CA2906122A1 - Encased asymmetric coil innersprings with alternating coil spring orientations - Google Patents

Encased asymmetric coil innersprings with alternating coil spring orientations Download PDF

Info

Publication number
CA2906122A1
CA2906122A1 CA2906122A CA2906122A CA2906122A1 CA 2906122 A1 CA2906122 A1 CA 2906122A1 CA 2906122 A CA2906122 A CA 2906122A CA 2906122 A CA2906122 A CA 2906122A CA 2906122 A1 CA2906122 A1 CA 2906122A1
Authority
CA
Canada
Prior art keywords
coil
coils
encased
mattress
asymmetric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2906122A
Other languages
French (fr)
Inventor
John C. Shive
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sealy Technology LLC
Original Assignee
Sealy Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sealy Technology LLC filed Critical Sealy Technology LLC
Publication of CA2906122A1 publication Critical patent/CA2906122A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/04Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays
    • A47C27/05Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays with padding material, e.g. foamed material, in top, bottom, or side layers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/04Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays
    • A47C27/06Spring inlays
    • A47C27/063Spring inlays wrapped or otherwise protected
    • A47C27/064Pocketed springs

Abstract

Encased coil innersprings with alternating spring coil orientations utilize a common coil configuration and a uniform encasement or pocket configuration, and wherein the coils have an asymmetrical configuration and the vertical end-up orientation of the coils that is alternated or otherwise varied. Selected coils in different areas or patterns in the array of pocketed coils that form the spring core are inverted, relative to a support surface of the spring core, within the individual pockets. The inverted coils have spring characteristics including spring rate, stiffness and initial deflection force which are different from the spring characteristics of the non-inverted coils due to the asymmetry of the coils along a longitudinal axis.

Description

Title of the Invention ENCASED ASYMMETRIC COIL INNERSPRINGS WITH ALTERNATING COIL SPRING
ORIENTATIONS
Related Applications This application is related to U.S. provisional patent application number 61/784,085, filed March 14, 2013.
Field of the Invention [0001] The disclosure of this application is in the field of reflexive and spring-containing support structures, including furniture and mattresses.
Background of the Invention
[0002] Wire form springs individually encased in fabric, also known as "pocketed" or Marshall -type coils and have been manufactured for many years for use as spring cores for mattresses by arranging the strings of pocketed coils in rows or columns within a perimeter.
With each coil contained in its own pocket and attached to adjacent pockets, the axes of the coils are held in alignment and each coil is able to be compressed individually or in combination in accordance with the flexibility of the encasing fabric and the manner of attachment or connection between the coil pockets. In addition to conventional stitching, thermal welds have been used at different intervals to form and connect the pockets and thereby dictate to some extent the support characteristics of a pocketed spring core. Other variations on the basic construct of pocketed coil spring cores have focused on details of the fabric encasement ¨ such as altering the length of the pockets or pre-compressing coils within a pocket -- but with common coil configurations throughout, or different coil configurations with variations in wire gauge, numbers and pitches of turns, shapes and heights, in different strings of the core. These prior art designs require manufacturing strings of identical coils, encasing the coils in the particular fabric configurations, and then assembling the strings in an alternating pattern, about a perimeter or in zones to form the finished spring core assembly. Although various pocketed spring core characteristics and performance can be achieved in these manners, the manufacture and assembly thereof is tedious and expensive.
Summary of the Present Disclosure
[0003] The present disclosure and related inventions provides a pocketed spring core which in a preferred embodiment utilizes a common coil configuration and a uniform encasement or pocket configuration, and wherein the coils have an asymmetrical configuration and the vertical end-up orientation of the coils is alternated or otherwise varied. Selected coils in different areas or patterns in the array of pocketed coils that form the spring core are inverted, relative to a support surface of the spring core, within the individual pockets. The inverted coils have spring characteristics including spring rate, stiffness and initial deflection force which are different from the spring characteristics of the non-inverted coils due to the asymmetry of the coils along a longitudinal axis. The coil configurations in various alternate embodiments are generally helical coil springs with spring bodies which are generally cylindrical (in profile), conical, hour glass, barrel shaped or coil-in-coil, Le. a smaller diameter helical coil body formed continuously with and inside of a larger diameter helical coil body. The ends of any of these different types of coil springs can be of any particular configuration, but in general include wire form which lies in a plane generally perpendicular to a longitudinal axis of the helical coil body.
The first and second ends of the coil may be identically configured, or vary in size or configuration.
[0004] These and other aspects of the present disclosure and related inventions are further described herein with reference to the drawing Figures.
Brief Description of the Figures
[0005] In the accompanying drawing Figures:
[0006] FIG. I is a perspective view of a portion of an embodiment of an encased asymmetric coil innerspring of the present disclosure;
[0007] FIG. 2 is a plan view of an embodiment of an encased asymmetric coil innerspring of the disclosure with columns of encased asymmetric coils with coil orientation alternating between columns;
[0008] FIG, 3 is a perspective view of an encased asymmetric coil of the present disclosure;
[0009] FIG, 4 is an elevation of an encased asynunetric coil of the present disclosure;
[00010] FIG. 5 is an end view of the encased asymmetric coil of FIG, 4;
[00011] FIG. 6 is a plan view of an alternate embodiment of an encased asymmetric coil innerspring of the disclosure with zones or sides of an innerspring defined by encased asymmetric coils defined by coil orientation;
[00012] FIG. 7 is a plan view of an alternate embodiment of an encased asymmetric coil innerspring of the disclosure with zones of an innerspring defined by encased asymmetric coils defined by coil orientation;
[00013] FIG. 8 is a plan view of an alternate embodiment of an encased asymmetric coil innerspring of the disclosure with perimeter and non-perimeter zones of an innerspring defined by encased asymmetric coils defined by coil orientation;
[00014] FIG. 9 is a perspective view of an alternate embodiment of encased asymmetric coil of the present disclosure;
[00015] FIG. 10 is an elevation of an alternate embodiment of a portion of an encased asymmetric coil innerspring of the present disclosure;
[00016] FIG. 11 is a perspective view of an alternate embodiment of encased asymmetric coil of the present disclosure;
[00017] FIG. 12 is an elevation of an alternate embodiment of a portion of an encased asymmetric coil innerspring of the present disclosure;
[00018] FIG. 13 is a perspective view of an alternate embodiment of encased asymmetric coil of the present disclosure;
[00019] FIG. 14 is a perspective view of an alternate embodiment of encased asymmetric coil of the present disclosure;
[00020] FIG. 15 is a perspective view of an alternate embodiment of encased asymmetric coil of the present disclosure;
[00021] FIG. 16 is an elevation of an alternate embodiment of a portion of an encased asymmetric coil innerspring of the present disclosure.
Detailed Description of Preferred and Alternate Embodiments
[00022] FIG. 1 illustrates a portion of a first embodiment of an encased asymmetric coil innerspring, indicated generally at 100 in which each of the coils 10 are encased or pocketed within an encasement or pocket 101, which may he formed from fabric or other flexible material in sheet form and bonded together by stitching or adhesive. The encasements 101 are generally cylindrical and aligned with planar ends 1001 and 1002 to form generally planar support surfaces. Continuous bands of encased coils are arranged in a rectangular array of rows, indicated at R, and columns, indicated at C, to form an innerspring for a mattress or other flexible support structure. in general, in a mattress innerspring, the columns C of aligned encased coils are oriented to run in a lengthwise direction between the head and foot ends of the mattress, and the rows R of aligned encased coils are oriented to run transversely between the longitudinal sides of the mattress. However, as described herein, the references to columns C
and rows R are representative orientations only and the inventions as disclosed and claimed are not limited to any particular arrangement of the encased coils.
[00023] The term "coil" refers to a single coil spring, and is generally synonymous with the word "spring". As illustrated in FIGS. 1, 3, 4 and 5, coils 10A and 108 are in the configuration of generally helical springs which include a helical coil body 11 formed by multiple turns or helical windings of wire W. a first end 10131 and a second end 1082. As shown, the turns or helical windings of the coil body 11 are of varying diameter, for example gradually decreasing in diameter from first end 10131 to second end 1082, so that the coil has a generally tapered profile as shown in FIG. 4, and the second end /082 is generally smaller than first end 10131, As illustrated in this particular coil embodiment, the pitch or angle of inclination of the wire through the helical turns may be relatively constant, or may vary as in later described embodiments. The diameters of the helical turns and the variation thereof whether constant or otherwise is a significant factor in the overall spring rate or stiffness of the coil, in addition to other factors such as overall coil height and any pre-compression of the coil by the encasement.
In this example of an asymmetrical coil body 11 and the differently sized coil ends 10E31 and 10112, the support characteristics of the coils 10A and 10B as oriented in the innerspring, for example with coil ends 1082 and 10A1 being co-planar to form support surface 1001 of the innerspring, are very different. For example, in the support surface plane 1001, coil end 1082 will have a higher apparent spring rate and stiffer feel than coil end 10A1.
The juxtaposition of these coils and the respective coil ends in the alternating column configuration shown in FIG. 2 to define the support plane 1001 creates a unique and novel support surface.
[00024] FIG. 6 illustrates an alternate embodiment of an encased asymmetric coil innerspring 200, also referred to as a "core", in which encased asymmetric coils WA and 1013 as previously described (or alternatively other embodiments of encased asymmetric coils as later described) are arranged in their respective orientations in groups which define right and left sides of the innerspring 200, with coil end 10A1 of coils 10A forming one half of the planar support surface 2001, and coil end 10B1 of coils 1013 forming the other half of the planar support surface 2001. In this embodiment, the two sides of the innerspring 200 will have perceptibly different support characteristics and feel when employed as the innerspring or core of a mattress. This also enables customization of a mattress by selection and orientation of coils for each side of the mattress. This embodiment also lends itself to expeditious or automated manufacture, for example by simply inverting the strings of encased coils on one side of the innerspring, or by use of two set-ups or lanes of encased coil manufacturing equipment in which the coil orientation differs and feeds directly to the designated half or zone of an innerspring.
[00025] FIG. 9 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 20, which can be utilized in any of the described encased asymmetric coil innersprings. The coil 20 has an outer generally helical coil body 21 which extends between a first coil end 20131 and a second coil end 20B2. The coil body 21 may be generally cylindrical with a generally constant diameter of the helical turns, although the diameters and number of turns of the coil body may be varied according to configurations of the coil forming machinery.
The coil ends 20131 and 20132 may be generally the same diameter or of different diameters as illustrated, also by configuration of the coil forming machinery. The coil 20 also includes an inner helical coil body indicated generally at 22 which is generally co-axial with the outer coil body 21 and extends into the interior of the outer coil body 21 from the coil end 20131. Alternate embodiments and other aspects and features of this type of coil-in-coil spring which can be used in any of the encased asymmetric coil innersprings described herein are disclosed in commonly owned U.S. Patent No. 7,908,693, the entire disclosure of which is incorporated by reference.
[00026] FIG. 10 illustrates a strand of encased coils 20 with alternating orientation of the coil ends 20131 and 20132 between the opposed innerspring surfaces 2001 and 2002. In this embodiment also, due to the different spring characteristics of the coil ends 20131 and 20132, the alternating orientation of the coils creates a support surface with a novel hybrid combination of spring characteristics which act together to define the overall support and feel of the innerspring and mattress.
[00027] FIG. 11 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 30, which can be utilized in any of the described encased asymmetric coil innersprings. The coil 30 has a generally helical coil body 31 which extends between coil ends 30131 and 30B2. The diameter and pitch of each of the helical turns of the coil body 31 may be constant or varied according to the configuration of the coil forming machinery. The coil ends 30131 and 30132 can be of any particular formation and as illustrated are of the type with one or more generally linear segments or offsets which are not aligned or continuous with the helical coil body 31, and which may extend beyond a diameter of the coil body 31. The coil 30 also includes a non-helical segment indicated at 301 which extends from coil end 30131. The non-helical segment 301 alters the overall spring rate and characteristics of the coil 30 and the initial spring rate and feel of coil end 30B1. Other embodiments of coils with non-helical segments proximate either or both ends of the coil, which can be used in any of the encased asymmetric innersprings of the present disclosure, are described below with reference to FIGS. 1345, and further disclosed in commonly owned US. Patent No. 7,404,223, the entire disclosure of which is hereby incorporated by reference.
[000281 FIG. 12 illustrates a strand of encased coils 30 with alternating orientation of the coil ends 30131 and 30B2 between the opposed innerspring surfaces 2001 and 2002. In this embodiment also, due to the different spring characteristics of the coil ends 30131 and 30132, the alternating orientation of the coils creates a support surface with a novel hybrid combination of spring characteristics which act together to define the overall support and feel of the innerspring and mattress. Also contributing to the hybrid spring characteristics of the innerspring is the fact that the encasement 101 of the strands of coils of both orientations may be fused or otherwise attached.
[00029] FIG. 13 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 40, which can be utilized in any of the described encased asymmetric coil innersprings. The coil 40 has a generally helical coil body 41 which extends between coil ends 40B1 and 40132. The diameter and pitch of each of the helical turns of the coil body 41 may be constant or varied according to the configuration of the coil forming machinery. The coil ends 40131 and 40132 can be of any particular formation and as illustrated are generally circular and with a radius greater than that of the coil body 41. The coil 40 also includes a non-helical segment indicated at 401 which extends from coil end 40131. The non-helical segment 401 alters the overall spring rate and characteristics of the coil 40 and the initial spring rate and feel of coil end 40B1. Either coil end 40131 or 4082 can be oriented within the encasement 101 to lie in the support plane 2001 or 2002, in any arrangement or alternating arrangement, for example in the manner as described with reference to FIG. 12.
[00030] FIG. 14 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 50, which can be utilized in any of the described encased asymmetric coil innersprings. The coil 50 has a generally helical coil body 51 which extends between coil ends 50131 and 50132. The diameter and pitch of each of the helical turns of the coil body 51 may be constant or varied according to the configuration of the coil forming machinery. The coil ends 50131 and 50132 can be of any particular formation and as illustrated are of the type with one or more generally linear segments or offsets which are not aligned or continuous with the helical coil body 51, and which may extend beyond a diameter of the coil body 51. The coil 50 also includes a non-helical segment indicated at 501 which extends from coil end 50B1. The non-helical segment 501 alters the overall spring rate and characteristics of the coil 50 and the initial spring rate and feel of coil end 50131. Either coil end 508I or 50132 can be oriented within the encasement 101 to lie in the support plane 2001 or 2002, in any arrangement or alternating arrangement, for example in the manner as described with reference to FIG. 12.
[00031] FIG. 15 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 60, which can be utilized in any of the described encased asymmetric coil innersprings. The coil 60 has a generally helical coil body 61 which extends between coil ends 60131 and 60B2. The diameter and pitch of each of the helical turns of the coil body 61 may be constant or varied according to the configuration of the coil forming machinery, to produce a coil body which generally cylindrical (equal diameter turns), hourglass (smaller diameter intermediate turns) or barrel-shaped (larger diameter intermediate turns). The coil ends 60131 and 60132 can be of any particular formation and as illustrated are generally circular and with a radius equal to or less than that of the coil body 61. The coil 60 also optionally includes a non-helical segment indicated at 601 which extends from coil end 60B1. The non-helical segment 601 alters the overall spring rate and characteristics of the coil 60 and the initial spring rate and feel of coil end 60/31. Either coil end 60131 or 60132 can be oriented within the encasement 101 to lie in the support plane 2001 or 2002, in any arrangement or alternating arrangement, for example in the manner as described with reference to FIG. 12.

[00032] Any of the described asymmetric coil configurations can be modified in order to achieve any desired form of asymmetry. For example, FIG. 16 illustrates asymmetric coils 70 in which a generally helical coil body 71 is formed by multiple helical turns or wire in which the pitch or angle of the helix is varied among the turns, as illustrated. In general, the smaller the pitch turns, such as those proximate to coil end 70B1, produce a lower spring rate and softer support characteristic, and the larger pitch turns such as those proximate to coil end 70B2 produce a higher spring rate and firmer support characteristic. The coils 70 are illustrated in an alternating orientation arrangement in an encased strand as the innerspring or core of a mattress with at least one layer of overlying foam F and upholstery U. for example over support surface 2001.
[00033] FIG. 7 illustrates an alternate embodiment of an encased asymmetric coil innerspring 300 in which encased asymmetric coils, including any of the coils 10, 20, 30, 40, 50, 60 or 70 and variants thereof, are in an alternating arrangement with coils in a first orientation A
in selected rows and coils in a second orientation, e.g. 180 degree or upside-down orientation, across a width dimension of an innerspring as illustrated. This width-wise zoning of the innerspring 300 is beneficial for optimizing support of a mattress in higher pressure zones such as the head, shoulder and lumbar areas. The width-wise row patterns of alternating coil orientations may be equally spaced from head to foot, or not.
[00034] FIG. 8 illustrates an alternate embodiment of an encased asymmetric coil innerspring 400 in which encased asymmetric coils, including any of the coils 10, 20, 30, 40, 50, 60 or 70 and variants thereof, are in an alternating arrangement with coils in a first orientation A
at the longitudinal perimeters of the innerspring and coils in a second orientation, e.g. 180 degree or upside-down orientation, in the central region of the innerspring.
Preferably, the coils of orientation A have a higher spring rate in order to create a firmer support surface alone the longitudinal edges of a mattress support surface.
[00035] The production of any of the described coils and coil arrangements can be manual or automated by appropriate configuration of coil forming and pocketed coil manufacturing machinery. The coil orientation within its encasement 101 can be determined by coil handling machinery between a coil former and transition to automated equipment which handles the encasement material to receive coils and forms the individual encasements between coils. A
single coil forming machine can be used and the coils then oriented accordingly prior to closure of the encasement material. Alternatively, when two coil forming machines are employed, one can be configured to deliver coils for encapsulation in the opposite orientation. In a continuous coil production operation, coils can be fed from one or two coil forming machines to a coil encapsulation mechanism and the orientation of the coil changed in a continuous feed operation so that a single strand of coils may include coils with first and second or inverted orientations.
The single strand containing coils with first and second orientations can then be assembled or arranged as desired to form the core. For simple manual assembly, uniformly completed strands of coils can be simply cut to length and placed in the desired orientation in a desired row or column of an innerspring array. Also as noted a single innerspring may contain two or more types of encased asymmetric coils in either orientation and in any pattern..
[00036] The foregoing descriptions of various embodiments of the disclosure and related inventions are representative of ways in which the inventions may be realized and are not otherwise limiting to the scope of the following claims.

Claims (24)

1. A mattress comprising:
a core of a plurality of individually encased asymmetric coils, each asymmetric coil having a coil body, a first coil end and a second coil end, and asymmetry in the coil body or between the first coil end and the second coil end, the first and second ends of the coils located in first or second planes of the innerspring, at least some of the coils of the innerspring being inverted with respect to other coils of the innerspring;
at least one layer of padding on one of the surfaces of the innerspring, and an upholstery layer over the padding and the innerspring.
2. The mattress of claim 1 wherein the coil body of the encased asymnetric coil is generally helical.
3. The mattress of claim 1 wherein the coil body of the encased asymmetric coil is asymmetrical.
4. The mattress of claim 3 wherein the coil body of the encased asymmetric coil has helical turns with differing pitch.
5. The mattress of claim 3 wherein the coil body of the encased asymmetric coil has helical turns with differing diameter,
6. The mattress of claim 3 wherein the coil body of the encased asymmetric coil has at least one non-helical segment.
7. The mattress of claim 1 wherein a lateral extent of the first coil end of the encased asymmetric coil differs from a lateral extent of the second coil end of the asymmetric coil.
8. The mattress of claim 1 wherein encased asymmetric coils in a first orientation are located in a first column of coils of the core, and encased asymmetric coils in a second orientation are located in a second column of coils of the core.
9. The mattress of claim 1 wherein encased asymmetric coils in a first orientation are located in a first row of coils of the core, and encased asymmetric coils in a second orientation are located in a second row of coils of the core.
10. The mattress of claim 1wherein encased asymmetric coils in a first orientation are located in a first region of the core, and encased asymmetric coils in a second orientation are located in a second region of the core.
11. The mattress of claim 1 wherein encased asymmetric coils in a first orientation are located on a first lateral side of the core, and encased asymmetric coils in a second orientation are located on a second lateral side of the core.
12. The mattress of claim 1 wherein encased asymmetric coils in a first orientation are located at a perimeter of the core, and encased asymmetric coils in a second orientation are located in a non-perimeter region of the core.
13. The mattress of claim 1 wherein the core is comprised of a plurality of asymmetric coils are encased in a first strand of encasement material in a first orientation and a plurality of asymmetric coils encased in a second strand of encasement material in a second orientation.
14. The mattress of claim 13 wherein the encasement material of the first strand and encasement material of the second strand is connected together.
15. A mattress comprising:

a core including a plurality of individually encased asymmetric coils in strands, each asymmetric coil having an asymmetric coil body, a first coil end and a second coil end, the first and second ends of the coils located in first or second planes of the innerspring, a first strand of the encased asymmetric coils in a first orientation:
a second strand of the encased asymmetric coils in a second orientation;
at least one layer of padding on one of the surfaces of the innerspring, and an upholstery layer over the padding and the core.
16. The mattress of claim 15 wherein the first and second strands are connected together.
17. The mattress of claim 15 wherein the first and second strands are arranged in a longitudinal direction in the core.
18. The mattress of claim 15 wherein the first and second strands are arranged in a transverse direction in the core.
19. The mattress of claim 15 wherein the encased asymmetric coils have a generally helical coil body.
20. The mattress of claim 19 wherein the generally encased asymmetric coils have a generally helical coil body which is asymmetrical.
21. The mattress of claim 15 wherein the encased asymmetric coils have first and second coil ends, and wherein the first coil end has a configuration that differs from a configuration of the second coil end.
22. The mattress of claim 15 wherein the first and second strands are arranged in groups in the core.
23. The mattress of claim 15 wherein the first orientation of the encased asymmetric coil is an inversion of the second orientation of the encased asymmetric coil.
24. The mattress of claim 15 wherein the first and second strands are in the form of a continuous strand.
CA2906122A 2013-03-14 2014-03-14 Encased asymmetric coil innersprings with alternating coil spring orientations Abandoned CA2906122A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361784085P 2013-03-14 2013-03-14
US61/784,085 2013-03-14
PCT/US2014/028311 WO2014152935A1 (en) 2013-03-14 2014-03-14 Encased asymmetric coil innersprings with alternating coil spring orientations

Publications (1)

Publication Number Publication Date
CA2906122A1 true CA2906122A1 (en) 2014-09-25

Family

ID=51581361

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2906122A Abandoned CA2906122A1 (en) 2013-03-14 2014-03-14 Encased asymmetric coil innersprings with alternating coil spring orientations

Country Status (11)

Country Link
US (1) US20160029809A1 (en)
EP (1) EP2967222B1 (en)
JP (1) JP2016512156A (en)
CN (1) CN105377082A (en)
AU (1) AU2014236431B2 (en)
CA (1) CA2906122A1 (en)
DK (1) DK2967222T3 (en)
ES (1) ES2660293T3 (en)
MX (1) MX362901B (en)
PL (1) PL2967222T3 (en)
WO (1) WO2014152935A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105852517A (en) * 2016-04-07 2016-08-17 徐尚柔 Integrated type independent spring cushion
US11033114B2 (en) 2015-12-17 2021-06-15 Sealy Technology, Llc Coil-in-coil spring with variable loading response and mattresses including the same
US11051631B2 (en) 2016-01-21 2021-07-06 Sealy Technology, Llc Coil-in-coil springs with non-linear loading responses and mattresses including the same
US11076705B2 (en) 2014-05-30 2021-08-03 Sealy Technology, Llc Spring core with integrated cushioning layer

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201505820D0 (en) * 2015-04-03 2015-05-20 Mammoth Sport Ltd An improved pressure control layer for a mattress or seating
MX2017015401A (en) * 2015-06-05 2018-06-19 Sealy Technology Llc Non-linear springs and mattresses including the same.
GB201604040D0 (en) * 2016-03-09 2016-04-20 Harrison Spinks Components Ltd Apparatus and method for making a resilient unit
US20170311731A1 (en) * 2016-04-28 2017-11-02 Tualatin Sleep Products Hybrid mattress unit
US10598242B2 (en) * 2016-05-20 2020-03-24 Sealy Technology, Llc Coil springs with non-linear loading responses and mattresses including the same
US11480228B2 (en) 2016-12-15 2022-10-25 Sealy Technology, Llc Open coil spring assemblies
DE102017117833A1 (en) * 2017-08-07 2019-02-07 Agro Holding Gmbh Pocket spring core and method for its production
WO2019089429A1 (en) * 2017-10-31 2019-05-09 Sealy Technology, Llc Pocket coil spring assembly including flexible foam
US20210068553A1 (en) * 2018-01-04 2021-03-11 Ikea Supply Ag Reinforced pocket spring mattress
US11013340B2 (en) * 2018-05-23 2021-05-25 L&P Property Management Company Pocketed spring assembly having dimensionally stabilizing substrate
CA3084965A1 (en) * 2018-07-05 2020-01-09 Zeb Metal Sanayi Ic Ve Dis Ticaret Limited Sirketi A spring system and method for production of spring system
US11412861B1 (en) * 2019-02-13 2022-08-16 Protscel, LLC Mattress comprising a core of pocket springs disposed within a periphery of outer springs
RU194207U1 (en) * 2019-07-02 2019-12-03 Общество с ограниченной ответственностью "ЖИВЫЕ ДИВАНЫ" ORTHOPEDIC MATTRESS WITH INDEPENDENT SPRING BLOCK
CN112674537A (en) * 2019-10-17 2021-04-20 厦门新技术集成有限公司 Elastic module and elastic cushion for furniture
US11627813B2 (en) * 2021-03-02 2023-04-18 Avocado Green Brands, LLC Multiple zone mattress core element with multiple coil configurations

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1250892A (en) * 1916-08-26 1917-12-18 Frithiof N Johnson Spring-mattress.
US3874423A (en) * 1972-01-03 1975-04-01 Spring Associates Inc Spring base and method of forming same
US3873388A (en) * 1972-04-21 1975-03-25 Hunter Mildred B Mattress pad and method and apparatus for constructing the same
US4290155A (en) * 1974-12-18 1981-09-22 Hanson Paul B Articulated bed
US4003563A (en) * 1975-09-04 1977-01-18 Nachman Corporation Spring assembly and elements
US4480823A (en) * 1982-09-30 1984-11-06 Webster Spring Co. Inc. Innerspring assembly for furniture seats and backs
DE3236714A1 (en) * 1982-10-04 1984-04-26 Odo Prof. 5600 Wuppertal Klose Spring core for mattresses
NL8203880A (en) * 1982-10-06 1984-05-01 Auping Bv FOAM MATTRESS FITTED WITH SPRING ELEMENTS.
DE3728148A1 (en) * 1987-08-24 1989-03-09 Andreas Breckle POCKET SPRING MATTRESS
JPH01128027A (en) 1987-11-13 1989-05-19 Ricoh Co Ltd Original reading lens
US5080329A (en) * 1990-05-14 1992-01-14 Hoover Group, Inc. Spring loaded locking system for box spring assemblies
JP3553346B2 (en) * 1997-10-30 2004-08-11 ドリームベッド株式会社 Pocket coil structure made of morning glory spring
GB9813805D0 (en) * 1998-06-27 1998-08-26 Harrison Bedding Limited A Spring units
US6260223B1 (en) * 1999-12-15 2001-07-17 Leggett & Platt, Incorporated Pocketed coil spring units
US20030025254A1 (en) * 2001-08-06 2003-02-06 L&P Property Management Company Spring assembly having bands of springs
US6684435B1 (en) * 2002-10-24 2004-02-03 L&P Property Management Company Method of manufacturing bedding or seating product having coaxial coil springs
US6931685B2 (en) * 2003-09-12 2005-08-23 Dreamwell, Ltd. One-sided mattress
SE527152C2 (en) * 2003-12-12 2006-01-10 Stjernfjaedrar Ab Separate pocket mattress with cut strings, as well as method and apparatus for its manufacture
US7178187B2 (en) * 2004-08-28 2007-02-20 Sealy Technology Llc Asymmetric spring components and innersprings for one-sided mattresses
US7404223B2 (en) * 2004-08-28 2008-07-29 Sealy Technology Llc Innerspring coils and innersprings with non-helical segments
US20070017035A1 (en) * 2005-07-25 2007-01-25 Jack Chen Mattress and Coil-in-Coil Assembly
WO2007013855A1 (en) * 2005-07-28 2007-02-01 Pintas Pte Ltd An innerspring unit
US20070094807A1 (en) * 2005-10-31 2007-05-03 L&P Property Management Company Posturized bedding or seating product incorporating Bonnell coil springs with tapered middle portions
DE102005053123A1 (en) * 2005-11-08 2007-05-10 Agro Federkernproduktions Gmbh innerspring
SE529550C2 (en) * 2006-03-08 2007-09-11 Stjernfjaedrar Ab Cushioned pocket mattress and method and apparatus for manufacturing one
KR100717535B1 (en) * 2006-04-07 2007-05-15 주식회사 에이스침대 Spring structure for mattress
AU2007313050B2 (en) * 2006-08-29 2012-05-31 Liao, Hsiu-Chen A foam spring mattress configured with variable firmness
US8117700B2 (en) * 2007-02-26 2012-02-21 Howard John Hunter Mattress system and method
US20110148018A1 (en) * 2007-10-29 2011-06-23 Dreamwell, Ltd. Asymmetrical combined cylindrical and conical springs
US9161634B2 (en) * 2007-10-29 2015-10-20 Dreamwell, Ltd. Asymmetrical combined cylindrical and conical springs
US7805790B2 (en) * 2008-01-18 2010-10-05 Sealy Technology Llc Foam springs and innerspring combinations for mattresses
EP2105069A1 (en) * 2008-03-25 2009-09-30 L&P Swiss Holding Company Coil spring assembly
TR201110103T1 (en) * 2009-04-14 2012-02-21 Sealy Technology Llc Intertwined Springs and Inner Springs
CA2770105C (en) * 2009-08-06 2018-01-02 Dreamwell, Ltd. Systems and methods for cushion supports
US20130232699A1 (en) * 2010-05-25 2013-09-12 Kingsdown, Inc. Independent mattress units with transition zone
US20120047657A1 (en) * 2010-09-01 2012-03-01 L&P Property Management Company Spring Assembly Having Continuous Bands of Springs
KR20120039814A (en) * 2010-10-18 2012-04-26 안유수 Pocket spring structure for mattress
US9022369B2 (en) * 2011-01-20 2015-05-05 Sealy Technology, Llc Reverse coil head coils and innersprings
WO2012099936A1 (en) * 2011-01-21 2012-07-26 Sealy Technology Llc Encased hourglass coils and mattress cores
GB201102187D0 (en) * 2011-02-09 2011-03-23 Harrison Spinks Components Ltd Multi-purpose resiient pad
GB2489426A (en) * 2011-03-25 2012-10-03 Kit For Kids Ltd Infant mattress
JP5227447B2 (en) * 2011-08-23 2013-07-03 株式会社ルービックJp mattress
CA2801633A1 (en) * 2012-01-10 2013-07-10 Nomaco Inc. Mattress assemblies and methods employing cloth members(s) thermally bonded to foam side support member(s) to form mattress encasements
US9974395B2 (en) * 2015-02-06 2018-05-22 Diamond Mattress Company, Inc. Mattress spring assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11076705B2 (en) 2014-05-30 2021-08-03 Sealy Technology, Llc Spring core with integrated cushioning layer
US11033114B2 (en) 2015-12-17 2021-06-15 Sealy Technology, Llc Coil-in-coil spring with variable loading response and mattresses including the same
US11051631B2 (en) 2016-01-21 2021-07-06 Sealy Technology, Llc Coil-in-coil springs with non-linear loading responses and mattresses including the same
CN105852517A (en) * 2016-04-07 2016-08-17 徐尚柔 Integrated type independent spring cushion

Also Published As

Publication number Publication date
US20160029809A1 (en) 2016-02-04
MX362901B (en) 2019-02-25
WO2014152935A1 (en) 2014-09-25
EP2967222B1 (en) 2017-12-06
JP2016512156A (en) 2016-04-25
PL2967222T3 (en) 2018-05-30
AU2014236431B2 (en) 2018-06-07
AU2014236431A1 (en) 2015-10-08
CN105377082A (en) 2016-03-02
MX2015012909A (en) 2015-12-03
ES2660293T3 (en) 2018-03-21
EP2967222A1 (en) 2016-01-20
DK2967222T3 (en) 2018-03-05
EP2967222A4 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
EP2967222B1 (en) Encased asymmetric coil innersprings with alternating coil spring orientations
US11317730B2 (en) Pocketed spring assembly
US9380883B1 (en) Pocketed spring assembly comprising perimeter string of springs having rectangular convolutions
US10165867B2 (en) Pocketed spring assembly comprising perimeter strings of springs having rectangular convolutions
US8490232B2 (en) Spring core having border wire with generally rectangular cross-section
EP2946696A1 (en) Coil-in-coil springs and innersprings
CA2820219C (en) Mattress innerspring inserts and supports
CA2578144A1 (en) Asymmetric spring components and innersprings for one-sided mattresses
US20070094807A1 (en) Posturized bedding or seating product incorporating Bonnell coil springs with tapered middle portions
US10206515B1 (en) Pocketed spring assembly
US20090193591A1 (en) Variable coil density anisotropic innersprings
MX2013008403A (en) Reverse coil head coils and innersprings.
US20040025256A1 (en) Multilayered pocketed bedding or seating product
EP2689695B1 (en) Spring core
US11412861B1 (en) Mattress comprising a core of pocket springs disposed within a periphery of outer springs
US8769748B2 (en) Spring core having border wire with generally rectangular cross-section
EP3937729B1 (en) Comfort layer having pocketed springs of different heights

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20190104

FZDE Discontinued

Effective date: 20210309