CA2895255A1 - Method for preparing flame-retardant melt droplet-resistant polyester - Google Patents

Method for preparing flame-retardant melt droplet-resistant polyester Download PDF

Info

Publication number
CA2895255A1
CA2895255A1 CA2895255A CA2895255A CA2895255A1 CA 2895255 A1 CA2895255 A1 CA 2895255A1 CA 2895255 A CA2895255 A CA 2895255A CA 2895255 A CA2895255 A CA 2895255A CA 2895255 A1 CA2895255 A1 CA 2895255A1
Authority
CA
Canada
Prior art keywords
retardant
flame
whiskers
mass
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2895255A
Other languages
French (fr)
Other versions
CA2895255C (en
Inventor
Xianhe Zhou
Weiguang Wu
Baohua YANG
Kefu BAI
Yong YE
Yuechun LI
Guojun Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG SHENGYUAN CHEMICAL FIBRE Co Ltd
Original Assignee
ZHEJIANG SHENGYUAN CHEMICAL FIBRE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG SHENGYUAN CHEMICAL FIBRE Co Ltd filed Critical ZHEJIANG SHENGYUAN CHEMICAL FIBRE Co Ltd
Publication of CA2895255A1 publication Critical patent/CA2895255A1/en
Application granted granted Critical
Publication of CA2895255C publication Critical patent/CA2895255C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/023Silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • C08K2003/3063Magnesium sulfate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds

Abstract

A method for preparing flame-retardant and melt droplet-resistant polyester comprises the following steps. A) uniformly mixing basic magnesium sulfate whiskers, P-type silicon nitride whiskers, tetra-needle-like zinc oxide whiskers, and magnesium salt whiskers, roasting the mixture in a vacuum furnace, stirring, shearing and dispersing the reaction product in absolute ethanol containing sodium hexametaphosphate, subjecting the reaction product to an atmospheric plasma treatment, and subjecting upper suspended whiskers to 200-mesh filtering; B) mixing the whiskers obtained in step A) with flame-retardant melamine cyanurate, micro gelating capsule red phosphorus flame retardant and silane coupling agent at 75°C;
C) formulating the flame-retardant and melt droplet-resistant whiskers obtained in step B) into a flame-retardant and melt droplet-resistant whisker ethylene glycol solution; D) preparing the flame-retardant and melt droplet-resistant whiskers into flame-retardant and melt droplet-resistant polyester via blending or copolyesterization, and into skin-core flame-retardant and melt droplet-resistant polyester via the composite spinning technique.

Description

=

METHOD FOR PREPARING FLAME-RETARDANT AND MELT
DROPLET-RESISTANT POLYESTER
TECHNICAL FIELD
[0001] The present invention relates to a method for preparing flame-retardant and melt droplet-resistant polyester. The flame-retardant and melt droplet-resistant polyester comprises polyethylene terephthalate (PET), melamine cyanurate, micro gelating capsule red phosphorus flame retardant, tetra-needle-like zinc oxide whiskers, 6-type silicon nitride whiskers, basic magnesium sulfate whiskers, and magnesium salt whiskers, pertaining to the field of textile fiber manufacturing techniques.
BACKGROUND
100021 Polyester is made of PET and is currently a first greatest category of synthetic fibers. Macro molecular chains of the fibers have greater rigidity, and high modulus of elasticity, and therefore fibers are not easily subject to deformation. Textile articles made from such fibers are not subject to wrinkles, free of ironing, firm and scratch-resistant, and easy to wash and dry. In addition, the polyester has good heat resistance, cold resistance, sun resistance, and abrasive resistance, and are thus a relatively ideal textile material. The polyester is widely applied in clothing, ornaments, home textiles, architecture, and the like industrial fields.
[0003] In the modern life, except the natural disasters and wars, the major disasters are caused by fire, like the saying that "water and fire have no mercy". The base material of the polyester is petroleum, the limiting oxygen index of the polyester is only about 21, and the polyester pertains to melt flammable fiber.
Therefore, while providing rich usages for people's life, the polyester also causes latent fire risks to people. What is more severe is that the polyester articles may be subject to melt
2 000463P82 droplet in flaming or at high temperatures, which may cause burns or migrations of fire, and hence lead to even greater fire. For the sake of safety, it is desired to improve the flame-retardant and melt droplet resistance. The demands for the flame-retardant and melt droplet-resistant polyester have never seen such a drastic increase.
[0004] In the manufacture of the flame-retardant and melt droplet-resistant polyester, a flame-retardant material is typically introduced. For example, such compounds as containing chlorine, bromine, phosphorus, antimony, melt droplet-resistant agents are added to prepare blended or copolymerized flame-retardant and melt droplet-resistant polyester, for reducing flammability and melt droplet of the fiber. With respect to the flame-retardant and melt droplet polyester prepared using such method, under general circumstances, the flame-retardant and melt droplet resistance is obtained by scarifying the other properties of the fiber. To be specific, with the addition of the flame-retardant material and the melt droplet-resistant agent, the strength and elongation of the fiber are weakened, the hand feeling becomes poor, and the spinning and weaving become difficult.
[0005] Whiskers are fiber materials that grow in the form of monocrystal, having very small diameter (0.1 to 10 pm), having highly sequential length automatic arrangement, having strength close to the theoretical value of the complete crystal, and having a specific length-diameter ratio (5 to 1000). The length of the whiskers is several times or tens of times of the length of the macro molecular chain of a polymer material. After a small quantity of whiskers are added to the polymer material, the strength and tenacity of the material may be enhanced, and the thermal resistance and the like may be improved. Accordingly, the whiskers are an ideal strength-enhancement and modification agent for the polymer material, and gains wide application.
[0006] Inorganic whiskers have a very high melting point, generally over 1000 C, which rightly makes a complement for the insufficiency of the thermal resistance of the polymer material, such that the glass-transition temperature and heat deflection temperature of the system are both improved, thereby to yield the flame-retardant
3 000463P82 property. The most widely applied whiskers are basic magnesium sulfate whiskers.
Since water of crystallization in the molecules thereof is subjected to a dehydration reaction in combustion, the basic magnesium sulfate whiskers may absorb a greater amount of heat to reduce the temperature of the base material. In addition, the generated water vapor not only reduces the concentration of the reaction gas in the flame zone, but also absorbs the smoke, thereby achieving the function of flame retardance and smoke elimination.
[0007] The magnesium salt whiskers and the tetra-needle-like zinc oxide whiskers both have a good flame retardant melt droplet-resistant effect, and are more advantageous than the conventional flame retardant melt droplet-resistant material.
SUMMARY
[0008] An objective of the present invention is to overcome the defects in the related art and to provide a method for preparing flame-retardant and melt droplet-resistant polyester which has high strength and good tenacity and is particularly suitable for fire prevention safety requirements in the public places.
[0009] The objective of the present invention is achieved by the following technical solution. The method for preparing flame-retardant and melt droplet-resistant polyester comprises the following steps:
[0010] A) weighing
4 to 8 parts by mass of basic magnesium sulfate whiskers having characterization parameters of a diameter of 0.1 to 1 pm and a length of 5 to 12 pm, 2 to 6 parts by mass of tetra-needle-like zinc oxide whiskers having characterization parameters of a diameter of 0.1 to 0.8 pm and a length of 6 to 10 pm, 4 to 8 parts by mass of magnesium salt whiskers having characterization parameters of a diameter of 0.2 to 0.8 pm and a length of 6 to 10 pm, 2 to 6 parts by mass of 13-type silicon nitride whiskers having characterization parameters of a diameter of 0.1 to 0.6 pm and a length of 5 to 10 pm; uniformly mixing the four types of whiskers, roasting and reacting the mixture in a vacuum furnace at 350 to 450 C for 4 to hours, after cooling, stirring, shearing and dispersing the reaction product in absolute ethanol containing sodium hexametaphosphate for 30 to 45 minutes, subjecting the reaction product to an atmospheric plasma treatment for 10 to 20 minutes, subjecting the treated reaction product to ultrasonic wave dispersion and washing in 60-deionized water containing a calcium stearate dispersion for 25 to 35 minutes, subjecting upper suspended whiskers to 200-mesh filtering, taking a modified whisker mixture solution, repeating the operations for 3 to 5 times until the filtrate is clear, and obtaining modified whiskers by drying in a vacuum oven;
[0011] B) weighing 6 to 10 parts by mass of the whiskers obtained in step A), in an airtight environment, stirring at a high speed and reacting the whiskers with 4 to 8 parts by mass of an intumenscent flame-retardant melamine cyanurate, 1 to 2 parts by mass of micro gelating capsule red phosphorus flame retardant, and 0.5 to 1.5 parts by mass of KH-550 silane coupling agent in a mixer in the presence of a small amount of 70-80 C non-ionic surfactant, thereby to obtain flame-retardant and melt droplet-resistant whiskers;
[0012] C) formulating 4 to 6 parts by mass of flame-retardant and melt droplet-resistant whiskers with 6 to 4 parts by mass of ethylene glycol into a flame-retardant and melt droplet-resistant whisker ethylene glycol solution in the presence of trace sodium hexametaphosphate, and subjecting the formulated flame-retardant and melt droplet-resistant whisker ethylene glycol solution to ultrasonic wave dispersion at 50 to 60 C for 2.5 to 5 hours, to obtain flame-retardant and melt droplet-resistant whisker ethylene glycol;
100131 D) adding 30 to 40 parts by mass of the flame-retardant and melt droplet-resistant whisker ethylene glycol to a condensation reactor containing 70 to 60 parts by mass of ethylene terephthalate until the flame-retardant and melt droplet-resistant whisker ethylene is esterified and polymerized into copolyester flame-retardant and melt droplet-resistant polyester;
[0014] or E) blending and melting the flame-retardant and melt droplet-resistant whiskers obtained in step B) with conventional polyester at a mass ratio of 25-35:75-67 to yield blended flame-retardant and melt droplet-resistant polyester; and [0015] F) by using a flame-retardant and melt droplet-resistant component as a cortex, preparing the copolyester flame-retardant and melt droplet-resistant polyester obtained in step D), the blended flame-retardant and melt droplet-resistant polyester obtained in step E), polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), and polybutylene terephthalate (PBT) polyesters into skin-core flame-retardant and melt droplet-resistant polyester via the composite spinning technique according to a mass ratio of 20-40:80-60.
[0016] A preferred technical solution of the present invention is as follows:
[0017] A) weighing 6 parts by mass of the basic magnesium sulfate whiskers having characterization parameters of a diameter of 0.1 to 1 pm and a length of 5 to 12 pm, 4 parts by mass of the tetra-needle-like zinc oxide whiskers having characterization parameters of a diameter of 0.1 to 0.8 pm and a length of 6 to 10 pm, 6 parts by mass of the magnesium salt whiskers having characterization parameters of a diameter of 0.2 to 0.8 pm and a length of 6 to 10 pm, 4 parts by mass of the 13-type silicon nitride whiskers having characterization parameters of a diameter of 0.1 to 0.6 pm and a length of 5 to 10 pm; uniformly mixing the four types of whiskers, roasting and reacting the mixture in the vacuum furnace at 400 C for 5 hours, after cooling, stirring, shearing and dispersing the reaction product in the absolute ethanol containing the sodium hexametaphosphate for 38 minutes, subjecting the reaction product to the atmospheric plasma treatment for 15 minutes, subjecting the treated reaction product to ultrasonic wave dispersion and washing in the 65 C
deionized water containing the calcium stearate dispersion for 30 minutes, subjecting the upper suspended whiskers to 200-mesh filtering, taking the modified whisker mixture solution, repeating the operations for 4 times until the filtrate is clear, and obtaining the modified whiskers by drying in the vacuum oven;
[0018] B) weighing 8 parts by mass of the whiskers obtained in step A), in the airtight environment, stirring at a high speed and reacting the whiskers with 6 parts by mass of the intunnenscent flame-retardant melamine cyanurate, 1.5 parts by mass of the micro gelating capsule red phosphorus flame retardant, and 1 part by mass of the KH-550 silane coupling agent in a mixer in the presence of the 75 C non-ionic surfactant, thereby to obtain the flame-retardant and melt droplet-resistant whiskers;

100191 C) formulating 5 parts by mass of the flame-retardant and melt droplet-resistant whiskers with 5 parts by mass of the ethylene glycol into the flame-retardant and melt droplet-resistant whisker ethylene glycol solution in the presence of trace sodium hexametaphosphate, and subjecting the formulated flame-retardant and melt droplet-resistant whisker ethylene glycol solution to the ultrasonic wave dispersion at 55 C for 3.5 hours, to obtain the flame-retardant and melt droplet-resistant whisker ethylene glycol;
[0020] D) adding 35 parts by mass of the flame-retardant and melt droplet-resistant whisker ethylene glycol to a condensation reactor containing parts by mass of the ethylene terephthalate until the flame-retardant and melt droplet-resistant whisker ethylene is esterified and polymerized into the copolyester flame-retardant and melt droplet-resistant polyester;
[0021] F) by using the flame-retardant and melt droplet-resistant component as the cortex, preparing the copolyester flame-retardant and melt droplet-resistant polyester obtained in step D), the PET, PTT, and PBT polyesters into the skin-core flame-retardant and melt droplet-resistant polyester via the composite spinning technique according to a mass ratio of 30:70.
100221 Another preferred technical solution of the present invention is as follows:
100231 A) weighing 6 parts by mass of the basic magnesium sulfate whiskers having characterization parameters of a diameter of 0.1 to 1 pm and a length of 5 to 12 pm, 4 parts by mass of the tetra-needle-like zinc oxide whiskers having characterization parameters of a diameter of 0.1 to 0.8 pm and a length of 6 to 10 pm, 6 parts by mass of the magnesium salt whiskers having characterization parameters of a diameter of 0.2 to 0.8 pm and a length of 6 to 10 pm, 4 parts by mass of the [3-type silicon nitride whiskers having characterization parameters of a diameter of 0.1 to 0.6 pm and a length of 5 to 10 pm; uniformly mixing the four types of whiskers, roasting and reacting the mixture in the vacuum furnace at 400 C for 5 hours, after cooling, stirring, shearing and dispersing the reaction product in the absolute ethanol containing the sodium hexametaphosphate for 38 minutes, subjecting the reaction product to the atmospheric plasma treatment for 15 minutes, subjecting the treated reaction product to ultrasonic wave dispersion and washing in the 65 C
deionized water containing the calcium stearate dispersion for 30 minutes, subjecting the upper suspended whiskers to 200-mesh filtering, taking the modified whisker mixture solution, repeating the operations for 4 times until the filtrate is clear, and obtaining the modified whiskers by drying in the vacuum oven;
[0024] B) weighing 8 parts by mass of the whiskers obtained in step A), in the airtight environment, stirring at a high speed and reacting the whiskers with 6 parts by mass of the intumenscent flame-retardant melamine cyanurate, 1.5 parts by mass of the micro gelating capsule red phosphorus flame retardant, and 1 part by mass of the KH-550 silane coupling agent in a mixer in the presence of the 75 C non-ionic surfactant, thereby to obtain the flame-retardant and melt droplet-resistant whiskers;
[0025] E) blending and melting the flame-retardant and melt droplet-resistant whiskers obtained in step B) with the conventional polyester at a mass ratio of 30:70 to yield the blended flame-retardant and melt droplet-resistant polyester; and [0026] F) by using the flame-retardant and melt droplet-resistant component as the cortex, preparing the blended flame-retardant and melt droplet-resistant polyester obtained in step E), the PET, PTT, and PBT polyesters into the skin-core flame-retardant and melt droplet-resistant polyester via the composite spinning technique according to a mass ratio of 30:70.
[0027] In step D), during the polymerization of the PET, when the esterification rate reaches 85 to 90%, adding 35 parts by mass of the flame-retardant and melt droplet-resistant whisker ethylene glycol to the condensation reactor containing 65 parts by mass of the ethylene terephthalate, until the flame-retardant and melt droplet-resistant whisker ethylene is esterified and polymerized into the copolyester flame-retardant and melt droplet-resistant polyester.
[0028] The flame-retardant and melt droplet-resistant polyester is prepared into PDY, DTY, BCF, BSY or non-woven fabric via blending or the composite spinning technique; or the flame-retardant and melt droplet-resistant polyester is prepared into flame-retardant and melt droplet-resistant polyester sheets, pipes, bars, or cords.
100291 According to the present invention, the melamine cyanurate, micro gelating capsule red phosphorus flame retardant, tetra-needle-like zinc oxide whiskers, basic magnesium sulfate whiskers, magnesium salt whiskers, I3-type silicon nitride whiskers and the like that achieve the enhancement effect and have the flame-retardant and melt droplet-resistant properties are added to the polyester to prepare the skin-core flame-retardant and melt droplet-resistant polyester with a flame-retardant and melt droplet-resistant component as a cortex via the composite spinning technique. When a polyester article is in combustion or at high temperatures, the polyester is subjected to melting, thermal cracking and breaking of macro molecules. However, the whiskers dispersed in the polyester are not subjected to melting, thermal cracking, breaking, or combustion. The whiskers and flame retardant, as the flame-retardant and melt droplet-resistant rib wire mesh blocks combustion and droplet of the polyester, achieve better flame-retardant and melt droplet-resistant effects. The flame-retardant and melt droplet-resistant polyester prepared with such whiskers plus the flame retardant has higher strength, good tenacity, and good flame-retardant and melt droplet-resistant properties, and is this applied to ornaments, home textiles, architecture, fire fighting, thermal engineering, and military, more particularly suitable for fire prevention safety requirements in the public places.
DETAILED DESCRIPTION
[0030] The present invention is hereinafter described in detail with reference to specific embodiments. The present invention provides a method for preparing flame-retardant and melt droplet-resistant polyester. The method comprises the following steps:
[0031] A) weighing 4 to 8 parts by mass of basic magnesium sulfate whiskers having characterization parameters of a diameter of 0.1 to 1 pm and a length of 5 to 12 pm, 2 to 6 parts by mass of tetra-needle-like zinc oxide whiskers having characterization parameters of a diameter of 0.1 to 0.8 pm and a length of 6 to 10 pm, 4 to 8 parts by mass of magnesium salt whiskers having characterization parameters of a diameter of 0.2 to 0.8 pm and a length of 6 to 10 pm, 2 to 6 parts by mass of (3-type silicon nitride whiskers having characterization parameters of a diameter of 0.1 to 0.6 pm and a length of 5 to 10 pm; uniformly mixing the four types of whiskers, roasting and reacting the mixture in a vacuum furnace at 350 to 450 C for 4 to hours, stirring, after cooling, shearing and dispersing the reaction product in absolute ethanol containing sodium hexametaphosphate for 30 to 45 minutes, subjecting the reaction product to an atmospheric plasma treatment for 10 to 20 minutes, subjecting the treated reaction product to ultrasonic wave dispersion and washing in 60-deionized water containing a calcium stearate dispersion for 25 to 35 minutes, subjecting upper suspended whiskers to 200-mesh filtering, taking a modified whisker mixture solution, repeating the operations for 3 to 5 times until the filtrate is clear, and obtaining modified whiskers by drying in a vacuum oven;
[0032] B) weighing 6 to 10 parts by mass of the whiskers obtained in step A), in an airtight environment, stirring at a high speed and reacting the whiskers with 4 to 8 parts by mass of an intumenscent flame-retardant melamine cyanurate, 1 to 2 parts by mass of micro gelating capsule red phosphorus flame retardant, and 0.5 to 1.5 parts by mass of KH-550 silane coupling agent in a mixer in the presence of a small amount of 70-80 C non-ionic surfactant for 45 to 60 minutes, thereby to obtain flame-retardant and melt droplet-resistant whiskers;
[0033] C) formulating 4 to 6 parts by mass of flame-retardant and melt droplet-resistant whiskers with 6 to 4 parts by mass of ethylene glycol into a flame-retardant and melt droplet-resistant whisker ethylene glycol solution in the presence of trace sodium hexametaphosphate, and subjecting the formulated flame-retardant and melt droplet-resistant whisker ethylene glycol solution to ultrasonic wave dispersion at 50 to 60 C for 2.5 to 5 hours, to obtain flame-retardant and melt droplet-resistant whisker ethylene glycol;
[0034] D) adding 30 to 40 parts by mass of the flame-retardant and melt droplet-resistant whisker ethylene glycol to a condensation reactor containing 70 to 60 parts by mass of ethylene terephthalate until the flame-retardant and melt droplet-resistant whisker ethylene is esterified and polymerized into copolyester flame-retardant and melt droplet-resistant polyester;

[0035] or E) blending and melting the flame-retardant and melt droplet-resistant whiskers obtained in step B) with conventional polyester at a mass ratio of 25-35:75-67 to yield blended flame-retardant and melt droplet-resistant polyester; and [0036] F) by using a flame-retardant and melt droplet-resistant component as a cortex, preparing the copolyester flame-retardant and melt droplet-resistant polyester obtained in step D), the blended flame-retardant and melt droplet-resistant polyester obtained in step E), polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), and polybutylene terephthalate (PBT) polyesters into skin-core flame-retardant and melt droplet-resistant polyester via the composite spinning technique according to a mass ratio of 20-40:80-60.
[0037] In step D), during the polymerization of the PET, when the esterification rate reaches 85 to 90%, adding 35 parts by mass of the flame-retardant and melt droplet-resistant whisker ethylene glycol to the condensation reactor containing 65 parts by mass of the ethylene terephthalate, until the flame-retardant and melt droplet-resistant whisker ethylene is esterified and polymerized into the copolyester flame-retardant and melt droplet-resistant polyester.
[0038] The flame-retardant and melt droplet-resistant polyester is prepared into PDY, DTY, BCF, BSY or nonwoven fabric via blending or the composite spinning technique; or the flame-retardant and melt droplet-resistant polyester is prepared into flame-retardant and melt droplet-resistant polyester sheets, pipes, bars, or cords.
Embodiment 1 [0039] The method for preparing flame-retardant and melt droplet-resistant polyester according to the present invention comprises the following steps:
[0040] A) weighing 6 parts by mass of the basic magnesium sulfate whiskers having characterization parameters of a diameter of 0.1 to 1 pm and a length of 5 to 12 pm, 4 parts by mass of the tetra-needle-like zinc oxide whiskers having characterization parameters of a diameter of 0.1 to 0.8 pm and a length of 6 to 10 pm, 6 parts by mass of the magnesium salt whiskers having characterization parameters of a diameter of 0.2 to 0.8 pm and a length of 6 to 10 pm, 4 parts by mass of the 13-type silicon nitride whiskers having characterization parameters of a diameter of 0.1 to 0.6 pm and a length of 5 to 10 pm; uniformly mixing the four types of whiskers, roasting and reacting the mixture in the vacuum furnace at 400 C for 5 hours, after cooling, stirring, shearing and dispersing the reaction product in the absolute ethanol containing the sodium hexametaphosphate for 38 minutes, subjecting the reaction product to the atmospheric plasma treatment for 15 minutes, subjecting the treated reaction product to ultrasonic wave dispersion and washing in the 65 C
deionized water containing the calcium stearate dispersion for 30 minutes, subjecting the upper suspended whiskers to 200-mesh filtering, taking the modified whisker mixture solution, repeating the operations for 4 times until the filtrate is clear, and obtaining the modified whiskers by drying in the vacuum oven;
[0041] B) weighing 8 parts by mass of the whiskers obtained in step A), in the airtight environment, stirring at a high speed and reacting the whiskers with 6 parts by mass of the intumenscent flame-retardant melamine cyanurate, 1.5 parts by mass of the micro gelating capsule red phosphorus flame retardant, and 1 part by mass of the KH-550 silane coupling agent in a mixer in the presence of the small amount of the 75 C non-ionic surfactant for 55 minutes, thereby to obtain the flame-retardant and melt droplet-resistant whiskers;
[0042] C) formulating 5 parts by mass of the flame-retardant and melt droplet-resistant whiskers with 5 parts by mass of the ethylene glycol into the flame-retardant and melt droplet-resistant whisker ethylene glycol solution in the presence of trace sodium hexametaphosphate, and subjecting the formulated flame-retardant and melt droplet-resistant whisker ethylene glycol solution to the ultrasonic wave dispersion at 55 C for 3.5 hours, to obtain the flame-retardant and melt droplet-resistant whisker ethylene glycol;
[0043] D) adding 35 parts by mass of the flame-retardant and melt droplet-resistant whisker ethylene glycol to a condensation reactor containing parts by mass of the ethylene terephthalate until the flame-retardant and melt droplet-resistant whisker ethylene is esterified and polymerized into the copolyester flame-retardant and melt droplet-resistant polyester;
[0044] F) by using the flame-retardant and melt droplet-resistant component as the cortex, preparing the copolyester flame-retardant and melt droplet-resistant polyester obtained in step D), the PET, PTT, and PBT polyesters into the skin-core flame-retardant and melt droplet-resistant polyester via the composite spinning technique according to a mass ratio of 30:70.
Embodiment 2 100451 The method for preparing flame-retardant and melt droplet-resistant polyester according to the present invention comprises the following steps:
100461 A) weighing 6 parts by mass of the basic magnesium sulfate whiskers having characterization parameters of a diameter of 0.1 to 1 pm and a length of 5 to 12 pm, 4 parts by mass of the tetra-needle-like zinc oxide whiskers having characterization parameters of a diameter of 0.1 to 0.8 pm and a length of 6 to 10 pm, 6 parts by mass of the magnesium salt whiskers having characterization parameters of a diameter of 0.2 to 0.8 pm and a length of 6 to 10 pm, 4 parts by mass of the 8-type silicon nitride whiskers having characterization parameters of a diameter of 0.1 to 0.6 pm and a length of 5 to 10 pm; uniformly mixing the four types of whiskers, roasting and reacting the mixture in the vacuum furnace at 400 C for 5 hours, after cooling, stirring, shearing and dispersing the reaction product in the absolute ethanol containing the sodium hexametaphosphate for 38 minutes, subjecting the reaction product to the atmospheric plasma treatment for 15 minutes, subjecting the treated reaction product to ultrasonic wave dispersion and washing in the 65 C
deionized water containing the calcium stearate dispersion for 30 minutes, subjecting the upper suspended whiskers to 200-mesh filtering, taking the modified whisker mixture solution, repeating the operations for 4 times until the filtrate is clear, and obtaining the modified whiskers by drying in the vacuum oven;
[0047] B) weighing 8 parts by mass of the whiskers obtained in step A), in the airtight environment, stirring at a high speed and reacting the whiskers with 6 parts by mass of the intumenscent flame-retardant melamine cyanurate, 1.5 parts by mass of the micro gelating capsule red phosphorus flame retardant, and 1 part by mass of the KH-550 silane coupling agent in a mixer in the presence of the 75 C non-ionic surfactant, thereby to obtain the flame-retardant and melt droplet-resistant whiskers;
100481 E) blending and melting the flame-retardant and melt droplet-resistant whiskers obtained in step B) with the conventional polyester at a mass ratio of 30:70 to yield the blended flame-retardant and melt droplet-resistant polyester; and [0049] F) by using the flame-retardant and melt droplet-resistant component as the cortex, preparing the blended flame-retardant and melt droplet-resistant polyester obtained in step E), the PET, PTT, and PBT polyesters into the skin-core flame-retardant and melt droplet-resistant polyester via the composite spinning technique according to a mass ratio of 30:70.
Embodiment 3 [0050] The method for preparing flame-retardant and melt droplet-resistant polyester according to the present invention comprises the following steps:
[0051] A) weighing 6 parts by mass of the basic magnesium sulfate whiskers having characterization parameters of a diameter of 0.1 to 1 pm and a length of 5 to 12 pm, 4 parts by mass of the tetra-needle-like zinc oxide whiskers having characterization parameters of a diameter of 0.1 to 0.8 pm and a length of 6 to 10 pm, 6 parts by mass of the magnesium salt whiskers having characterization parameters of a diameter of 0.2 to 0.8 pm and a length of 6 to 10 pm, 4 parts by mass of the 13-type silicon nitride whiskers having characterization parameters of a diameter of 0.1 to 0.6 pm and a length of 5 to 10 pm; uniformly mixing the four types of whiskers, roasting and reacting the mixture in the vacuum furnace at 350 C for 4 hours, after cooling, stirring, shearing and dispersing the reaction product in the absolute ethanol containing the sodium hexametaphosphate for 30 minutes, subjecting the reaction product to the atmospheric plasma treatment for 10 minutes, subjecting the treated reaction product to ultrasonic wave dispersion and washing in the 60 C
deionized water containing the calcium stearate dispersion for 25 minutes, subjecting the upper suspended whiskers to 200-mesh filtering, taking the modified whisker mixture solution, repeating the operations for 3 times until the filtrate is clear, and obtaining the modified whiskers by drying in the vacuum oven;
[0052] B) weighing 6 parts by mass of the whiskers obtained in step A), in the airtight environment, stirring at a high speed and reacting the whiskers with 4 parts by mass of the intumenscent flame-retardant melamine cyanurate, 0.5 part by mass of the micro gelating capsule red phosphorus flame retardant, and 1 part by mass of the KH-550 silane coupling agent in a mixer in the presence of the small amount of the 70 C non-ionic surfactant for 45 minutes, thereby to obtain the flame-retardant and melt droplet-resistant whiskers;
100531 C) formulating 4 parts by mass of the flame-retardant and melt droplet-resistant whiskers with 6 parts by mass of the ethylene glycol into the flame-retardant and melt droplet-resistant whisker ethylene glycol solution in the presence of trace sodium hexametaphosphate, and subjecting the formulated flame-retardant and melt droplet-resistant whisker ethylene glycol solution to the ultrasonic wave dispersion at 50 C for 2.5 hours, to obtain the flame-retardant and melt droplet-resistant whisker ethylene glycol;
[0054] D) adding 30 parts by mass of the flame-retardant and melt droplet-resistant whisker ethylene glycol to a condensation reactor containing parts by mass of the ethylene terephthalate until the flame-retardant and melt droplet-resistant whisker ethylene is esterified and polymerized into the copolyester flame-retardant and melt droplet-resistant polyester;
[0055] or E) blending and melting the flame-retardant and melt droplet-resistant whiskers obtained in step B) with the conventional polyester at a mass ratio of 25:75 to yield the blended flame-retardant and melt droplet-resistant polyester; and [0056] F) by using a flame-retardant and melt droplet-resistant component as a cortex, preparing the copolyester flame-retardant and melt droplet-resistant polyester obtained in step D), the blended flame-retardant and melt droplet-resistant polyester obtained in step E), polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), and polybutylene terephthalate (PBT) polyesters into skin-core flame-retardant and melt droplet-resistant polyester via the composite spinning technique according to a mass ratio of 20:80.
Embodiment 4 [0057] The method for preparing flame-retardant and melt droplet-resistant polyester according to the present invention comprises the following steps:
[0058] A) weighing 8 parts by mass of the basic magnesium sulfate whiskers having characterization parameters of a diameter of 0.1 to 1 pm and a length of 5 to 12 pm, 6 parts by mass of the tetra-needle-like zinc oxide whiskers having characterization parameters of a diameter of 0.1 to 0.8 pm and a length of 6 to 10 pm, 8 parts by mass of the magnesium salt whiskers having characterization parameters of a diameter of 0.2 to 0.8 pm and a length of 6 to 10 pm, 6 parts by mass of the [3-type silicon nitride whiskers having characterization parameters of a diameter of 0.1 to 0.6 pm and a length of 5 to 10 pm; uniformly mixing the four types of whiskers, roasting and reacting the mixture in the vacuum furnace at 450 C for 6 hours, after cooling, stirring, shearing and dispersing the reaction product in the absolute ethanol containing the sodium hexametaphosphate for 45 minutes, subjecting the reaction product to the atmospheric plasma treatment for 20 minutes, subjecting the treated reaction product to ultrasonic wave dispersion and washing in the 70 C
deionized water containing the calcium stearate dispersion for 35 minutes, subjecting the upper suspended whiskers to 200-mesh filtering, taking the modified whisker mixture solution, repeating the operation' for 5 times until the filtrate is clear, and obtaining the modified whiskers by drying in the vacuum oven;
[0059] B) weighing 10 parts by mass of the whiskers obtained in step A), in the airtight environment, stirring at a high speed and reacting the whiskers with 8 parts by mass of the intumenscent flame-retardant melamine cyanurate, 1.5 part by mass of the micro gelating capsule red phosphorus flame retardant, and 2 part by mass of the KH-550 silane coupling agent in a mixer in the presence of the small amount of the 80 C non-ionic surfactant for 60 minutes, thereby to obtain the flame-retardant and melt droplet-resistant whiskers;
[0060] C) formulating 6 parts by mass of the flame-retardant and melt droplet-resistant whiskers with 4 parts by mass of the ethylene glycol into the flame-retardant and melt droplet-resistant whisker ethylene glycol solution in the presence of trace sodium hexametaphosphate, and subjecting the formulated flame-retardant and melt droplet-resistant whisker ethylene glycol solution to the ultrasonic wave dispersion at 60 C for 5 hours, to obtain the flame-retardant and melt droplet-resistant whisker ethylene glycol;
[0061] D) adding 40 parts by mass of the flame-retardant and melt droplet-resistant whisker ethylene glycol to a condensation reactor containing parts by mass of the ethylene 'terephthalate until the flame-retardant and melt droplet-resistant whisker ethylene is esterified and polymerized into the copolyester flame-retardant and melt droplet-resistant polyester;
[0062] or E) blending and melting the flame-retardant and melt droplet-resistant whiskers obtained in step B) with the conventional polyester at a mass ratio of 35:65 to yield the blended flame-retardant and melt droplet-resistant polyester; and [0063] F) by using a flame-retardant and melt droplet-resistant component as a cortex, preparing the copolyester flame-retardant and melt droplet-resistant polyester obtained in step D), the blended flame-retardant and melt droplet-resistant polyester obtained in step E), polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), and polybutylene terephthalate (PBT) polyesters into skin-core flame-retardant and melt droplet-resistant polyester via the composite spinning technique according to a mass ratio of 40:60.
[0064] The present invention is not limited to the above four embodiments. Based on the value ranges described above, any replacement may be made to the specific embodiment to thus obtain numerous embodiments, which are not described herein any further.

Claims (5)

17
1. A method for preparing flame-retardant and melt droplet-resistant polyester, comprising the following steps:
A) weighing 4 to 8 parts by mass of basic magnesium sulfate whiskers having characterization parameters of a diameter of 0.1 to 1 pm and a length of 5 to 12 pm, 2 to 6 parts by mass of tetra-needle-like zinc oxide whiskers having characterization parameters of a diameter of 0.1 to 0.8 pm and a length of 6 to 10 pm, 4 to 8 parts by mass of magnesium salt whiskers having characterization parameters of a diameter of 0.2 to 0.8 pm and a length of 6 to 10 pm, 2 to 6 parts by mass of 13-type silicon nitride whiskers having characterization parameters of a diameter of 0.1 to 0.6 pm and a length of 5 to 10 pm; uniformly mixing the four types of whiskers, roasting and reacting the mixture in a vacuum furnace at 350 to 450°C for 4 to 6 hours, after cooling, stirring, shearing and dispersing the reaction product in absolute ethanol containing sodium hexametaphosphate for 30 to 45 minutes, subjecting the reaction product to an atmospheric plasma treatment for 10 to 20 minutes, subjecting the treated reaction product to ultrasonic wave dispersion and washing in 60-70°C
deionized water containing a calcium stearate dispersion for 25 to 35 minutes, subjecting upper suspended whiskers to 200-mesh filtering, taking a modified whisker mixture solution, repeating the operations for 3 to 5 times until the filtrate is clear, and obtaining modified whiskers by drying in a vacuum oven;
B) weighing 6 to 10 parts by mass of the whiskers obtained in step A), in an airtight environment, stirring at a high speed and reacting the whiskers with 4 to 8 parts by mass of an intumenscent flame-retardant melamine cyanurate, 1 to 2 parts by mass of micro gelating capsule red phosphorus flame retardant, and 0.5 to 1.5 parts by mass of KH-550 silane coupling agent in a mixer in the presence of a small amount of 70-80°C non-ionic surfactant for 45 to 60 minutes, thereby to obtain flame-retardant and melt droplet-resistant whiskers, C) formulating 4 to 6 parts by mass of flame-retardant and melt droplet-resistant whiskers with 6 to 4 parts by mass of ethylene glycol into a flame-retardant and melt droplet-resistant whisker ethylene glycol solution in the presence of trace sodium hexametaphosphate, and subjecting the formulated flame-retardant and melt droplet-resistant whisker ethylene glycol solution to ultrasonic wave dispersion at 50 to 60°C for 2.5 to 5 hours, to obtain flame-retardant and melt droplet-resistant whisker ethylene glycol, D) adding 30 to 40 parts by mass of the flame-retardant and melt droplet-resistant whisker ethylene glycol to a condensation reactor containing 70 to 60 parts by mass of ethylene terephthalate until the flame-retardant and melt droplet-resistant whisker ethylene is esterified and polymerized into copolyester flame-retardant and melt droplet-resistant polyester;
or E) blending and melting the flame-retardant and melt droplet-resistant whiskers obtained in step B) with conventional polyester at a mass ratio of 25-35:75-67 to yield blended flame-retardant and melt droplet-resistant polyester; and F) by using a flame-retardant and melt droplet-resistant component as a cortex, preparing the copolyester flame-retardant and melt droplet-resistant polyester obtained in step D), the blended flame-retardant and melt droplet-resistant polyester obtained in step E), polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), and polybutylene terephthalate (PBT) polyesters into skin-core flame-retardant and melt droplet-resistant polyester via the composite spinning technique according to a mass ratio of 20-40:80-60.
2. The method for preparing flame-retardant and melt droplet-resistant polyester according to claim 1, wherein the steps comprise:
A) weighing 6 parts by mass of the basic magnesium sulfate whiskers having characterization parameters of a diameter of 0.1 to 1 pm and a length of 5 to 12 pm, 4 parts by mass of the tetra-needle-like zinc oxide whiskers having characterization parameters of a diameter of 0.1 to 0.8 pm and a length of 6 to 10 pm, 6 parts by mass of the magnesium salt whiskers having characterization parameters of a diameter of 0.2 to 0.8 pm and a length of 6 to 10 pm, 4 parts by mass of the 13-type silicon nitride whiskers having characterization parameters of a diameter of 0.1 to 0.6 pm and a length of 5 to 10 pm; uniformly mixing the four types of whiskers, roasting and reacting the mixture in the vacuum furnace at 400°C for 5 hours, after cooling, stirring, shearing and dispersing the reaction product in the absolute ethanol containing the sodium hexametaphosphate for 38 minutes, subjecting the reaction product to the atmospheric plasma treatment for 15 minutes, subjecting the treated reaction product to ultrasonic wave dispersion and washing in the 65°C deionized water containing the calcium stearate dispersion for 30 minutes, subjecting the upper suspended whiskers to 200-mesh filtering, taking the modified whisker mixture solution, repeating the operations for 4 times until the filtrate is clear, and obtaining the modified whiskers by drying in the vacuum oven;
B) weighing 8 parts by mass of the whiskers obtained in step A), in the airtight environment, stirring at a high speed and reacting the whiskers with 6 parts by mass of the intumenscent flame-retardant melamine cyanurate, 1.5 parts by mass of the micro gelating capsule red phosphorus flame retardant, and 1 part by mass of the KH-550 Mane coupling agent in a mixer in the presence of the small amount of the 75°C non-ionic surfactant for 55 minutes, thereby to obtain the flame-retardant and melt droplet-resistant whiskers;
C) formulating 5 parts by mass of the flame-retardant and melt droplet-resistant whiskers with 5 parts by mass of the ethylene glycol into the flame-retardant and melt droplet-resistant whisker ethylene glycol solution in the presence of trace sodium hexametaphosphate, and subjecting the formulated flame-retardant and melt droplet-resistant whisker ethylene glycol solution to the ultrasonic wave dispersion at 55°C for 3.5 hours, to obtain the flame-retardant and melt droplet-resistant whisker ethylene glycol;
D) adding 35 parts by mass of the flame-retardant and melt droplet-resistant whisker ethylene glycol to a condensation reactor containing 65 parts by mass of the ethylene terephthalate until the flame-retardant and melt droplet-resistant whisker ethylene is esterified and polymerized into the copolyester flame-retardant and melt droplet-resistant polyester;
F) by using the flame-retardant and melt droplet-resistant component as the cortex, preparing the copolyester flame-retardant and melt droplet-resistant polyester obtained in step D), the PET, PTT, and PBT polyesters into the skin-core flame-retardant and melt droplet-resistant polyester via the composite spinning technique according to a mass ratio of 30:70.
3. The method for preparing flame-retardant and melt droplet-resistant polyester according to claim 1, wherein in the steps.
A) weighing 6 parts by mass of the basic magnesium sulfate whiskers having characterization parameters of a diameter of 0.1 to 1 pm and a length of 5 to 12 pm, 4 parts by mass of the tetra-needle-like zinc oxide whiskers having characterization parameters of a diameter of 0.1 to 0.8 pm and a length of 6 to 10 pm, 6 parts by mass of the magnesium salt whiskers having characterization parameters of a diameter of 0.2 to 0.8 pm and a length of 6 to 10 pm, 4 parts by mass of the 13-type silicon nitride whiskers having characterization parameters of a diameter of 0.1 to 0.6 pm and a length of 5 to 10 pm; uniformly mixing the four types of whiskers, roasting and reacting the mixture in the vacuum furnace at 400°C for 5 hours, after cooling, stirring, shearing and dispersing the reaction product in the absolute ethanol containing the sodium hexametaphosphate for 38 minutes, subjecting the reaction product to the atmospheric plasma treatment for 15 minutes, subjecting the treated reaction product to ultrasonic wave dispersion and washing in the 65°C deionized water containing the calcium stearate dispersion for 30 minutes, subjecting the upper suspended whiskers to 200-mesh filtering, taking the modified whisker mixture solution, repeating the operations for 4 times until the filtrate is clear, and obtaining the modified whiskers by drying in the vacuum oven;
B) weighing 8 parts by mass of the whiskers obtained in step A), in the airtight environment, stirring at a high speed and reacting the whiskers with 6 parts by mass of the intumenscent flame-retardant melamine cyanurate, 1.5 parts by mass of the micro gelating capsule red phosphorus flame retardant, and 1 part by mass of the KH-550 silane coupling agent in a mixer in the presence of the small amount of the 75°C non-ionic surfactant for 55 minutes, thereby to obtain the flame-retardant and melt droplet-resistant whiskers;

E) blending and melting the flame-retardant and melt droplet-resistant whiskers obtained in step B) with the conventional polyester at a mass ratio of 30:70 to yield the blended flame-retardant and melt droplet-resistant polyester; and F) by using the flame-retardant and melt droplet-resistant component as the cortex, preparing the blended flame-retardant and melt droplet-resistant polyester obtained in step E), the PET, PTT, and PBT polyesters into the skin-core flame-retardant and melt droplet-resistant polyester via the composite spinning technique according to a mass ratio of 30:70.
4. The method for preparing flame-retardant and melt droplet-resistant polyester according to claim 2, wherein in step D), during the polymerization of the PET, when the estenfication rate reaches 85 to 90%, adding 35 parts by mass of the flame-retardant and melt droplet-resistant whisker ethylene glycol to the condensation reactor containing 65 parts by mass of the ethylene terephthalate, until the flame-retardant and melt droplet-resistant whisker ethylene is estenfied and polymerized into the copolyester flame-retardant and melt droplet-resistant polyester.
5. The method for preparing flame-retardant and melt droplet-resistant polyester according to claim 2 or 3, wherein the flame-retardant and melt droplet-resistant polyester is prepared into PDY, DTY, BCF, BSY or nonwoven fabric via blending or the composite spinning technique; or the flame-retardant and melt droplet-resistant polyester is prepared into flame-retardant and melt droplet-resistant polyester sheets, pipes, bars, or cords.
CA2895255A 2012-11-26 2013-11-26 Method for preparing flame-retardant melt droplet-resistant polyester Active CA2895255C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210488858.8 2012-11-26
CN201210488858.8A CN102978735B (en) 2012-11-26 2012-11-26 Preparation method of flame-retardant droplet-resistant terylene
PCT/CN2013/087806 WO2014079393A1 (en) 2012-11-26 2013-11-26 Method for preparing flame-retardant melt droplet-resistant polyester

Publications (2)

Publication Number Publication Date
CA2895255A1 true CA2895255A1 (en) 2014-05-30
CA2895255C CA2895255C (en) 2017-01-17

Family

ID=47853066

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2895255A Active CA2895255C (en) 2012-11-26 2013-11-26 Method for preparing flame-retardant melt droplet-resistant polyester

Country Status (4)

Country Link
CN (1) CN102978735B (en)
CA (1) CA2895255C (en)
GB (1) GB2526441B (en)
WO (1) WO2014079393A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978735B (en) * 2012-11-26 2014-08-13 浙江盛元化纤有限公司 Preparation method of flame-retardant droplet-resistant terylene
CN105646939A (en) * 2014-11-10 2016-06-08 合肥杰事杰新材料股份有限公司 Application of basic magnesium sulfate whiskers as flame-retardant anti-dripping agent of composition
CN104538105A (en) * 2014-12-03 2015-04-22 常州市拓源电缆成套有限公司 Flame-retardant capacitance type composite insulated bus
CN105624825B (en) * 2016-03-15 2018-06-29 张家港骏马无纺布有限公司 A kind of fire-retardant melt-blown non-woven material and preparation method thereof
CN106336504A (en) * 2016-08-31 2017-01-18 浙江省现代纺织工业研究院 Manufacturing method of flame-retardant anti-ageing PET (polyester) and fibers
CN108341939A (en) * 2018-01-23 2018-07-31 浙江省现代纺织工业研究院 A kind of preparation method of hydridization paraxylene
CN108440743A (en) * 2018-01-23 2018-08-24 浙江省现代纺织工业研究院 A kind of preparation method of preposition modified EG
CN110158174B (en) * 2019-06-20 2021-10-22 宜宾屏山辉瑞油脂有限公司 Flame retardant, flame-retardant synthetic fiber and manufacturing method thereof
CN113512248B (en) * 2021-04-25 2023-05-09 常熟市中联光电新材料有限责任公司 Whisker synergistic multielement flame-retardant ethylene-vinyl acetate copolymer/low density polyethylene composite material and preparation method thereof
CN113512249B (en) * 2021-04-25 2023-05-02 常熟市中联光电新材料有限责任公司 Zinc hydroxide borate and whisker synergistic flame-retardant ethylene-vinyl acetate copolymer/low-density polyethylene composite material and preparation method thereof
CN114957949B (en) * 2022-06-30 2023-03-21 宁波昌亚新材料科技股份有限公司 High-heat-resistance high-rigidity polylactic acid composite material and preparation method and application thereof
CN115710755B (en) * 2022-11-30 2024-02-06 潍坊迅纺新材料科技有限公司 Flame-retardant tooling fabric without molten drops
CN115896967B (en) * 2022-12-13 2023-06-13 泰安亚荣生物科技有限公司 Degradable environment-friendly flame retardant and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203219C (en) * 2003-07-29 2005-05-25 东华大学 Method for preparing whisker material to make modification treatment of spinning chemical fibre
US20060157882A1 (en) * 2004-12-10 2006-07-20 Simona Percec Filled ultramicrocellular structures
CN1814697A (en) * 2006-02-21 2006-08-09 南通瑞森科技合成材料有限公司 Sub-nano silica-magnesia whisker halogen-less flame-retardant agent
CN101423666B (en) * 2008-10-31 2011-04-27 广东新会美达锦纶股份有限公司 Halogen-free flame retardant polyamide 6 composition
CN101402753B (en) * 2008-10-31 2011-03-16 浙江七色鹿色母粒有限公司 Begin-color flame-proof antistatic polyolefin master batch
CN102002184B (en) * 2010-10-08 2012-10-31 华南理工大学 Enhanced toughened halogen-free flame-retardant polypropylene mixture and preparation method thereof
CN102731996A (en) * 2012-06-15 2012-10-17 苏州宇度医疗器械有限责任公司 Preparation method of calcium sulfate whisker filled flame-retardant polyamide high polymer material
CN102978735B (en) * 2012-11-26 2014-08-13 浙江盛元化纤有限公司 Preparation method of flame-retardant droplet-resistant terylene

Also Published As

Publication number Publication date
CN102978735A (en) 2013-03-20
GB2526441B (en) 2019-01-09
GB2526441A (en) 2015-11-25
WO2014079393A1 (en) 2014-05-30
CA2895255C (en) 2017-01-17
GB201510225D0 (en) 2015-07-29
CN102978735B (en) 2014-08-13

Similar Documents

Publication Publication Date Title
CA2895255C (en) Method for preparing flame-retardant melt droplet-resistant polyester
JP2020525661A (en) Graphene composite material and manufacturing method thereof
US10874156B2 (en) Heat-storing and warmth-retaining fleece and method for manufacturing same
CN108754786B (en) Multifunctional flame-retardant blanket and preparation method thereof
CN106835500A (en) A kind of non-woven fabrics that can be degradable
CN105696100B (en) A kind of green charcoal source copolymerization flame-proof polylactic acid fiber and preparation method thereof
CN112281255A (en) Preparation method of anti-ultraviolet flame-retardant polyester filament yarn
CN101580976B (en) Preparation method of melt-drip resistant inflaming retarding polyester fiber
CN106367839A (en) Method for preparing flame-retardant polyester fiber from recycled bottle pieces
JP5122236B2 (en) Far-infrared radiation fiber, fabric comprising the same, and method for producing the same
CN106811956B (en) A kind of preparation method of fire-retardant anti-molten droplet coating textile fabric
TW201114829A (en) Halogen-free flame retarding masterbatch with low phosphorous content, composition and process for preparing the same and flame retarding article containing the same
CN107383395A (en) The graphene color masterbatch preparation method of PET material
CN106400300A (en) Preparation method for noctilucent refractory fiber needle-punched fabric
CN113802212B (en) Flame-retardant fiber, preparation method thereof and flame-retardant fabric
CN113308889B (en) Halogen-free flame-retardant polyester-cotton fabric and preparation method thereof
CN105671722A (en) Flame-retardant polyester yarn and sofa cloth made of same
CN101768342A (en) Preparation method of novel melt-dripping-resistant antiflaming polyester
CN108866658A (en) A kind of fire-retardant filter bag glass of mixed weaving and preparation method thereof
JP5080392B2 (en) Method for producing polylactic acid fiber, method for producing fabric and method for producing fiber product
CN114921870A (en) Flame-retardant polylactic acid fabric and preparation method thereof
JP2009167585A (en) Method for producing dyed fabric structure, dyed fabric structure, and fiber products
CN106633753A (en) Flame-retarding polycarbonate plastics and preparation method thereof
CN112280262A (en) Preparation method of ultraviolet-resistant flame-retardant polyester fiber master batch
US4028308A (en) Poly(cyclohexanedimethylene dibromoterephthalate)

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20150617