zones of the second color. For example, if the stream of combined viscous material that enters the static mixer 108 includes a first zone that is white and a second zone that is blue, then the stream of combined viscous material that exits the static mixer may have a third zone that is a lighter shade of blue. As such, it should be understood that for the purposes of the present invention, the third color can be a lighter shade of one of the first and second colors. In addition, it is possible that the stream of combined viscous material that exits the static mixer 108 will not include a zone of white, and that instead the stream of combined viscous material includes a zone of the light blue located between two zones of the blue that entered the static mixer.
Typically, when the stream of combined viscous material exits the static mixer 108, the third zone of a third color is a combination of the colors of the first and second zones. For example, if the stream of combined viscous material that enters the static mixer 108 includes a first zone that is yellow and a second zone that is red, then typically, the stream of combined viscous material that exits the static mixer may include a third zone that is a shade of orange.
Alternatively, when the stream of combined viscous material exits the static mixer 108, the third zone of the third color is not necessarily located between the first and second zones of the first and second color. Instead, it is possible that the third zone of the third color is located between two zones of the first color, or two zones of the second color. For example, if the stream of combined viscous material that enters the static mixer 108 includes a first zone that is white and a second zone that is blue, then the stream of combined viscous material that exits the static mixer may have a third zone that is a lighter shade of blue. As such, it should be understood that for the purposes of the present invention, the third color can be a lighter shade of one of the first and second colors. In addition, it is possible that the stream of combined viscous material that exits the static mixer 108 will not include a zone of white, and that instead the stream of combined viscous material includes a zone of the light blue located between two zones of the blue that entered the static mixer.
-25-86331-77(CA) Note that the static mixer pipe 108 may include two or more static mixers, for acting simultaneously on different portions of the stream of combined viscous material as the stream passes through the pipe 108.
Take for example the case where the system 100 includes a first extruder 106 producing a flow 110 of translucent viscous plastic, a second extruder 1201 producing a flow 122 of blue viscous plastic and a third extruder 1202 producing a flow 122 of yellow viscous plastic. Assume that the feed block 104 is operative to combine these three separate flows 110 122, characterized by:(a) a zone of yellow; (b) a zone of blue and (c) a translucent zone. With reference to Figure 9A(c) and Figure 10, as this combined stream passes through the static mixer pipe 108, the three zones of color are partially mixed together. Thus, other zones, green in color, may be created around the yellow and blue zones of the stream as well as around the translucent zones.
Additional zones of color may also be created, located between the green zone and the yellow zone, as well as between the green zone and the blue zone. Upon its exit from the static mixer 108, the stream of combined viscous material of viscous plastic may include a gradation in color from yellow to blue, and includes zone of different colors.
Note that the length of the static mixer 108 that is necessary to obtain a partial mixing of the different colored zones of the stream of combined viscous material of viscous plastic may vary for different implementations of the system 100. The present invention is not limited to any specific length, or number of elements, for the static mixer pipe 108.
The selection of an appropriate static mixer 108 is based on certain predetermined parameters, including the diameter, length and orientation of the elements themselves within the static mixer 108. Furthermore, the determination of the appropriate dimensions for the static mixer 108 will depend on the type of plastic material in use within the system 100, as well as the respective rate of flow for each extruder 106 1201,..., 120N and the total rate of flow for the stream of combined viscous material output by the feed block 104
Take for example the case where the system 100 includes a first extruder 106 producing a flow 110 of translucent viscous plastic, a second extruder 1201 producing a flow 122 of blue viscous plastic and a third extruder 1202 producing a flow 122 of yellow viscous plastic. Assume that the feed block 104 is operative to combine these three separate flows 110 122, characterized by:(a) a zone of yellow; (b) a zone of blue and (c) a translucent zone. With reference to Figure 9A(c) and Figure 10, as this combined stream passes through the static mixer pipe 108, the three zones of color are partially mixed together. Thus, other zones, green in color, may be created around the yellow and blue zones of the stream as well as around the translucent zones.
Additional zones of color may also be created, located between the green zone and the yellow zone, as well as between the green zone and the blue zone. Upon its exit from the static mixer 108, the stream of combined viscous material of viscous plastic may include a gradation in color from yellow to blue, and includes zone of different colors.
Note that the length of the static mixer 108 that is necessary to obtain a partial mixing of the different colored zones of the stream of combined viscous material of viscous plastic may vary for different implementations of the system 100. The present invention is not limited to any specific length, or number of elements, for the static mixer pipe 108.
The selection of an appropriate static mixer 108 is based on certain predetermined parameters, including the diameter, length and orientation of the elements themselves within the static mixer 108. Furthermore, the determination of the appropriate dimensions for the static mixer 108 will depend on the type of plastic material in use within the system 100, as well as the respective rate of flow for each extruder 106 1201,..., 120N and the total rate of flow for the stream of combined viscous material output by the feed block 104
-26-86331-77(CA) In a specific, non-limiting example, in order to create a sheet of plastic having a red-orange-yellow wave-like appearance once it has exited the static mixer 108, a first extruder having a 3 1/2 inch diameter is supplied with new plastic granules and 4% red colorant, and a second extruder having a 1 1/2 inch diameter at 75 rpm is supplied with new plastic granules and 4% yellow colorant. In this non-limiting example, the first extruder is operated at a variable speed that fluctuates between about 15rpm and 50rpm over a 40second time interval. From the extruders, viscous flows of red and yellow plastic are fed into a feedblock that forms the flows of red and yellow plastic into a stream of adjacent zones, which it feeds into a helical static mixer having a 21/2 inch diameter made of 3 elements.
In another specific, non-limiting example, in order to create a sheet of plastic having a blue, white and light blue appearance once it has exited the static mixer, a first extruder having a 3 1/2 inch diameter is supplied with new plastic granules and 2% white colorant, and a second extruder having a 1 1/2 inch diameter at 70 rpm is supplied with new plastic granules and 4% blue colorant. In this other non-limiting example, the first extruder is operated at a variable speed that fluctuates between about 12rpm and 60rpm over a 20second time interval. From the extruders, the flows of white and blue viscous plastic are fed into a feedblock that forms the two flows into a three layer stream of blue, white and blue which it feeds into a helical static mixer having a 2 1/2 =
inch diameter made of 6 elements.
Note that different orientations of the static mixer 108 with respect to the longitudinal plane of the stream of combined viscous material will result in different patterns of color gradation in the stream of combined viscous material at the output of the static mixer pipe 108. For example, in the case of a helical static mixer 108, if the last element of the static mixer 108 is oriented horizontally with respect to the plane of the stream of combined viscous material, the static mixer 108 will tend to produce longitudinal bands of color in the stream of combined viscous material. In contrast, if the last element is oriented vertically with respect to the plane of the
In another specific, non-limiting example, in order to create a sheet of plastic having a blue, white and light blue appearance once it has exited the static mixer, a first extruder having a 3 1/2 inch diameter is supplied with new plastic granules and 2% white colorant, and a second extruder having a 1 1/2 inch diameter at 70 rpm is supplied with new plastic granules and 4% blue colorant. In this other non-limiting example, the first extruder is operated at a variable speed that fluctuates between about 12rpm and 60rpm over a 20second time interval. From the extruders, the flows of white and blue viscous plastic are fed into a feedblock that forms the two flows into a three layer stream of blue, white and blue which it feeds into a helical static mixer having a 2 1/2 =
inch diameter made of 6 elements.
Note that different orientations of the static mixer 108 with respect to the longitudinal plane of the stream of combined viscous material will result in different patterns of color gradation in the stream of combined viscous material at the output of the static mixer pipe 108. For example, in the case of a helical static mixer 108, if the last element of the static mixer 108 is oriented horizontally with respect to the plane of the stream of combined viscous material, the static mixer 108 will tend to produce longitudinal bands of color in the stream of combined viscous material. In contrast, if the last element is oriented vertically with respect to the plane of the
-27-86331-77(CA) stream of combined viscous material, the static mixer 108 will tend to produce vertical bands of color in the stream of combined viscous material.
Furthermore, different orientations of the static mixer 108, as well as different rates of flow for the different extruders 106 1201,..., 120N, may produce colored zones of different sizes within the stream of combined viscous material. Thus, the final color pattern achieved in the stream of combined viscous material by the static mixer 108, including both size and color dominance, is dependent on the respective rate of flow of the extruders 106 1201,..., 120N, as well as on the orientation of the static mixer 108.
The die 102 receives the stream of combined viscous material from the static mixer pipe 108, and is operative to shape the stream of combined viscous material into its final product form, such as a sheet or a tube, among many other possibilities. In the non-limiting example shown in Figure 1, the die 102 is operative to produce sheets of plastic 112 from the stream of combined viscous material. Different shapes and sizes of dies may be used within the system 100 to generate different forms and types of plastic products. The structure and functionality of such dies are well known to those skilled in the art, and as such will not be described in further detail herein.
Figures 11A and 11B illustrate two examples of products that may be formed by the die 102. In Figure 11A is shown an example of a sheet of plastic resulting from a three-color (translucent, yellow and blue) extrusion process. In its final product form, the sheet of plastic is characterized by wave-like color gradation effects including translucent zones (the color "A" from the first extruder 106), as well as waves of blue (the color "D" from extruder 1201), of yellow (the color "E" from extruder 120N) and waves of green (resulting from a partial blending of color "D" and color "E").
In Figure 11B is shown an example of a tube of plastic resulting from the same three-color extrusion process.
Furthermore, different orientations of the static mixer 108, as well as different rates of flow for the different extruders 106 1201,..., 120N, may produce colored zones of different sizes within the stream of combined viscous material. Thus, the final color pattern achieved in the stream of combined viscous material by the static mixer 108, including both size and color dominance, is dependent on the respective rate of flow of the extruders 106 1201,..., 120N, as well as on the orientation of the static mixer 108.
The die 102 receives the stream of combined viscous material from the static mixer pipe 108, and is operative to shape the stream of combined viscous material into its final product form, such as a sheet or a tube, among many other possibilities. In the non-limiting example shown in Figure 1, the die 102 is operative to produce sheets of plastic 112 from the stream of combined viscous material. Different shapes and sizes of dies may be used within the system 100 to generate different forms and types of plastic products. The structure and functionality of such dies are well known to those skilled in the art, and as such will not be described in further detail herein.
Figures 11A and 11B illustrate two examples of products that may be formed by the die 102. In Figure 11A is shown an example of a sheet of plastic resulting from a three-color (translucent, yellow and blue) extrusion process. In its final product form, the sheet of plastic is characterized by wave-like color gradation effects including translucent zones (the color "A" from the first extruder 106), as well as waves of blue (the color "D" from extruder 1201), of yellow (the color "E" from extruder 120N) and waves of green (resulting from a partial blending of color "D" and color "E").
In Figure 11B is shown an example of a tube of plastic resulting from the same three-color extrusion process.
-28-86331-77(CA) The product resulting from the extrusion process described in the present document, such as the sheet or tube of plastic, may be used as is, in different applications. For example, the sheets of plastic may be cut out to form tobogganing carpets, also referred to as crazy carpets.
Alternatively, the product resulting from the extrusion process may be thermoformed into different shapes or final products. For example, the sheets of plastic characterized by the wave-like color gradation effects may be thermoformed into pedal boats, kayaks, canoes, stand-up paddle boards or other similar watercraft products. They may also be thermoformed into recreational products, such as toboggans and pools, among many other possibilities. Whether thermoformed or not, a main advantage of the extruded product resulting from the above-described extrusion process is to provide an esthetically appealing appearance to the consumer or user.
Figure 14A shows kayaks manufactured using one or more plastic sheets of extrudable material with wave-like color gradation effects created using a process embodying aspects of the invention described in the present document.
More specifically, kayaks of the type depicted in Figure 14A may be manufactured by molding two or more of the manufactured sheets of extrudable material using thermoforming to shape the two of more manufactured sheets into a kayak shape. In such process, one or more of the two or more of the manufactured sheets may have color effects created using a process embodying aspects of the invention described in the present document.
Figures 14B and 14C show top plan and side views respectively of a stand-up paddle board (SUP) manufactured using plastic sheets of extrudable material created using a process embodying aspects of the invention described in the present document.
Figure 12 is a flowchart illustrating a process that may be implemented by the system 100 for creating color gradation effects in extruded plastic material.
Alternatively, the product resulting from the extrusion process may be thermoformed into different shapes or final products. For example, the sheets of plastic characterized by the wave-like color gradation effects may be thermoformed into pedal boats, kayaks, canoes, stand-up paddle boards or other similar watercraft products. They may also be thermoformed into recreational products, such as toboggans and pools, among many other possibilities. Whether thermoformed or not, a main advantage of the extruded product resulting from the above-described extrusion process is to provide an esthetically appealing appearance to the consumer or user.
Figure 14A shows kayaks manufactured using one or more plastic sheets of extrudable material with wave-like color gradation effects created using a process embodying aspects of the invention described in the present document.
More specifically, kayaks of the type depicted in Figure 14A may be manufactured by molding two or more of the manufactured sheets of extrudable material using thermoforming to shape the two of more manufactured sheets into a kayak shape. In such process, one or more of the two or more of the manufactured sheets may have color effects created using a process embodying aspects of the invention described in the present document.
Figures 14B and 14C show top plan and side views respectively of a stand-up paddle board (SUP) manufactured using plastic sheets of extrudable material created using a process embodying aspects of the invention described in the present document.
Figure 12 is a flowchart illustrating a process that may be implemented by the system 100 for creating color gradation effects in extruded plastic material.
-29-86331-77(CA) As shown, at step 1200, a flow of a first viscous material of a first color is provided through the primary extruder 106 (shown in Figure 1). The first viscous material (material "A") is released by the primary extruder 106 at a first rate of flow. In a first specific implementation, when providing the first viscous material (material "A"), the first rate of flow may be caused to vary over time. Varying the rate of flow of the first viscous material over time may allow modulating over time an amount of the first viscous material (material "A"), relative to an amount of the second viscous material (material "D") that finds itself in the stream of combined viscous material at different moments in time, which may allow the color effects created to vary over time and create wave-like patterns.
Figure 5A shows color effects that may be produced in extrudable plastic material using the system 100 in which the flow rate controller 152 maintains a generated constant first flow rate in connection with extruder 106 (in other words no flow rate variation is applied to extruder 106).
Figure 5B shows color effects that may be produced in extrudable plastic material using the system 100 in which the flow rate controller 152 varies the flow rate of the extrudable materia 1101. As can be observed, the modulation of the flow rate may allow creating wave-like color gradation effects in the resulting plastic material.
In one of the non-limiting practical embodiments contemplated, the first viscous material "A" is a base or carrier color. For example, the first viscous material "A" may be a translucent material and/or a neutral color such as a white (or off white), grey or any other suitable base of color.
At step 1202, which is performed concurrently with step 1200, a flow of a second viscous material of a second color, different from the first color, is provided through one of secondary extruders 120 (shown in Figure 1) The second viscous material (material "D") is released by the secondary extruder 120 at a second rate of flow. In a first specific implementation, when providing the second viscous material (material "D"), the second rate of flow is kept substantially constant over time. It is however to be understand that this need not be the case in
Figure 5A shows color effects that may be produced in extrudable plastic material using the system 100 in which the flow rate controller 152 maintains a generated constant first flow rate in connection with extruder 106 (in other words no flow rate variation is applied to extruder 106).
Figure 5B shows color effects that may be produced in extrudable plastic material using the system 100 in which the flow rate controller 152 varies the flow rate of the extrudable materia 1101. As can be observed, the modulation of the flow rate may allow creating wave-like color gradation effects in the resulting plastic material.
In one of the non-limiting practical embodiments contemplated, the first viscous material "A" is a base or carrier color. For example, the first viscous material "A" may be a translucent material and/or a neutral color such as a white (or off white), grey or any other suitable base of color.
At step 1202, which is performed concurrently with step 1200, a flow of a second viscous material of a second color, different from the first color, is provided through one of secondary extruders 120 (shown in Figure 1) The second viscous material (material "D") is released by the secondary extruder 120 at a second rate of flow. In a first specific implementation, when providing the second viscous material (material "D"), the second rate of flow is kept substantially constant over time. It is however to be understand that this need not be the case in
-30-86331-77(CA) all implementations and that the second flow rate may also be caused to vary over time in a manner similar to that described above with reference to the flow of the first viscous material.
In some specific practical implementations, the second rate of flow associated with the second viscous material of the second color may be lower than the first rate of flow.
In such implementations, the first viscous material ("A") constitutes a larger portion of the resulting stream of combined viscous material than the second viscous material ("D"). In specific practical implementations, the second rate of flow may be no more than 50% of the first rate of flow, preferably no more than 30% of the first rate of flow and more preferably no more than 20% of the first rate of flow.
In one of the non-limiting practical embodiments contemplated, the second viscous material "D"
is an accent color intended to be carried by the base (or carrier color) of material "A". For example, the second viscous material "D" may be a bright colored material and such as a red, blue, pink, green, yellow or any other color that may add visual interest to the base (or carrier color) of material "A".
In some implementations, the second viscous material "D" provided at step 1202 may have a viscosity that is distinct from the viscosity of the first viscous material "A" to reduce an amount of color blending between the first color and the second color in the stream of combined viscous material.
At step 1204, the first and second flows are combined together in the feed block 104 (shown in Figure 1) in a predetermined pattern to form a stream of combined viscous plastic.
Next, at step 1206, the stream of combined viscous plastic generated at step 1204 is fed through the static mixer 108 (shown in Figure 1), which is configured to partially mix the the first viscous material ("A") and the second viscous material ("D") such that upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material. In some cases, the color pattern created includes zones
In some specific practical implementations, the second rate of flow associated with the second viscous material of the second color may be lower than the first rate of flow.
In such implementations, the first viscous material ("A") constitutes a larger portion of the resulting stream of combined viscous material than the second viscous material ("D"). In specific practical implementations, the second rate of flow may be no more than 50% of the first rate of flow, preferably no more than 30% of the first rate of flow and more preferably no more than 20% of the first rate of flow.
In one of the non-limiting practical embodiments contemplated, the second viscous material "D"
is an accent color intended to be carried by the base (or carrier color) of material "A". For example, the second viscous material "D" may be a bright colored material and such as a red, blue, pink, green, yellow or any other color that may add visual interest to the base (or carrier color) of material "A".
In some implementations, the second viscous material "D" provided at step 1202 may have a viscosity that is distinct from the viscosity of the first viscous material "A" to reduce an amount of color blending between the first color and the second color in the stream of combined viscous material.
At step 1204, the first and second flows are combined together in the feed block 104 (shown in Figure 1) in a predetermined pattern to form a stream of combined viscous plastic.
Next, at step 1206, the stream of combined viscous plastic generated at step 1204 is fed through the static mixer 108 (shown in Figure 1), which is configured to partially mix the the first viscous material ("A") and the second viscous material ("D") such that upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material. In some cases, the color pattern created includes zones
-31-86331-77(CA) of the first color, zones of the second color and (optionally) zones of a third color, different from the first and second colors. The third color is typically a blend between the first color and the second color.
In cases where, the second viscous material "D" provided at step 1202 has a viscosity that is distinct from the viscosity of the first viscous material "A", colors may tend to remain more true to the original first and second colors, and exhibit less color blending, than in cases where the viscosities of the first and second viscous materials are substantially the same.
Note that the above process may be applicable to various different suitable types of extrudable material, and is not limited to plastic applications.
Figure 13 depicts a system 800 for manufacturing plastic sheets, according to an alternative example of implementation of the present invention. As shown, system 800 is used for manufacturing plastic products, such as plastic sheets, with color effects being provided in one or more surface layers of the product. In this case, extruder 8061, which includes extruder 816 connected to flowrate controller 852 as well as extruders 8601,...,860N, in combination with the feed block 804 (which in this example is comprises of feed block sequence 8041 ... 804N) and the static mixer 808, produces a stream of combined viscous plastic 8101 characterized by color effects, in a similar manner as described above with regard to the system 100 (shown in Figure 1).
This stream 8101 is then fed into a combining device where it is combined with the separate flows 800 of viscous plastic output by the extruders 8062,...,806N. In the specific example shown in Figure 13, the combining device includes the feed block 812. The feed block 812 produces a co-extruded stream of viscous plastic 8102, having at least one layer, typically a surface layer, characterized by color effects. The die 814 then receives this co-extruded stream 8102, and is operative to mold the plastic stream into its final form, for example a sheet or a tube.
In cases where, the second viscous material "D" provided at step 1202 has a viscosity that is distinct from the viscosity of the first viscous material "A", colors may tend to remain more true to the original first and second colors, and exhibit less color blending, than in cases where the viscosities of the first and second viscous materials are substantially the same.
Note that the above process may be applicable to various different suitable types of extrudable material, and is not limited to plastic applications.
Figure 13 depicts a system 800 for manufacturing plastic sheets, according to an alternative example of implementation of the present invention. As shown, system 800 is used for manufacturing plastic products, such as plastic sheets, with color effects being provided in one or more surface layers of the product. In this case, extruder 8061, which includes extruder 816 connected to flowrate controller 852 as well as extruders 8601,...,860N, in combination with the feed block 804 (which in this example is comprises of feed block sequence 8041 ... 804N) and the static mixer 808, produces a stream of combined viscous plastic 8101 characterized by color effects, in a similar manner as described above with regard to the system 100 (shown in Figure 1).
This stream 8101 is then fed into a combining device where it is combined with the separate flows 800 of viscous plastic output by the extruders 8062,...,806N. In the specific example shown in Figure 13, the combining device includes the feed block 812. The feed block 812 produces a co-extruded stream of viscous plastic 8102, having at least one layer, typically a surface layer, characterized by color effects. The die 814 then receives this co-extruded stream 8102, and is operative to mold the plastic stream into its final form, for example a sheet or a tube.
-32-86331-77(CA) Note that the feed blocks 804 and 812 may be similar in structure and functionality to that described above with regard to the feed block 104.
In an alternative embodiment wherein the die 814 is configured to combine the streams from the static mixer pipe 808 and the extruders 8062 806N into a co-extruded sheet prior to forming the sheet into its final form, the feedblock 812 can be omitted, and the combining device may simply include the die 814.
Thus, in this variant example of implementation, plastic products are formed in which the color effects may be limited to an outer surface of the product. Note that, in this case, one or more of the extruders 8062, . . . 806N may be fed with recycled plastic granules, if the respective one or more layers of plastic generated by these extruders are not visible on the finished product.
Alternatively, each of the extruders 8062, . . . 806N may be producing a plastic mixture of a predetermined and specific color, depending on the specific applications and end products being formed.
Note that any one of the extruders 8062, . . . 806N may be set up in the same way as extruder 8061, such that two or more layers of the final plastic product are characterized by color effects.
These color effects may differ from one layer to another, since the extruder flow rates and static mixer orientations may vary from one extruder arrangement to the other.
Alternatively, the die 814 may be provided with multiple feed ports, such that the die 814 itself could directly receive the stream of viscous plastic 8101 from the extruder 8061, as well as the flows 800 from the extruders 8062, . . . 806N. Thus, the die 814 would act to combine the stream 810, and the flows 800 into the co-extruded stream of viscous plastic 8102, after which the die 814 would shape the stream 8102 into the final product form. Note that, in this case, the die 814 takes on the responsibility of the feed block 812, which is no longer required within the system 800.
In an alternative embodiment wherein the die 814 is configured to combine the streams from the static mixer pipe 808 and the extruders 8062 806N into a co-extruded sheet prior to forming the sheet into its final form, the feedblock 812 can be omitted, and the combining device may simply include the die 814.
Thus, in this variant example of implementation, plastic products are formed in which the color effects may be limited to an outer surface of the product. Note that, in this case, one or more of the extruders 8062, . . . 806N may be fed with recycled plastic granules, if the respective one or more layers of plastic generated by these extruders are not visible on the finished product.
Alternatively, each of the extruders 8062, . . . 806N may be producing a plastic mixture of a predetermined and specific color, depending on the specific applications and end products being formed.
Note that any one of the extruders 8062, . . . 806N may be set up in the same way as extruder 8061, such that two or more layers of the final plastic product are characterized by color effects.
These color effects may differ from one layer to another, since the extruder flow rates and static mixer orientations may vary from one extruder arrangement to the other.
Alternatively, the die 814 may be provided with multiple feed ports, such that the die 814 itself could directly receive the stream of viscous plastic 8101 from the extruder 8061, as well as the flows 800 from the extruders 8062, . . . 806N. Thus, the die 814 would act to combine the stream 810, and the flows 800 into the co-extruded stream of viscous plastic 8102, after which the die 814 would shape the stream 8102 into the final product form. Note that, in this case, the die 814 takes on the responsibility of the feed block 812, which is no longer required within the system 800.
-33-86331-77(CA) Although various embodiments have been illustrated, this was for the purpose of describing, but not limiting, the invention. Various modifications will become apparent to those skilled in the art and are within the scope of this invention, which is defined more particularly by the attached claims.
The foregoing is considered as illustrative only of the principles of the invention. Since numerous modifications and changes will become readily apparent to those skilled in the art in light of the present description, it is not desired to limit the invention to the exact examples and embodiments shown and described, and accordingly, suitable modifications and equivalents may be resorted to. It will be understood by those of skill in the art that throughout the present specification, the term "a" used before a term encompasses embodiments containing one or more to what the term refers. It will also be understood by those of skill in the art that throughout the present specification, the term "comprising", which is synonymous with "including,"
"containing," or "characterized by," is inclusive or open-ended and does not exclude additional, un-recited elements or method steps.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. In the case of conflict, the present document, including definitions will control.
Although the present invention has been described in considerable detail with reference to certain embodiments thereof, variations and refinements are possible and will become apparent to the person skilled in the art in view of the present description. The invention is defined more particularly by the attached claims.
The foregoing is considered as illustrative only of the principles of the invention. Since numerous modifications and changes will become readily apparent to those skilled in the art in light of the present description, it is not desired to limit the invention to the exact examples and embodiments shown and described, and accordingly, suitable modifications and equivalents may be resorted to. It will be understood by those of skill in the art that throughout the present specification, the term "a" used before a term encompasses embodiments containing one or more to what the term refers. It will also be understood by those of skill in the art that throughout the present specification, the term "comprising", which is synonymous with "including,"
"containing," or "characterized by," is inclusive or open-ended and does not exclude additional, un-recited elements or method steps.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. In the case of conflict, the present document, including definitions will control.
Although the present invention has been described in considerable detail with reference to certain embodiments thereof, variations and refinements are possible and will become apparent to the person skilled in the art in view of the present description. The invention is defined more particularly by the attached claims.
-34-
Claims (77)
1) A process for creating color effects in extrudable material, said process comprising:
a) providing a flow of a first viscous material of a first color, wherein the flow of the first viscous material is associated with a first rate of flow and wherein providing the flow of the first viscous material of the first color includes varying the first rate of flow over time;
b) providing a flow of a second viscous material of a second color different from the first color, wherein the flow of the second viscous material is associated with a second rate of flow;
c) combining in a predetermined pattern the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material.
a) providing a flow of a first viscous material of a first color, wherein the flow of the first viscous material is associated with a first rate of flow and wherein providing the flow of the first viscous material of the first color includes varying the first rate of flow over time;
b) providing a flow of a second viscous material of a second color different from the first color, wherein the flow of the second viscous material is associated with a second rate of flow;
c) combining in a predetermined pattern the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material.
2) A process as defined in claim 1, wherein varying the first rate of flow over time includes causing the first rate of flow to oscillate between a lower flow rate threshold and an upper flow rate threshold over a time interval.
3) A process as defined in claim 2, wherein said process comprising setting at least one of the lower flow rate threshold and the upper flow rate threshold in order to control at least in part visual characteristics of the color pattern in the stream of combined viscous material.
4) A process as defined in claim 3, wherein setting at least one of the lower flow rate threshold and the upper flow rate threshold includes entering control commands on a computer operated control circuit.
5) A process as defined in any one of claims 2 to 4, wherein said process comprising setting the time interval in order to control at least in part visual characteristics of the color pattern in the stream of combined viscous material.
6) A process as defined in any one of claims 2 to 4, wherein the time interval has a duration of at least 20 seconds.
7) A process as defined in any one of claims 1 to 6, wherein the second rate of flow associated with the flow of the second viscous material is kept substantially constant over time.
8) A process as defined in any one of claims 1 to 7, wherein the second rate of flow is lower than the first rate of flow.
9) A process as defined in claim8, wherein the second rate of flow is no more than 50% of the first rate of flow.
10) A process as defined in claim 8, wherein the second rate of flow is no more than 30% of the first rate of flow.
11) A process as defined in claim 8, wherein the second rate of flow is no more than 20% of the first rate of flow.
12) A process as defined in any one of claims 1 to 11, wherein said first viscous material has a first viscosity and said second viscous material has a second viscosity, said first viscosity being distinct from said second viscosity.
13) A process as defined in claim 12, wherein said first viscosity is lower than said second viscosity.
14) A process as defined in claim 12, wherein said first viscous material is associated with a first high load melt index (first HLMI) and wherein said second viscous material is associated with a second high load melt index (second HLMI), said first HLMI being greater than said second HLMI.
15) A process as defined in claim 13, wherein said first HLMI is at least about ten times (10x) said second HLMI.
16) A process as defined in claim 13, wherein said first HLMI is at least about twenty times (20x) said second HLMI.
17) A process as defined in claim 13, wherein said first HLMI is at least about one hundred times (100x) said second HLMI.
18) A process as defined in any one of claims 1 to 17, wherein said first viscous material and said second viscous material are viscous plastic materials.
19) A process as defined in claim 18, wherein the first color of the first viscous material is a translucide color.
20) A process as defined in any one of claims 1 to 19, said process comprising using a static mixer to apply a predetermined dividing, overturning and combining motion to said stream of combined viscous material to partially mix the first viscous material and the second viscous material, such that upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material.
21) A process as defined in claim 20, wherein said static mixer includes a helical mixer.
22) A process as defined in claim 21, wherein after applying the dividing, overturning and combining motion, said process includes the step of forming said stream of combined viscous material into a sheet.
23) A process as defined in claim 21, wherein after applying the dividing, overturning and combining motion, said process includes the step of forming said stream of combined viscous material into a tube.
24) A process as defined in claim 20, wherein after applying the dividing, overturning and combining motion, feeding the stream of combined viscous material through a die for forming a sheet of material comprising a wave-live color pattern.
25) A process for creating color effects in extrudable material, said process comprising:
a) providing a flow of a first viscous material of a first color;
b) providing a flow of a second viscous material of a second color different from the first color;
c) combining in a predetermined pattern the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material;
d) using a static mixer applying a predetermined dividing, overturning and combining motion to said stream of combined viscous material to partially mix the first viscous material and the second viscous material, such that such that upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material, wherein:
i) the flow of the first viscous material is associated with a first viscosity; and ii) the flow of the second viscous material is associated with a second viscosity, said first viscosity being distinct from said second viscosity to reduce an amount of color blending between the first color and the second color in the stream of combined viscous material when the static mixer applies the predetermined dividing, overturning and combining motion to said stream of combined viscous material.
a) providing a flow of a first viscous material of a first color;
b) providing a flow of a second viscous material of a second color different from the first color;
c) combining in a predetermined pattern the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material;
d) using a static mixer applying a predetermined dividing, overturning and combining motion to said stream of combined viscous material to partially mix the first viscous material and the second viscous material, such that such that upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material, wherein:
i) the flow of the first viscous material is associated with a first viscosity; and ii) the flow of the second viscous material is associated with a second viscosity, said first viscosity being distinct from said second viscosity to reduce an amount of color blending between the first color and the second color in the stream of combined viscous material when the static mixer applies the predetermined dividing, overturning and combining motion to said stream of combined viscous material.
26) A process as defined in claim 25, wherein said first viscosity is lower than said second viscosity.
27) A process as defined in claim 25, wherein said first viscous material is associated with a first high load melt index (first HLMI) and wherein said second viscous material is associated with a second high load melt index (second HLMI), said first HLMI being greater than said second HLMI.
28) A process as defined in claim 27, wherein said first HLMI is at least about ten times (10x) said second HLMI.
29) A process as defined in claim 27, wherein said first HLMI is at least about twenty times (20x) said second HLMI.
30) A process as defined in claim 27, wherein said first HLMI is at least about one hundred times (100x) said second HLMI.
31) A process as defined in any one of claims 25 to 30, wherein said first viscous material and said second viscous material are viscous plastic materials.
32) A process as defined in claim 31, wherein the first color of the first viscous material is a translucide color.
33) A process as defined in any one of claims 25 to 32, wherein the flow of the first viscous material is associated with a first rate of flow and the flow of the second viscous material is associated with a second rate of flow, and wherein providing the flow of the first viscous material of the first color includes varying the first rate of flow over time such that the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material.
34) A process as defined in claim 33, wherein varying the first rate of flow over time includes causing the first rate of flow to oscillate between a lower flow rate threshold and an upper flow rate threshold over a time interval.
35) A process as defined in claim 33, wherein the second rate of flow associated with the flow of the second viscous material is kept substantially constant over time.
36) A process as defined in any one of claims 25 to 32, wherein said static mixer includes a helical mixer.
37) A process as defined in any one of claims 25 to 33, wherein after applying the dividing, overturning and combining motion, said process includes the step of forming said stream of combined viscous material into a sheet.
38) A process as defined any one of claims 25 to 33, wherein after applying the dividing, overturning and combining motion, said process includes the step of forming said stream of combined viscous material into a tube.
39) A process as defined in any one of claims 25 to 33, wherein after applying the dividing, overturning and combining motion, feeding the stream of combined viscous material through a die for forming a sheet of material.
40) A system for creating color effects in extrudable material, said system comprising:
a) a first extruder for providing a flow of a first viscous material of a first color, the first extruder providing the flow of the first viscous material at a first rate of flow, the first extruder being operatively connected to a flow rate controller configured for varying the first rate of flow over time;
b) a second extruder for providing a flow of a second viscous material of a second color different from the first color, the second extruder providing the flow of the second viscous material at a second rate of flow;
c) a feed block for combining the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material.
a) a first extruder for providing a flow of a first viscous material of a first color, the first extruder providing the flow of the first viscous material at a first rate of flow, the first extruder being operatively connected to a flow rate controller configured for varying the first rate of flow over time;
b) a second extruder for providing a flow of a second viscous material of a second color different from the first color, the second extruder providing the flow of the second viscous material at a second rate of flow;
c) a feed block for combining the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material.
41) A system as defined in claim 40, wherein the flow rate controller includes an electronic control element configured for causing the first rate of flow to vary over time at least in part by causing a variable speed motor to vary a speed of operation of an extruder screw in the first extruder.
42) A system as defined in claim 40, wherein the flow rate controller includes a variable speed motor configured for operating an extruder screw in the first extruder and an electronic control element configured for controlling the variable speed motor to cause the first rate of flow to vary over time at least in part by causing the variable speed motor to vary the speed of operation of the extruder screw.
43) A system as defined in any one of claims 40 to 42, wherein the flow rate controller is configured for varying the first rate of flow over time at least in part by causing the first rate of flow to oscillate between a lower flow rate threshold and an upper flow rate threshold over a time interval.
44) A system as defined in claim 43, wherein the flow rate controller provides one or more user operable controls for allowing a user to set at least one of the lower flow rate threshold and the upper flow rate threshold in order to control at least in part visual characteristics of the color pattern in the stream of combined viscous material.
45) A system as defined in either one of claims 43 and 44, wherein the flow rate controller provides one or more user operable controls for allowing a user to set the time interval in order to control at least in part visual characteristics of the color pattern in the stream of combined viscous material.
46) A system as defined in any one of claims 40 to 45, wherein the second rate of flow associated with the flow of the second viscous material is kept substantially constant over time.
47) A system as defined in any one of claims 40 to 46, wherein the second rate of flow is lower than the first rate of flow.
48) A system as defined in claim 47, wherein the second rate of flow is no more than 50% of the first rate of flow.
49) A system as defined in claim 47, wherein the second rate of flow is no more than 30% of the first rate of flow.
50) A system as defined in claim 47, wherein the second rate of flow is no more than 20% of the first rate of flow.
51) A system as defined in any one of claims 40 to 50, wherein said first viscous material has a first viscosity and said second viscous material has a second viscosity, said first viscosity being distinct from said second viscosity.
52) A system as defined in claim 51, wherein said first viscosity is lower than said second viscosity.
53) A system as defined in claim 51, wherein said first viscous material is associated with a first high load melt index (first HLMI) and wherein said second viscous material is associated with a second high load melt index (second HLMI), said first HLMI being greater than said second HLMI.
54) A system as defined in any one of claims 40 to 53, further comprising a static mixer for receiving the stream of combined viscous material from the feed block, wherein the static mixer is configured to apply a predetermined dividing, overturning and combining motion to said stream of combined viscous material to partially mix the first viscous material and the second viscous material such that, upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material.
55) A system as defined in claim 54, wherein said static mixer includes a helical mixer.
56) The system as defined in either one of claims 54 and 55, further comprising a die for receiving the stream of combined viscous material from said static mixer, said die being configured for forming said stream of combined viscous material into a sheet.
57) The system as defined in either one of claims 54 and 55, further comprising a die for receiving the stream of combined viscous material from said static mixer, said die being configured for to form said stream of combined viscous material into a tube.
58) The system as defined in any one of claims 54 to 57, further comprising:
a) at least one additional extruder for providing at least one additional flow of a third viscous material;
b) a combining device for combining the stream of combined viscous material released by the static mixer with the at least one additional stream of third viscous material provided by the at least one additional extruder.
a) at least one additional extruder for providing at least one additional flow of a third viscous material;
b) a combining device for combining the stream of combined viscous material released by the static mixer with the at least one additional stream of third viscous material provided by the at least one additional extruder.
59) A system as defined in claim 58, wherein said combining device forms a co-extruded stream having at least two layers.
60) The system as defined in any one of claims 40 to 58, wherein said first viscous material is a first viscous plastic and said second viscous material is a second viscous plastic.
61) A system for creating color effects in extrudable material, said system comprising:
a) a first extruder for providing a flow of a first viscous material of a first color;
b) a second extruder for providing a flow of a second viscous material of a second color different from the first color;
c) a feed block for combining the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material;
d) a static mixer for receiving the stream of combined viscous material from the feed block, wherein the static mixer is configured to apply a predetermined dividing, overturning and combining motion to said stream of combined viscous material to partially mix the first viscous material and the second viscous material such that, upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material, wherein:
i) the flow of the first viscous material is associated with a first viscosity; and ii) the flow of the second viscous material is associated with a second viscosity, said first viscosity being distinct from said second viscosity to reduce an amount of color blending between the first color and the second color in the stream of combined viscous material when the static mixer applies the predetermined dividing, overturning and combining motion to said stream of combined viscous material.
a) a first extruder for providing a flow of a first viscous material of a first color;
b) a second extruder for providing a flow of a second viscous material of a second color different from the first color;
c) a feed block for combining the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material;
d) a static mixer for receiving the stream of combined viscous material from the feed block, wherein the static mixer is configured to apply a predetermined dividing, overturning and combining motion to said stream of combined viscous material to partially mix the first viscous material and the second viscous material such that, upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material, wherein:
i) the flow of the first viscous material is associated with a first viscosity; and ii) the flow of the second viscous material is associated with a second viscosity, said first viscosity being distinct from said second viscosity to reduce an amount of color blending between the first color and the second color in the stream of combined viscous material when the static mixer applies the predetermined dividing, overturning and combining motion to said stream of combined viscous material.
62) A process for manufacturing a plastic article comprising color effects, said process comprising:
a) manufacturing sheets of extrudable plastic material having color effects using a process defined in any one of claims 1 to 39;
b) molding one or more of the manufactured sheets of extrudable material using thermoforming to shape the one or more manufactured sheets into the plastic article.
a) manufacturing sheets of extrudable plastic material having color effects using a process defined in any one of claims 1 to 39;
b) molding one or more of the manufactured sheets of extrudable material using thermoforming to shape the one or more manufactured sheets into the plastic article.
63) A process as defined in claim 62, wherein the plastic article is one or a sled and a stand-up paddle board.
64) A process for manufacturing a kayak comprising color effects, said process comprising molding two or more manufactured sheets of extrudable material using thermoforming to shape the two of more manufactured sheets into a kayak shape, at least one of the two or more of the manufactured sheets having color effects created using a process defined in any one of claims 1 to 39.
65) A plastic article manufactured at least in part using a sheet of extrudable material having color effects created at least in part by a process defined in any one of claims 1 to 39.
66) A kayak manufactured at least in part using a sheet of extrudable material having color effects created at least in part by a process defined in any one of claims 1 to 39.
67) A stand-up paddle board manufactured at least in part using a sheet of extrudable material having color effects created by at least in part a process defined in any one of claims 1 to 39.
68) A sheet of extrudable material having color effects, said sheet of extrudable material being comprised of:
a) a first viscous material of a first color;
b) a second viscous material of a second color different from the first color, wherein the first viscous material has a first viscosity and the second viscous material has a second viscosity, the first viscosity being distinct from the second viscosity to reduce an amount of color blending between the first color and the second color in the sheet.
a) a first viscous material of a first color;
b) a second viscous material of a second color different from the first color, wherein the first viscous material has a first viscosity and the second viscous material has a second viscosity, the first viscosity being distinct from the second viscosity to reduce an amount of color blending between the first color and the second color in the sheet.
69) A sheet of extrudable material as defined in claim 68, wherein said first viscosity is lower than said second viscosity.
70) A sheet of extrudable material as defined in claim 69, wherein said first viscous material is associated with a first high load melt index (first HLMI) and wherein said second viscous material is associated with a second high load melt index (second HLMI), said first HLMI
being greater than said second HLMI.
being greater than said second HLMI.
71) A sheet of extrudable material as defined in claim 70, wherein said first HLMI is at least about ten times (10x) said second HLMI.
72) A sheet of extrudable material as defined in claim 70, wherein said first HLMI is at least about twenty times (20x) said second HLMI.
73) A sheet of extrudable material as defined in claim 70, wherein said first HLMI is at least about one hundred times (100x) said second HLMI.
74) A plastic article manufactured at least in part using a sheet of extrudable material having color effects as defined in any one of claims 68 to 73.
75) A process for creating color effects in extrudable material, said process comprising:
a) providing a flow of a first viscous material of a first color;
b) providing a flow of a second viscous material of a second color different from the first color;
c) combining in a predetermined pattern the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material;
d) using a static mixer applying a predetermined dividing, overturning and combining motion to said stream of combined viscous material to partially mix the first viscous material and the second viscous material, such that such that upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material, wherein the color pattern in the stream is configured at least in part based on a radial orientation of the static mixer.
a) providing a flow of a first viscous material of a first color;
b) providing a flow of a second viscous material of a second color different from the first color;
c) combining in a predetermined pattern the flow of the first viscous material and the flow of the second viscous material to form a stream of combined viscous material;
d) using a static mixer applying a predetermined dividing, overturning and combining motion to said stream of combined viscous material to partially mix the first viscous material and the second viscous material, such that such that upon exiting the static mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material, wherein the color pattern in the stream is configured at least in part based on a radial orientation of the static mixer.
76) A process as defined in claim 75, comprising altering the color pattern in the stream by performing a rotation of the static mixer by a pre-determined amount to change the radial orientation of the static mixer.
77) A process as defined in claim 76, wherein the rotation of the static mixer by the pre-determined amount is a rotation of about 90°.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2979855A CA2979855C (en) | 2015-12-23 | 2015-12-23 | Process, apparatus and system for creating color effects in extrudable material and products made with extrudable material created with same |
CA2916287A CA2916287C (en) | 2015-12-23 | 2015-12-23 | Process, apparatus and system for creating extrudable material having color effects and products made with extrudable material created with same |
CA3011580A CA3011580C (en) | 2015-12-23 | 2015-12-23 | Process, apparatus and system for creating extrudable material having color effects and products made with extrudable material created with same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2916287A CA2916287C (en) | 2015-12-23 | 2015-12-23 | Process, apparatus and system for creating extrudable material having color effects and products made with extrudable material created with same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2979855A Division CA2979855C (en) | 2015-12-23 | 2015-12-23 | Process, apparatus and system for creating color effects in extrudable material and products made with extrudable material created with same |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2916287A1 true CA2916287A1 (en) | 2017-06-23 |
CA2916287C CA2916287C (en) | 2018-01-23 |
Family
ID=59078316
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2979855A Active CA2979855C (en) | 2015-12-23 | 2015-12-23 | Process, apparatus and system for creating color effects in extrudable material and products made with extrudable material created with same |
CA2916287A Active CA2916287C (en) | 2015-12-23 | 2015-12-23 | Process, apparatus and system for creating extrudable material having color effects and products made with extrudable material created with same |
CA3011580A Active CA3011580C (en) | 2015-12-23 | 2015-12-23 | Process, apparatus and system for creating extrudable material having color effects and products made with extrudable material created with same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2979855A Active CA2979855C (en) | 2015-12-23 | 2015-12-23 | Process, apparatus and system for creating color effects in extrudable material and products made with extrudable material created with same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3011580A Active CA3011580C (en) | 2015-12-23 | 2015-12-23 | Process, apparatus and system for creating extrudable material having color effects and products made with extrudable material created with same |
Country Status (1)
Country | Link |
---|---|
CA (3) | CA2979855C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10525613B2 (en) | 2015-12-23 | 2020-01-07 | Pelican International Inc. | Process, apparatus and system for creating extrudable material having color effects and products made with extrudable material created with same |
US11660782B2 (en) | 2018-04-23 | 2023-05-30 | Pelican International Inc. | Process, apparatus and system for creating extruded material having color effects and products made with extruded material created with same |
-
2015
- 2015-12-23 CA CA2979855A patent/CA2979855C/en active Active
- 2015-12-23 CA CA2916287A patent/CA2916287C/en active Active
- 2015-12-23 CA CA3011580A patent/CA3011580C/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10525613B2 (en) | 2015-12-23 | 2020-01-07 | Pelican International Inc. | Process, apparatus and system for creating extrudable material having color effects and products made with extrudable material created with same |
US11660782B2 (en) | 2018-04-23 | 2023-05-30 | Pelican International Inc. | Process, apparatus and system for creating extruded material having color effects and products made with extruded material created with same |
Also Published As
Publication number | Publication date |
---|---|
CA3011580C (en) | 2023-03-28 |
CA2916287C (en) | 2018-01-23 |
CA3011580A1 (en) | 2017-06-23 |
CA2979855C (en) | 2018-09-11 |
CA2979855A1 (en) | 2017-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10525613B2 (en) | Process, apparatus and system for creating extrudable material having color effects and products made with extrudable material created with same | |
US7204944B2 (en) | Process and apparatus for creating color effects in extrudable material | |
US3769380A (en) | Method for extruding synthetic thermoplastic sheet material having a variegated colored pattern | |
EP3790727B1 (en) | Color mixing nozzle | |
CA2916287C (en) | Process, apparatus and system for creating extrudable material having color effects and products made with extrudable material created with same | |
CA2696498C (en) | Co-extrusion process for making decorative moldings having simulated wood appearance and decorative molding made thereby | |
CN109689336A (en) | Double-colored blow mold fabrication | |
US20150044434A1 (en) | Systems and Methods for Generating Surface Patterns on Composite Building Materials | |
US20240253290A1 (en) | Wood-grained polymer substrate | |
US20230249381A1 (en) | Process, apparatus and system for creating extruded material having color effects and products made with extruded material created with same | |
JP2008189314A (en) | Synthetic resin blow molded container and method for molding the same | |
US6863967B2 (en) | Coextruded multi color plastic sheets | |
CA2442187C (en) | Process and apparatus for creating color effects in extrudable material | |
US20130214456A1 (en) | Apparatus and Method of Manufacturing Objects with Varying Concentration of Particles | |
US10981350B1 (en) | Wood-grained polymer substrate | |
US20180154566A1 (en) | Process, apparatus and system for creating extruded plastic sheets having decorative effects, products made with extruded plastic sheets created with same and decorative films for use in such process, apparatus and system | |
US6561783B2 (en) | Extruding machine for making multi-color mesh belts | |
US20180304516A1 (en) | Single use container with an integrated decorative pattern | |
KR101219975B1 (en) | Extruding method for a product having a multi color wood pattern | |
JP5472829B2 (en) | Synthetic resin blow molded container and molding method thereof | |
EP0553005B1 (en) | Plastic sheet comprising decorative patterns and its method of manufacturing | |
JP2008188773A (en) | Surface decoration method for synthetic resin-made tube body | |
WO2006051171A1 (en) | Extrusion process | |
JPH07156322A (en) | Plastic sheetlike object and method for production thereof | |
AU2012203940B1 (en) | Multilayer Co-Extrusion |