CA2897988C - Hybrid method for collision avoidance and object carrier management - Google Patents

Hybrid method for collision avoidance and object carrier management Download PDF

Info

Publication number
CA2897988C
CA2897988C CA2897988A CA2897988A CA2897988C CA 2897988 C CA2897988 C CA 2897988C CA 2897988 A CA2897988 A CA 2897988A CA 2897988 A CA2897988 A CA 2897988A CA 2897988 C CA2897988 C CA 2897988C
Authority
CA
Canada
Prior art keywords
carrier
carriers
track
sample
automation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2897988A
Other languages
French (fr)
Other versions
CA2897988A1 (en
Inventor
Daniel Sacco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthcare Diagnostics Inc
Original Assignee
Siemens Healthcare Diagnostics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Healthcare Diagnostics Inc filed Critical Siemens Healthcare Diagnostics Inc
Publication of CA2897988A1 publication Critical patent/CA2897988A1/en
Application granted granted Critical
Publication of CA2897988C publication Critical patent/CA2897988C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0406Individual bottles or tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0491Position sensing, encoding; closed-loop control

Abstract

An automation system for use in in-vitro diagnostics includes an automation surface configured to provide one or more paths between a plurality of testing stations, which also includes a plurality of predetermined risk zones. A plurality of carriers include an onboard processor configured to make local trajectory decisions and to control the motion of each carrier into the plurality of predetermined risk zones in response to authority granted by a traffic manager. A traffic manager includes at least one processor configured to assign destinations to the plurality of carriers and grant authority to carriers to enter the plurality of predetermined risk zones. Each carrier can be configured to hold one or more fluid vessels and move the one or more fluid vessels to one of the plurality of testing stations.

Description

HYBRID METHOD FOR COLLISION AVOIDANCE
AND OBJECT CARRIER MANAGEMENT
[0001] <Blank>
TECHNOLOGY FIELD
[0002] The present invention relates in general to an automation system for use in a laboratory environment and, more particularly, to systems and methods for transporting patient samples for in-vitro diagnostics in a clinical analyzer via active transport devices.
Embodiments of the present invention are particularly well suited, but in no way limited, to independent carriers having an active direction and routing capabilities andlor autonomous motive mechanisms.
BACKGROUND
[0003] In-vitro diagnostics (IVD) allows labs to assist in the diagnosis of disease based on assays performed on patient fluid samples. IVD includes various types of analytical tests and assays related to patient diagnosis and therapy that can be performed by analysis of a liquid sample taken from a patient's bodily fluids, or abscesses. These assays are typically conducted with automated clinical chemistry analyzers (analyzers) onto which fluid containers, such as tubes or vials containing patient samples have been loaded. The analyzer extracts a liquid sample from the vial and combines the sample with various reagents in special reaction cuvettes or tubes (referred to generally as reaction vessels). In some conventional systems, a modular approach is used for analyzers. A lab automation system can shuttle samples between one sample processing module (module) and another module.
Modules may include one or more stations, including sample handling stations and testing Date Recue/Date Received 2020-05-12 stations (e.g., a unit that can specialize in certain types of assays or can otherwise provide testing services to the larger analyzer), which may include immunoassay (IA) and clinical chemistry (CC) stations. Some traditional IVD automation track systems comprise systems that are designed to transport samples from one fully independent module to another standalone module. This allows different types of tests to be specialized in two different stations or allows two redundant stations to be linked to increase the volume of sample throughput available. These lab automation systems, however, are often bottlenecks in multi-station analyzers. Relatively speaking, traditional lab automation systems lack large degrees of intelligence or autonomy to allow samples to independently move between stations.
[0004] In an exemplary prior art system, a friction track, much like a conveyor belt, shuttles individual carrier mechanisms, sometimes called pucks, or racks of containers between different stations. Samples may be stored in sample containers, such as test tubes that are placed into a puck by an operator or robot arm for transport between stations in an analyzer along the track. Typically, sections of friction track can only move in one direction at a time and any samples on the track will move in the same direction at the same speed.
When a sample needs to exit the friction track, gating/switching can be used to move individual pucks into offshoot paths. A drawback with this set up is that singulation must be used to control the direction of any given puck at each gate and switch. For example, if two pucks are near one another and only one puck should be redirected into an offshoot path, it becomes difficult to control a switch so that only one puck is moved into the offshoot path and ensure that the proper puck is pulled from the friction track. This has created the need in many prior art systems to have pucks stop at a gate so that individual pucks can be released and switched one at a time at each decision point on a track.
[0005] Another way that singulation has been used in friction track-based systems is to stop the puck at a gate and allow a barcode reader to read a barcode on the sample tube.

Because barcode readers are slow relative to the amount of time needed to switch a puck between tracks, scanning introduces hard singulations into the flow on a track and causes all nearby pucks to halt while a switching determination is made. After a determination is made, singulation may be further used to ensure that only the scanned puck proceeds by using a physical blockage to prevent the puck behind the scanned puck from proceeding while the scanned puck is switched.
[0006] U.S. Patent No. 6,202,829 shows an exemplary prior art friction track system that includes actuated mechanical diversion gates that can be used to direct pucks off of the main track onto pullout tracks. As explained therein, the diversion process can require multiple mechanical gates to singulate and separate individual pucks, stopping each puck multiple times and allowing each puck to be rotated so that a barcode can be read before a diversion decision is made. Such a system increases latency and virtually ensures that each time a diversion gate is added to a friction track the gate adds another traffic bottleneck.
Such a system results in natural queuing at each diversion gate further increasing the amount of time that each sample spends on the friction track.
[0007] Hard singulation slows down the overall track and increases traffic jams within the track. This leads to the need for physical queues within the track.
Much like traffic on a road, traffic on the track causes an accumulation of slow-moving pucks because most of the time spent in transit during operation can be spent waiting through a line at a singulation point for switching by a gate. This leads to inefficiency in transit. Ultimately for a high volume analyzer, a substantial amount of time for each sample is spent waiting in queues at the gates on the friction track. This increases the latency experienced by each sample. Latency can be a problem for certain types of samples, such as whole blood samples, which can begin to separate or coagulate if the sample sits in the sample tube for too long.
8 [0008] Another problem with long queues and traffic on the friction track is the issue of handling STAT samples. A STAT sample is a sample that an operator wishes to have moved to the front of the line so that results for that sample can be returned quickly. For example, in a hospital with an emergency room, test results may be urgent for a patient awaiting treatment. In prior art friction track systems with long queues, the entire queue often must be flushed to make way for the STAT sample. This can undo several minutes worth of sorting of samples and can increase the overall latency experienced by non-STAT
samples.
SUMMARY
[0009] Embodiments of the present invention may address and overcome one or more of the above shortcomings and drawbacks by providing devices and systems for transporting samples using intelligent carriers that can be partially or substantially autonomous. This technology is particularly well-suited for, but by no means limited to, transport mechanisms in an automation system for use in an in-vitro diagnostics (IVD) environment.
[0010] Embodiments of the present invention are generally directed to an automation system that can include a track, a plurality of carriers for moving fluid samples, and one or more central controllers that conveys routing instructions to the carriers, such that the carriers can transport fluid samples independently. Carriers can include one or more processors and a communications system for interacting with the central controller, and in some embodiments can be further configured to route samples via independent locomotion and routing to a destination testing station in an in-vitro diagnostics system.
[0011] According to a first embodiment, an automation system for use in in-vitro diagnostics includes an automation surface configured to provide one or more paths between a plurality of testing stations, which also includes a plurality of predetermined risk zones. A
plurality of carriers include an onboard processor configured to make local trajectory decisions and to control the motion of each carrier into the plurality of predetermined risk zones in response to authority granted by a traffic manager. A traffic manager includes at least one processor, configured to assign destinations to the plurality of carriers and grant authority to carriers to enter the plurality of predetermined risk zones. Each carrier is configured to hold one or more fluid vessels and move the one or more fluid vessels to one of the plurality of testing stations.
[0012] According to one aspect of some embodiments, each carrier can be configured to monitor and limit acceleration to a threshold that depends on a type of fluid contained in the fluid vessel being carried. Each carrier can also be configured to communicate with the traffic manager via RFID to update a position of the carrier at a checkpoint on the automation surface. Each carrier can also be configured to communicate with the traffic manager to request authorization to proceed into a predetermined risk zone while moving and slowing down if authority is denied. Each carrier can also be configured to receive instructions that identify a destination and navigate the automation surface without further navigational instructions.
[0013] According to another aspect of some embodiments, the automation surface can be configured to optically indicate at least one of a location where each carrier should seek authority and a location where a carrier should slow down if it has not yet received authority.
The automation surface can include a track that substantially constrains carriers in two dimensions and the plurality of predetermined risk zones comprises at least one of a curve and an intersection in the track. The automation surface can also include a substantially unconstrained two dimensional surface and the plurality of predetermined risk zones comprises predefined intersections on the two dimensional surface.
[0014] According to yet another aspect of some embodiments, the traffic manager can be configured to reserve authority relating to risk zones in advance for higher priority carriers. The traffic manager can also be configured to deny authority to enter a predetermined risk zone to a first of the plurality of carriers when a second of the plurality of carriers already occupies the predetermined risk zone.
[0015] According to another embodiment, a carrier for transporting fluids in an in-vitro diagnostics environment can include a processor configured to navigate a track between a plurality of points in the track and a communications system configured to receive a first set of routing instructions, and to receive a notification, from a traffic manager, of the carrier's authority to enter a predetermined risk zone along the track. The instructions can include at least one destination testing station. The processor can be further configured to direct the carrier to the at least one destination testing station and to navigate each risk zone in response to the notification.
[0016] According to one aspect of some embodiments, the carrier can include one or more sensors configured to detect a collision condition with one or more other carriers. The carrier can also be configured to observe landmarks in the track to determine its current location relative to the predetermined risk zone. The carrier can also include a memory configured to store a map of the track.
[0017] According to another aspect of some embodiments, the processor can be configured to request permission to enter the predetermined risk zone via RF
communication and to facilitate slowing the carrier down if authority is not granted before the carrier passes a predetermined location before entering the risk zone. The processor can also be configured to inform the traffic manager when the carrier has exited the predetermined risk zone.
[0018] According to another embodiment, an automation system for use in in-vitro diagnostics includes a track configured to provide one or more paths between a plurality of testing stations, wherein the track includes a plurality of predetermined risk zones and a traffic manager that includes at least one processor, configured to assign destinations to a plurality of carriers and grant authority to carriers to enter the plurality of predetermined risk zones. The traffic manager can also include memory that monitors the occupancy of the predetermined risk zones and the at least one processor is further configured to grant or deny authority based on the occupancy.
[0019] According to one aspect of some embodiments, the traffic manager can assign a destination based on a test panel provided by a laboratory information system server. The traffic manager can also lock access to each of the predetermined risk zones once one of the plurality of carriers has authority to enter the risk zone and unlocks access to the risk zone when traffic manager receives notification that that carrier has exited the risk zone.
According to another aspect of some embodiments, the traffic manager can allow higher priority carriers of the plurality of carriers to reserve authority to enter the plurality of predetermined risk zones, in advance.
[0020] Additional features and advantages of the invention will be made apparent from the following detailed description of illustrative embodiments that proceeds with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0021] The foregoing and other aspects of the present invention are best understood from the following detailed description when read in connection with the accompanying drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments that are presently preferred, it being understood, however, that the invention is not limited to the specific instrumentalities disclosed. Included in the drawings are the following Figures:
[0022] FIG. 1 is a top view of an exemplary clinical analyzer geometry that can be improved by use of the automation system embodiments disclosed;
[0023] FIGs. 2A and 2B are diagrammatic views of track geometries that can be used with the automation system embodiments disclosed herein;
[0024] FIG. 3 is a diagrammatic view of an exemplary modular track configuration that can be used with the embodiments disclosed herein;
[0025] FIG. 4A is a perspective view of an exemplary carrier that can be used with the embodiments disclosed herein;
[0026] FIG. 4B is a perspective view of an exemplary track configuration that can be used with the embodiments disclosed herein;
[0027] FIG. 4C is a top view of an exemplary automation system that can be used with the embodiments disclosed herein;
[0028] FIG. 5 is a system block diagram of the control systems including onboard active carriers that can be used with certain embodiments disclosed herein;
[0029] FIG. 6 is a diagrammatic view of exemplary routes in an exemplary track configuration that can be used for navigation of sample carriers in certain embodiments;
[0030] FIG. 7 is a flow diagram showing the operation of the navigation of sample carriers in certain embodiments;
[0031] FIG. 8 is an exemplary acceleration profile used by sample carriers in certain embodiments;
[0032] FIG. 9 is a system diagram of an exemplary breakdown of knowledge and task assignments between central processors and carriers in accordance with some embodiments;
[0033] FIG. 10 is a system diagram of an exemplary breakdown of knowledge and task assignments between central processors and carriers in accordance with some embodiments;
[0034] FIG. 11 is a system diagram of an exemplary breakdown of knowledge and task assignments between central processors and carriers in accordance with some embodiments;
[0035] FIG. 12 is a top-down diagram of an exemplary scenario when a carrier approaches a risk zone in accordance with some embodiments;
[0036] FIG. 13 is a flow diagram showing the operation of the navigation of sample carriers in certain embodiments; and
[0037] FIG. 14 is a top-down diagram of an exemplary embodiment utilizing a two dimensional automation surface.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
TERMS AND CONCEPTS ASSOCIATED WITH SOME EMBODIMENTS
[0038] Analyzer: Automated clinical analyzers ("analyzers") include clinical chemistry analyzers, automated immunoassay analyzers, or any other type of in vitro diagnostics (IVD) testing analyzers. Generally, an analyzer performs a series of automated IVD tests on a plurality of patient samples. Patient samples may be loaded into an analyzer (manually or via an automation system), which can then perform one or more immunoassays, chemistry tests, or other observable tests on each sample. The term analyzer may refer to, but is not limited to, an analyzer that is configured as a modular analytical system. A modular analytical system includes an integrated and extendable system comprising any combinations of a plurality of modules (which can include the same type of module or different types of modules) interconnected in a linear or other geometric configuration by an automation surface, such as an automation track. In some embodiments, the automation track may be configured as an integral conveyance system on which independent carriers are used to move patient samples and other types of material between the modules. Generally, at least one module in a modular analytical system is an analyzer module. Modules may be specialized or made redundant to allow higher throughput of analytical tasks on patient samples.
[0039] Analyzer module: An analyzer module is a module within a modular analyzer that is configured to perform IVD tests, such as immunoassays, chemistry tests, or other observable tests on patient samples. Typically, an analyzer module extracts a liquid sample from a sample vessel and combines the sample with reagents in reaction cuvettes or tubes (referred to generally as reaction vessels). Tests available in an analyzer module may include, but are not limited to, a subset of electrolyte, renal or liver function, metabolic, cardiac, mineral, blood disorder, drug, immunoassay, or other tests. In some systems, analyzer modules may be specialized or made redundant to allow higher throughput. The functions of an analyzer module may also be performed by standalone analyzers that do not utilize a modular approach.
[0040] Carrier: A carrier is a transportation unit that can be used to move sample vessels (and, by extension, fluid samples) or other items in an automation system. In some embodiments, carriers may be simple, like traditional automation pucks (e.g., passive devices comprising a holder for engaging a tube or item, a friction surface to allow an external conveyor belt in the automation track to provide motive force, and a plurality of sides that allow the puck to be guided by walls or rails in the automation track to allow the track to route a puck to its destination). In some embodiments, carriers may include active components, such as processors, motion systems, guidance systems, sensors, and the like. In some embodiments, carriers can include onboard intelligence that allows carriers to be self-guided between points in an automation system. In some embodiments, carriers can include onboard components that provide motive forces while, in others, motive forces may be provided by an automation surface, such as a track. In some embodiments, carriers move along automation tracks that restrict motion to a single direction (e.g., fore and aft) between decision points. Carriers may be specialized to a given payload in an IVD
environment, such as having a tube holder to engage and carry a sample tube, or may include mounting surfaces suitable to carry different items around an automation system. Carriers can be configured to include one or more slots (e.g., a carrier may hold one or a plurality of sample vessels).
[0041] Central controller or processor: A central controller/processor (which may sometimes be referred to as a central scheduler) is a processor that is part of the automation system, separate from any processors onboard carriers. A central controller can facilitate traffic direction, scheduling, and task management for carriers. In some embodiments, a central controller can communicate with subsystems in the automation system and wirelessly communicate with carriers. This may also include sending trajectory or navigational information or instructions to carriers and determining which carriers should go where and when. In some embodiments, local processors may be responsible for managing carriers on local track sections, such as managing local queues. These local processors may act as local equivalents to central controllers.
[0042] Decision point: Decision points are points on an automation track where different navigational or trajectory decisions may be made for different carriers. A common example includes a fork in a track. One carrier may proceed without turning, while another may slow down and turn. Decision points may include stopping points at instruments, where some carriers may stop, while others may proceed. In some embodiments, deceleration zones ahead of turns may act as decision points, allowing carriers that will be turning to slow down to limit lateral forces, while others may proceed if not turning or if the motion profile for that carrier does not require slowing down. The decisions made at decision points can be made by processors onboard carriers, processors local to the track section, a central processor, or any combination thereof, depending on the embodiment.
[0043] Independent carrier: In some embodiments, carriers may be characterized as independently controlled carriers. Independently controlled carriers, are carriers with independently controlled trajectories. In some embodiments, independent carriers may be operating at the same time, on the same track, with carriers carrying one or a plurality of combinations of payloads that differ by size, weight, form factor, and/or content. The trajectories of each independently controlled carrier may be limited by a motion profile that includes maximum jerk, acceleration, direction, and/or speed for the carrier while moving in the automation system. The motion profile can limit or define the trajectory for each carrier independently. In some embodiments, a motion profile can be different for different sections of the automation system (e.g., in straight track sections vs. around curves to account for the added lateral forces while turning), for different carrier states (e.g., an empty carrier may have a different motion profile from a carrier transporting a sample or from a carrier transporting a reagent or other item), and/or for different carriers. In some embodiments, carriers can include onboard propulsion components that allow individual carriers to independently operate responsive to a motion profile or trajectory or destination instructions intended for each separate carrier.
[0044] Intelligent carrier/semi-autonomous carriers: In some embodiments, carriers may be characterized as intelligent carriers. An intelligent carrier is a carrier with onboard circuits that participates in motion, routing, or trajectory decisions. An intelligent carrier can include digital processors that execute software instructions to proceed along an automation surface responsive to the instructions or onboard analog circuits that respond to motion input (e.g., line follower circuits). Instructions may include instructions characterizing motion profiles, traffic, or trajectory rules. Some intelligent carriers may also include onboard sensors to assist onboard processors to route the carrier or make decisions responsive to the carrier's environment. Some intelligent carriers may include onboard components, such as motors or magnets, which allow the carrier to move responsive to control of an onboard processor.
[0045] In vitro diagnostics (IVD): In vitro diagnostics (IVD) are tests that can detect diseases, conditions, infections, metabolic markers, or quantify various constituents of bodily materials/fluids. These tests are performed in laboratory, hospital, physician office, or other health professional settings, outside the body of a patient. IVD testing generally utilizes medical devices intended to perform diagnoses from assays in a test tube or other sample vessel or, more generally, in a controlled environment outside a living organism. IVD
includes testing and diagnosis of disease or quantifying various constituents of bodily materials/fluids based on assays performed on patient fluid samples. IVD
includes various types of analytical tests and assays related to patient diagnosis and therapy that can be performed by analysis of a liquid sample taken from a patient's bodily fluids, or abscesses.
These assays are typically conducted with analyzers into which tubes or vials containing patient samples have been loaded. IVD can refer to any subset of the IVD
functionality described herein.
[0046] Landmarks: In embodiments where carriers include onboard sensors, optical or other marks in track surfaces or locations viewable/sensible from track surfaces can act as landmarks. Landmarks can convey geographic information to carriers, such as a current location, upcoming stopping location, decision point, turn, acceleration/deceleration points, and the like.
[0047] Lab automation system: Lab automation systems include any systems that can automatically (e.g., at the request of an operator or software) shuttle sample vessels or other items within a laboratory environment. With respect to analyzers, an automation system may automatically move vessels or other items to, from, amongst, or between stations in an analyzer. These stations may include, but are not limited to, modular testing stations (e.g., a unit that can specialize in certain types of assays or can otherwise provide testing services to the larger analyzer), sample handling stations, storage stations, or work cells.
[0048] Module: A module performs specific task(s) or function(s) within a modular analytical system. Examples of modules may include: a pre-analytic module, which prepares a sample for analytic testing, (e.g., a decapper module, which removes a cap on top of a sample test tube); an analyzer module, which extracts a portion of a sample and performs tests or assays; a post-analytic module, which prepares a sample for storage after analytic testing (e.g., a recapper module, which reseals a sample test tube); or a sample handling module. The function of a sample handling module may include managing sample containers/vessels for the purposes of inventory management, sorting, moving them onto or off of an automation track (which may include an integral conveyance system, moving sample containers/vessels onto or off of a separate laboratory automation track, and moving sample containers/vessels into or out of trays, racks, carriers, pucks, and/or storage locations.
[0049] Payload: While exemplary carriers are described with respect to carrying patient samples, in some embodiments, carriers can be used to transport any other reasonable payload across an automation system. This may include fluids, fluid containers, reagents, waste, disposable items, parts, or any other suitable payloads.
[0050] Processor: A processor may refer to one or more processors and/or related software and processing circuits. This may include single or multicore processors, single or multiple processors, embedded systems, or distributed processing architectures, as appropriate, for implementing the recited processing function in each embodiment.
[0051] Pullouts, sidecars, offshoot paths: These terms may be used to refer to track sections that are off the main portion of a track system. Pullouts or sidecars may include chords, parallel tracks, or other suitable means for separating some carriers from a primary traffic pattern. Pullouts or sidecars may be configured to facilitate physical queues or allow certain carriers to stop or slow down without disrupting traffic on a main track section.
[0052] Samples: Samples refers to fluid or other samples taken from a patient (human or animal) and may include blood, urine, hematocrit, amniotic fluid, or any other fluid suitable for performing assays or tests upon. Samples may sometimes refer to calibration fluids or other fluids used to assist an analyzer in processing other patient samples.
[0053] STAT (short turnaround time) sample: Samples may have different priority assigned by a laboratory information system (LIS) or operator to assign STAT
priority to samples that should take precedent over non-STAT samples in the analyzer. When used judiciously, this may allow certain samples to move through the testing process faster than other samples, allowing physicians or other practitioners to receive testing results quickly.
[0054] Station: A station includes a portion of a module that performs a specific task within a module. For example, the pipetting station associated with an analyzer module may be used to pipette sample fluid out of sample containers/vessels being carried by carriers on an integrated conveyance system or a laboratory automation system. Each module can include one or more stations that add functionality to a module.
[0055] Station/module: A station includes a portion of an analyzer that performs a specific task within an analyzer. For example, a capper/decapper station may remove and replace caps from sample vessels; a testing station can extract a portion of a sample and perform tests or assays; a sample handling station can manage sample vessels, moving them onto or off of an automation track, and moving sample vessels into or out of storage locations or trays. Stations may be modular, allowing stations to be added to a larger analyzer. Each module can include one or more stations that add functionality to an analyzer, which may be comprised of one or more modules. In some embodiments, modules may include portions of, or be separate from, an automation system that may link a plurality of modules and/or stations. Stations may include one or more instruments for performing a specific task (e.g., a pipette is an instrument that may be used at an immunoassay station to interact with samples on an automation track). Except where noted otherwise, the concepts of module and station may be referred to interchangeably.
[0056] Tubes/sample vessels/fluid containers: Samples may be carried in vessels, such as test tubes or other suitable vessels, to allow carriers to transport samples without contaminating the carrier surfaces.
EXEMPLARY EMBODIMENTS
[0057] The above problems in the prior art have motivated the discovery of improved apparatus and methods for reliably and/or automatically transporting samples between stations / testing modules within an automated clinical analyzer (analyzer).
Specifically, by providing semi-autonomous carriers for samples, the carriers can transport samples substantially faster than prior methods, allowing reliable scheduling of tests, a reduction of traffic in the automation system, and reduced latency and reliable throughput of tests within the analyzer. Some embodiments exploit the semi-autonomy of the sample carriers to provide transit between stations in less than a single operation cycle, effectively removing or greatly reducing automation of sample placement as a performance bottleneck, and allowing more flexible sample scheduling options.
[0058] Embodiments of the present invention can improve management and scalability of the automation system by providing a deliberate breakdown of the knowledge and responsibility of central processors in the automation system and processors in the carriers, in a manner suitable for the application. For example, for a small number of carriers, central processors may be capable of providing substantial real-time control of navigation and trajectory tasks for each carrier. Meanwhile, for large numbers of carriers or carriers that move too rapidly to allow substantial control of the carriers, processors on the carriers may have knowledge and control over all or most of the trajectory and navigation tasks for the carriers. In some embodiments, a hybrid approach is desirable, whereby carriers control navigation between points on the track, but utilize a central controller to manage traffic concerns in sections of the automation system. These managed sections may include corners, intersections, or any other sections where carriers are not well suited to avoid colliding with other carriers. These sections may be collectively referred to as risk zones.
In some embodiments, carriers can include sensors (such as proximity sensors) that allow them to determine collision risk automatically on straightaways without needing to communicate with a central controller.
[0059] Embodiments of the present invention include systems and methods that provide a more efficient lab automation system to allow samples to be shuttled between and amongst various analyzer testing stations with less latency and more individual control.
Embodiments of the present invention can reduce or eliminate queues experienced by samples traversing the automation system. Usually, samples need to undergo many different types of testing in an automated clinical analyzer (analyzer), which may not be available in a single testing station. Testing stations within an analyzer can be adapted for specialized testing For example, immunoassays may be performed by an immunoassay station that includes certain incubation capabilities and uses specific reagents that are unique to immunoassays. Chemical analysis can be performed by a clinical analyzer and electrolyte chemistry analysis can be conducted by an ion-selective electrode (ISE) clinical analyzer. By using this modular approach, an analyzer can be adapted not only to the types of testing being done on samples, but also the frequency and volume of testing necessary to accommodate the needs of the lab. If additional immunoassay capability is needed, a lab may choose to add additional immunoassay stations and increase overall throughput for immunoassay testing in their system.
[0060] An exemplary track geometry for use in transporting samples within an analyzer typical in prior art configurations is shown in FIG 1. This track can include prior art friction tracks, which may introduce problems in designing a track system.
However, certain embodiments of the present invention could also use a similar geometry without necessarily employing a friction track for motion. Track 100 can be a generally oval-shaped track that conveys samples in pucks or trays between various stations, such as sample preparation or analyzing/testing stations 110, 120, and 130. Track 100 could be a single direction track or, in some instances, a linear bidirectional track. In this exemplary set-up, each analyzer 110, 120, 130 is serviced by a respective sidecar 112, 122, 132. At the junction between the track 100 and each sidecar, a gate or switch can be placed that allows samples to be diverted to or from track 100 to the sidecar. The oval nature of track 100 can be used to circulate samples while they wait for access to each analyzer. For example, analyzer 110 may have a full queue in sidecar112, such that new samples on track 100 cannot be diverted to pullout 112 until analyzer 110 finishes handling a pending sample in sidecar 112 and inserts it back into the main traffic flow of track 100.
[0061] In some prior art systems, each sidecar can be serviced by a handling mechanism such as sample probe arms 114, 124, and 134. These robotic handling arms can aspirate sample material from samples in a sidecar via a probe needle, or can pick up a sample tube from the sidecar and transport it into the corresponding testing station. In this exemplary system, the available testing stations include an immunoassay station 110, a low-volume chemistry station 120, and an expandable dilution/1SE electrolyte and high-volume chemistry station (or stations) 130. Some advantages of this approach are that the track 100 can be part of a separate lab automation system that can be added onto otherwise self-contained stations, and the track 100 and stations 110, 120, and 130 can be independently upgraded, purchased, or serviced. Some stations, such as high-volume chemistry station 130, can include their own friction track 136 that operates independently of track 100. Friction track 136 can include a bidirectional friction track that allows samples to move between sub-modules of high-volume chemistry station 130. A drawback of this type of system is that the separate friction tracks operate independently and control of overall automation becomes more complicated. Furthermore, transitions between friction tracks 136 and 100 can be slow and cumbersome, particularly where there is no direct route between two friction tracks. In some systems, moving between tracks may require lifting and placing samples via a robot arm.
[0062] Prior art lab automation systems for analyzers generally treat individual analyzer/testing stations as generic destinations for a sample on the track.
In some embodiments of the present invention, the lab automation system can be integrated within the individual testing stations, which can substantially reduce or eliminate the complexity of the individual testing stations and reduce the need for separate sample handling systems within each station. In some embodiments, by integrating the lab automation system into the stations, the system can begin to treat individual stations less as generic destinations and more as portions of a multi-route track onto which a sample can travel.
[0063] FIG. 2A shows one embodiment of a track system that can be adapted for use with the present invention. Track 150 is a rectangular/oval/circular track on which sample carriers move in a clockwise (or counterclockwise) direction. Track 150 may be unidirectional or bidirectional. Carriers can transport any suitable payload within an IVD
environment, such as fluid samples, reagents, or waste. Fluids, such as patient samples can be placed in a container or vessel, such as a test tube, vial, cuvette, etc.
that can be transported by a carrier. Carriers and, by extension, payloads such as samples, can move on the main track 150 or be diverted via decision points such as 164 or 166.
These decision points can be mechanical gates (as in the prior art) or other mechanisms suitable for allowing a sample to be diverted from the main track 150 to a sidecar, such as 160, 160A, 160B, 160C
as described herein. By way of example, if a sample carrier is traversing the main path 150 and reaches decision point 166, it can be made to continue on the main track to segment 162 or it can be made to divert to sidecar 160. The systems and methods by which the decision can be made to divert the sample carrier at decision point 166 are described throughout.
[0064] FIG. 2B shows an alternative track layout that may be suitable for certain embodiments of the present invention. Track 170 is also a generally circular track with sample carriers moving clockwise (or counterclockwise). In this example, rather than having sidecars outside of the track, pullouts 180, 180A, and 180B are chords within the track.
Similarly, when sample carriers reach decision points, they may be diverted off of the main path to a side path such as path 180. At decision point 186, a sample on the main track 170 can be made to continue on the main track or be diverted onto path 180. Once an analyzer station along handling path 180 is done processing the sample, the sample proceeds to decision point 184 where it may be placed back onto the main path 170. While FIGs. 2A and 2B illustrate curved corners, it should be appreciated that other corner configurations, such as geometric corners, may be used.
[0065] FIG. 3 shows a modular approach to the automation system track that can be used for certain embodiments of the present invention. In this example, the tracks may be integrated into individual analyzer stations, such that the track can be used as part of the internal motion or sample handling system of individual lab stations. In the prior art, it is common to have multiple different types of motion systems within different analyzer/testing stations. For example, some stations can include friction tracks for shuttling pucks or trays of sample tubes, and may include carousels containing smaller vessels, such as cuvettes and reaction vessels, into which portions of the sample can be aspirated and dispensed. In some embodiments, by integrating portions of the track system into the analyzer stations themselves, each station can include its own queuing logic and may be simplified to eliminate unnecessary internal motion systems.
[0066] With respect to FIG. 3, the track 200 can be broken into modular components that are integrated into analyzer modules. In this exemplary track, modules 205, 205A, and 205B can be combined with one another and optionally other modular track components 202 and 204 to form a track similar to that shown in FIG. 2B. For instance, 205A
can be a module that performs the same function as immunoassay 110 (FIG. 1), 205 can be a module that performs the same function as low-volume chemistry module 120 (FIG. 1), and 205B can be a module that performs ISE electrolyte testing, like module 130 (FIG. 1).
In this example, the main outer track can be formed by track segments 202, 204, 206, 206A, 206B, 208, 208A, and 208B. Within the analyzer modules 205, 205A. and 205B, internal paths 210, 210A, and 210B form pullouts from the main track. The internal paths can be used for internal queuing and can be managed independently within each analyzer module to allow each module to have greater control over samples to be processed.
[0067] One advantage of integrating track 200 and sub-paths 210, 210A, and into the analyzer modules 205, 205A, and 205B, respectively, is that the internal handling mechanisms within each analyzer module can be specially adapted to better coordinate with the track sub-paths. In some embodiments, modules 205, 205A, and 205B can be adapted to process each sample within a period that is less than an operation cycle of the overall analyzer, leaving enough time for the sample to be routed along the track system to another module after processing, allowing the other module to immediately process the sample on the next operation cycle. As used herein, an operation cycle is a unit of time used by scheduling algorithms to allot processing time to modules for sample assays. These can be dynamic or fixed and can allow synchronous operation of the modules in the analyzer and provide a reliable timing model for scheduling samples amongst multiple modules in the analyzer. The
68 operation cycle time can be chosen to be the time needed by any given module between when it starts processing a first sample, and when it is ready to process another sample under expected steady-state conditions. For example, if an analyzer can process one test every three seconds, and the expected average tests per sample is seven, the operation cycle time can be 21 seconds. It should be understood that individual modules can implement efficiency techniques, such as parallelism or processing multiple samples within a cycle, to maximize throughput, even when the number of tests-per-sample varies from an expected amount.
Furthermore, it should be understood that in some embodiments, individual modules have different operation cycle times, and these modules can operate substantially asynchronously from one another. Virtual queues or buffers can be used to assist the management of sample scheduling where cycle times or demand vary between modules.
[0068] Enabling transit between modules in the analyzer in a reliable time frame, on the order of a single operation cycle or less, achieves many performance advantages not possible with prior art track systems. If a sample can be reliably handled by an analyzer module and transported to the next analyzer module within a single cycle of the analyzer, traffic handling in queuing becomes much simpler, throughput becomes more consistent, and latency can be controlled and reduced. Essentially, in such an analyzer, a sample can reliably be handled by the track system and processed uniformly such that a sample does not sit idly on the track system waiting in queues. Furthermore, queues within the system, such as queues within a given analyzer module, can reliably be shortened and limited by the number of modules within the system.
[0069] In some embodiments of the present invention, the reliable and rapid nature of the track system enables queues to be virtual, rather than physical. A virtual queue can be handled in software, rather than by physical limitations. Traditionally, queues have been physical. The simplest physical queue is effectively a traffic jam at any given part of a sample handling operation. A bottleneck creates a first-in first-out (FIFO) queue, where sample carriers are effectively stopped in a line, providing a buffer so that an analyzer or a decision point can request the next sample in the queue when it is ready. Most prior art lab automation tracks maintain FIFO processing queues to buffer samples that are waiting to be processed by the attached modules (analyzers or pre/post analytic devices).
These buffers allow the track to process sample tubes at a constant rate, even though the modules or operator requests can create bursts of demand. FIFO queues can also substantially increase the throughput of the individual modules by allowing them to perform preprocessing tasks for future samples, for example, prepare a cuvette or aspirate reagent, while processing the current sample. While the rigid predictability of FIFO queues enables the parallelization of some processing tasks, it also can prevent the modules from using opportunistic scheduling that may increase throughput by reordering tests on samples to optimize resources. For example, the internal resource conflicts of most immunoassay analyzers can be so complex that the analyzers need to interleave the tests from multiple samples in order to reach maximum efficiency. A FIFO queue can reduce the throughput of these analyzers by as much as 20%. Another challenge with FIFO queues is their inability to handle priority samples (e.g., a STAT sample). If a STAT sample needs to be processed immediately, the entire FIFO queue has to be flushed back onto the main track, delaying all other samples on the track and forcing the original module to slowly rebuild its queue.
[0070] Another type of queue is a random access (RA) queue. A carousel is an example of a physical RA queue found in analyzer modules. By aliquoting a portion of a sample into one or more vessels in a carousel ring, an analyzer module can select any of a number of samples to process at any time within the analyzer. However, carousels have many drawbacks, including added complexity, size, and cost. A carousel also increases the steady-state processing time, because a sample must be transferred into and out of the random-access queue. Processing delays depend on the implementation, such as the number of positions in a carousel. On the other hand, by having random access to samples, a local scheduling mechanism within a module can process samples in parallel, performing sub-steps in any order it desires.
[0071] In some embodiments, carousels or other RA queues can be eliminated from the modules and the sub-paths (e.g., 210) from the automation system can be used as part of an RA or FIFO queue. That is, if the travel time for a sample between any two points can be bounded to a known time that is similar to that of a carousel (such as predictably less than a portion of an operation cycle), the track 200 can be part of the queue for a given module. For example, rather than using a carousel, module 205 can utilize samples in carriers on sub-path 210. Preprocessing steps, such as reagent preparation, can be conducted prior to the arrival of a sample under test. Once that sample under test arrives, one or more portions of the sample can be aspirated into cuvettes or other reaction vessels for an assay. In some embodiments, these reaction vessels can be contained within module 205, off track, while in other embodiments, these reaction vessels can be placed in carriers on sub-path 210 to allow easy motion. If the sample under test is required to be at a module for longer than an operation cycle, or if multiple samples will be processed by the module during an operation cycle, the sub-path 210 can act as a queue for the module.
[0072] Furthermore, samples not yet under test, which may be currently located at other modules, can be scheduled for the next operation cycle. These next-cycle samples can be considered as residing in a virtual queue for module 205. A module can schedule samples to arrive during a given operation cycle for any sample on track 200. A
central controller, or controllers associated with modules themselves, can resolve any conflicts over a sample for a given cycle. By giving a module prior knowledge of the arrival time of a sample, each module can prepare resources and interleave tests or portions of tests to more efficiently allot internal resources. In this manner, modules can operate on samples in a just-in-time manner, rather than by using large physical buffers. The effect is that the virtual queue for a given module can be much larger than the physical capacity of the sub-path serving that module, and existing scheduling algorithms can be used. Effectively, each module can treat track 200 as it would treat a sample carousel in a prior art module.
[00731 It should be appreciated that by employing virtual queues in some embodiments, multiple modules can have multiple queues and can share a single queue or samples within a queue. For example, if two modules are equipped to perform a certain assay, a sample needing that assay can be assigned to a virtual queue for that assay, which is shared between the two modules capable of handling the assay. This allows load balancing between modules and can facilitate parallelism. In embodiments where reaction vessels are placed in carriers on track 200, an assay can be started at one module (e.g., reagents prepared and/or sample mixed in) and the assay can be completed at another (e.g., a reaction is observed at another module). Multiple modules can effectively be thought of as a multi-core processor for handling samples in some embodiments. In these embodiments, scheduling algorithms for the multiple modules should be coordinated to avoid conflicts for samples during a given operation cycle.
[0074] By employing virtual queues, modules can operate on samples while the samples are in the virtual queues of other modules. This allows low latency of samples, as each sample that is placed onto track 200 can be processed as quickly as the modules can complete the tests, without having to wait through a physical queue. This can greatly reduce the number of sample carriers on track 200 at any given time, allowing reliable throughput.
By allowing modules to share queues or samples, load balancing can also be used to maximize throughput of the system.

[0075] Another advantage of using virtual queues is that STAT samples can be dynamically assigned priority. For example, a STAT sample can be moved to the head of any queue for the next operation cycle in software, rather than having to use a physical bypass to leapfrog a STAT sample to the head of a largely static physical queue. For example, if a module is expecting three samples to be delivered by track 200 for assays during the next operation cycle, a scheduler responsible for assigning samples to the module can simply replace one or more of the samples with the STAT sample, and have the track 200 deliver the STAT sample for processing during the next operation cycle.
[0076] If decision points such as 214 and 216 can be streamlined such that there is no need for a queue at each decision point, the only physical queues can be within sub-paths 210, 210A, and 210B. As described above, these can be treated as RA queues or FIFO
queues. If a STAT sample is placed onto track 200, RA queues within sub-paths 210, 210A, and 210B need not be flushed, as the STAT sample can be processed immediately.
Any FIFO queues can be individually flushed. For example, if a STAT sample is placed onto track 200 at section 222, the sample may be routed to the appropriate analyzer 205B via the outside track and decision point 216. If there are other samples (and by extension the sample carriers transporting those samples) waiting in the queue in path 210B, only those samples in the queue may need to be flushed to allow a STAT sample to take priority. If the outer track 200 is presumed to take less than an operation cycle to traverse, any samples that were flushed from the queue in 210B can simply be circulated around the track and placed immediately back into the queue in path 210B immediately behind the STAT
sample, eliminating any down time caused by the STAT sample.
[0077] Entry paths 220 and 222 can be used to input samples to the track 200.
For example, regular priority samples can be placed onto track 200 at input 220 and STAT
priority samples can be placed on input 222. These inputs can be used as outputs for samples when complete, or other ports (not shown) can be used as the output paths for used samples.
Input 220 can be implemented as an input buffer, acting as a FIFO queue for input samples seeking access to the track 200. Once a sample reaches the head of the queue at input 220, it can be moved onto the track (either by being placed in a carrier, or by being placed in a carrier when it is placed in input 220). A STAT sample can enter the track 200 immediately after being placed at input 222 or, if track 200 is overcrowded, the STAT
sample can enter the track at the next available uncrowded operation cycle. Some embodiments monitor the number of carriers on the track during an operation cycle and limit the total number to a manageable amount, leaving the remainder in input queues. By restricting samples at the input, track 200 can be free of traffic, allowing it to always be operated in the most efficient manner possible. In these embodiments, the transit time of a sample between two modules can be a bounded value (e.g., less than some portion of an operation cycle), allowing simplified scheduling.
[0078] In some embodiments, the track system 200 can be designed to be bidirectional. This means that sample carriers can traverse the outside path and/or any sub-paths in either direction. In some embodiments, additional sub-paths, such as 211B accessed via additional decision points 215 and 217, can assist in providing bidirectional access.
Bidirectional paths can have inherent advantages. For example, if normal priority samples are always handled in the same direction, a STAT sample can be handled in the opposite direction along the sub-path. This means that a STAT sample can essentially enter the exit of the sub-path and be immediately placed at the head of the queue without requiring the queue to be flushed. For example, if a STAT sample is placed on track 200 at segment 204, it can enter path 210B via decision point 214 and proceed into path 210B to be immediately placed at the head of any queue. Meanwhile, in all of these examples, because queues are presumed to be limited generally to sub-paths, there is no need to flush queues in other modules if a STAT sample does not need immediate access to those modules. Any additional modules that need to service a STAT sample on a subsequent cycle can flush their queues at that point, providing just-in-time access to a STAT sample without otherwise disrupting the operation of each analyzer module.
[0079] Modular design also allows certain other advantages. If the automation systems within an analyzer module are adapted to take advantage of the track system contained in the module, new features can he added that use the common track.
For example, a module could have its own internal reagent carousel that includes all of the reagents necessary for performing the assays prescribed for the samples. When reagents stocked in the analyzer module run low, an operator can replenish the reagents in some embodiments by simply loading additional reagents onto carriers on the track 200. When the reagents on track 200 reach the appropriate module, the module can utilize mechanical systems such as an arm or a feeder system that takes the reagents off of the track and places the reagents in the reagents store for the module.
[0080] In some embodiments, the individual track portions shown in FIG. 3 and FIG.
2A and FIG. 2B can be operated independently from one another, or can be passive.
Independent carrier movement provides advantages over friction-based track systems, such as non-localized conveyor belts where the entire friction track must be moved to effect movement of a sample carrier. This means that other samples also on that track must move at the same rate. This also means that if certain sections operate at different speeds, collisions between passive carriers carrying samples can occur.
[0081] FIG. 4A depicts an exemplary carrier 250 for use with the present invention.
Carrier 250 can hold different payloads in different embodiments. One payload can be a sample tube 255, which contains a fluid sample 256, such as blood or urine.
Other payloads may include racks of tubes or reagent cartridges or any other suitable cartridge. Sample carrier 250 includes a main body 260, which can house the internal electronic components described herein. The main body 260 supports a bracket 262, which can accept a payload. In some embodiments, this is a shallow hole that is designed to accept a fluid container 255 such as a sample tube, and hold it with a friction fit. In some embodiments, the friction fit can be made using an elastic bore or a clamp that can be fixed or energized with a spring to create a holding force. In some embodiments, sample racks and reagent cartridges can be designed to also attach to the bracket 262, allowing bracket 262 to act as a universal base for multiple payload types.
[0082] Body 260 can include or be coupled to guide portion 266, which allows the carrier 250 to follow a track between decision points. Guide portion 266 can include, for example, a slot to accept one or more rails in the track, providing lateral and/or vertical support. In some embodiments, the guide portion allows the carrier 250 to be guided by walls in the track, such as the walls of a trough shaped track. The guide portion 266 can also include drive mechanisms, such as friction wheels that allow a motor in the carrier body 260 to drive the carrier or puck 250 forward or backward on the track. The guide portion 266 can include other drive components suitable for use with the embodiments described throughout, such as magnets or induction coils.
[0083] Rewritable display 268 can be provided on the top of the carrier 250.
This display can include an LCD oriented panel and can be updated in real time by the carrier 250 to display status information about sample 256. By providing the electronically rewritable display on the top of the carrier 250, the status information can be viewed at a glance by an operator. This can allow an operator to quickly determine which sample he/she is looking for when there are multiple carriers 250 in a group. By placing the rewritable display on top of the carrier 250, an operator can determine status information even when multiple carriers 250 are in a drawer or rack.

[0084] FIG. 4B shows an exemplary track configuration 270 for use by carriers 250.
In this example, carriers 250A transport sample tubes, while carriers 250B
transport racks of tubes along main track 272 and/or subpaths 274 and 274A. Path 276 can be used by an operator to place samples into carriers or remove samples from these carriers.
[0085] FIG. 4C shows an additional view of an exemplary track configuration 270.
In this example, sub-path 274 serves an immunoassay station, while sub-path 274A serves a clinical chemistry station. Input/output lane 276 can be served by a sample handler station 280 that uses sub paths 277 and 278 to buffer samples for insertion or removal of the samples from the main track 272.
[0086] In some embodiments, the sample handler 280 can also load and unload samples or other payloads to/from the carriers 250A and 250B. This allows the number of carriers to be reduced to the amount needed to support payloads that are currently being used by the stations in track system 270, rather than having a vast majority of carriers sitting idle on tracks 277 and 278 during peak demand for the analyzer. Instead, sample trays (without the carriers disclosed herein) can be placed/removed by an operator at input/output lane 276.
This can reduce the overall cost of the system and the number of carriers needed can be determined by the throughput of the analyzer, rather than based on anticipating the peak demand for the analyzer in excess of throughput.
INTELLIGENT CARRIERS
[0087] Whereas prior art lab automation systems utilize passive pucks or trays (e.g., the puck is a simple plastic or rubber brick that lacks active or autonomous systems, power, onboard processing, or control) to reduce cost and complexity, the inventors of the present invention have realized that the added complexity and cost necessary to integrate intelligence and autonomy into individual carriers (which can include intelligent pucks or trays in some embodiments) provides unexpected and important benefits that have been overlooked in traditional lab automation systems. Accordingly, embodiments of the present invention can utilize intelligent independent carriers to enable certain improvements over passive pucks on friction-based tracks. For example, one disadvantage of prior art track systems is that at each decision point the decision for directing a puck is made by the track by rotating the puck and reading a barcode optically. Rotating and optical reading is a relatively slow process.
Furthermore, this process can be redundant because the system has knowledge of the identification of the sample tube when the sample tube is placed into the puck by an operator.
Embodiments of the present invention can include carriers that have means to identify the contents of the sample tube (and optionally communicate this information to the automation system) without requiring the carrier to be stopped, rotated, and read optically.
[0088] For example, a carrier can include an onboard optical reader to automatically read a barcode of a payload. The results of the scan can then be stored in the memory of a carrier if the carrier has onboard processing capability. Alternatively, an outside source, such as a hand barcode reader operated by an operator at the time of placing the sample into the carrier, can communicate the barcode information of the payload to the carrier via RF signal or other known means, such as communication protocol using temporary electrical contact or optical communication. In some embodiments, the association of the carrier with the payload can be stored external to the carrier and the identity of the carrier can be conveyed by the carrier to the system by RF, optical, or near field communication, allowing the system to assist in routing or tracking the carrier and the payload. Routing decisions can then be made by the carrier or by identifying the carrier, rather than reading a unique barcode of a payload.
[0089] By moving processing capability and/or sensor capability onto each individual carrier, the carriers can participate actively and intelligently in their own routing through the track system. For example, if individual carriers can move independently of one another either by autonomous motive capabilities or by communication with the track, certain performance advantages can be realized.
[0090] By allowing carriers to move independently, carriers can move around the track faster. One key limitation on the motion of a carrier is that it should not spill an open-tube sample. The limiting factor is generally not the velocity of the carrier in a straight line, but the acceleration and jerk experienced by the carrier (while speeding up, slowing down, or turning), which may cause splashing. For friction-based track systems, the velocity of the track is typically limited to prevent acceleration and jerk experienced by pucks from exceeding threshold amounts because the entire track moves. However, by using a track system with independently operating sections that can respond to individual carriers, or individual carriers that have independent motive capability, the acceleration of any given carrier can be tailored to limit acceleration/deceleration and jerk, while allowing the average velocity to be greater than that of traditional tracks. By not limiting the top speed of a carrier, the carrier can continue to accelerate on each track section as appropriate, resulting in a substantially higher average speed around the track. This can assist the carrier in traversing the entire track system in less than one machine cycle of the analyzer. These machine cycles can be, for instance 20 or 40 seconds.
[0091] Similarly, an autonomous carrier can know its own identity and that of its payload. This allows the carrier to actively participate or assist in the routing decision process at individual decision points. For example, upon reaching a decision point (e.g., switch, intersection, junction, fork, etc.), a carrier can communicate its identity and/or the identity of its payload to the track or any switching mechanism (or its intended route that the carrier has determined based on the payload identity), via RE, near field, or other form of communication. In this scenario, the carrier does not need to be stopped at a decision point for a barcode scan. Instead, the carrier can keep going, possibly without even slowing down, and the carrier can be routed in real time. Furthermore, if the carrier knows where it is going or communicates its identity to the track (such that the track knows where the carrier is going) before the carrier physically reaches a decision point, the carrier can be made to decelerate prior to a decision point if the carrier will be turning. On the other hand, if the carrier does not need to turn at the decision point, the carrier can continue at a higher velocity because the sample carried by the carrier will not undergo cornering forces if the carrier is not turning at the decision point or a curved section of the track.
[0092] An autonomous carrier can also include onboard processing and sensor capabilities. This can allow a carrier to determine where it is on the track and where it needs to go, rather than being directed by the track (although in some embodiments, a central controller sends routing instructions to the carrier to be carried out). For example, position encoding or markers in the track can be read by a carrier to determine the carrier's location.
Absolute position information can be encoded on a track surface to provide reference points to a carrier as it traverses the track. This position encoding can take many forms. The track may be encoded with optical markers that indicate the current section of the track (e.g., like virtual highway signs), or may further include optical encoding of the specific absolute location within that section of track (e.g., like virtual mile markers).
Position information can also be encoded with markings between absolute position marks. These can provide synchronization information to assist a carrier in reckoning its current trajectory. The optical encoding scheme may take on any appropriate form known to one skilled in the art. These marks used by the encoding scheme may include binary position encoding, like that found in a rotary encoder, optical landmarks, such as LEDs placed in the track at certain positions, barcodes, QR codes, data matrices, reflective landmarks, or the like. General position information can also he conveyed to the carrier via RF/wireless means. For example, RF1D
markers in the track can provide near field communication to the carrier to alert the carrier that it has entered a given part of the track. In some embodiments, local transmitters around or near the track can provide GPS-like positioning information to enable the carrier to determine its location. Alternatively, sensors in the track, such as Hall effect sensors or cameras, can determine the position of individual carriers and relay this information to the carrier.
[0093] Similarly, the carrier can have sensors that indicate relative motion, which provide data that can be accumulated to determine a position. For example, the carrier may have gyroscopes, accelerometers, or optical sensors that observe speckle patterns as the carrier moves to determine velocity or acceleration, which can be used to extrapolate a relative position.
[0094] Because a carrier can know where it is and its motion relative to the track, a carrier can essentially drive itself, provided it knows its destination. The routing of the carrier can be provided in many different ways in various embodiments. In some embodiments, when a carrier is loaded with the sample, the system can tell the carrier the destination analyzer station. This information can be as simple as the identification of the destination station in embodiments where the carrier has autonomous routing capability. This information can also be detailed information such as a routing list that identifies the specific path of the individual track sections and decision points that a carrier will traverse. Routing information can be conveyed to the carrier via any communication method described herein, such as RF communication, near field/inductive communication, electrical contact communication, or optical communication.
[0095] In an exemplary embodiment, when an operator scans the barcode of the sample tube and places it in a carrier, the system determines the identity of the carrier and matches it with the identity of the sample. The system then locates the record for the sample to determine which tests the sample must undergo in the analyzer. A scheduler then allocates testing resources to the sample, including choosing which tests will be done by individual testing stations and when the sample should arrive at each testing station for analysis. The system can then communicate this schedule (or part of the schedule) to the carrier to inform the carrier of where it needs to go, and optionally when it needs to go and/or when it needs to arrive.
[0096] Once the carrier is placed onto the track system, the routing capabilities and location acquisition systems of the carrier enable the carrier to determine where it is on the track and where it needs to go on the track. As the carrier traverses the track, the carrier reaches individual decision points and can be directed along the main track or along sub-paths as appropriate. Because each carrier operates independently from one another, a carrier can do this quite quickly without necessarily stopping at each decision point and without waiting for other carriers in a queue. Because these carriers move quickly, there is less traffic on the main sections of the track, which reduces the risk of collision or traffic jams at decision points or comers in the track (e.g., sections where carriers might slow down to avoid excessive forces on the sample).
[0097] Motive force can be provided to the carriers in many ways. In some embodiments, the track actively participates in providing individualized motive force to each carrier. In some embodiments, motive force is provided by electromagnetic coils in the track that propel one or more magnets in the carrier. An exemplary system for providing this motive force is the track system provided by MagneMotion, Inc., which can generally be understood by the description of the linear synchronous motors (LSMs) found in U.S.
Published Patent Application No. 2010/0236445, assigned to MagneMotion, Inc..
These traditional systems utilizing this magnetic motion system have included passive carriers that lack the integrated intelligence of the carriers described herein, and all routing and decisions are made by a central controller with no need for active carriers that participate in the routing and identification process.
[0098] In embodiments that utilize magnetic motion, the electromagnetic coils and the magnets operate as an LSM to propel each individual carrier in the direction chosen with precise control of velocity, acceleration, and jerk. Where each coil on the track (or a local set of coils) can be operated independently, this allows highly localized motive force to individual carriers such that individual carriers can move with their own individually tailored accelerations and velocities. Coils local to a carrier at any given moment can be activated to provide precise control of the direction, velocity, acceleration, and jerk of an individual carrier that passes in the vicinity of the coils.
[0099] In some embodiments, a track may be comprised of many individually articulable rollers that act as a locally customizable friction track. Because individual micro-sections of the track can be managed independently, rollers immediately around a carrier may be controlled to provide individualized velocity, acceleration, and jerk. In some embodiments, other active track configurations can be used that provide localized individual motive force to each carrier.
[00100] In some embodiments, the track may be largely passive, providing a floor, walls, rails, or any other appropriate limitations on the motion of a carrier to guide the carrier along a single dimension. In these embodiments, the motive force is provided by the carrier itself. In some embodiments, each individual carrier has one or more onboard motors that drive wheels to provide self-propelled friction-based motive force between the track and the carrier. Unlike traditional friction tracks, where the track is a conveyor, carriers with driven wheels can traverse the track independently and accelerate/decelerate individually. This allows each carrier to control its velocity, acceleration, and jerk at any given moment to control the forces exerted on its payload, as well as traverse the track along individually tailored routes. In some embodiments, permanent magnets may be provided in the track and electromagnets in the carrier may be operated to propel the carrier forward, thereby acting as an LSM with the carrier providing the driving magnetic force. Other passive track configurations are also contemplated, such as a fluid track that allows carriers to float and move autonomously via water jets or the like, a low friction track that allows carriers to float on pockets of air provided by the track, (e.g., acting like a localized air hockey table), or any other configuration that allows individual carriers to experience individualized motive forces as they traverse the track.
[00101] FIG. 5 shows a top-level system diagram of the control systems and sensors for an exemplary intelligent autonomous carrier 300. Carrier 300 is controlled by a microcontroller 301 that includes sufficient processing power to handle navigation, maintenance, motion, and sensor activities needed to operate the carrier.
Because the carrier is active and includes onboard electronics, unlike prior art passive carriers, the carrier includes an onboard power station. The details of this station vary in different embodiments of the present invention. In some embodiments, power system 303 comprises a battery that may be charged as the carrier operates, while in other embodiments, the battery is replaceable or can be manually charged when the carrier is not operating. Power system 303 can include the necessary charging electronics to maintain a battery. In other embodiments, power system 303 comprises a capacitor that may be charged by inductive or electrical contact mechanisms to obtain electrical potential from the track itself, in much the same way a subway car or model train might receive power.
[00102] Microcontroller 301 communicates with system memory 304. System memory 304 may include data and instruction memory. Instruction memory in memory 304 includes sufficient programs, applications, or instructions to operate the carrier. This may include navigation procedures as well as sensor handling applications. Data memory in memory 304 can include data about the current position, speed, acceleration, payload contents, navigational plan, identity of the carrier or payload, or other status information. By including onboard memory in carrier 300, the carrier can keep track of its current status and uses information to intelligently route around the track or convey status information to the track or other carriers.
[00103] Microcontroller 301 is responsible for operating the motion system 305, sensors 312, 313, and 314, and communication system 315, status display 316, and sample sensor 317. These peripherals can be operated by the microc,ontroller 301 via a bus 310. Bus 310 can be any standard bus, such as a CAN bus, that is capable of communicating with the plurality of peripherals, or can include individual signal paths to individual peripherals.
Peripherals can utilize their own power sources or the common power system 303.
[00104] Motion system 305 can include the control logic necessary for operating any of the motion systems described herein. For example, motion system 305 can include motor controllers in embodiments that use driven wheels. In other embodiments, motion system 305 can include the necessary logic to communicate with any active track systems necessary to provide a motive force to the carrier 300. In these embodiments, motion system 305 may be a software component executed by microcontroller 301 and utilizing communication system 315 to communicate with the track. Devices such as motors, actuators, electromagnets, and the like, that are controlled by motion system 305 can be powered by power system 303 in embodiments where these devices are onboard the carrier.
External power sources can also provide power in some embodiments, such as embodiments where an LSM provides motive force by energizing coils in the track. In some embodiments, motion system 305 controls devices on or off the carrier to provide motive force. In some embodiments, the motion system 305 works with other controllers, such as controllers in the track, to coordinate motive forces, such as by requesting nearby coils in the track be energized or requesting the movement of local rollers. In these embodiments, motion system 315 can work together with communication system 315 to move the carrier.
[00105] Carrier 300 can include one or more sensors. In some embodiments, carrier 300 includes a collision detection system 312. Collision detection system 312 can include sensors at the front or back of a carrier for determining if it is getting close to another carrier.
Exemplary collision detection sensors can include IR range-finding, magnetic sensors, microwave sensors, or optical detectors. Whereas many prior art pucks are round, carrier 300 may be directional, having a front portion and a rear portion. By having a directional geometry, carrier 300 can include a front collision detector and a rear collision detector.
[00106] In some embodiments, collision detection information can include information received via the communication system 315. For example, in some embodiments, the central controller for the track can observe the location and speed of carriers on the track and evaluate collision conditions and send updated directions to a carrier to prevent a collision. In some embodiments, nearby carriers can communicate their positions in a peer-to-peer manner. This allows carriers to individually assess the risk of collision based on real-time position information received from other carriers. It will be understood that in embodiments where the carrier receives trajectory information about other carriers, or decisions are made with the help of a centralized controller that has access to trajectory information of nearby carriers, the carriers need not be directional, and can include sensors or receivers that do not depend on a given orientation of a carrier.
[00107] Carrier 300 can also include a position decoder 313. This sensor can extrapolate the carrier's position as described herein. For example, position decoder 313 can include a camera or other optical means to identify landmarks in the track, or observe optical encoding in the track. In some embodiments, position decoder 313 can also include inertial sensors, magnetic sensors, or other sensors sufficient to determine a carrier's current position, direction, velocity, acceleration, and/or jerk.
[00108] Carrier 300 can optionally include a barcode reader 314. If equipped with the barcode reader 314, carrier 300 can observe the barcode of its payload at the time the samples are loaded onto the carrier or at any time thereafter. This prevents the need for a carrier to stop at individual decision points to have the system read the barcode of a sample tube. By reading and storing the identity of the sample tube, or conveying this information to the overall system, a carrier may more efficiently traverse the track system because routing decisions can be made in advance of reaching a decision point. Alternatively, where a system knows the identity of the sample when it is placed onto the carrier, the system can include an external barcode reader and can convey the identity of the payload to the carrier for storage and memory 304 via communication system 315.
[001091 Communication system 315 can comprise any mechanisms sufficient to allow the carrier to communicate with the overall automation system. For example, this can include an XBee communication system for wireless communication using an off-the-shelf communication protocol, such as 802.15.4, any appropriate version of 802.11, or any standard or proprietary wireless protocol. Communication system 315 can include a transceiver and antenna and logic for operating an RF communication protocol.
In some embodiments, communication system 315 can also include near field communication, optical communication or electrical contact components. Information conveyed via the communications system to/from carrier 300 is described throughout this application.
[00110] In some embodiments, the carrier can also include a status display module 316. The status display module 316 can include a controller and rewritable electronic display, such as an LCD panel or E-ink display. In some embodiments, the controller is treated as an addressable portion of memory, such that the microcontroller 301 can easily update the status display 316.
[00111] In some embodiments, the carrier also includes sample sensor 317. This sensor can be used to indicate the presence or absence of a fluid container in the carrier's tube bracket (which may also be referred as to a tube holder). In some embodiments, this is a momentary mechanical switch that is depressed by the presence of a tube and not depressed when a tube is absent. This information can be used to determine the status of a tube, which can assist in the display of status information by status display module 316.
ROUTING
[00112] The desire for rapid transit times within an analyzer system can make routing difficult. In prior art systems, rapid routing is less critical because samples are generally stopped, singulated, and scanned at each decision point. In those systems, the routing decision for a given decision point can be made while the sample is stopped.
Rapid routing decisions are generally desired and may require determining a switching decision before a sample carrier reaches a decision point. Furthermore, because the carriers move at a rapid rate compared to the prior art, the control of the instantaneous trajectory of a sample carrier can be assisted by real-time processing in order to prevent spilling or damaging IVD samples.
In some embodiments, substantially instantaneous trajectory observation and control is conducted onboard each carrier to facilitate real-time control, while the overall routing decisions are made by a central controller that manages a group of carriers.
Therefore, in some embodiments of the present invention, the carriers act like semi-autonomous robots that receive global routing instructions from a central controller, but make local motion decisions substantially autonomously.
[00113] For example, when a carrier receives a sample (e.g., a patient fluid sample or other payload) a central controller managing one or more carriers determines the schedule for that carrier and instructs the carrier where to go on the track of, for example, an in-vitro diagnostics automation system. This instruction can be a next-hop instruction (e.g., identifying the next leg of a route), such as going to a given decision point, moving forward to the next decision point, or turning at a given decision point. In some embodiments, the instructions can include a complete or partial list of track segments and decision points to be traversed and whether to turn at each decision point. These instructions can be communicated to the carrier from a central controller via any conventional means, including wireless or contact electrical signaling, as explained throughout this disclosure.
[00114] While following the instructions, each carrier can make a determination of the appropriate velocity, acceleration, and jerk (as used herein, acceleration includes deceleration). This can include a real-time decision of whether the carrier must slow down to avoid collision or to enter a curve without causing excessive lateral forces, or slow down before the next decision point. These decisions can be made with the assistance of any onboard sensors, as well as external information received by the carrier, such as information about the position and trajectory of nearby carriers. For example, accelerometers and/or track encoding information can be used to determine the current velocity, acceleration, and jerk, as well as the current position of a carrier. This information can be used by each carrier to determine its trajectory and/or can be conveyed to other carriers. Collision detectors, such as RF rangefinders, can determine whether or not a potential collision condition exists to assist the carrier in determining whether it needs to slow down and/or stop. This collision determination can include trajectory information about the current carrier, as well as the trajectory information about surrounding carriers received by the current carrier through observation or by receiving information from a central scheduler for the track.
[00115] FIG. 6 shows an exemplary routing scenario in automation system 400.
Carrier 430 receives routing instructions from central management processor 440 via RF

signaling. Central management processor 440 can participate in monitoring and directing carriers, including issuing routing instructions and scheduling the movement and dispatch of carriers. Central management processor 440 can be part of the central controller and/or local controllers that interact with individual modules or stations. Central or local controllers can also act at the direction of central management processor 440. Central management processor 440 can include one or more processors operating together, independently, and/or in communication with one another. Central management processor 440 can be a microprocessor, software operating on one or more processors, or other conventional computer means suitable for calculating the schedule for multiple carriers within the track system 400.
[00116] Central management processor 440 can receive position information from multiple carriers, as well as any sensor information from sensors in the track system 400 and/or information reported by the carriers. Central management processor 440 uses the status information of the carriers and track as well as the identity of samples or other payload carried by the carriers and the required assays to be performed by the system on these samples.
[00117] The exemplary track 400 shown in FIG. 6 includes a first curve segment A, that connects to straight segment B and a pullout segment G (e.g., a segment that serves a testing station), which serves analyzer/testing station 205A and pipette 420, via decision point 402. Segment B connects to straight segment C and a pullout segment H, which serves analyzer/testing station 205 and pipette 422, via decision point 404. Segment C connects to curved segment D, which serves sample handling station 205C, and pullout segment I, which serves analyzer/testing station 205B and pipette 424, via decision point 406.
Segment D
connects to straight segment E and the other end of pullout segment I, via decision point 408.
That is, there are different paths between decision points 406 and 408 ¨
segments D and I, (where segment I is a pullout that can be used to deliver samples to interact with pipette 424).
Segment E connects to straight segment F and the other end of pullout segment H, via decision point 410. Segment F connects to curved segment A and the other end of pullout segment G, via decision point 412. In some embodiments, track 400 includes input and output lanes J and K, which can be used to add or remove carriers at decision points 402 and 412.
[00118] In some embodiments, decision points 402-412 are passive forks in the track that carrier 430 can navigate to select a proper destination segment. In other embodiments, decision points 402-412 are active forks that can be controlled by carrier 430 or central management processor 440. In some embodiments, decision points 402-412 are electromagnetically controlled switches that respond to requests by carrier 430, such as via RF or near field communication. In some embodiments these electromagnetically controlled switches have a default position, such as straight, that the switch will return to once a carrier has been routed. By using default positions for decision points, a carrier may not need to request a position at each decision point, unless it needs to be switched at that decision point.
[00119] Scheduler central management processor 440 assigns carrier 430 a first route, Route 1, to place the carrier 430 and its payload within reach of pipette 420. Carrier 430 is instructed to travel along segment J to decision point 402 and travel onto segment G to stop at a position accessible to pipette 420. In some embodiments, carrier 430 receives the instructions and determines its current location and trajectory to determine a direction and trajectory to use to reach decision point 402. Carrier 430 can also take into account that it will be making a hard right turn at decision point 402 onto segment G. In some embodiments, decision point 402 includes a switching mechanism in the track that can operate under the control of carrier 430. In these embodiments, carrier 430 communicates with the track on approach to decision point 402 to request switching onto segment G. In other embodiments, carrier 430 may have a steering mechanism (such as moveable guide wheel, directional magnets, asymmetric brakes, or the like) that allows carrier 430 to make a right turn onto segment G at decision point 402, without the assistance of an external gate integrated into the track. In these embodiments, carrier 430 engages the steering mechanism at decision point 402 to make the turn onto segment G.
[00120] Carrier 430 can determine its rough location ¨ its current track section, such as section J, by reading encoding in the track, such as optical encoding, or RFID tags. In some embodiments, carrier 430 uses multiple means to determine its location within the track system 400. For example, RFID tags can be used to determine generally on which track segment the carrier 430 is located, while optical encoding or other precise encoding can be used to determine the position within that track segment. This encoding can also be used to determine velocity, acceleration, or jerk by observing changes in the encoding (e.g., derivatives from the position information).
[00121] Carrier 430 can use the identification of the current track section to determine the appropriate route to the destination section either by explicit instruction received by the central management processor 440 or by looking up an appropriate route in an onboard database in memory 304, as shown in the onboard control systems in FIG. 5. In some embodiments, the carrier 430 has an understanding of how to reach section G from section J based on a map stored in the memory of carrier 430 in memory 304.
This map can include a simple lookup table or a tree of track sections where each node is linked by the corresponding decision points, or vice versa. For example, upon identifying that the carrier is currently in the track section J, the onboard database can inform carrier 430 to proceed to decision point 402 to be switched to the right onto section G.
[00122] As shown in FIG. 6, carrier 430 responds to instructions for Route 1 by proceeding onto section G and stopping at a position near pipette 420. Once the carrier 430 is stopped, it can receive additional instructions from the analyzer/testing station controlling pipette 420. For example, analyzer 205A can control pipette 420 and can instruct carriers on section G to position themselves at precise points along section G. This allows analyzer/testing stations to treat track sections as random access queues. For example, once carrier 430 stops on section G, additional instructions can be conveyed via central management processor 440 or directly from analyzer 205A to the carrier 430 via RF
transmission or other means, such as local optical or inductive/near field signals. These instructions can include halting while another carrier interacts with pipette 420, and subsequently proceeding to a position accessible to pipette 420, when analyzer 205A is ready to perform one or more assays on the sample carried by carrier 430.
[00123] Once analyzer/testing station 205A has finished interacting with the sample carried by carrier 430, additional routing instructions can be sent to the carrier 430 from the central management processor 440. For example, Route 2 can include routing instructions to proceed to section H to interact with pipette 422. In some embodiments, the routing tables contained within onboard memory 304 of carrier 430 have sufficient information about the track layout to allow the carrier to route itself to section H. In other embodiments, a list of routing steps can be transmitted to carrier 430 via central management processor 440. It will be appreciated that other embodiments can include conveying any subset of the route to carrier 430 and/or sending routing instructions in a piecemeal fashion, such that carrier 430 always knows the next routing step, and optionally subsequent routing steps.
[00124] In this example, carrier 430 receives a route list representing Route 2 from central management processor 440 instructing it to proceed via section G to decision point 412. At decision point 412, carrier 430 will initiate switching onto section A
by interacting with a Rate or by turning as described above. Carrier 430 can take into account curved track conditions on section G and section A to ensure that acceleration and jerk conditions do not exceed a threshold requirement for the sample it carries. This can prevent spillage or instability during transit. The route information received by carrier 430 then instructs carrier 430 to proceed through decision point 402 without turning. The trajectory used in Route 2 when approaching decision point 402 can be different (e.g., faster) from that used during Route 1, because carrier 430 knows that it does not need to make a sharp right turn onto section G. In some embodiments, this allows carrier 430 to approach decision point 402 with a substantially greater velocity during Route 2 than during Route 1. By traversing decision point 402 faster if carrier 430 is not turning, carrier 430 can complete Route 2 in less time than embodiments in which carrier 430 must slow down for possible switching at each decision point. This is an improvement over the prior art, where carriers are typically halted and singulated, regardless of whether the carrier is turning or not.
[00125] After passing decision point 402, carrier 430 proceeds onto section B.
At decision point 404, carrier 430 proceeds to section C. At decision point 406, carrier 430 prepares and turns onto section I, where it stops for interaction with pipette 424. Like section G, section I can act as a queue for pipette 424 and carrier 430 can be controlled under local instruction by the analyzer/testing station 205B served by section I.
[00126] When pipette 424 is done interacting with carrier 430, central management processor 440 can provide new routing instructions to carrier 430 instructing carrier 430 to proceed onto an output path K. Route 3 can be handled in the same manner as Route 1 and Route 2. Upon receiving instructions for Route 3, carrier 430 proceeds down section Ito decision point 408 where it turns back onto a main track section E and proceeds past decision point 410, track section F. and decision point 412 (without needing to slow down in some embodiments), and onto section K where the carrier 430 and/or the sample can be removed from the system by an operator. Carrier 430 can then be reused for samples at input section J.
Upon receiving instructions for Route 4, carrier 430 proceeds down section D
to sample handling station 205C and to decision point 408, where it turns back onto a main track section E and then proceeds the same as Route 3.
[00127] In some embodiments, each track section of FIG. 6 can be configured to include one or more speed zones. This may be represented as a speed or acceleration limit in software that maintains motion profiles for each carrier. For example, section D may be represented for trajectory control as a slow speed zone for all carriers to account for the inherent centripetal forces exerted by the track as carriers traverse section D. Similarly, track sections can include multiple speed zones within the track section, which may include motion profile rules. For example, a carrier may slow down responsive to software enforcement of rules that identify the latter portion of section C as a braking zone due to the upcoming speed limited zone in track section D. In some embodiments, software responsible for maintaining motion profile rules for carriers may take into account an upcoming speed zone and brake in an unlimited track section in anticipation. Furthermore, different track section portions can be represented as dynamic speed zones. For example, a stopping point for interaction with a pipette can be represented as a speed zone with a speed of zero for carriers that should stop at that location. This may allow trajectory enforcing software to automatically slow down the affected carrier as it approaches the stopping position.
[00128] FIG. 7 shows a general operational diagram of carrier 430 as it follows routing instructions. As can be seen in method 500, the actions can be taken by the carrier with minimal control by, or interaction with, a central scheduler, such as a central management controller. At step 501 the carrier receives routing instructions from, for example, a central scheduler. In this example, the routing instructions include enough information for the carrier to determine its entire route to a destination point in the track system. These instructions can include a list of all routing points, including decision points to turn at and sections to traverse. In some embodiments, routing instructions can include the destination point and onboard routing information can be used by the carrier to determine the best route to take. It will be appreciated that, when at least a main track is unidirectional, the routing calculation by the carrier is fairly simple and can comprise any known method including searching a tree of nodes and sections or searching a lookup table of possible route permutations.
[00129] These instructions can also include velocity and acceleration motion profiles for each section. In some embodiments, velocity and acceleration for each section of track can be calculated by the carrier based on its payload and based on information in an onboard database, such as length of track, curvature of track, location of decision points, the type of sample or payload being carried, and consideration of whether the carrier will turn or proceed in the same direction upon reaching a decision point. In some embodiments, the routing information received at step 501 also includes timing information to instruct the carrier when to begin transit and/or when to complete transit.
[00130] Upon receiving routing instructions and beginning transit, the carrier determines its current location and optionally the direction needed to begin its route at step 502. In a general sense, a carrier can only move in two directions, forward or backwards and, in some embodiments, initiate a turn while moving. Because of the simplified movement model, a carrier can begin its transit even if it only has a rough understanding of its current location, such as by acquiring the current track section by RFID information.
In some embodiments, the carrier uses more precise encoding in the track to determine its current location within a track section before proceeding.
[00131] Once the current position and necessary direction is determined, the carrier can begin transit at step 504. By using an understanding of the location on the track, geometry of the current track, distance to the next decision point, type of sample/payload, and current velocity, the carrier can determine a safe acceleration profile to begin transit. For example, if a carrier is a large distance away from the next decision point and is currently stopped, the carrier can begin accelerating at a maximum acceleration for the sample. In some embodiments, the acceleration of the carrier is ramped up to avoid exposing the sample to a high degree jerk.
[00132] FIG. 8 shows an exemplary acceleration motion profile that can be used to limit jerk and acceleration, while minimizing transit time. By using a trapezoidal acceleration profile, acceleration is ramped up to avoid unnecessary jerk until acceleration reaches a safe amount that is less than a threshold amount to avoid damaging or spilling the sample. By ensuring that acceleration is less than a threshold amount, a carrier may have some acceleration available to mitigate collisions or handle other unexpected stations without exceeding an acceleration threshold for the payload. Generally, maximum velocity will be reached midway between a start point and a stop point. In some embodiments, there is no top speed for a straight section of track, but curved sections of track are governed by a top speed to prevent excessive lateral acceleration. These speed limits and acceleration thresholds may be known to an intelligent carrier, and may be accessible in onboard memory.
[00133] Unlike traditional friction tracks, which are governed by a fixed velocity of the track, some embodiments of the present invention can enable dynamic acceleration profiles and allow carriers to move at much greater average velocity than the prior art. In some embodiments, it is generally desirable to limit the maximum transit time between any points within the track system to less than a portion of an operation cycle of the clinical analyzer. For example, if the maximum distance between any points on a track system is 25m and the operation cycle time is 20 seconds, it may be desirable to ensure that the average velocity of the carrier, including all turns, acceleration, deceleration, starting, and stopping, is sufficient to traverse 30m in 5 seconds or less, or 6m/s (-2.1km/hr). Because a majority of the time in transit is spent accelerating or decelerating, it will be appreciated that the maximum velocity of the carrier on a straightaway can be substantially higher than this average velocity.
[00134] Because jerk and acceleration should be limited for samples, real-time control of acceleration is desired. This goal is furthered by giving control of acceleration to the carrier itself so that it can monitor its current trajectory using accelerometers or other sensors. The carrier can dynamically change its trajectory based on track conditions such as location, traffic, and the need to slow down for an upcoming turn. In this manner, the carrier can be responsible for monitoring and controlling its own dynamic stability conditions.
[00135] Referring back to FIG. 7, at step 510, the carrier determines whether or not it is safe to continue accelerating or decelerating in accordance with the trajectory determined in step 504. Step 510 can include collision detection or checking for other unexpected obstructions or a system-wide or carrier-specific halt command. In some embodiments, the decision at step 510 is based on collision detection sensors, including RF
rangefinders, but can also include status information about the track received from the central management controller or from other carriers at step 505. This status information can include, for example, position and trajectory information about surrounding carriers or updated commands such as a halt instruction or new route instructions.
[00136] If the carrier determines at step 510 that it is not safe to continue with the planned trajectory, the carrier can take steps to mitigate or avoid a collision at step 512. For example, if it is determined that the acceleration profile will place the carrier dangerously close to another carrier, the carrier can begin slowing down. In some embodiments, the decision to slow down to avoid collision is based on an extrapolation of the current trajectory and the observed trajectory of the other carrier. If it is determined that the current trajectory will cause the carrier to come within an unsafe following distance from the carrier ahead of it, the mitigation procedure will be initiated. In some embodiments, each carrier is modeled as having a collision zone into which it is unsafe to enter. This collision zone moves with the carrier. If a carrier senses that it will invade a collision zone of another carrier (or another carrier will invade the instant carrier's collision zone), the carrier can mitigate the collision by decelerating (or accelerating to avoid a rear end collision in some embodiments).
[00137] After the carrier decelerates/accelerates to mitigate a collision, the carrier proceeds back to step 504 to determine an updated trajectory that takes into account the new collision avoidance conditions. If no unsafe condition is detected, the carrier proceeds with implementing its trajectory at step 514 (e.g., proceed with a portion of the trajectory before repeating steps 504-510 to allow for continuous monitoring of conditions).
This can include accelerating or decelerating and observing track encoding and accelerometer information to determine its current status and trajectory. In some embodiments, the carrier will communicate its current status, including location, trajectory, and/or planned trajectory to the central controller and/or other carriers to assist in routing and collision avoidance at step 515.
[00138] As the carrier begins iteratively implementing its planned trajectory, it observes the track for upcoming landmarks, such as its terminal destination or an upcoming decision point at step 520. These landmarks can be identified via important features in the track, such as a warning or brakinR LED, by extrapolating the distance to a landmark from the observed encoding, or by some combination thereof. If no landmark is upcoming, the carrier continues to step 504 and continues iteratively calculating and implementing a planned trajectory.
[00139] In this example, there are two types of important landmarks. The first landmark is the destination of the carrier. The carrier can determine if it is nearing its destination based on track encoding or a landmark feature such as an LED and uses information to begin stopping or complete a stopping procedure at step 522.
For example, a carrier may be instructed to stop at a precise location accessible to a pipette. This precise location may include an LED in the wall or floor of the track to assist a carrier in the stopping at a precise location with millimeter accuracy. In some embodiments, the calculated trajectory at step 504 is used to get a carrier in a rough location of its destination, while a stopping procedure at step 522 is used to determine the precise stopped location, such as by searching for a nearby LED landmark and stopping at the appropriate position.
[00140] Another important landmark may include a decision point. Encoding or warning LEDs in the track can convey the position of an upcoming decision point to a carrier.
For example, a central management controller may illuminate an LED at a braking position on the track some distance before a decision point to alert the carrier to decelerate to prevent unnecessary acceleration or collision at decision point. In other embodiments, the carrier extrapolates the relative position of an upcoming decision point from the track encoding and uses this distance to update its trajectory, if necessary, at step 524. At step 524, a carrier determines the relative location of a decision point and determines, based on its routing information, if the carrier will be turning or proceeding at the decision point. If the carrier will be turning, it may be necessary to update the trajectory to begin decelerating so that the velocity of the carrier is slow enough when it turns at the decision point to prevent unnecessary lateral forces that could harm or spill a sample.
[00141] In many instances, the carrier will be proceeding past the decision point without turning. In these instances, it may not be necessary to update the trajectory and the carrier can continue at its current velocity or even continue to accelerate through the decision point.
[00142] If the carrier determines that it needs to turn at the upcoming decision point, the carrier can slow down and initiate the turn at step 526. In some embodiments, the carrier is only capable of forward or backwards movement without assistance. In these embodiments, the carrier or central management controller can communicate with a switching mechanism at the decision point, at step 527, to ensure that any mechanical or electromagnetic devices in the track system 400 are engaged to direct the carrier in the appropriate direction when it traverses the decision point. Examples of devices in the track can include mechanical switches that block one path at a fork and assist the carrier in turning down the other path at the fork (like a railroad switch that can be mounted to rails or a gate when the track is shaped like a trough), magnets that pull the carrier in one direction or another, or changing signaling in the path that assists the carrier in turning, such as an LED
that the carrier follows or an LCD or e-ink panel in the track that includes a line that can be followed by the carrier if the carrier is equipped with traditional line-following capabilities.
Unlike prior art configurations that singulate, scan, and push individual carriers after they stop at a decision point, some embodiments of the present invention can negotiate a turn before a carrier physically arrives at a decision point. This can allow a carrier to proceed at a velocity limited by the curvature of a turn, rather than having to stop or wait for other mechanisms in order to turn.
[00143] In embodiments where a carrier has some steering capability and can turn at a decision point without the assistance of the next internal switch, the carrier can engage its steering mechanism to direct it to the appropriate path upon approaching the decision point.
After turning at the decision point (or proceeding without turning) a carrier returns to step 504 to determine its next trajectory.
TRAFFIC MANAGEMENT
[00144] FIGs. 9 through 11 show exemplary embodiments of the different available options for assigning knowledge and tasks between a central processor and a carrier. In some embodiments, carriers can be substantially autonomous, navigating a track with limited involvement from a central processor. In other embodiments, carriers may be substantially non-autonomous, relying heavily on a central processor for navigation and trajectory management. In further embodiments, the breakdown between the carriers and a central processor can include a hybrid approach. In a hybrid approach, carriers may have substantial autonomy in navigating and trajectory control, but rely on a central traffic manager to manage intersections and other zones in the automation system where traffic may accrue, creating a risk of collision with other carriers.
[001451 FIG. 9 illustrates an embodiment where carriers act substantially at the direction of a central controller. In this example, carriers 601 need only know its ID. This can be conveyed to the automation system via RF1D, RF communication, or any other suitable means. In some embodiments, carrier 601 may also have additional knowledge stored in local memory accessible to the processor on carrier 601 that may include portions of a map of the track, and identity of its current location, and identity of its current destination, such as a pipette accessible to the automation system, and information about its current trajectory. This information may optionally be conveyed back to one or more central processors.
[00146] Central and local processors 602 can include one or more processors that act as a central traffic manager to control the motion of carriers, such as carrier 601. In some embodiments, processors 602 may include a single processor that operates as a central controller that arbitrates all motion, routing and or trajectory decisions for all carriers in the system. In some embodiments, processors 602 may include a plurality of processors that includes one or more central processors, as well as local processors on local instruments that may be part of the automation system. For example, a local processor may be a processor associated with a pipette. This local processor may control the motion of local queues related to that pipette. Processors 602 may record and manage a large amount of data related to the trajectory and motion of each carrier and the automation system.

[00147] Information about carriers that may be managed by processors 602 can include the identity of each carrier in the automation system and the location of each of these carriers, which may be maintained in real-time through sensors and communication with the carriers. To facilitate trajectory and traffic management of carriers in the automation system, processors 602 may maintain models of the trajectories of each of the carriers. These models may allow extrapolation and dead reckoning of carrier positions at any given time, including moments in the immediate future. These models may be useful in determining whether carriers are at risk of colliding or entering intersections or turns too quickly, which may result in spillage or damage to samples. These models may also be useful for updating directions in real-time, allowing processor 602 to direct carriers at each turn.
[00148] Processors 602 may also maintain a list of the current tasks of each carrier and the status of the carriers in performing these tasks. These tasks may include the current scheduled tests to be completed by an analyzer on the patient sample being carried. These tasks may be assigned to the carrier by processors 602 based on a manifest of required tests (i.e., a test panel) for each patient sample made available to processors 602 by a laboratory information system (US). Based on the availability of each carrier to receive a sample and direct that sample to a given location in the track, processors 602 may assign each patient sample and the related destinations to perform the tests in a test panel to a given carrier.
Processors 602 can observe and monitor the completion of these tasks.
Processors 602 may also maintain local random-access queues related to each instrument or destination.
[00149] Box 603 illustrates the exemplary types of instructions that can be conveyed by processors 602 to carrier 601 to control its navigation and trajectory.
These instructions may include assigning tasks and destinations to carrier 601. This can include a linked list of individual intersections or other suitable form of instructions to direct carriers to navigational points. Instructions may also include controlling carrier trajectories, such as issuing orders to speed up or slow down in real time. Instructions may also direct carriers on how to move in local queues. This may include small shifts forward or backward to allow carriers to position themselves relative to instruments, such as pipette stations. This may allow fine positioning at the direction of processors 602. Finally, instructions may include instructions to control individual aspects of motion between any points on the track, such as speed limits, navigational directions, etc.
[00150] To assist processors 602 in maintaining navigational and trajectory information about carriers, sensors may be placed around the track to observe the carriers. In some embodiments, carriers may also report back information together about themselves.
Box 604 illustrates some of the information that can be reported back from carriers to processor 602 to allow processors 602 to control navigational and trajectory aspects of the motion of the carriers. Carrier 601 may announce its existence to processor 602, such as sending a "hello" message when it is placed in the track. Carrier 601 may also provide current position and trajectory information at regular intervals, allowing processors 602 to track each carrier. Carrier 601 may also check-in at locations throughout the track, such as by passing by RFID readers. This may allow processors 602 to maintain an inventory of general locations of carriers, as well as their order within track sections.
Carrier 601 may also update its status periodically. This may include announcing its arrival at locations of interest, such as pipettes, tube transfer locations, etc. This may also include announcing to processor 602 when the carrier has entered an idle state.
[00151] Embodiment shown in FIG. 9 has a few features that may be useful or desirable for certain applications. First, carrier trajectory and navigation is almost completely controlled by a central track computer. This offloads responsibilities from each carrier, which may allow each carrier to he produced more cheaply. For example, carriers need not have abilities to communicate on a peer-to-peer basis or to track one another for collision avoidance. Furthermore, carriers may not need to make navigational or trajectory decisions, and may simply need to follow orders from a central processor. Furthermore, because all reporting comes to a central repository, the central processor may include a real-time understanding of the position and status of all carriers, allowing carrier movement and interaction to be fully coordinated. However, this may place a higher burden for communication and processing on a central track computer. Embodiment shown in FIG. 9 may not be easily scalable to large applications, but may provide a cost-effective solution where coordination and low costs of each carrier are desired.
[00152] FIG. 10 shows an alternative to the solution shown in FIG. 9, whereby substantial control of each carrier's navigation and trajectory is offloaded from the central processor to each carrier. In this embodiment, carriers may be equipped with additional sensors and capabilities for determining their trajectories, as well as those of carriers nearby.
Carriers may store more information about their status rather than reporting it. This may reduce communication overhead, and offload computation from central processes.
This embodiment may be more suitable to high-speed applications, where communication lag in control may not be suitable for full real-time control.
[00153] Exemplary carrier 611 can include any reasonable subset of the following information. It may include its own identification, which may include an RFID
tag. Carrier 611 may also include memory that records a track map and the carrier's location and destination on that map. As track map may include a global map for the entire automation system, or may include a subset of this information, such as a local map.
Carrier 611 may also include a processor and information that facilitates control of the carrier's current trajectory. This may include an acceleration profile, as well as sensors to observe acceleration and velocity. Using stored information about the track map or by observing landmarks, carrier 611 may also maintain information that allows the carrier to compare its current position to important positions of curves and decision points. In some embodiments, carrier 611 may also maintain a database of nearby carriers. This information may include the IDs of these carriers and information from sensors or received information sufficient to model the locations of those carriers relative to the position and trajectory of carrier 611.
[00154] Meanwhile, central and local processors 612 may be substantially offloaded in contrast to processors 602. Processors 612 may include memory that records the IDs of all carriers on the automation system, as well as the tasks assigned to each carrier and their status related to completing these tasks or being available. Processors 612 may also maintain a database of current test orders waiting to be filled, which may be received from an LIS
server. In this manner, processors 612 may act as a facilitator, managing carriers of by assigning tasks, but processors 612 may not be responsible for directly controlling the navigational choices and the current trajectories of each carrier in the system. This may greatly reduce the communication overhead, as well as the processing overhead for carrier 612. It should be appreciated that this may increase the complexity of carrier 611. In some embodiments, processors 612 may include central or local processors that maintain local random-access queues for destinations, such as pipettes. This may allow each station to control the precise location of each carrier once it enters a local queue, allowing that station to interact with each carrier on-demand once it arrives.
[00155] Processors 612 may fulfill their managerial role by issuing instructions 613 to each carrier 611. These instructions may be comparatively simple to instructions 603. In some embodiments, the only instructions needed are an assignment of tasks and the destinations for each carrier. In some embodiments, this may include sending a simple manifest of the various decision points the carrier should traverse. The exact way in which the carrier reaches the destinations named in instructions 613 may be up to the carriers. In addition, local processors may issue direct commands to each carrier to control local motion when a carrier is in the local queue.
[00156] In some embodiments, to facilitate this autonomous role, carrier 611 may communicate on a peer-to-peer basis with other carriers 616. Box 618 identifies the information that may be communicated on a peer-to-peer basis between carriers.
This may include a handshake of position information. In some embodiments, this may include periodic updates from each carrier to those around it with its current position and trajectory.
This may also include identifying which intersections or corners each carrier is currently located. This may allow each carrier to be wary when entering these intersections or corners, because it will know that other carriers are currently there.
[00157] For example, a carrier may not wish to enter a curve until another carrier has cleared that curve. This may avoid situations where proximity sensors on each carrier do not have line of sight to nearby carriers that may be stopped on the track. In some embodiments, proximity sensors allow carriers to see carriers directly in front of them, and determine the position and/or do trajectory information of the carrier relative to itself This may allow carriers to avoid collisions on straightaways without extra communication.
However, because proximity sensors may require line of sight access to other carriers, intersections and curves may act as high-risk zones for collisions within the automation system.

Communicating information about each carrier's occupancy of these risk zones may mitigate the risk of collision.
[00158] As used herein, a risk zone may include any predetermined section of an automation system that has been designated as a zone of interest when managing traffic. This may include curves and intersections or decision points. These risk zones may be suitable risk zones, because carriers within them may be changing direction or otherwise not be within the line of sight access to other carriers. In some embodiments, each section of the track, including straightaways may be segregated into a plurality of risk zones. This may allow the automation system to be divided into areas of interest that may be locally interesting to nearby carriers. Carriers may use this information to avoid collisions. For example, a first carrier may not be interested in a second carrier that is on the other side of the automation system. However, that first carrier may need to know which other carriers are in the same (or adjacent) section of track as the first carrier in order to monitor these carriers to avoid potential collisions. Accordingly, risk zones may be a useful tool for easily identifying which other carriers should be considered for avoiding collisions.
[00159] In embodiment shown in FIG. 10 peer-to-peer communication 618 may need to happen on a continuous or frequent basis, allowing nearby carriers to communicate with one another to avoid collisions. While this may provide a robust way of avoiding collisions, the power and bandwidth overhead may be undesirable in some embodiments.
[00160] Box 614 identifies information that may be communicated back from the carrier to processors 612 to facilitate the management of these carriers.
Reported information may include announcing the existence of each carrier when it is placed in the automation system and providing information about the current position of that carrier.
In some embodiments, this current position information may be general information, such as an identification of which track section that carrier is currently on. In some embodiments, this may also include detailed information about where in the track section the carrier's currently located. Carriers may also regularly check-in at certain locations, such as by passing by RF1D scanners, allowing processors 612 to maintain a basic model of where each carrier is in the system, as well as identifying the order in which carriers are moving in a given track section. Finally, carrier 611 may update its status, such as identifying when it is idle, when it is at a destination, or when it encounters errors, allowing processors 612 to facilitate management of tasks within the automation system.

[00161] Embodiment shown in FIG. 10 has certain properties that may be desirable and suitable for certain applications. In general, carriers control their own trajectories.
Carriers can also have knowledge of the status of other carriers. Single carriers may communicate with multiple carriers, which may result in certain communication redundancy.
Each carrier may maintain an identity of each carrier on the automation system, or at least those nearby. This may be facilitated by a heartbeat, which may include a single broadcast to all carriers of the location of each carrier. Carriers are generally responsible for traversing the track and keeping knowledge of their location within the track at all times. This can substantially offload central processor, but may result in added expense to each carrier.
Embodiments shown in FIG. 10 may be more reliable from an information standpoint and more scalable for high-speed applications. However, the embodiment shown FIG.
10 may not be suitable for all applications, because the cost of each carrier may be expensive and the added complexity of each carrier may reduce the overall reliability of each carrier.
[00162] FIG. 11 shows another exemplary embodiment that breaks down the knowledge and task assignment between a central processor and the carriers using a hybrid approach of the two approaches shown in FIGs. 9 and 10. In this embodiment, central processors act as a traffic manager for semiautonomous carriers. Carriers can traverse the track in a generally independent manner, allowing the carriers to control their own trajectories and, in some embodiments, their own navigational decisions to reach assigned destinations. However, because multiple carriers share a common automation system, a traffic manager may be employed to arbitrate intersections and ensure that carriers do not travel too closely. This may reduce the risk of collision. In this manner, a traffic manager acts like an air traffic controller, allowing carriers to make individual decisions to reach destinations, while authority to cross intersections or enter risk zones is arbitrated by a central traffic manager. This hybrid approach may be useful for limiting the amount of communication necessary between a carrier and a central processor, limiting the amount of communication and processing overhead each carrier places on the central processor, while at the same time limiting the expense and complexity of carriers, by offloading substantial tasks of collision avoidance to a central authority. In some embodiments, this may eliminate the need for peer-to-peer communication amongst carriers. This may also limit the need for collision avoidance sensors in each carrier.
[00163] Carrier 621 can act autonomously between the risk zones in the automation track. Carrier 621 may include a processor and other hardware and storage for the following information. Carrier 621 may include a unique carrier ID, which may include an RF1D tag or a stored value communicated via RF communication to central and local processors 622. To enable carrier 621 to move between points an automation system, carriers to 21 may include a track map and hardware sufficient to identify its current location and memory suitable to recall its current destination. This destination may be assigned by processors 622 to facilitate a task in an IVD environment. Carrier 621 can include hardware suitable for controlling its current trajectory, as described throughout. Carrier 621 may also be aware of its current status relative to the nearest risk zone. This may include consulting its track map to determine when it is nearing a risk zone. This may also include optics or an RFID reader for determining landmarks that indicate an upcoming risk zone.
[00164] Processors 622 can include a database with the IDs of all carriers in the automation system. This database may include the priorities of all these carriers, which may allow processors 622 to grant higher priority authority and allow advance reservation of occupancy of risk zones to a higher priority samples, such as a STAT samples.
Processors 622 can also maintain memory that records the status of all corners, intersections, or other risk zones. This can include an occupancy model for each risk zone. For example, when a carrier enters a risk zone or receives authority to enter the risk zone, processors 622 may update the occupancy of that risk zone to assign a risk zone for the unique usage of that carrier. Processors 622 may then remove this association (e.g., revoke authority) when the carrier exits the risk zone as indicated by sensors in the track or by a communication from the carrier. In some embodiments, sensors in the track, including RFID checkpoints and optical trip sensors can be used to note when carriers enter and leave risk zones.
[00165] Processors 622 can also maintain a list of test panels from and US
server and assign these tasks to each carrier by assigning samples to these carriers.
Processor 622 may maintain a database that reflects the association between each carrier with the tasks being performed by the carrier. In some embodiments, processors 622 may also maintain sufficient information to control local random-access queues when carriers arrive at their destinations.
[00166] Box 623 reflects the instructions that can be sent from processors 622 to each carrier. These instructions may include assigning tasks and destinations to each carrier, instructions related to controlling the motion within local queues, and information relating to granting authority of carriers to enter risk zones. This communication may be in the form of a risk zone handshake. In some embodiments, when a carrier approaches a risk zone, the carrier may request permission to enter the risk zone. If the risk zone is clear, processors 622 may grant of authority to the requesting carrier. Authority may come in the form of an RF
communication. In some embodiments, the risk zone handshake may include the carrier passing by a sensor, such as RFID checkpoint placed before the risk zone. If the carrier does not have authority to enter the risk zone, the central processor, acting as a traffic manager, can send an abort signal, causing the carrier to slow down or halt.
[00167] Box 624 illustrates available information that may be reported from the carrier to the traffic manager. Carrier 621 may announce its existence when it is placed on an automation track. Carrier 621 may also request permission to enter each risk zone. This may include sending an RF communication seeking acknowledgment. Carrier 621 may also check in at various checkpoints throughout the automation system. These can include RFID
checkpoints or the like. Carrier 621 may also update its status, such as announcing its arrival at destinations or announcing that it is waiting for another sample.
[00168] FIG. 12 shows an exemplary scenario where a carrier seeks authority to enter a risk zone. Carrier 630 travels along an automation system track approaching decision point 632, which may be a predetermined risk zone. However, when carrier 630 arrives near decision point 632 the intersection is already occupied by carrier 634, which may be exiting.
Carrier 630 may communicate with traffic manager 639 when it approaches a predetermined distance from the decision point. This may include a predetermined location 635 on a map stored within carrier 630 or a location designated by an optical landmark in the track. When carrier 630 reaches location 635, carrier 630 transmits a request to traffic manager 639.
Carrier 630 continues moving while awaiting authority. If carrier 630 reaches location 638 without receiving authority, carrier 630 may begin collision mitigation, such as by slowing down to stop. Because carrier 634 already occupies a decision point, traffic manager 639 may not grant carrier 630 authority to pass location 638 until carrier 634 exits. Decision point 632 may also include exit points 636 and 637. Once a carrier in decision point 632 passes these points, the carrier may update its status with traffic manager 639 to free up the decision point. This communication may be an RF communication or may include an optical trip sensor to automatically unlock the decision point as carrier 634 exits.
When carrier 634 traverses location 637, traffic manager 639 can grant carrier 630 permission to proceed past location 638. In some embodiments, the traffic manager may deny authority prior to carrier 630 reaching position 638, allowing carrier 630 to immediately slowdown.
[00169] It should be appreciated that the handshake between carrier 630 and traffic manager 639 may be active or passive. In some embodiments, a sensor at location 635 can indicate to traffic manager 639 that carrier 630 is approaching decision point 632. Traffic manager 639 may send a signal denying authority to carrier 630 because of the occupancy of decision point 632 by carrier 634. This exchange occurs without requiring carrier 632 to transmit any information to traffic manager 639 other than any information that may be transmitted (such as via RFIS) during interaction with a sensor at position 635. Traffic manager 639 may also use information gathered from sensors that any subset of positions 636, 637, and 638.
[00170] FIG. 13 illustrates an exemplary method 700 for negotiating risk zones between the carrier and a traffic manager. A carrier begins interacting with the automation system at step 701. This can include communicating with the automation system that it has been placed on the automation track. At step 702, the carrier moves along the track. This motion may be controlled by an onboard processor that moves the carrier to a destination assigned by the traffic manager. The processor of the carrier may also control the trajectory that carrier, allowing the carrier to navigate the track semi-autonomously towards its destination. At step 704, the carrier determines if it has reached a checkpoint. If so, at step 705, the carrier checks in its location at that checkpoint by interacting with an RFID scanner or transmitting its location to the track and jerk. In some embodiments, rather than using checkpoints at step 704, a heartbeat may be used, whereby carriers periodically check in. At step 706, the traffic manager updates a local data store to reflect the updated status of the carrier, including any tasks it is performing and its current location at the checkpoint. By utilizing checkpoints or regular check-ins, the traffic manager may monitor the general location of each carrier, but may not need to have specific information about the carrier locations between checkpoints.
[00171] At step 708, the carrier determines if it is approaching a risk zone.
This determination may be made by consulting an onboard map of the track by the processor of the carrier, or by observing landmarks in the track. At step 709, the carrier requests authority to enter the risk zone. At step 710, the traffic manager applies traffic rules to determine if permission may be granted. A first rule may include checking to see if the risk zone is currently occupied by another carrier. If so, the traffic manager denies the request at step 711. In some embodiments, even if the risk zone is not occupied, the traffic manager may consult a list of higher priority samples in the area and determine if the carriers transporting samples have reserved the risk zone or may need to enter the risk zone before the requesting carrier can clear it. At step 712, the traffic manager determines if higher priority samples should be given right-of-way to the risk zone. If so, the traffic manager will deny the request for authority. If the request for authority to enter the risk zone has been denied, the carrier will mitigate collision by slowing down or stopping at step 716. If authority can be granted to the requesting carrier, the traffic manager will grant this authority, which may include an RIP response (explicit authority, step 718) or silence (implied authority).
The traffic manager may then lock the zone for use exclusively by the requesting carrier. The carrier may then unlock this risk zone when it has finished using the risk zone. In this manner, the traffic manager may treat the risk zone as a semaphore in software.
[00172] At step 720, the carrier determines if it has reached its destination.
If so, the carrier stops and reports its arrival to the traffic manager. The traffic manager may then update the status of the carrier at step 706. At step 722, the carrier determines if the track ahead is clear. This may include utilizing proximity sensors, such as ultrasonic devices or optical devices, to determine that the carrier can safely proceed along the track. If the track is clear and/or authority has been granted to enter a risk zone, the carrier can proceed and continue moving along the track. This process continues, and the carrier moves along the track at step 702.
[00173] FIG. 14 illustrates an alternative embodiment, whereby carriers move along two-dimensional automation surfaces. A track can be considered a subset of an automation surface. The automation surface may include a two-dimensional surface that may or may not have constraints. The surface itself constrains carriers in one dimension, such as vertically.
A track includes walls or rails that may constrain the carriers in a second dimension, such as laterally. In a track, carriers are free to move in a longitudinal dimension.
In a flat, two-dimensional automation surface, such as automation surface 750, carriers may be constrained in the vertical dimension, but maybe not be physically constrained in the lateral or longitudinal dimensions. Carriers may use steering abilities to constrain their own motion in the lateral and longitudinal dimensions.
[00174] Automation surface 750 may include a plurality of risk zones, which may be intersections and other points that carriers may traverse. These may be, for example, points in a grid. In some embodiments, these grid marks may be optically indicated to carriers on the surface, while in other embodiments, these risk zones may be indicated to carriers virtually in the maps that are stored within each carrier. Carriers can employ navigational rules whereby they move in orthogonal directions throughout the grid, moving from risk zone to risk zone.
[001751 Carrier 752 may navigate on a route that takes it past risk zones 754, 755, 756, and 758. As carrier 752 leaves risk zone 756, it may request authority to enter risk zone 758 from a central traffic manager. That traffic manager may notice that carrier 762 is already proceeding along the route that would place carrier 762 in risk zone 758 at the same time. Carrier 762 may have already been granted authority to enter the risk zone. Thus, the traffic manager may deny carrier 752's request, allowing carrier 752 to stop at location 760 before proceeding. Once carrier 762 has passed risk zone 758, the traffic manager may grant authority to carrier 752 to proceed. This granting of authority may come in the form of an RF
communication or other suitable location.

[00176] Embodiments of the present invention may be integrated with existing analyzers and automation systems. It should be appreciated that carriers may be configured in many shapes and sizes, including layouts and physical configurations suitable for use with any contemplated analyzer or instrument. For example, in some embodiments, a carrier may include multiple slots for carrying multiple samples around an automation track. One embodiment, for example, may include a physical layout of a tube-holding portion of a carrier with multiple slots in one or more transport racks. Each rack may include multiple slots (e.g., five or more slots), each slot configured to hold a tube (e.g., a sample tube).
[00177] Although the invention has been described with reference to exemplary embodiments, it is not limited thereto. Those skilled in the art will appreciate that numerous changes and modifications may be made to the preferred embodiments of the invention and that such changes and modifications may be made without departing from the true spirit of the invention. It is therefore intended that the appended claims be construed to cover all such equivalent variations as they fall within the true spirit and scope of the invention.

Claims (14)

What is claimed is:
1. An automation system for use in in-vitro diagnostics comprising:
a linear automation surface configured to provide one or more paths between a plurality of testing stations, wherein the automation surface includes a plurality of predetermined risk zones and at least one queue accessible by a pipette;
a plurality of carriers, each comprising an onboard processor configured to make local trajectory decisions and to control the motion of each carrier into the plurality of predetermined risk zones in response to authority granted or denied by a traffic manager, the authority being requested wirelessly by each carrier; and the traffic manager comprising at least one processor, configured to assign destinations to the plurality of carriers based on the contents of at least one test panel and to grant and deny authority to carriers to enter the plurality of predetermined risk zones and to direct a subset of the plurality of carriers that are in the at least one queue to move bidirectionally along the linear automation surface to provide random access to the plurality of carriers by the pipette, wherein each carrier is configured to hold one or more fluid vessels and move the one or more fluid vessels to one of the plurality of testing stations and configured to communicate with the traffic manager to request authorization to proceed into a predetermined risk zone as each carrier approaches each risk zone.
2. The automation system of claim 1, wherein each carrier is configured to monitor and limit acceleration to a threshold that depends on a type of fluid contained in the fluid vessel being carried.
3. The automation system of claim 1, wherein each carrier is configured to communicate with the traffic manager via RFID to update a position of the carrier at a checkpoint on the automation surface.
4. The automation system of claim 1, wherein each carrier is configured to communicate with the traffic manager to request authorization to proceed into a predetermined risk zone while moving and slowing down if authority is denied.

Date Recue/Date Received 2020-05-12
5. The automation system of claim 1, wherein the automation surface is further configured to optically indicate at least one of a location where each carrier should seek authority and a location where a carrier should slow down if it has not yet received authority.
6. The automation system of claim 1, wherein each of the plurality of carriers is configured to receive instructions that identify a destination and navigate the automation surface without further navigational instructions.
7. The automation system of claim 1, wherein the traffic manager is configured to reserve authority relating to risk zones in advance for higher priority carriers.
8. The automation system of claim 1, wherein the traffic manager is configured to deny authority to enter a predetermined risk zone to a first of the plurality of carriers when a second of the plurality of carriers already occupies the predetermined risk zone.
9. The automation system of claim 1, wherein the automation surface comprises a track that substantially constrains carriers in two dimensions and the plurality of predetermined risk zones comprises at least one of a curve and an intersection in the track.
10. The automation system of claim 1, wherein the automation surface comprises a substantially unconstrained two dimensional surface and the plurality of predetermined risk zones comprises predefined intersections on the two dimensional surface.
11. An automation system for use in in-vitro diagnostics comprising:
a linear track configured to provide one or more paths between a plurality of testing stations, wherein the track includes a plurality of predetermined risk zones and at least one queue accessible by a pipette; and a traffic manager comprising at least one processor, configured to assign destinations to a plurality of carriers and grant and deny authority to carriers to enter the plurality of predetermined risk zones as they approach each risk zone and request authority wirelessly, wherein the traffic manager further comprises memory that monitors the occupancy of the predetermined risk zones and the at least one processor is further configured to wirelessly grant or deny authority based on the occupancy and to direct a subset of the plurality of carriers that are in the at least one queue to move bidirectionally along the linear track to provide random access to the plurality of carriers by the pipette.

Date Recue/Date Received 2020-05-12
12. The automation system of claim 11, wherein the traffic manager assigns destinations based on a test panel provided by a laboratory information system server.
13. The automation system of claim 11, wherein the traffic manager locks access to each of the predetermined risk zones once one of the plurality of carriers has authority to enter the risk zone and unlocks access to the risk zone when the traffic manager receives notification that that carrier has exited the risk zone.
14. The automation system of claim 11, wherein the traffic manager allows higher priority carriers of the plurality of carriers to reserve authority to enter the plurality of predetermined risk zones, in advance.

Date Recue/Date Received 2020-05-12
CA2897988A 2013-01-17 2014-01-16 Hybrid method for collision avoidance and object carrier management Active CA2897988C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361753536P 2013-01-17 2013-01-17
US61/753,536 2013-01-17
PCT/US2014/011847 WO2014113568A1 (en) 2013-01-17 2014-01-16 Hybrid method for collision avoidance and object carrier management

Publications (2)

Publication Number Publication Date
CA2897988A1 CA2897988A1 (en) 2014-07-24
CA2897988C true CA2897988C (en) 2021-05-25

Family

ID=51210063

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2897988A Active CA2897988C (en) 2013-01-17 2014-01-16 Hybrid method for collision avoidance and object carrier management

Country Status (3)

Country Link
US (1) US20150369832A1 (en)
CA (1) CA2897988C (en)
WO (1) WO2014113568A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569461B (en) * 2013-10-15 2016-08-10 深圳迈瑞生物医疗电子股份有限公司 Sample rack vehicle and streamline and Transfer method
WO2016189495A1 (en) 2015-05-27 2016-12-01 Van Dyke, Marc Alerting predicted accidents between driverless cars
US10031522B2 (en) 2015-05-27 2018-07-24 Dov Moran Alerting predicted accidents between driverless cars
WO2016210420A1 (en) 2015-06-26 2016-12-29 Abbott Laboratories Reaction vessel exchanger device for a diagnostic analyzer
US10311569B1 (en) 2015-12-31 2019-06-04 Cerner Innovation, Inc. Identifying liquid blood components from sensed data to monitor specimen integrity
US10209267B1 (en) 2015-12-31 2019-02-19 Cerner Innovation, Inc. Sample extraction and rotation device for automated blood sample processing systems
US10267813B1 (en) 2015-12-31 2019-04-23 Cerner Innovation, Inc. Monitoring specimen integrity in automated blood sample processing system
US10527635B1 (en) 2015-12-31 2020-01-07 Cerner Innovation, Inc. Specimen integrity monitoring device for automated blood sample processing systems
WO2018017744A1 (en) 2016-07-21 2018-01-25 Siemens Healthcare Diagnostics Inc. Redundant power management for modular ivd analyzer vessel mover subsystem
MX2019002780A (en) 2016-09-09 2019-09-04 Procter & Gamble System and method for simultaneously filling containers of different shapes and/or sizes.
CN109661623A (en) 2016-09-09 2019-04-19 宝洁公司 Method for producing different product simultaneously on single production line
US10558201B2 (en) 2016-09-09 2020-02-11 The Procter & Gamble Company System and method for producing products based upon demand
US10221017B2 (en) 2016-09-09 2019-03-05 The Procter & Gamble Company Vacuum holder with extensible skirt gasket
EP3509979B1 (en) 2016-09-09 2023-06-14 The Procter & Gamble Company System and method for independently routing vehicles and delivering containers and closures to unit operation stations
CN109690605B (en) 2016-09-09 2022-04-26 宝洁公司 System and method for producing customized products mixed with mass-produced products
US10643875B2 (en) 2016-09-09 2020-05-05 The Procter & Gamble Company System and method for simultaneously filling containers with different fluent compositions
CN109661624B (en) 2016-09-09 2022-10-25 宝洁公司 System and method for independently guiding carriers of loaded containers to create different finished products
US11477196B2 (en) 2018-09-18 2022-10-18 Cyral Inc. Architecture having a protective layer at the data source
US11477197B2 (en) * 2018-09-18 2022-10-18 Cyral Inc. Sidecar architecture for stateless proxying to databases
EP4137821A1 (en) 2021-08-19 2023-02-22 Roche Diagnostics GmbH Method for operating a laboratory automation system and laboratory automation system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP058197A0 (en) * 1997-11-27 1997-12-18 A.I. Scientific Pty Ltd Pathology sample tube distributor
US6429016B1 (en) * 1999-10-01 2002-08-06 Isis Pharmaceuticals, Inc. System and method for sample positioning in a robotic system
US7028831B2 (en) * 2004-03-05 2006-04-18 Beckman Coulter, Inc. Magnetic specimen-transport system for automated clinical instrument
JP3905094B2 (en) * 2004-04-07 2007-04-18 株式会社アイディエス Self-propelled specimen holder transport system
JP2013518251A (en) * 2010-01-21 2013-05-20 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド Magnetic conveyor system, apparatus and method including moving magnets
EP2707725B1 (en) * 2011-05-13 2018-07-11 Beckman Coulter, Inc. Laboratory product transport element and path arrangement
WO2013116638A1 (en) * 2012-02-03 2013-08-08 Siemens Healthcare Diagnostics Inc Intelligent bidirectional multifunctional carrier and integrated automation system for material distribution and transportation

Also Published As

Publication number Publication date
WO2014113568A1 (en) 2014-07-24
CA2897988A1 (en) 2014-07-24
US20150369832A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
CA2897988C (en) Hybrid method for collision avoidance and object carrier management
US9315334B2 (en) Intelligent bidirectional multifunctional carrier and integrated automation system for material distribution and transportation
US10101351B2 (en) Method for processing priority samples that preserves a FIFO processing queue
US10254299B2 (en) Multiple slot place and pick carrier
US9671418B2 (en) Multiple payload type carrier
EP2830772B1 (en) Module transport system that can be combined into an automation system
EP2834647B1 (en) Virtual sample queues
US10126318B2 (en) Mother daughter tube carrier for aliquoters
US9726686B2 (en) Encoding scheme embedded into an automation track surface
US9645159B2 (en) Test menu expansion system and method
EP2852823A2 (en) Linear random access queue
US11530851B2 (en) Temperature controlled transport puck

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20190111