CA2894317A1 - Systemes et methodes de classement, priorisation et interpretation de variants genetiques et therapies employant un reseau neuronal profond - Google Patents
Systemes et methodes de classement, priorisation et interpretation de variants genetiques et therapies employant un reseau neuronal profond Download PDFInfo
- Publication number
- CA2894317A1 CA2894317A1 CA2894317A CA2894317A CA2894317A1 CA 2894317 A1 CA2894317 A1 CA 2894317A1 CA 2894317 A CA2894317 A CA 2894317A CA 2894317 A CA2894317 A CA 2894317A CA 2894317 A1 CA2894317 A1 CA 2894317A1
- Authority
- CA
- Canada
- Prior art keywords
- variant
- condition
- cell
- neural network
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/20—Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
- G16B40/20—Supervised data analysis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
- G16B5/20—Probabilistic models
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medical Informatics (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Data Mining & Analysis (AREA)
- Genetics & Genomics (AREA)
- Analytical Chemistry (AREA)
- Public Health (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Bioethics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Evolutionary Computation (AREA)
- Organic Chemistry (AREA)
- Physiology (AREA)
- Probability & Statistics with Applications (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Il est décrit des systèmes et procédés qui reçoivent, comme entrée, une séquence dacide désoxyribonucléique (ADN) ou dacide ribonucléique, extraient des caractéristiques, et appliquent des couches dunités de traitement afin de calculer au moins une variable de cellule propre à une condition, correspondant à des quantités cellulaires mesurées dans différentes conditions. Le système pourrait sappliquer à une séquence contenant une variante génétique, ainsi quà une séquence de référence correspondante, afin de déterminer jusquà quel point les variables de cellule propres à une condition changent en raison de la variante. Le changement dans les variables de cellule propres à une condition est utilisé pour calculer un score représentant jusquà quel point la variante est nuisible, pour classer le niveau de caractère nuisible dune variante, pour établir des variantes aux fins de traitement subséquent, et pour comparer une variante de test à des variantes délétères connues. En modifiant la variante ou les caractéristiques extraites pour intégrer les effets de modification dADN, de thérapie doligonucléotide, de thérapie de liaison de protéine dADN ou dacide ribonucléique, ou dautres thérapies, le système peut être utilisé pour déterminer sil est possible de réduire les effets nuisibles de la variante originale.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2894317A CA2894317C (fr) | 2015-06-15 | 2015-06-15 | Systemes et methodes de classement, priorisation et interpretation de variants genetiques et therapies employant un reseau neuronal profond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2894317A CA2894317C (fr) | 2015-06-15 | 2015-06-15 | Systemes et methodes de classement, priorisation et interpretation de variants genetiques et therapies employant un reseau neuronal profond |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2894317A1 true CA2894317A1 (fr) | 2016-12-15 |
CA2894317C CA2894317C (fr) | 2023-08-15 |
Family
ID=57543744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2894317A Active CA2894317C (fr) | 2015-06-15 | 2015-06-15 | Systemes et methodes de classement, priorisation et interpretation de variants genetiques et therapies employant un reseau neuronal profond |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2894317C (fr) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108229523A (zh) * | 2017-04-13 | 2018-06-29 | 深圳市商汤科技有限公司 | 图像检测、神经网络训练方法、装置和电子设备 |
CN108680861A (zh) * | 2018-03-05 | 2018-10-19 | 北京航空航天大学 | 锂电池剩余循环寿命预测模型的构建方法及装置 |
WO2019033381A1 (fr) * | 2017-08-18 | 2019-02-21 | Intel Corporation | Réseaux neuronaux efficaces à structures matricielles élaborées dans des environnements d'apprentissage automatique |
WO2019079180A1 (fr) * | 2017-10-16 | 2019-04-25 | Illumina, Inc. | Réseaux neuronaux à convolution profonde de classification de variants |
WO2019140402A1 (fr) * | 2018-01-15 | 2019-07-18 | Illumina, Inc. | Classificateur de variants basé sur un apprentissage profond |
WO2019200338A1 (fr) * | 2018-04-12 | 2019-10-17 | Illumina, Inc. | Classificateur de variantes basé sur des réseaux neuronaux profonds |
NL2020861B1 (en) * | 2018-04-12 | 2019-10-22 | Illumina Inc | Variant classifier based on deep neural networks |
CN110362807A (zh) * | 2018-03-26 | 2019-10-22 | 中国科学院信息工程研究所 | 基于自编码器的变体词识别方法及系统 |
WO2020181111A1 (fr) * | 2019-03-07 | 2020-09-10 | Nvidia Corporation | Détection de mutation génétique à l'aide de l'apprentissage profond |
CN112017771A (zh) * | 2020-08-31 | 2020-12-01 | 吾征智能技术(北京)有限公司 | 一种基于精液常规检查数据的疾病预测模型的构建方法及系统 |
CN112437961A (zh) * | 2018-05-14 | 2021-03-02 | 宽腾矽公司 | 机器学习使能的生物聚合物组装 |
CN113571183A (zh) * | 2020-04-28 | 2021-10-29 | 西门子医疗有限公司 | Covid-19患者管理的风险预测 |
CN113810335A (zh) * | 2020-06-12 | 2021-12-17 | 武汉斗鱼鱼乐网络科技有限公司 | 一种识别目标ip的方法及系统、存储介质、设备 |
US11210554B2 (en) | 2019-03-21 | 2021-12-28 | Illumina, Inc. | Artificial intelligence-based generation of sequencing metadata |
CN114360652A (zh) * | 2022-01-28 | 2022-04-15 | 深圳太力生物技术有限责任公司 | 细胞株相似性评价方法及相似细胞株培养基配方推荐方法 |
US11347965B2 (en) | 2019-03-21 | 2022-05-31 | Illumina, Inc. | Training data generation for artificial intelligence-based sequencing |
US11397889B2 (en) | 2017-10-16 | 2022-07-26 | Illumina, Inc. | Aberrant splicing detection using convolutional neural networks (CNNs) |
RU2767337C9 (ru) * | 2017-10-16 | 2022-09-12 | Иллюмина, Инк. | Способы обучения глубоких сверточных нейронных сетей на основе глубокого обучения |
US11482305B2 (en) | 2018-08-18 | 2022-10-25 | Synkrino Biotherapeutics, Inc. | Artificial intelligence analysis of RNA transcriptome for drug discovery |
US11515010B2 (en) | 2021-04-15 | 2022-11-29 | Illumina, Inc. | Deep convolutional neural networks to predict variant pathogenicity using three-dimensional (3D) protein structures |
US11561196B2 (en) | 2018-01-08 | 2023-01-24 | Illumina, Inc. | Systems and devices for high-throughput sequencing with semiconductor-based detection |
US11593649B2 (en) | 2019-05-16 | 2023-02-28 | Illumina, Inc. | Base calling using convolutions |
US11749380B2 (en) | 2020-02-20 | 2023-09-05 | Illumina, Inc. | Artificial intelligence-based many-to-many base calling |
CN116798521A (zh) * | 2023-07-19 | 2023-09-22 | 广东美赛尔细胞生物科技有限公司 | 免疫细胞培养控制系统的异常监测方法及系统 |
US11842794B2 (en) | 2019-03-19 | 2023-12-12 | The University Of Hong Kong | Variant calling in single molecule sequencing using a convolutional neural network |
US11861491B2 (en) | 2017-10-16 | 2024-01-02 | Illumina, Inc. | Deep learning-based pathogenicity classifier for promoter single nucleotide variants (pSNVs) |
US11953464B2 (en) | 2018-01-08 | 2024-04-09 | Illumina, Inc. | Semiconductor-based biosensors for base calling |
US12106828B2 (en) | 2019-05-16 | 2024-10-01 | Illumina, Inc. | Systems and devices for signal corrections in pixel-based sequencing |
-
2015
- 2015-06-15 CA CA2894317A patent/CA2894317C/fr active Active
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108229523A (zh) * | 2017-04-13 | 2018-06-29 | 深圳市商汤科技有限公司 | 图像检测、神经网络训练方法、装置和电子设备 |
US20200234137A1 (en) * | 2017-08-18 | 2020-07-23 | Intel Corporation | Efficient neural networks with elaborate matrix structures in machine learning environments |
WO2019033381A1 (fr) * | 2017-08-18 | 2019-02-21 | Intel Corporation | Réseaux neuronaux efficaces à structures matricielles élaborées dans des environnements d'apprentissage automatique |
US11315016B2 (en) | 2017-10-16 | 2022-04-26 | Illumina, Inc. | Deep convolutional neural networks for variant classification |
WO2019079180A1 (fr) * | 2017-10-16 | 2019-04-25 | Illumina, Inc. | Réseaux neuronaux à convolution profonde de classification de variants |
KR102539188B1 (ko) | 2017-10-16 | 2023-06-01 | 일루미나, 인코포레이티드 | 심층 컨볼루션 신경망을 트레이닝하기 위한 심층 학습-기반 기술 |
US10423861B2 (en) | 2017-10-16 | 2019-09-24 | Illumina, Inc. | Deep learning-based techniques for training deep convolutional neural networks |
KR102314219B1 (ko) | 2017-10-16 | 2021-10-18 | 일루미나, 인코포레이티드 | 심층 컨볼루션 신경망의 앙상블을 트레이닝하기 위한 반감독 학습 |
US11488009B2 (en) | 2017-10-16 | 2022-11-01 | Illumina, Inc. | Deep learning-based splice site classification |
RU2767337C9 (ru) * | 2017-10-16 | 2022-09-12 | Иллюмина, Инк. | Способы обучения глубоких сверточных нейронных сетей на основе глубокого обучения |
KR102433458B1 (ko) | 2017-10-16 | 2022-08-18 | 일루미나, 인코포레이티드 | 심층 컨볼루션 신경망의 앙상블을 트레이닝하기 위한 반감독 학습 |
KR20200006564A (ko) * | 2017-10-16 | 2020-01-20 | 일루미나, 인코포레이티드 | 심층 컨볼루션 신경망을 트레이닝하기 위한 심층 학습-기반 기술 |
US11397889B2 (en) | 2017-10-16 | 2022-07-26 | Illumina, Inc. | Aberrant splicing detection using convolutional neural networks (CNNs) |
KR20200011445A (ko) * | 2017-10-16 | 2020-02-03 | 일루미나, 인코포레이티드 | 심층 컨볼루션 신경망의 앙상블을 트레이닝하기 위한 반감독 학습 |
CN110800062A (zh) * | 2017-10-16 | 2020-02-14 | 因美纳有限公司 | 用于变体分类的深度卷积神经网络 |
WO2019079166A1 (fr) * | 2017-10-16 | 2019-04-25 | Illumina, Inc. | Techniques basées sur l'apprentissage profond d'apprentissage de réseaux neuronaux à convolution profonde |
CN110832596A (zh) * | 2017-10-16 | 2020-02-21 | 因美纳有限公司 | 基于深度学习的深度卷积神经网络训练方法 |
US11386324B2 (en) | 2017-10-16 | 2022-07-12 | Illumina, Inc. | Recurrent neural network-based variant pathogenicity classifier |
AU2018352201B2 (en) * | 2017-10-16 | 2021-12-09 | Illumina, Inc. | Deep convolutional neural networks for variant classification |
AU2021290303B2 (en) * | 2017-10-16 | 2023-08-24 | Illumina, Inc. | Semi-supervised learning for training an ensemble of deep convolutional neural networks |
AU2018350891B9 (en) * | 2017-10-16 | 2022-05-19 | Illumina, Inc. | Deep learning-based techniques for training deep convolutional neural networks |
IL283107B2 (en) * | 2017-10-16 | 2023-06-01 | Illumina Inc | Classifies pathogenic variants using a recurrent neural network |
KR102196522B1 (ko) * | 2017-10-16 | 2020-12-29 | 일루미나, 인코포레이티드 | 심층 컨볼루션 신경망을 트레이닝하기 위한 심층 학습-기반 기술 |
KR20210000321A (ko) * | 2017-10-16 | 2021-01-04 | 일루미나, 인코포레이티드 | 심층 컨볼루션 신경망을 트레이닝하기 위한 심층 학습-기반 기술 |
RU2767337C2 (ru) * | 2017-10-16 | 2022-03-17 | Иллюмина, Инк. | Способы обучения глубоких сверточных нейронных сетей на основе глубокого обучения |
CN110832596B (zh) * | 2017-10-16 | 2021-03-26 | 因美纳有限公司 | 基于深度学习的深度卷积神经网络训练方法 |
US11798650B2 (en) | 2017-10-16 | 2023-10-24 | Illumina, Inc. | Semi-supervised learning for training an ensemble of deep convolutional neural networks |
US11837324B2 (en) | 2017-10-16 | 2023-12-05 | Illumina, Inc. | Deep learning-based aberrant splicing detection |
US11861491B2 (en) | 2017-10-16 | 2024-01-02 | Illumina, Inc. | Deep learning-based pathogenicity classifier for promoter single nucleotide variants (pSNVs) |
AU2018350891B2 (en) * | 2017-10-16 | 2021-12-16 | Illumina, Inc. | Deep learning-based techniques for training deep convolutional neural networks |
KR20210127798A (ko) * | 2017-10-16 | 2021-10-22 | 일루미나, 인코포레이티드 | 심층 컨볼루션 신경망의 앙상블을 트레이닝하기 위한 반감독 학습 |
US11561196B2 (en) | 2018-01-08 | 2023-01-24 | Illumina, Inc. | Systems and devices for high-throughput sequencing with semiconductor-based detection |
US11953464B2 (en) | 2018-01-08 | 2024-04-09 | Illumina, Inc. | Semiconductor-based biosensors for base calling |
CN110832510A (zh) * | 2018-01-15 | 2020-02-21 | 因美纳有限公司 | 基于深度学习的变体分类器 |
KR20200010488A (ko) * | 2018-01-15 | 2020-01-30 | 일루미나, 인코포레이티드 | 심층 학습 기반 변이체 분류자 |
WO2019140402A1 (fr) * | 2018-01-15 | 2019-07-18 | Illumina, Inc. | Classificateur de variants basé sur un apprentissage profond |
CN110832510B (zh) * | 2018-01-15 | 2024-10-22 | 因美纳有限公司 | 基于深度学习的变体分类器 |
KR102273717B1 (ko) | 2018-01-15 | 2021-07-06 | 일루미나, 인코포레이티드 | 심층 학습 기반 변이체 분류자 |
IL283427B1 (en) * | 2018-01-15 | 2023-06-01 | Illumina Inc | Identifying variants using Empiric ranking of variants |
IL283427B2 (en) * | 2018-01-15 | 2023-10-01 | Illumina Inc | Identifying variants using Empiric ranking of variants |
JP2021120869A (ja) * | 2018-01-15 | 2021-08-19 | イルミナ インコーポレイテッド | 経験的バリアントスコア(evs)ベースの深層学習バリアントコーラ |
US11705219B2 (en) | 2018-01-15 | 2023-07-18 | Illumina, Inc. | Deep learning-based variant classifier |
JP2020525893A (ja) * | 2018-01-15 | 2020-08-27 | イルミナ インコーポレイテッド | 深層学習ベースのバリアント分類器 |
AU2019206709B2 (en) * | 2018-01-15 | 2021-09-09 | Illumina Cambridge Limited | Deep learning-based variant classifier |
EP3901833A1 (fr) * | 2018-01-15 | 2021-10-27 | Illumina, Inc. | Classificateur de variants basé sur un apprentissage profond |
AU2021282469B2 (en) * | 2018-01-15 | 2023-07-20 | Illumina Cambridge Limited | Deep learning-based variant classifier |
CN108680861A (zh) * | 2018-03-05 | 2018-10-19 | 北京航空航天大学 | 锂电池剩余循环寿命预测模型的构建方法及装置 |
CN110362807A (zh) * | 2018-03-26 | 2019-10-22 | 中国科学院信息工程研究所 | 基于自编码器的变体词识别方法及系统 |
CN110832597A (zh) * | 2018-04-12 | 2020-02-21 | 因美纳有限公司 | 基于深度神经网络的变体分类器 |
US20190318806A1 (en) * | 2018-04-12 | 2019-10-17 | Illumina, Inc. | Variant Classifier Based on Deep Neural Networks |
WO2019200338A1 (fr) * | 2018-04-12 | 2019-10-17 | Illumina, Inc. | Classificateur de variantes basé sur des réseaux neuronaux profonds |
NL2020861B1 (en) * | 2018-04-12 | 2019-10-22 | Illumina Inc | Variant classifier based on deep neural networks |
CN112437961A (zh) * | 2018-05-14 | 2021-03-02 | 宽腾矽公司 | 机器学习使能的生物聚合物组装 |
US11482305B2 (en) | 2018-08-18 | 2022-10-25 | Synkrino Biotherapeutics, Inc. | Artificial intelligence analysis of RNA transcriptome for drug discovery |
WO2020181111A1 (fr) * | 2019-03-07 | 2020-09-10 | Nvidia Corporation | Détection de mutation génétique à l'aide de l'apprentissage profond |
GB2596714A (en) * | 2019-03-07 | 2022-01-05 | Nvidia Corp | Genetic mutation detection using deep learning |
US12094572B1 (en) | 2019-03-07 | 2024-09-17 | Nvidia Corporation | Genetic mutation detection using deep learning |
GB2624778B (en) * | 2019-03-07 | 2024-09-11 | Nvidia Corp | Genetic mutation detection using deep learning |
US11443832B2 (en) | 2019-03-07 | 2022-09-13 | Nvidia Corporation | Genetic mutation detection using deep learning |
GB2596714B (en) * | 2019-03-07 | 2024-07-17 | Nvidia Corp | Genetic mutation detection using deep learning |
GB2624778A (en) * | 2019-03-07 | 2024-05-29 | Nvidia Corp | Genetic mutation detection using deep learning |
US11842794B2 (en) | 2019-03-19 | 2023-12-12 | The University Of Hong Kong | Variant calling in single molecule sequencing using a convolutional neural network |
US11908548B2 (en) | 2019-03-21 | 2024-02-20 | Illumina, Inc. | Training data generation for artificial intelligence-based sequencing |
US12119088B2 (en) | 2019-03-21 | 2024-10-15 | Illumina, Inc. | Deep neural network-based sequencing |
US11676685B2 (en) | 2019-03-21 | 2023-06-13 | Illumina, Inc. | Artificial intelligence-based quality scoring |
US11783917B2 (en) | 2019-03-21 | 2023-10-10 | Illumina, Inc. | Artificial intelligence-based base calling |
US11347965B2 (en) | 2019-03-21 | 2022-05-31 | Illumina, Inc. | Training data generation for artificial intelligence-based sequencing |
US11436429B2 (en) | 2019-03-21 | 2022-09-06 | Illumina, Inc. | Artificial intelligence-based sequencing |
US11210554B2 (en) | 2019-03-21 | 2021-12-28 | Illumina, Inc. | Artificial intelligence-based generation of sequencing metadata |
US11961593B2 (en) | 2019-03-21 | 2024-04-16 | Illumina, Inc. | Artificial intelligence-based determination of analyte data for base calling |
US11817182B2 (en) | 2019-05-16 | 2023-11-14 | Illumina, Inc. | Base calling using three-dimentional (3D) convolution |
US11593649B2 (en) | 2019-05-16 | 2023-02-28 | Illumina, Inc. | Base calling using convolutions |
US12106828B2 (en) | 2019-05-16 | 2024-10-01 | Illumina, Inc. | Systems and devices for signal corrections in pixel-based sequencing |
US11749380B2 (en) | 2020-02-20 | 2023-09-05 | Illumina, Inc. | Artificial intelligence-based many-to-many base calling |
US12106829B2 (en) | 2020-02-20 | 2024-10-01 | Illumina, Inc. | Artificial intelligence-based many-to-many base calling |
CN113571183A (zh) * | 2020-04-28 | 2021-10-29 | 西门子医疗有限公司 | Covid-19患者管理的风险预测 |
CN113810335B (zh) * | 2020-06-12 | 2023-08-22 | 武汉斗鱼鱼乐网络科技有限公司 | 一种识别目标ip的方法及系统、存储介质、设备 |
CN113810335A (zh) * | 2020-06-12 | 2021-12-17 | 武汉斗鱼鱼乐网络科技有限公司 | 一种识别目标ip的方法及系统、存储介质、设备 |
CN112017771B (zh) * | 2020-08-31 | 2024-02-27 | 吾征智能技术(北京)有限公司 | 一种基于精液常规检查数据的疾病预测模型的构建方法及系统 |
CN112017771A (zh) * | 2020-08-31 | 2020-12-01 | 吾征智能技术(北京)有限公司 | 一种基于精液常规检查数据的疾病预测模型的构建方法及系统 |
US11515010B2 (en) | 2021-04-15 | 2022-11-29 | Illumina, Inc. | Deep convolutional neural networks to predict variant pathogenicity using three-dimensional (3D) protein structures |
CN114360652A (zh) * | 2022-01-28 | 2022-04-15 | 深圳太力生物技术有限责任公司 | 细胞株相似性评价方法及相似细胞株培养基配方推荐方法 |
CN116798521B (zh) * | 2023-07-19 | 2024-02-23 | 广东美赛尔细胞生物科技有限公司 | 免疫细胞培养控制系统的异常监测方法及系统 |
CN116798521A (zh) * | 2023-07-19 | 2023-09-22 | 广东美赛尔细胞生物科技有限公司 | 免疫细胞培养控制系统的异常监测方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CA2894317C (fr) | 2023-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11887696B2 (en) | Systems and methods for classifying, prioritizing and interpreting genetic variants and therapies using a deep neural network | |
CA2894317C (fr) | Systemes et methodes de classement, priorisation et interpretation de variants genetiques et therapies employant un reseau neuronal profond | |
Chen et al. | Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening | |
Rifaioglu et al. | MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery | |
Lai et al. | Artificial intelligence and machine learning in bioinformatics | |
Zou et al. | Approaches for recognizing disease genes based on network | |
Zhang et al. | Discerning novel splice junctions derived from RNA-seq alignment: a deep learning approach | |
US8572018B2 (en) | Method, system and software arrangement for reconstructing formal descriptive models of processes from functional/modal data using suitable ontology | |
Chen et al. | Trans-species learning of cellular signaling systems with bimodal deep belief networks | |
Nardini et al. | Learning equations from biological data with limited time samples | |
Deng et al. | Massive single-cell RNA-seq analysis and imputation via deep learning | |
Conard et al. | A spectrum of explainable and interpretable machine learning approaches for genomic studies | |
Buettner et al. | Scalable latent-factor models applied to single-cell RNA-seq data separate biological drivers from confounding effects | |
Zaitzeff et al. | Improved datasets and evaluation methods for the automatic prediction of DNA-binding proteins | |
Wang et al. | Lm-gvp: A generalizable deep learning framework for protein property prediction from sequence and structure | |
Yang et al. | The integration of weighted gene association networks based on information entropy | |
Imoto et al. | Analysis of gene networks for drug target discovery and validation | |
Sharma et al. | Evolutionary algorithms and artificial intelligence in drug discovery: opportunities, tools, and prospects | |
Vijayakumar et al. | A Practical Guide to Integrating Multimodal Machine Learning and Metabolic Modeling | |
Pe'er | From gene expression to molecular pathways | |
Slawek | Inferring gene regulatory networks from expression data using ensemble methods | |
Sauta | A data fusion approach for learning transcriptional Bayesian networks in chronic leukemia | |
Kabir et al. | DRBpred: A sequence-based machine learning method to effectively predict DNA-and RNA-binding residues | |
Vieira | Deep learning para identificação de mutações genéticas patogénicas | |
Brenerman et al. | Random Forest Factorization Reveals Latent Structure in Single Cell RNA Sequencing Data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20200609 |
|
EEER | Examination request |
Effective date: 20200609 |
|
EEER | Examination request |
Effective date: 20200609 |
|
EEER | Examination request |
Effective date: 20200609 |
|
EEER | Examination request |
Effective date: 20200609 |
|
EEER | Examination request |
Effective date: 20200609 |
|
EEER | Examination request |
Effective date: 20200609 |
|
EEER | Examination request |
Effective date: 20200609 |
|
EEER | Examination request |
Effective date: 20200609 |
|
EEER | Examination request |
Effective date: 20200609 |