CA2887757A1 - System for in-vitro fertilization with spermatozoa separated into x-chromosome and y-chromosome bearing populations - Google Patents

System for in-vitro fertilization with spermatozoa separated into x-chromosome and y-chromosome bearing populations Download PDF

Info

Publication number
CA2887757A1
CA2887757A1 CA2887757A CA2887757A CA2887757A1 CA 2887757 A1 CA2887757 A1 CA 2887757A1 CA 2887757 A CA2887757 A CA 2887757A CA 2887757 A CA2887757 A CA 2887757A CA 2887757 A1 CA2887757 A1 CA 2887757A1
Authority
CA
Canada
Prior art keywords
oocytes
spermatozoa
sperm cells
container
sperm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2887757A
Other languages
French (fr)
Other versions
CA2887757C (en
Inventor
George E. Seidel
Tae Kwang Suh
Kehuan Lu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XY LLC
Original Assignee
XY LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XY LLC filed Critical XY LLC
Priority claimed from CA2468774A external-priority patent/CA2468774C/en
Publication of CA2887757A1 publication Critical patent/CA2887757A1/en
Application granted granted Critical
Publication of CA2887757C publication Critical patent/CA2887757C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

An IVF system for successfully utilizing spermatozoa separated into X-chromosome bearing and into Y-chromosome bearing population for insemination. The IVF system includes fertilization medium that can shorten the time from insemination to cleavage and a portable incubator for the transportation of maturing oocytes and inseminated oocytes comprising a straw (19) and an incubation element (20) that can be sealed with a cap (22).

Description

SYSTEM FOR IN-VITRO FERTILIZATION WITH SPERMATOZOA SEPARATED
INTO X-CHROMOSOME AND Y-CHROMOSOME BEARING POPULATIONS
I. TECHNICAL FEILD
Devices, compositions, and methods that improve the quality of embryos generated using in-vitro fertilization (IVF) with spermatozoa separated into X-chromosome bearing and Y-chromosome bearing populations.
11. BACKGROUND
An attractive feature of IVF is that many fewer spermatozoa can be required for insemination than for artificial insemination. However, IVF using spermatozoa separated into X-chromosome bearing and Y-chromosome bearing populations (separated spermatozoa) can necessitate modifications to conventional IVF techniques.
This may due in part to the pre-capacitation of such spermatozoa.
In most cases, the percentages of oocytes (oocyte, ootid, or ova, or plurality of same as appropriate to the application) fertilized with separated and unseparated spermatozoa are similar, and events during the first cell cvele are timed similarly foi separated and unseparated spermatozoa. However, with conventional procedures, blastocyst production with separated spermatozoa can be 70%-90% of controls with spermatozoa that have not been separated. For example, development to blastocysts has been shown to be 17% with bovine oocytes 'inseminated with separated spermatozoa, = compared with >25% which might be expected with IVF using unseparated spermatozoa as described in the journal 'article entitled "In Vitro Fertilization With Flow- =
Cytometerically-Sorted Bovine Sperm" Theriogenology 52: 1393-1405 (1999).

Several factors may contribute to these results. One factor may be that staining of sperm with Hoechst 33342 appears to cause a decline in motility of spermatozoa.
Another factor, may be the physical forces the spermatozoa are subject to during the separation process. As but one example, in flow cytometric separation of spermatozoa, spermatozoa exit the flow cytometer at nearly 100 km/h before impacting on the surface of the collection medium. During transit through the flow cytometer spermatozoa can be subjected to laser light at an intensity of over 100mW. While the transit time may only be 1-2usec, this may affect the spermatozoal DNA, and thus, also effect subsequent embryonic development. The process of separating sperm with flow cytometry can also result in a highly diluted sample, 600,000 spermatozoa/mL or less, and subsequent centrifugation steps are necessary to provide concentrated spermatozoa suitable for insemination.
Another problem with utilizing separated spermatozoa in IVF techniques may be that the facility in which the spermatozoa are separated may be in a different location than where the male mammal from which the spermatozoa are collected is located, which may be different from where the female mammal from which the oocytes are collected is located, which may be a different location from where the in-vitro fertilization is to occur, and which may be a different location from where the female mammal into which the in-vitro cultured embryos are to be transferred. Conventionally, separated sperm may be cryopreserved and transported frozen to= the facility at which the IVF
techniques are administered. Maturing oocytes are conventionally transported to the facility at which the IVF techniques are administered in portable incubation systems. The maturing oocytes are then inseminated with previously frozen-thawed sperm cells. To avoid cryopreservation of sperm cells or as a convenience to the various facilities involved it may be beneficial to transport maturing oocytes directly to the facility separating the spermatozoa so that separated sperm cells can be added to the oocytes without cryopreservation. However, conventional IVF and in vitro culture of the resulting zygotes typically comprises a separate set of apparatus and procedures making it inconvenient, difficult, or impossible to inseminate and culture oocytes in the same facility in which spermatozoa are separated.
2 Even though X-chromosome bearing spermatozoa and Y-chromosome bearing spermatozoa have been differentiated by and separated based upon the difference in emitted fluorescence for many years, and even though separated spermatozoa have been used for some time with IVF techniques, and even though there is large commercial market for embryos produced with IVF techniques and separated spermatozoa, the above-mentioned problems have yet to be resolved.
As to the problems with conventional techniques of IVF using separated spermatozoa, and specifically separated spermatozoa, stained spermatozoa, or spermatozoa that are from previously frozen sperm, and with conventional strategies involving the transportation of separated sperm and maturing oocytes, the invention addresses each in a practical manner.
III. DISCLOSURE OF THE INVENTION
Accordingly, one of the broad objects of particular embodiments of the invention can be to provide devices, compositions and methods that provide transportation of inseminated oocytes, promotes cleavage of fertilized oocytes and improves the quality of embryos generated with techniques utilizing spermatozoa separated into X-chromosome bearing and Y-chromosome bearing populations.
Another broad object of particular embodiments of the invention can be to provide devices, compositions, and methods that promote cleavage and improve quality of embryos generated using IVF with spermatozoa that are derived from previously frozen sperm.
Another broad object of particular embodiments of the invention can be to provide devices, compositions, and methods that promote cleavage and improve quality of embryos generated using IVF with spermatozoa that have previously been stained with a DNA binding fluorochrome.
Another broad object of particular embodiments of the invention can be to provide medium for embryonic culturing that can contain non-essential amino acids.
3 Another broad object of the invention can be to provide apparatus and methods for transporting maturing oocytes and fertilized oocytes for the convenience of the end user(s) or to avoid cryopreservation of the spermatozoa used to fertilize oocytes.
Naturally further objects of the invention are disclosed throughout other areas of specification.
In accordance with an aspect of the present invention, there is provided a method of fertilizing oocytes, comprising: a. transferring sperm cells to container with a plurality of oocytes in fertilization medium, wherein said oocytes and sperm cells are from the same species of mammal; b. sealing said container with said sperm cells and said oocytes; c.
transferring said container with said sperm cells and said oocytes to the inside of an incubation element; d. establishing incubation conditions within said incubation element;
e. sealing said incubation element; and f. fertilizing at least one oocyte in said container.
IV. BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows an embodiment of the invention in which spermatozoa from fresh or previously frozen-thawed sperm are stained.
Figure 2 shows an embodiment of the invention for separating stained spermatozoa in tc, X-chromosome bearing and Y-chromosome bearing populations.
Figure 3 shows another view of an embodiment of the invention for separating stained spermatozoa in to X-chromosome bearing and Y-chromosome bearing populations.
Figure 4 shows an embodiment of a portable incubation system in which oocytes can be fertilized.
V. MODE(S) FOR CARRYING OUT THE INVENTION
The invention involves devices, methods, and compositions for the in-vitro insemination and fertilization of oocytes (oocyte, ootid, or ova, or plurality of same as appropriate to the application) and the culture of embryos resulting from such techniques.
Embodiments of the invention can include fresh spermatozoa, or spermatozoa from frozen-thawed sperm of numerous species of mammals. The invention should be understood not to be limited to the species of mammals cited by the specific examples within this patent application. Embodiments of the invention, for example, may include fresh spermatozoa or spermatozoa from frozen-thawed sperm of animals having
4 commercial value for meat or dairy production such as swine, bovids, ovids, equids, buffalo, or the like (naturally the mammals used for meat or dairy production may vary from culture to culture). It may also include fresh spermatozoa or spermatozoa from frozen-thawed sperm from individuals having rare or uncommon attribute(s), such as morphological characteristics including weight, size, or conformation, or other desired characteristics such as speed, agility, intellect, or the like. It may include frozen-thawed sperm from deceased donors, or fresh or frozen-thawed spermatozoa from rare or exotic mammals, such as zoological specimens or endangered species. Embodiments of the invention may also include fresh or frozen-thawed spermatozoa collected from primates, including but not limited to, humans, chimpanzees, gorillas, or the like, and may also include fresh or frozen-thawed spermatozoa from marine mammals, such as whales or porpoises.
Now referring primarily to Figure 1, in some embodiments of the invention, Hoechst 33342 stain (1) can be added to bovine spermatozoa contained in frozen-thawed sperm (2) to establish a concentration of 224uM. The incubation time of the spermatozoa contained in the frozen-thawed sperm (2) with the stain (1) can be about 190 minutes. In anther embodiment of the invention, the stain (1) can be added to the bovine sperm (2) to establish a concentration of 2240 M and then incubated for about 60 minutes.
Frozen-thawed sperm treated in either manner can improve the resolution of X-chromosome bearing from Y-chromosome bearing spermatozoa. Understandably, from application to application (such as frozen-thawed sperm from different species) the amount of incubation time and the specific concentration of stain can adjusted to optimize the resolution of the X-chromosome bearing from Y-chrotnosorne bearing spermatozoa.
With respect to the cleavage rates of inseminated oocyte(s), the increase in stain concentration up to at least 10X does not appear to have a depressive effect on either cleavage or embryonic development. Higher stain concentrations may actually be beneficial with respect to certain applications because the length of incubation time may be decreased improving percent cleavage. From application to application length of incubation time can be adjusted to optimize cleavage results or embryonic development, as desired.

A
Now referring primarily to Figures 2 and 3, a flow cytometer embodiment of the invention is shown which includes a sperm cell source (3) which acts to establish or supply stained spermatozoa or other type of stained cells to be analyzed by the flow cytometer. The sperm cells are deposited within a nozzle (4) in a maL..--:cr such that the cells are surrounded by a sheath fluid (5). The sheath fluid (5) is usually supplied by some sheath fluid source (6) so that as the cell source (3) supplies sperm cells, the sheath fluid (5) is concurrently fed through the nozzle (4). In this manner it can be easily understood how the sheath fluid (5) forms a sheath fluid environment for the cells. Since the various fluids are provided to the flow cytometer at some pressure, they flow out of the nozzle (4) and exit at the nozzle orifice (7). By providing some type of oscillator (8) which may be very precisely controlled through an oscillator control (9), pressure waves may be established within the nozzle (4) and transmitted to the fluids exiting the nozzle (4) at nozzle orifice (7). Since the oscillator (9) thus acts upon the sheath fluid (5), the stream (10) exiting the nozzle orifice (7) eventually and regularly fortus drops (11).
Because the sperm cells are surrounded by a sheath fluid environment, the drops (11) may contain within them individually isolated (generally) cells or other items.
Since the drops (11) generally contain isolated sperm cells, the flow cytometer can distinguish and separate droplets based upon whether or not the appropriate sperm cell is contained within the drop. This is accomplished through a cell sensing system (12). The cell sensing system involves at least some type of sensor (13) which responds to the cells contained within each drop (11) as described by U.S. Patent No. 5135759. As Johnson patent explains for spermatozoa or sperm cells, although the staining and separation inventions can be understood to be used with a variety of frozen-thawed cells, the cell sensing system (13) may cause an action depending upon the relative presence or relative absence of the bound fluorochrome which may be excited by some stimulate such as the laser exciter (14). While each type of sperm cell can be stained by the stain or fluorochrome, as described above, the differing length of the X-chromosome and the Y-chromosome causes different amounts of stain to be bound. Thus, by sensing the degree of fluorescence emitted by the fluorochrome upon excitation it is possible to discriminate between X-bearing spermatozoa and Y-bearing spermatozoa by their differing emission levels.

In order to achieve separation and isolation of the appropriate sperm cells, the signals received by sensor (14) are fed to some type of sorter discrimination system (15) which very rapidly makes a differentiation decision and can differentially charge each drop (11) based upon whether it has decided that the desired sperm cell does or does not exist within that drop (11). In this manner the separation or discrimination system (15) acts to permit the electrostatic deflection plates (16) to deflect drops (11) based on whether or not they contain the appropriate sperm cell. As a result, the flow cytomater acts to sort the sperm cells by causing them to land in one or more collectors (17). Thus by sensing some property of the sperm cells the flow cytorneter can discriminate between sperm cells based on a particular characteristic and place them in the appropriate collector (17). In the system presently used to sort spermatozoa, the X-bearing 'spermatozoa droplets are charged positively and thus deflect in one direction, the Y-bearing spermatozoa droplets are charged negarively and thus deflect the other way, and the wasted stream (that is unscrtable cells) is uncharged and thus is collected in an undetected stream into a suction tube or the like.
Now referring primarily to Figure 3, the process can be even further understood.
As shown in that figure, the nozzle (4) emits a stream (10) which because of the oscillator (8) (not shown in Figure 3) forms drops (11). Since the cell source (3) (not shown in Figure 3) may supply sperm cells (1) which have been stained according the invention, the magnitude of the fluorescent emission stimulated by the laser exu;ter (13) is differentially determined by sensor (14) so that the existence or nonexistence of a charge on each drop (11) as it separates from stream (10) can be controlled by the flow cytometer. This control results in positively charged, negatively charged, and uncharged drops based upon the encapsulated sperm cell. As shown in Figure 3, certain drops are shown as deflected drops (18). These deflected drops (18) are those containing sperm cells (2) differentiated by bearing an X-chromosome or a Y-chromosome.
Separated sperm are then deposited in the appropriate collector (17) for later use.
See also, International Patent Application PCT/US98/27909.
While the above description focuses on the separation of spermatozoa with flow cytometry, separation of X-chromosome bearing spermatozoa and Y-chromosome bearing spermatozoa based upon the difference in measurable fluorescent emission may also include numerous other technologies such as liquid chromatography, gel electrophoresis, and other teclmologies that similarly excite the amount of bound fluo:-.)Irome to differentiate between X chromosome bearing spermatozoa and the Y
chromosome bearing spermatozoa.
Embodiments of the invention can also comprise collecting oocytes from a female mammal. With respect to certain embodiments of the invention, oocytes can be aspirated from the ovaries of the desired female mammal or can be obtained from slaughterhouse ovaries. The oocytes can be matured in TC114199 supplemented with about 10%
fetal calf serum plus hormones (15 ng FSH, I lig LH, I pg E2/m1) for 22-24 h at 39 C, in about 5%
CO2 in air.
Ten to 15 oocytes can be transferred to a 50 til drop of fertilization medium containing non-essential amino acids, such as tyrode albumin lactaate pyruvate (TALP) supplemented with non-essential amino acids derived from Eagles Medium, and which can further contain 0.6% bovine serum albumin, 20 ug heparin/ mL and 5 mM
caffeine.
Alternately, oocytes can be fertilized in other medium containing non-essential amino acids such as the chemically defined medium described in the journal article entitled "Lowered Oxygen Tension and EDTA Improve Bovine Zygote Development In Chemically Defined Medium", J. Anim. Sci. (1999), or the SOF medium described in the journal article "Successful Culture In-vitro of Sheep and Cattle Ova", J.
Reprod. Fertil.
30:493-497(1972), After separating or sorting, sperm cells can be washed by centrifugation for about min at 400 g in collection medium (typically Hepes-tyrode albumin lactate pynivate medium supplemented with 2.0% bovine serum albumin) followed by suspension in the fertilization medium. Thawed, sorted sperm can be prepared by being centrifuged for 20 minutes at 700 g through a PrcollTM gradient (90%: 45%) for separation of live and dead sperm. The sperm pellet can then be washed with fertilization medium by centrifugation at 400 g for 10 minutes. Sperm can then be added to ;to the fertilization medium to give a concentration of 1-2 million/m.L.

Table 1. Cleavage Stage of Oocytes Inseminated with Separated Sperm in Four Different Fertilization Media.
Media No. oocytes % cleavage % 2-cell at 24 h %8-cell at 72 h Fert-TALP 168 76 6a 66 Fert-TALP + neaa 176 71 26b 67 CDM 167 89 75' 70 S OF 145 86 49d 69 Means with different superscripts differ (P<.05).
Now referring primarily to Table 1, as can be understood, oocytes inseminated with separated spermatozoa in fertilization medium containing non-essential amino acids according to the invention exhibit an increased rate of early development through at least the two cell stage.

=
Table 2. Embryonic Development and Blastocyst Quality Resulting From Fertilization in Four Different Fertilization Media (averaged over two culture media) Media No. oocytes % blastocysts/oocyte % Grade 1 blastocysts/
total blastocysts Total D7 Fert-TALP 326 20 17 52apc Fert-TALP -aa 221 20 17 68b CDM 332 22 18 61b'c S3F 321 21 17 64b,c ""c Percentages without common superscripts differ (P<.05) d Grade 1 indicates blastocysts with a distinct inner cell mass suitable for embryo transfer.
Now referring primarily to Table 2, some embodiments of the invention in which oocytes are fertili7ed with sorted spermatozoa in fertilization medium containing supplemented non-essential amino acids can exhibit an enhanced quality of embryos. Tn etabodiments of the invention in which occytes were fertilized in tyrode alburn:M. lactaate, =
pyruvate (TALP) supplemented with non-essential amino acids derived from Eagles Medium, and further containing 0.6% bovine serum albilmin, 20 lig heparin/ mL
and 5 inM caffeine there was a difference (P<.05) in quality of embryos as compared to TALP
without non-essential amino acids.
Persumptive zygotes can be removed from culture and placed in chemically-defined medium (CDM-1) as discussed in the Journal Animal Science, 78, 152-157 (2000), for 6-7 hours after insemination and cultured for 65-66 hours.
Embryos that cleaved were further cultured 96 hours in CDM-2 (further containing MEM essential and non-essential amino acids and 2.0 inM fructose) containing 0.12 1U insulin/mL. Blastocysts were morphologically graded according to the size of irmer cell mass and stained with Giemsa to determine cell numbers on day 7 after insemination.
Now referring primarily to Figure 4, the invention further involves a portable incubation system. Certain embodiments of the invention can comprise a straw (19) having an interior volume between about 0.1 niL and about 0.5 inL into which fertilization medium, and oocytes collected from a female mammal, can be transferred.
While the straw (19) could be made of any material compatible with the fertilization medium and the collected oocytes, specific embodiments of the straw (19) can be made of plastic, such as or similar to an artificial insemination straw. The ends of plastic straws can be heat sealed after the fertilization medium and the oocytes are transferred inside.
The invention can further comprise an incubation element (20) configured to encapsulate the straw (19) or a plurality of straws inserted within. In some embodiments of the invention the incubation element (20) can be a glass tube having a single sealable aperture element. The aperture element (21) can be sealed with a cap (22), and in some embodiments the cap (22) and the tube can have spiral threads (23) that can be rotationally mated to close the incubation element (20).
After transfer of a straw (19) or a plurality of straws to the interior volume of the incubation element (20), incubation conditions can be established within.
Typical incubation conditions within the interior volume of the incubation element can comprise an atmosphere of five percent carbon dioxide in air and a temperature of about 39 C (37 C to 41 C). Once incubation conditions are established within the incubation element, the incubation element (20) can be sealed and the oocytes can then be transported within the incubation element (20).
In some embodiments of the invention, oocytes can be transported to a sperm cell separation facility where the incubation element (20) is unsealed, the straw (19) is unsealed and a plurality of sperm cells (15) from a population separated on the basis of bearing an X-chromosome or bearing a Y-chromosome can be transferred into the straw (19) containing the oocytes. With respect to some embodiments of the invention a concentration of separated sperm cells (15) can be established of between about 1 million to about 2 million/ mL of the fertilization medium. The straw (19) containing the oocytes and spermatozoa in fertilization medium can then be resealed and transferred back into the incubation element (20). The incubation conditions can be re-established and the incubation element sealed. The incubation element (20) containing a straw or plurality of straws (19) can then be transported. During transport the oocytes can become fertilized. Upon arrival zygotes can be transferred from the straw for further culture.
With respect to certain embodiments of the invention, oocytes can first be inseminated with separated or unseparated spermatozoa in conventional 50111 drops and loaded into a 0.25 mL straw or straws (19) within two hours after insemination. Straws (19) can be heat sealed and put into the incubation element (20). The open incubation element containing straws with inseminated oocytes can be equilabrated with 5%
carbon dioxide in air at =about 39 C for at least one hour and then tightly capped and cultured under the same conditions for between about 18-20 hours.
Again referring primarily to Table 2, fewer oocytes (P<0.05) fertilized in Fert-TALP developed to the 2-cell stage by 24 hours than in any other media.
Notably, the vast majority of oocytes (75%) fertilized in CDM medium cleaved to 2-cell stabe by this time. By 72 hours post-insemination, there was no difference between any of the media, possibly due to the long 8-cell stage cell cycle.
There was no difference between any of the media on rate of development to blastocysts. However, there was a significant difference in quality of embryos between Fert-TALP and Fert-TALP + non-essential amino acids.
Progression of early bovine embryonic development using separated sperm are similar to studies with in-vivo or in-vitro cleavage of oocytes fertilized with unseparated spermatozoa. In the cow the first in-vivo cleavage occurs at 24-28 hours following ovulation, and the first in-vitro cleavage tages place at 24-48 hours after insemination.

Earlier cleavage occurred with oocytes fertilized in CDM, SOF, and Fert-TALP +

aa medium than in conventional Fert-TALP medium. This can be because CDM, SOF, and Fert-TALP + non-essential amino acids, all contain non-essential amino acids, which may play a role in how quickly spermatozoa penetrate oocytes, of in the length of the first cell cycle.
As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. It involves the staining of spermatozoa, whether fresh spermatozoa or frozen-thawed spermatozoa, separation and isolation techniques which may be used with such stained spermatozoa, as well as devices to accomplish the staining, separation, isolation of such stained spermatozoa into X-chromosome bearing and Y-chromosome bearing populations, and the tramsportion of maturing oocytes and fertilized oocytes. In this patent application, the staining and separating techniques used with spermatozoa are disclosed as part of the results shown to be achieved by the various devices described and as steps which are inherent to utilization. They are simply the natural result of utilizing the devices as intended and described. In addition, while some devices are disclosed, it should be understood that these not only accomplish certain methods but also can be varied in a number of ways.
Importantly, as to all of the foregoing, all of these facets should be understood to be encompassed by this disclosure.
The discussion included in this international Patent Cooperation Treaty patent application is intended to serve as a basic description. The reader should be aware that the specific discussion may not explicitly describe all embodiments possible;
many alternatives are implicit. It also may not fully explain the generic nature of the invention and may not explicitly show how each feature or element can actually be representative of a broader function or of a great variety of alternative or equivalent elements. Again, these are implicitly included in this disclosure. Where the invention is described in functionally-oriented terminology, each aspect of the function is accomplished by a device, subroutine, or program. Apparatus claims may not only be included for the devices described, but also method or process claims may be included to address the functions the invention and each element performs. Neither the description nor the terminology is intended to limit the scope of the claims which now be included.
Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these.
Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms ¨ evert if only the function or result is the same. Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action. Similarly, each physical element disclosed = should be understood to encompass a disclosure of the action which that physical element facilitates. Regarding this last aspect, as but one example, the disclosure of a "sorter"
should be understood to encompass disclosure of the act of "sorting" --whether explicitly discussed or not -- and, conversely, were there only disclosure of the act of "sorting", such a disclosure should be understood to encompass disclosure of a "sorter"
and even a "means for sorting". Such changes and alternative terms are to be understood to be = explicitly included in the description, Additionally, the various combinations arid permutations of all elements or applications can be created and presented. All can be done to optimize the design or performance in a specific application.
Any acts of law, statutes, regulations, or rules mentioned in this application for patent: or patents, publications, or other references mentioned in this application for patent are hereby incorporated by reference. Specifically, United States Provisional Patent Application No. 60/253,787, filed November 29, 2000 and United States Provisional Patent Application No. 60/253,785, fled November 29, 2000.

US Patent Docurnents ________________________________________________________________ -DOCUMENT NO. DATE NAME CLASS SUBCLASS FILING DATE
32,350 02/10/87 Bhattacharya 11/22/74 3,687,806 08/29/72 Van den Bovenkamp 195 13 11/04/69 3,829,216 08/13/74 Persidsky 356 36 10/02/72 3,894,529 07/15/75 Shrimptan 128 1 R 04/10/69 4,009,260 02/22/77 Ericsson 424 105 12/11/74 4,067,965 01/10/78 Bhattacharya 424 105 = 12/17/75 4,083,957 04/11/78 Lang 424 78 02/04/76 4,085,205 04/18/78 Hancock 424 105 01/24/77 4,092,229 05/30/78 Bhattacharya 204 180R 10/20/76 _ 4,155,831 05/22/79 Bhattacharya 207 299R- 02/23.'7 .
¨
4,191,749 03/04/80 13ryant 424 105 1- 10/11/77 4,225,405 09/30/80 Lawson 204 180 R 08/16/78 4,276,139 , 06/30/81 ' Lawson 204 186 R

4,339,434 07/13/82 Ericsson 424 105 08/17/81 4,362,246 12/07/82 Adair 20 33 07/14/80 4,448,767 05/15/84, Bryant 424 85 02/15/80 4" 4'74 875 10/02/84 Shrimpton 435 002 i 4,501,366 02/26/85 Thompson 209 556 12/14/82 4,511,661 04/16/85 Goldberg 436 503 12/30/83 4,605,558 08/12/86 Shrimpton 424 561 04/20/84 =
4,660,971 04/28/87 Sage et al. 356 39 05/03/84 4,680,258 07/14/87 Hammerling et al 435 7 08/09/83 ' 4,673,288 06/16/87 Thomas et al.
4,683,195 07/28/97 Mullis et al 4,683,202 07/28/87 Mullis 4,698,142 10/06/87 Muroi et al 204 182.3 07/31/85 4,749,458 06/07/88 Muroi et al 2134 182.3 03/02/87 4,790,653 12/13/88 North, h.
4,988,619 01/29/91 Pinkel 435 30 11/30/87 4,999,283 03/1114' ' Z.avos et al 435 7 rs"28/39
5,021,244 06/04/91 Spaulding 424 561 . 05/12/89 5,055,393 10/08/91 Kwoh et al , 5,135,759 08104/92 Johnson 424 561 04/26/91 5,34-6,990 09/13/94 Spaulding 530 _ 350 03/12/91 5,371,585 12/06/94 Morgan et al. 356 246 11/10/92 5,437,987 08/01/95 Ten et al .
5,439,362 08/08/95 Spaulding 424 185.1 07/25/94 5,461,145 10/24/95 Kudo et al 5,466,572 11/14/95 Sasaki et al 435 . 2 04/25/94 -5,480,774 5,483,469 01/09/96 Van den Engh et al. 364 _ 555 08/02/93 5,494,795 2/27/96 Guerry et al. 435 6 5/5/93 5,503,994 04/02/96 Shear et aL 436 . 90 10/08/93 5,578,449 11/26/96 Frasch et al. 435 6 4/20/95 5,514,537 05/07/96 Chandler , 435 002 11/28/94 - ¨ _ ¨ _ ¨

F,589,457 12/31/96 5,589,457 12/31/96 Wiltbank 514 12 07-03-95 ¨
5,602,039 02/11/97 Van den Engh _ 436 164 10/14/94 5,602,349 02/11/97 Van den Engh 73 864.85 10/14/94 -5,622,820 4/11/97 Rossi 435 5 11/3/94 _ 1 5,641,457 03/09/99 Tomiyama et al. 250 207 _ _ I 5,643,796 07/01/97 , Van den Engh et al _ 436 _ 50 _ 5,660,997 08/26/97 Spaulding 435 _ 7.21 06/07/95 5,690,895 11/25/97 Matsumoto et al. 422 _ 73 12/06/96 .
. T
1 5,700,692 12/23/97 Sweet 436 50 09/27/94 _ _ , 5,726,364 03/10/98 , Van den Engh 73 864.85 .

_ 5,819,948 10/13/98 _ Van den Engh , 209 158 08/21/97 5,876,942 3/2/99 Cheng et al . 435 6 _ 7/24/97 _ 5,880,457_ 03/09/99 Tomiyama et al. , 250 207 06/16/97 5,985,216 11/16/99 Rens, et al. 422 073 07/24/97 , _6,071,689 _ _ 06/06/00 __ Seidel et al. _.= _ 435 _ 2 _ 01/29/98 Foreign Documents - - - - - - - -- - - - - -- - - - - ¨ - - - - - - - - -, DOCUMENT NO DATE COUNTRY
WO 96/12171 10/13/95 United States
6 08/07/99 US
_ _ , W000/06193 _ 10/02/00 _ _ US _ _ _ ___ __ Other Reference Documents Roser, JF., Evans, J.W., Kiefer, DP., Neeley, D.P. and Pacheco, C.A. 1980.
Reproductive efficiency in mares with anti-hCG antibodies. Proc 9th Int. Con! . Artira. Re iro. and A.J. 4:627.
abstr.
"Applying Semen Sexing Technology to the AI Industry", National Association of Animal Breeders, September 2000, pp. 1-16 "Sexed Semen Offers Faster Genetic Gain", Farming News, Livestock Supplement, February 1997, p. 28.
Akhtar, S., et al., "Prevalence of Five Stereotypes of Bluetongue Virus in a Rambouillet Sheep Flock in Pakistan", Veterinary ecord 136, 1995, p. 495.
Alditar, S., et al., "Sex Preselected in Cattle: a Field Trial", Veterinary Record 136, 1995, p. 495-496.
' Aldrich, S. L., Berger, L.L., Reiling, B.A., Kegler, D.I., and Nagh, T.G..
1995. "Parturition and periparturient ' reproductive and metabolic hormone concentration in prenatally androgenized beetheifer", I. Anim. Sci. 73:3712.

, Amami, R. P. "Issues affecting commercialization of sexed sperm". Therio:
52:1441, 1999 Amann, R.P. et al, "Prospects For Sexing Mammalian Sperm," Colorado Associated University Press, Animal I Reproduction Laboratory College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, 1982 I American Meat Science Association in cooperation with National Livestock and Meat Board. "Research guidelines for cookery, sensory evaluation and instrumental tenderness measurements of fresh meatK", 1995 Arnoah, E.A. and Gelaye, S. 1996. Biotechnological advances in goat reproduction. J. Anim. Sci. 75(2):578-585.
, Andersen, V.K., Aamdal, J. and Fougner, J.A. 1973. Intrauterine und tiefzervikale Insemination mit i_ Gefriersperma bein Schat. Zuchthygiene. 8:113-118. , Bagley, C. P. 1993. Nutritional management of replacement beef heifers -A
review. J. Anim. Sci. 71:3155-3163.
1 Bailey, C. M., Reid, C.R., Ringkob, T.P., Koh, Y.O., and Foote, W.D.
"Nulliparous versus primiparous crossbred females for beef." J. Anim. Sci. 69:1403., 1991 Baker, RD., Dziuk, P.j. and Norton, H.W. 1968. Effect of volume of semen, number of sperm and drugs on transport of sperm in artificially inseminated gilts. J. Anim. Sci. 27:88-93.

Barnes, F.L.. and Eyestone, W.H., "Early Cleavage and the Maternal Zygotic Transition in Bovine Embryos", Theriogeneology, Vol. 33, No. 1, January 1990, pp. 141-149 Becker, S.E. and Johnson, A.L. 1992. Effects of gonadotropin releasing hormone infused in a pulsatite or continuous fashion on serum gonadotropin concentrations and ovulation in the mare. J. Anim. Sci. 70:1208-1215, Bedford, S .J. and Hinrichs, K. 1994. The effect of insemination volume on pregnancy rates of pony mares.
Theriogenology 42:571-578.
Bellows, R. A., Short, R.E., Anderson, D.C., Knapp, B.W., and Pahnish, O.F.
"Cause and effect relationships associated with calving difficulty and calfbirth weight", J. Anim. Sci.
33:407, 1971 Berardinelli, J. G., R. A. Dailey, R. L. Butcher, and E. Klnskeep. "Sourceof progesterolle prior to puberty in beef heifers". J. Anim. Sci. 49:1276., 1979 Berger, G.S. 1987. Intratubal insemination. Fert. Steril. 48:328-330.
Bergfeld, E. G., Kojima, F.N., Cupp, A.S., Wehnnan, M.E., Peters, K.T., Garciawinder, M., and Kinder, J.E., "Ovarian follicular development in prepubertal heifers is influenced by level of dietary energy-intake", Bio. of Repro. 51:1051, 1994 Berry, B. W.,Smith, G.C., and Carperite.z1, "Beef carcass maturity indicators and palatability attributes", J. Anim, Sci. 38:507, 1974 Beyhan, Z., et al., "Sexual Dimorphism in IVF Bovine Embryos Produced by Sperm Sorted by High Speed Flow Cytometry", Theriogenology 49, 1998, p. 359.
Blanchard, T. and Dickson, V., "Stallion Management", The Veterinary Clinics of North America, Equine Practice, Vol. 8, No. I, April 1992, pp 207 - 218.
Bond, J., et al., "Growth and carcass traits of open beef heifers versus beef heifers that have calved", Nutrition , Reports International 34:621. 1986 Boucque, C. V., et al., "Beef-production with maiden and once-calved heifers", Livestock Prod. Sci. 7:121. 1980 Bourdon, R. M. and J. S. Brinks. "Simulated efficiency of range beef -production". Culling strategies and nontraditional management-systems. J. Anim. Sci.65:963. 1987 Bracher, V. and Allen, W.R., "Videoendoscopic Examination of the Mare's Uterus: Findings in Normal Fertile Mares", Equine Veterinary Journal, Vol. 24 (1992), pp. 274-278 Braselton, W.E. and McShan, W.H. 1970. "Purification and properties of follicle stimulating and luteinizing hormones from horse pituitary glands", Arch. Biochem. Biophys. 139:45-48.
Brethour, J. R., "The single-calfheifer system", Kans. Agric. Sta Rep. Frog.
570. 1989 Bristol, S.P. 1982. Breeding behavior of a stallion at pasture with 20 mares in synchronized oestrus. J. Reprod.
Fert. Sunni. 32:71.
Brookes, A. J. and Obyme, M., "Use of cow-heifers in beef production", J. of the Royal Agricultural Society of England 126:30. 1965 Buchanan, B.R., et al, "Insemination of Mares with Low Numbers of Either Unsexed or Sexed Spermatozoa", Theriogenology, Vol. 53, pp 1333-1344, (2000) Burns, P. D. and Spitzer, J.C., "Influence ofbiostimulation on reproduction in postpartum beef-cows", J. Anim.
Sci. '70:358. 1992 Burwash, L.D., Pickett, B.W., Voss, J.L. and Back, D.G. 1974. "Relatioship of duration of estms to pregnancy rate in normally cycling, non-lactating mares" J.A.V.M.A. 165:714-716.
Byerley, D. J., et al., "Pregnancy rates of beef heifers bred either on puberal or 3rd estrus". J. Anim. Sci. 65:645.

Caslick, B.A., "The Vulva and the Vulvo-vaginal Orifice and its Relation to Genital Health of the Thoroughbred Mare", Cornell Veterinarian, Vol. 27, 1937, pp. 178-187 Catt, et al., "Assessment of Ram and Boar Spermatozoa During Cell-Sorting by Flow Cytometry", Reproduction Dom Animal, Vol. 32, 1997, pp 251-258.
Catt, S.L., et al., "Birth of a Male Lamb Derived from an In Vitro Matured Oocyte Fertilized by Intracytoplasmic ' Injection of a Single Presumptive Male Sperm", Veterinary Record 139, 1996, pp. 494-495.
Chin, W.W. and Boime, I. 1990. In: Glycoprotein Hormones. Serona Symp.
Norwell, MA. pp. 19-20 Chung, Y.G., Schenk, J.L., Herickhoff, L.A. and Seidel, G.E. Jr. 1998.
Artificial insemination of superowlated heifers with 600,000 sexed sperm. J Anim. Sci. Suppl. 1. 836:215. abstr.
Clement, F., Vincent, P., Mahla, J.C. and Palmer, E. 1998. Which insemination fertilizes when several successive inseminations are performed before ovulation. 7th Int.
Symp. Eq. Repro. 151. abstr.
Coleou, J., et al., "Essai de velage tres precoce de genisses en vue de la production de viande." Essai Vattz/ Aure no.50, programme USFOC-INAPG-ITFC. 1974 Cran, D.G., et al., "Production of Bovine Calves Following Separation of X-and Y- Chromosome Bearing Sperm and In Vitro Fertilisation", Veterinary Record 132, 1993, pp. 40-41.
Cran, D.G., et al., "Production of Lambs by Low Dose Intrauterine Insemination with Flow Cytometrically Sorted and Unsorted Semen", Theriogenology 47, 1997, p. 267.
Crowley, J. P. The facts of once-bred heifer production. (Ed) J.B. Owens. The maiden female-a means of increasing meat production. School of Agric., Univ. of Aberdeen, Scotland.

Curran, S. 1998. In: Equine Diagnostic Ultrasonography. Fetal gender determination. Rantanen & McKinnon. 1st Ed. Williams and Wilkins. pp. 165-169.
Day, B.N., Abeydeera, L.R., Johnson, L.A., Welch, GR., Wang, W.H., Cantley, T.C. and Rieke, A. 1998. Birth of piglets preselected for gender following in vitro fertilization of in vitro matured pig oocytes by X and Y bearing spermatozoa sorted by high speed flow cytometry. Theriogenology. 49(1):360.
abstr.
Dean, P.N., Pinkel, D. and Mendelsob. n, M.L. 1978. Hydrodynamic orientation of spermatozoa heads for flow cytometry. Biophys. J. 23:7-13.
Demick, D.S., Voss, J.L. and Pickett, B.W. 1976. Effect of cooling, storage, glycerization and spermatozoal numbers on equine fertility. J. Anim. Sci. 43:633-637.
DenDaas, J.H.G., De Jong, G., Lansbergen, L.M.T.E. and Van Wagtendonk-De Leeuw, A.M. 1998. The relationship between the number of spermatozoa inseminated and the reproductive efficiency of dairy bulls. J
Dairy Sci. 81: 1714-1723.
Denham, A. "In-vitro studies on sandhill range forage as related to cattle preference", M.S. Thesis. 1965.
Colorado State University.
Deutscher, G. H. "Extending interval from seventeen to nineteen days in the melengestrol acetate-prostaglandin estrous synchronization program for heifers". The Professional Animal Scientist 16:164. 2000 "Diagnostic Products Corporation. Coat-A-Count" , Progesterone.com. 1998.
Dikeman, M. E. "Cattle production systems to meet future consumer demands. J.
Anim. Sci. 59:1631, 1984 Dinnyes, A., et al., "Timing of the First Cleavage Post-insemination Affects Cryosurvival of In Vitro-produced Bovine Blastocysts", Molec Reprod Develop 53, 1999, pp 318-324.
Donaldson, L. E., "Effect of Insemination Regimen on Embryo Production in Superovulated Cows", The Veterinary Record, July 13, 1985, pp. 35-37 Donoghue, A.M., Byers, A.P., Johnston, L.A., Armstrong, D.L. and Wildt, D.E.
1996. Timing of ovulation after gonadotropin induction and its importance to successful intrauterine insemination in the tiger (Panthera tigris). J.
Reprod. Fert. 107:53-58.
Douglas, R.H. 1979. Review of superovulation and embryo transfer in the equine. Theriogenology. 11:33-46.
Douglas, R.H., Nuti, L. and Ginther, O.J. 1974. Induction of ovulation and multiple ovulation on seasonally-. anovulatory mares with equine pituitary fractions. Theriogenology. 2(6): 133-142.
Doyle, S. P., et al. "Artificial insemination of lactating angus cows with sexed semen". Proc. Westem Sect.
Am.Soc.Anim. Sci. 50:203. 1999 Duchamp, G., Bour, B., Combamous, Y. and Palmer, E. 1987. Alternative solutions to hCG induction of ' ovulation in the mare. J. Reprod. Pert. Suppl. 35:221-228.
Evans, M.J. and Irvine, C.H.G. 1977. Induction of follicular development, maturation and ovulation by gonadotropin releasing hormone administration to acyclic mares. Bio. Reprod.
16:452-462.
Ferrell, C. L. and T. G. Jenkins. "Energy-Utilization by Mature, nonpregnant, nonlactating cows of different types" J. Anim. Sci. 58:234. 1984 Ferrell, C. L. "Effects ofpost-weaning rate of gain on onset of puberty and productive performance of heifers of different breeds. J. Anim. Sci. 55:1272. 1982 Field, R. A., et al., "Bone-ossification and carcass characteristics ofwethers given silastic implants containing estradiol". I. Anim. Sci. 68:3663-3668. 1990 Field, R., R. et al., "Growth, carcass, and tenderness characteristics ofvirgin, spayed, and single-calflieifers.", J.
Anim. Sci. 74:2178. 1996 Fitzgerald, B.P., Peterson, K.D. and Silvia, P.J. 1993. Effect of constant administration of a gonadotropin-releasing hormone agonist on reproductive activity in mares: Preliminary evidence on suppression of ovulation during the breeding season. Am. J. Vet. Res. 54:1746-1751.

Fluharty, F. L., et A, "Effect of weaning and diet on growth of calves."
Research and Reviews. The Ohio State University Department of Animal Sciences. 1996 Fluharty, F.L., et al., "Effects of Age at Weaning and Diet on Growth of Calves", Ohio Agri. Res. and Dev.
Circular, 1996, 156: 29.
Foulkes, J.A., Stewart, D.L. and Herbert, C.N. 1977. Artificial insemination of cattle using varying numbers of spermatozoa. Vet. Rec. 101:205.
Fugger, E.F., "Clinical Experience with Flow Cytometric Separation of Human X-and Y- Chromosome Bearing Sperm", Theriogenology, Vol. 52, pp. 1435-1440 (1999) Fulwyler, M.J. 1965. Electronic separation of biological cells by volume.
Science. 150:910.
Fulwyler, M.J. 1977. Hydrodynamic orientation of cells. J Histochem. Cytochem.
25:781-783.
! Seidel, G.E.. Jr., "Artificial Insemination With X-and Y-Bearing Bovine Sperm", Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO;
Germplasm and Gamete Physiology Lab, ARS, USDA, Beltsville, MD; Atlantic Breeders Coop, Lancaster, PA; DUO Diary, Loveland, CO, USA January 1996.
Garner, D.L., Gledhill, B.L., Finkel, D., Lake, S., Stephenson, D., Van Dilla, M.A. and Johnson, L.A. 1983.
"Quantification of the X and Y chromosome-bearing spermatozoa of domestic animals by flow cytometry". Biol.
Reprod. 28:312-321.
Ginther, O.J. 1983. Sexual behavior following introduction of a stallion into a group of mares. Theriogenology.
19:877.
Ginther, O.J. 1992. In: Reproductive Biology of the Mare. (2nd Ed.) Equiservices, Cross Plains, WI.
Gledhill, 131. 1988. Gender preselection: historical, technical and ethical perspective. Semin Reprod. Endocrinol.
6:385-395.
Gombe, S. and Hansel, W. "Plasma Iuteinizing-hormone (LH) and progesterone levels in heifers on restricted energy intakes." J. Anim. Sci. 37:728. 1973 Gourley, D.D. and Riese, R.L. 1990. Laparoscopic artificial insemination in sheep. Vet. Clin. N. Amer: Food Anim. Prac. 6(3):615-633.
Gravert, H. 0., "Genetic Aspects of Early Calving." In: J.C. Taylor (Ed.) The early calving of heifers and ifs impact on beef production. 59. 1975 Gregory, K. E., et al., "Characterization of biological types of cattle III
.2." Growth-rate and puberty in females. J.
Anim. Sci. 49:461. 1979 Grimes, I. F, and T. B. Turner. "Early weaning of fall born calves IL" Post weaning performance of early and 1 normal-weaned calves. 1. Prod. Agric. 4:168. 1991 Grondahl, C., et al, "In Vitro Production of Equine Embryos", Biology of Reproduction, Monograph Series I, pp.
299-307(1995) Guillou, F. and Combamous, Y. 1983. Purification of equine gonadotropins and comparative study of their acid- !
dissociation and receptor-binding specificity. Biochem. Biophys. Acta. 755:229-236.
Gumsey, M.P., and Johnson, L.A., "Recent improvements in efficiency of flow cytometric sorting of X and Y-chromosome bering sperm of domestic animals: a review", 1998, New Zealand Society of Animal Protection, three pages.
Hall, J. B., et al., "Effect of age and pattern of gain on induction of puberty with a progestin in beef heifers." J. I
Anim. Sci. 75:1606. 1997 Hamano, K., et al., "Gender Preselection in Cattle with Intracytoplastnically Injected, Flow Cytometrically Sorted i Sperm Heads", biology of Reproduction 60, 1999, pp. 1194-1197.
Harrison, L.A., Squires, E.L. and McKinnon, A.O. 1991. Comparison of hCG, buserelin and luprostiol for induction of ovulation in cycling mares. Eq. Vet. Sci. 3:163-166.
Harte, F. J. "System of production of bee from once calved heifers." In: J.C.
Taylor (Ed.) The early calving ofheifers and ifs impact on beef production. 123. 1975 Hawk, H.W., et al., "Fertilization Rates in Superovulating Cows After Deposition of Semen on the Infundibulum Near the Uterotubal Junction or After Insemination with High Numbers of Sperm", XP-002103478, Theriogenology, May 1988, Vol. 29, No. 5, pp 1131-1142.
= Hemlesmeyer, G. N., et al. "Effects of lactation and prenatal androgenization on the perfomlance, carcass coompostion and 1ongissimus muscle sensory characteristics ofheifers in the single-calfheifer system." The Professional Animal Scientist 15:14. 1999 Hennegmeyer, (IN., et al. "Effects of prenatal androgenization and implantation on the performance and carcass composition of lactating heifers in the single-calfheifer system." The Professional Animal Scientist 15:173. 1999 Hilton, G. G., et al., "An evaluation of current and altemative systems for quality grading carcasses of mature slaughter cows." I. Anim. Sci. 762094. 1998 Ho, L., et al., "Influence of gender, breed and age on maturity characteristics of sheep." J. Anim. Sci.
67:2460-2470. 1989 Hofferer, S., Lecompte, F., Magallon, T., Palmer, E. and Combamous, Y. 1993.
Induction of ovulation and superovulation in mares using equine LH and FSH separated by hydrophobic interaction chromatography. J.
Reprod. Fert. 98:597-602.
Hohenboken, W. D. "Applications of sexed semen in cattle production."
Therio.52:1421. 1999 Holtan, D.W., Douglas, R.H. and Ginther, 0.J. 1977. Estrus, ovulation and conception following synchronization with progesterone, prostaglandin F2 ct and human chorionic gonadotropin in pony mares. J. Anim, Sci. 44:431-437.
Householder, D.D., Pickett, B.W., Voss, J.L. and Olar, T.T. 1981. Effect of extender, number of spermatozoa and hCG on equine fertility. J. Equine Vet. Sci. 1:9-13.
Howard, J.G., Bush, M., Morton, C., Morton, F., Wentz.el, K. and Wildt, D.E.
1991. Comparative semen cryopreservation in ferrets (Mustela putorious furo) and pregnancies after laparoscopic intrauterine insemination = with frozen-thawed spermatozoa. J. Reprod. Fert. 92:109-118.
Howard, J.G., Roth, T.L., Byers, A.P., Swanson, W.F. and Wildt, D.E. 1997.
Sensivity to exogenous gonadotropins for ovulation and laparoscopic artificial insemination in the theetab and clouded leopard. Biol.
Reprod. 56:1059-1068.
Hunter, R.H.F. 1980. Transport and storage of spermatozoa in the female reproductive tract. Proc 4th Int. Congr.
Artira. Repro. and A.I. 9:227-233.
Hyland, J.H., Ainsworth, C.G.V. and Langsford, D.A. 1988. Gonadotropin-releasing hormone (GnRH) delivered by continuous infusion induces fertile estrus in mares during seasonal acyclicity. Proc. Amer. Assoc. Eq. Prac.
181-190.
Irvine, C.H.G. and Alexander, S.L. 1993. In: Equine Reproduction. Edited by McKirmon and Voss. Lea and Febiger. Philadelphia, London. pp. 37.
Jafar, et al., "Sex Selection in Mammals: A Review", Theriogenology, vol. 46, 1996, pp 191-200.
Jarriage, R. "Age of cows at first calving in France." J.C. Taylor (Ed.) The early calving otheffers and it's impact on beef production. 10. 1975 Jasko, D.J., Martin, J.M. and Squires, E.L. 1992. Effect of volume and concentration of spermatozoa on embryo recovery in mares. Theriogenology. 37:1233-1239 Johnson L.A., et al., 1987. Flow cytometry of X- and Y- chromosome bearing sperm for DNA using an improved , preparation method and staining with Hoechst 333-42. Gamete Research 17: 203-Johnson, "Gender preselection in Mammals: An overview", Dtsch. Tierarztl.
Wschr, Vol. 103, Aug./Sep. 1996, pp 288-291.
Johnson, A.L. 1986. Pulsatile release of gonadotropin releasing hormone advances ovulation in cycling mares. B
iol. Reprod. 35:1123E 1130.
Johnson, A.L. and Becker, S.E. 1988. Use of gonadotropin-releasing hormone (GnRH) treatment to induce multiple ovulations in the anestrous mare. Eq. Vet. Sci. 8:130-134.
Johnson, L., "Sex Preselection by Flow Cytometric Separation of X and Y
Chromosome-Bearing Sperm Based on DNA Difference: a Review", Reproduction and Fertilization Development 7, 1995, pp. 893-903.
Johnson, L., "Successful Gender Preselection in Fami Animals", Agricultural Biotechnology, 1998, pp. 439-452.
Johnson, L.A. 1988. Flow cytometric determination of spermatozoa sex ratio in semen purportedly enriched for X
or Y bearing spermatozoa. Theriogenology. 29:265. abstr.
Johnson, L.A. 1992. Gender preselection in domestic animals using flow cytometrically sorted sperm. J Anim.
Sci. Suppl 1.70:8-18.
Johnson, L.A. 1994. Isolation of X- and Y-bearing spermatozoa for sex preselection. In: Oxford Reviews of Reproductive Biology. Ed. HH Charlton. Oxford University Press. 303-326.
Johnson, L.A. 1995. Sex preselection by flow cytometric separation of X and Y
chromosome bearing spermatozoa based on DNA difference: a review. Reprod. Fert. Dev. 7:893-903.
Johnson, L.A. and Schulman, J.D. 1994. The safety of sperm selection by flow cytometry. Ham. Reprod.
9(5):758.
Johnson, L.A., "Sex preselection in swine: altered sex ratios in offspring following surgical insemination of flow- 4 _ sorted X- and Y-bearing sperm", Reprod. Domest. Anim. 26:309-314, 1991 Johnson, L.A., and Pinkel, D., "Modification of a Laser-Based flow Cytometer for High-Resolution DNA
Analysis of Mammalian Spermatozoa", Cytometry 7, 1986, pp 268 - 273.
Johnson, L.A., et al., "Sex Preselection in Rabbits: Live Births from X and Y
Sperm Separated by DNA and Cell Sorting", Exceptional Paper-Rapid Publication, XP-002103476, Biology of Reproduction 41, 199-203, 1989, pp 199-203.
Johnson, L.A., et al., 1994. Improved flow sorting resolution of X- and Y-chromosome bering viable sperm separation using dual staining and dead cell gating. Cytometry 17 (suppl
7):83.
Johnson, L.A., Flook, J.P., Look, M.V. and Pinkel, D. 1987b. Flow sorting of X
and Y chromosome bearing spermatozoa into two populations. Gam. Res. 16:203-212.
Johnson, L.A., Welch, G.R., Rens, W. and Dobrinslcy, J.R. 1998. Enhanced flow cytometric sorting of manunalian X and Ysperm: high speed sorting and orienting no77.1e for artificial insemination. Theriogenology. 49(1):361.
abstr.
Joseph, R. L. "Carcass composition and meat quality in once calved heifers."
In: J.C. Taylor (Ed.) The early calving ofbeifers and it's impact on beef production. 143. 1975 Joseph, R. L. and J. P. Crowley. "Meat quality of once-calved heifers." Irish J. of Agric. Research 10:281. 1971 Kachel, V., et al., AUniform Lateral Orientation, Cused by Flow Forces, of Flat Particles in Flow-Through Systems, The Journal of Histochemistry and Cytochernistry, 1997, Vol. 25, No.
7, pp 774 -780.
Kanayama, K., SanIcai, T., Nariaik, K., Endo, T. and Sakuma, Y. 1992b.
Pregnancy by means of tubal insemination and subsequent spontaneous pregnancy in rabbits. J. Int. Med.
Res. 20:401-405.
Karabinus, et al., "Effects of Egg Yolk-Citrate and Milk Extenders on Chromatin Structured Viability of Cryopreserved Bull Sperm", Joumal of Dairy Science, Vol. 74, No. 11, 1999, pp 3836-3848.
Keeling, P. C. B. M. S. T. G. D. I. a. P. W. J., "A modeling study of once-bred heifer beef production."
Proceedings of the New Zealand Society of Animal Production. 51. 1991 Kilicarslan, M.R., Horoz, H., Senunver, S.C., Konuk, S.C., Tek, C. and Carioglu, B. 1996. Effect of GmRH and hCG on ovulation and pregnancy in mares. Vet. Rec. 139:119-120.
Kinder, J. E., et al. "Endocrine basis for puberty in heifers and ewes." J.
Repro. and Fertility 393. 1995 Klindt, J. and J. D. Crouse. "Effect of ovariectomy and ovariectomy with ovarian auto transplantation on feedlot performance and carcass characteristics ofheifers." J. Anim. Sci. 68:3481.

Klosterman, E. W. and C. F. Parker. "Effect of size, beed and sex upon feed efficiency in beef cattle." North Central Regional Research Publication 235, Ohio Agric. Research and Development Center 1090:3. 1976 Kniffen, D. M., Wagner, W.R., and Lewis. P.E. "Effects oflong-tenn estrogen implants in beef heifers." I. Anim.
Sci. 77:2886. 1999 Koch, R. M., et al., "Characterization of biological types of cattle -Cycle-II
.3." Carcass composition, quality and palatability. I. Anim. Sci. 49:448. 1919 Lapin, D.R. and Ginther, O.J. 1977. Induction of ovulation and multiple ovulations in seasonally anovulatory and ovulatory mares with an equine pituitary extract. J. Anim. Sci. 44:834-842.
Laster, D. B., "Factors affecting dystocia and effects of dystocia on subsequent reproduction in beef-cattle." J.
Anirn. Sci. 36:695. 1973 Lawrenz, R. 1985. Preliminary results of non-surgical intrauterine insemination of sheep with thawed frozen semen. J S Afr. Vet. Assoc. 56(2):61-63.
Levinson, G., et al, 1995. DNA-based X-enriched sperm separation as an adjunct to preimplantation genetic testing for the preparation of X-linked disease. Ma Human Reprod. 10:979-982.

Lindsey, A., et al., AHysteroscopic Insemination of Mares with Nonfrozen Low-dose Unsexed or Sex-sorted Spermatozoa , currently unpublished, pp. 1-15.
Linge, F. 1972. Faltforsok med djupfrost sperma (field trials with frozen sperm). Farskotsel. 52:12-13, Lonergan, P., et al., "Effect of Time Interval from Insemination to First Cleavage on the Development of Bovine Embryos In Vitro and In Vivo", Theriogenology, 1999, p. 326 Long, C.R., Rath, D., Welch, G.R., Schreier, L.L., Dobrinslcy, J.R. and Johnson, L.A. 1998. AIn vitro production of porcine embryos from semen sorted for sex with a high speed cell sorter:
comparison of two fertilization media @, Theriogenology. 49(1):363. abstr.
Loy, R.G. and Hughes, J.P. 1965. The effects of human chorionic gonadotropin on ovulation, length of estrus, and fertility in the mare. Cornell Vet. 56:41-50.
Lu, K.H., et al., "In Vitro Fertilization with Flow-Cytometrically-Sorted Bovine Sperm", Theriogenology 52, _ _ _ I 999, pp. 1393-1405.
Lynch, I. M., et al., "Influence of timing of gain on growth and reproductive performance ofbeefreplacement heifers." I. Anim. Sci. 75:1715. 1997 Macmillan, K.L. and A.M. Day, "Prostaglandin F2a - A Fertility Drug In Dairy Cattle?"õ Ruakura Animal e Research Station, Private Bag, Hamilton, New Zealand, Theriogenology, September 1982, Vol. 18 No. 3, pages = 245-253 Martin, A. H., et al., "Characteristics of youthful beef carcasses in relation to weight, age and sex .3. meat quality attributes." Canadian I. Anirn. Sci. 51:305. 1971 Martin, L. C., J. S. Brinks, R. M. Bourdon, and L. V. Cundiff. "Genetic-effects on beef heifer puberty and subsequent reproduction." J. Anim. Sci. 70:4006. 1992 Matsuda, Y. and Tobari, I. 1988. Chromosomal analysis in mouse eggs fertilized in vitro with sperm exposed to ultraviolet light (UV) and methyl and ethyl methanesulfonate (MMS and EMS).
Mutat. Res. 198:131-144.
Matulis, R. J., F. K. Mckeith, D. B. Faulkner, L. L. Berger, and P. George.
"Growth and carcass characteristics of cull cows after different times-on-feed." J. Anirn. Sci. 65:669. 1987 Mauleon, P. "Recent research related to the physiology of puberty." Commission of the European Communities.
The early calving of heifers and it's impact on beef production. 1975 Maxwell, W. and Johnson, L., "Chlortetracycline Analysis of Boar Spermatozoa after Incubation, Flow Cytometric Sorting, Cooling, or Cryopreservation", Molecular Reproduction and Development 46, 1997, pp. 408-418.
Maxwell, W.M.C., Evans, G., Rhodes, S.L., Hillard, M.A. and Bindon, B.M. 1993.
Fertility of Superovulated Ewes after Intrauterine or Oviductal Insemination with Low Numbers of Fresh or Frozen-Thawed Spermatozoa.
Reprod. Fertil. Dev. 5:57-63.
Mccomlick, R. J. "The flexibility of the collagen compartment of muscle." Meat Sci. 36:79. 1994 McCue, P.M. 1996. Superovulation. Vet. Clin. N. Amer. Eq. Prac. 12:1-11.
McCue, P.M., Fleury, J.J., Denniston, D.J., Graham, J.K. and Squires, E.L.
1997. Oviductal insemiiiation in the mare. 7th Int Symp. Eq. Reprod. 133. abstr.
McDonald, L.E. 1988. Hormones of the pituitary gland. In: Veterinary Pharmacology and Therapeutics. 6th ed.
Edited by N.H. Booth and L.E. McDonald. Ames, Iowa State Univ. Press. pp. 590.

McKenna, T., Lenz, R.W., Fenton, S.E. and Ax, R.L. 1990. Nonretum rates of dairy cattle following uterine body or comual insemination. J. Dairy Sci. 73:1179-1783.
McKinnin, A. and Voss, J., "Equine Reproduction", Lea & Febiger, Philadelphia;
1993, pp 291, 299 - 302, 345 -348, 739 - 797.
McKinnon, A. et al, 1993. Predictable ovulation in mares treated with an implant of the GriRH analogue deslorelin. Eq. Vet. J. 25:321-323.
McKinnon, A.O. et al, 1996. Repeated use of a GriRH analogue deslorelin (Ovuplant) for hastening ovulation in the transitional mare. Eq. Vet. J. 29:153-155.
McNutt, et al., "Flow Cytometric Sorting of Sperm: Influence on Fertilization and Embryo/Fetal Development in the Rabbits", Molecular Reproduction and Development, Vol. 43, 1996, pp 261-267.
Meilgaard, M., G. V. Civille, and B. T. Carr. "Sensor Evaluation Techniques."
CRC Press Inc., Boca Raton, FL.

Meinert, C., et al., "Advancing the time of ovulation in the mare with a short-term implant releasing the GnRH
analogue deslorelin", Equine Veterinary Journal, 25, 1993, pp 65 - 68.
Merton, J., et al., "Effect of Flow Cytometrically Sorted Frozen/Thawed Semen on Success Rate of In Vitro Bovine Embryo Production", Theriogenology 47, 1997, pp. 295.
Meyers, P.J., Bowman, T., Blodgett, G., Conboy, H.S., Gimenez, T., Reid, M.P., Taylor, B.C., Thayer, J., Jochle, W. and Trigg, T.E. 1997. Use of the GriltH analogue, deslorelin acetate, in a slow release implant to accelerate ovulation in oestrous mares. Vet. Rec. 140:249-252.
Michaels, Charles, "Beef Ad. Facilities that work", Proc. Fifth N.A.A.B Tech.
Conf. A.I. Reprod. Columbia, MO.
pp. 20-22.
Michel, T.H., Rossdale, P.D. and Cash, R.S.G. 1986. Efficacy of human chorionic gonadotrophin and gonadatrophin releasing hormone for hastening ovulation in Thoroughbred mares.
Eq. Vet. J. 6:438-442.
Miller, S.J. 1986. Artificial Breeding Techniques in Sheep. In Morrow, D.A.
(ed): Current Therapy in Theriogenology 2. Philadelphia, WB Saunders.
Mirskaja, L.M. and Petrapavlovskii, V.V. 1937. The reproduction of normal duration of heat in the mare by the administration of Prolan. Probl. Zivotn, Anim. Breed. Abstr. 5:387.
Moe, P. W., H. F. Tyrrell, and W. P. Flatt. "Energetics ofbodytissue mobilization." J. of Dairy Sci. 54:548.
Molinia, F.C., Gibson, RJ., Brown, A.M., Glazier, A.M. and Rodger, J.C. 1998.
Successful fertilization after superovulation and laparoscopic intrauterine insemination of the brushtail possum, Trichosurus vulpecula, and tatnmar wallaby, Macropus eugenii. J.Reprod. Fert. 112:9-17.
Moms, S. T., et al., "Biological efficiency: How relevent is this concept to beef cows in a mixed livestock seasonal pasture su = ply context?" Proceedings of the New Zealand Society of Animal Production 54:333. 1994 Monensin." J. Anim. Sci. 55:357-362. 1982 Moran, C., J. F. Quirke, and J. F. Roche. "Puberty in heifers -a review."
Animal Reproduction Sci. 18:167. 1989 Morcom, C.D. and Dukelow, W.R. 1980. A research technique for the oviductal insemination of pigs using laparoscopy. Lab. Anim. Sci. 1030-1031.
Morgan, J. B., et al., "National beef tendemess survey." J. Anim. Sci.69:3274.

Morris, L.H., et al., "Hysteroscopic insemination of small numbers of spermatozoa at the uterotubal junction of preovulatory mares", Journal of Re troduction and Fertility, Vol. 118, sp. 95-100 (2000 Moseley, W. M., et al., 1982. "Relationship of Growth and Puberty in Beef Heifers Fed ' Mount, D. E. "Fibrous and non-fibrous carbohydrate supplementation to ruminants grazing forage from small ain crops." M.S. Thesis. Colorado State University. 2000 Muller, W. and Gautier, F. 1975. Interactions of heteroaromatic compounds with nucleic acids. Euro. J. Biochem.
54:358.
Munne, S. 1994. Flow cytometry separation of X and Y spermatozoa could be detrimental to human embryos.
Hum. Reprod. 9(5):758 Myers, S. E., "Performance and carcass traits ofearly-weaned steers receiving either a pasture growing period or a finishing diet at weaning." J. Anim. Sci. 77:311. 1999 Myers, S. E., et al., "Comparison of three weaning ages on cow-calfperformance and steer carcass traits." J. Anim.
Sci. 77:323. 1999 Myers, S. E., et al., "Production systems comparing early weaning to normal weaning with or without creep feeding for beef steers." J. Anim. Sci. 77:300. 1999 Nix, I. P., I. C. Spitzer, and P. I. Chenoweth. "Serum testosterone concentration, efficiency of estrus detection and , libido expression in androgenized beef cows." Therio. 49: 1195. 1998 Nowshari, et al., "Superovulation of Goats with Purified pFSH Supplemented with Defined Amounts of pLH", Theriogenology, Vol 43, 1995, pp 797-802.
Nowshari, et al., Theriogenology, Vol 43, 1995, pp 797-802.
NRC. Nutrient requirements for beef cattle. National Academy of Sci. National Research Council, Washington, DC. 1996 Olson, S.E. and Seidel, G.E. Jr., "Reduced Oxygen Tension and EDTA improve Bovine Zygote Development in a , Chemically Defined Medium", Journal of Animal Science 78, 2000, pp. 152-157.
Owen, J. B. "The maiden female-a means of increasing meat production." ?roc.
Symp. on the use of once bred heifers and gilts. 1973 Pace, M.M. and Sullivan, J.J. 1975. Effect of timing of insemination, numbers of spermatozoa and extender components on pregnancy rates in mares inseminated with frozen stallion semen.
.1 Reprod. Fert. Suppl. 23:115-121.
, Parent US Application 09/001,394, entitled "Sheath Fluids and Collection Systems for Sex-Specific Cytometer Sorting of Sperm", filed on December 31, 1997, 87 total pages which includes four drawings.
Parrish, J., et al., "Capacitation of Bovine Sperm by Heparin", Technology of Reproduction 38, 1988, pp. 1171-1180.
PCT application, PCT/US99/17165, filed 28 July 1999, entitled "Equine System for Non-Surgical Artificial Insemination".
PCT application, PCT/US98/27909, filed 31 December 1998, entitled "Commercially Practical Sex-Specific Insemination of Mammals".
Peippo, J., et al., "Sex diagnosis of equine preimplantation embryos using the polymerase chain reaction", Theriogenology, Vol. 44 619-627 (1995) Perry, E.J. 1968. Historical Background In: The Artificial insemination of Fann Animals. 4th ed. Edited by E.J.
Perry. New Brunswick, Rutgers University Press, pp. 3-12.
Petersen, G.A., et al, "Cow ancI Calf Performance and Economic Considerations of Early Weaning of Fall-Born Beef Calves", J. Anim. Sci., 1987, 64:15, pp 15-22.
Petit, M. "Early Calving in Suckling Herds." In: (Ed.) J.C. Taylor. The early calving of heifers and its impact on beef production. 157. 1975 Pickett GW, et al., "Management of the mare for maximum reproductive efficiency", Bulletin No. 6 Colorado State University, Ft. Collins CO. (1989) Pickett, B.W, et al., 1976. Factors influencing the fertility of stallion spermatozoa in an A.I. program. Proc. 8th Internat. Congr. Anim. Reprod. A.I. Krakow, Poland. 4: 1049 - 1052.
Pickett, B.W. and Back, D.G. 1973. Procedures for preparation, collection, evaluation and insemination of stallion semen. C.S.U. Exp. Sta. Artira. Reprod. Lab. Gen. Series Bull. 935.
Pickett, B.W., and Shiner, K.A., "Recent developments in artificial insemination in horses", Livestock Production Science, 40, 1994, pp 31 - 36.
Pickett, B.W., Burwash, L.D., Voss, J.L. and Back, D.G. 1975b. Effect of seminal extenders on equine fertility. J.
Anim. Sci. 40:1136-1143.
Pinkel, D., et al, "Flow Cytometric Determination of the Proportions of X- and Y- Chromosome-Bearing Sperm in Samples of Purportedly Separated Bull Sperm", Journal of Animal Science, Vol. 60, No. 5, 1985, pp 1303 -1307.
Pinkel, D., Gledhill, B.L., Van Dilla, M.A., Stephenson, D. and Watchmaker, G.
I982b. High resolution DNA
measurements of mammalian sperrnatozoa. Cytometry. 3:1-9. (1982b) Polge, E. J., "Historical Perspective of AI: Commercial Methods of Producing Sex Specific Semen, IVF
Procedures", Proceedings of the 16' Technical Conference on Artificial Insemination & Reproduction, Cambridge, England, 1996, pp. 7-11.
Purvis, H. T. and J. C. Whittier. "Effects ofionophore feeding and anthelmintic administration on age and weight at puberty in spring-bom beef heifers." J. Anim. Sci. 74:736-744. 1996 Randel, R. D. "Nutrition and postpartum rebreeding in cattle." J. Anim. Sci.
68:853. 1990 Rath, D., et al., "Low Dose Insemination Technique in the Pig", Boar Semen Preservation IV, 2000, pp. 115-118.
Rath, D., et al., "Production of Piglets Preselected for Sex Following in Vitro Fertilization with X and Y
Chromosome-Bearing Spermatozoa Sorted by Flow Cytometry", Theriogenology, 47, 1997, pp 795 - 800.
Reiling, B.A., et al., "Effect of Prenatal Androgenization on Performance, Location, and Carcass and Sensory Traits on Heifers in Single Calf Heifer System", J. Anim. Sci., 1995, 73: 986, pp 986-992.
Rens, W., et al, "A Novel Nozzle for More Efficient Sperm Orientation to Improve Sorting Efficiency of X and Y
Chromosome-Bearing Sperm", Cytometry 33, 1998, pp. 476-481 Rens, W., et al., "Improved Flow Cytometric Sorting of X- and Y- Chromosome Bearing Sperm: Substantial Increase in Yield of Sexed Semen", Molecular Reproduction and Development, 1999, pp 50-56.
Rieger, D., et al, "The Relationship Between the Time of First Cleavage of Fertilized Cattle Oocytes and Their Development to the Blastocyst Stage", Theriogenology, 1999, pp. 190.
Ritar, A. and Ball, A. 1991. Fertility of young cashmere goats after laparoscopic insemination. J. Agr. Sci.
117:271-273.
Roberts, J.R. 1971. In: Veterinary Obstetrics and Genital Diseases. Ithaca, New York. pp. 740-749.
Romita, A. "Some considerations on the beef situation in Italy." (Ed.) J.C.
Taylor. The early calving of heifers and it's impact on beef production. 23. 1975 Roth, T.L., Wolfe, B.A., Long, J.A., Howard, J. and Wildt, D.E. 1997. Effects of equine chorionic gonadotropin, human chorionic gonadotropin, and laparoscopic artificial insemination on embryo, endocrine, and luteal characteristics in the domestic cat. Bio Reprod. 57:165-171.
Roux, M., J. H. Teissier, J. Bonnemaire, and R. Dumont. "Early calving heifers versus maiden heifers for beef -production from dairy herds. 1." The effects of genotype (Friesian and Charolais x Friesian) and 2 feeding levels in the rearing period on growth and carcass quality. Livestock Prod. Sci.16:1.

Rowley, H-S., Squires, E.L. and Pickett, B.W. 1990. Effect ofmsemination volume on embryo recover}' in mares.
J. Equine Vet. Sci. 10:298-300.
Roy, J. H. B. "Rearing dairy-herd replacements." J. of the Soc. ofDairy Technology 31:73-79. 1978 Rutter, L. M., et al., "Effect of abomasal infusion of propionate on the GnRH-induced luteinizing-hormone release in prepuberal heifers." J. Anim. Sci. 56:1167. 1983 Salmon, S. 1976. Artificial Insemination ofSheep. Chippendale, New South Whales. Publicity Press. p.83-84.
Salisbury, G.W. and VanDemark, N.L. 1961. Physiology of Reproduction and Artificial Insemination of Cattle.
San Francisco: Freeman and Company.

SAS, SAS/STAT, "Useres Guide (Release 6.03)", SAS Inst. Inc., Cary, NC., 1988.
3 pages SAS. "The SAS System for Windows." Ver 7Ø ReI 6.12. SAS Inst.Inc., Cary, NC.

Schenk, J. L., T. K. Suh, D. G. Gran, and G. E. Seidel. "Cryopreservation of flow-sorted bovine spermatozoa."
Therio. 52:1375. 1999 Schenk, J.L. and Seidel, Jr., G.E., "Imminent Commercialization of Sexed Bovine", Proceedings, The Range Beef Cow Symposium XVL, 1999, pp 89-96.
Schillo, K. K., J. B. Hall, and S. M. Hileman. "Effects of nutrition and season on the onset of puberty in the beef heifer." J. Anim. Sci. 70:3994. 1992 Schmid R.L., et al, "Fertilization with Sexed Equine Spermatozoa Using Intracytoplasmic Sperm Injection and Oviductal Insemination", 7th International Symposium On Equine Reproduction, pp. 139 (Abstract) (1998) Schnell, T. D., K. E. Belk, J. D. Tatum, R. K. Miller, and G. C. Smith.
"Performance, carcass, and palatability traits for cull cows fed high-energy concentrate diets for 0, 14,28,42, or 56 days." J. Anim. Sci. 75:1195. 1997 Schoorunaker, J. P., et al., "Effects of age at weaning and implant strategy on growth of steer calves." J. Anim.
Sci. (Supp12) 76:71 (Abstr.). 1998 Seidel, G. E. and L. A. Johnson. "Sexing mammalian spenn -overview." Therio.
52: 1267. 1999 Seidel, G. E., "Insemination of heifers with sexed sperm." 'Therio. 52:1407.

Seidel, G.E. Jr., "Uterine Horn Insemination of Heifers With Very Low Numbers of Nonfrozen and Sexed Spermatozoa", Atlantic Breeders Cooperative, Theriogenology 48: pp. 1255-1264, (1997) Seidel, G.E. Jr., Cran, D.G., Herickoff, L.A., Schenk, J.L., Doyle, S.P. and Green, R.D. 1999. Insemination of heifers with sexed frozen or sexed liquid semen. Theriogenology. 51. (in press). abstr.(1999) Seidel, G.E., Jr., et al, "Artificial Insemination With X-and Y-Bearing Bovine Sperm", Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO;
Germplasm and Gamete Physiology Lab, ARS, USDA, Beltsville, MD; Atlantic Breeders Coop, Lancaster, PA; DUO Diary, Loveland, CO, USA January 1996.
Seidel, G.E., Jr., et al, "Insemination Of Heifers With Very Low Numbers Of Frozen Spermatozoa." , Colorado State University, Fort Collins, Atlantic Breeders Cooperative, Lancaster, PA, DUO Dairy, Loveland, CO, July 1996.
Seidel, Jr., G. E., et al, "Insemination of Holstein Heifers With Very Low Numbers Of Unfrozen Spermatozoa", Colorado State University, Atlantic Breeders Cooperative, (1995) Seidel, Jr., G.E.et al, "Insemination Of Heifers With Very Low Numbers Of Frozen Spermatozoa", Colorado State University (1996) Sell, R. S., D. L. Watt, R. D. Little, and T. A. Petry. "Single-calfheifer profitability compared to other north dalcota beef production systems." Department of Ag. Eco., North Dakota State University, Ag. Econ. Rpt. 20.
Senger, P.L., Becker, W.C., Davidge, S.T., Hillers, J.K. and Reeves, J.J.
1988. Influence of comual insemination on conception rates in dairy caftle. J Anim. Sci. 66:3010-3016.
Shackelford, S. D., M. Koohmaraie, and T. L. Wheeler. "Effects of slaughter age on meat tenderness and usda carcass maturity scores of beef females." I. Anim. Sci. 73:3304. 1995 Shelton, J.N. and Moore, N.W. 1967. The response of the ewe tot pregnant mare gonadotropin and to horse anterior pituitary extract. J. Reprod. Fen. 14:175 - 177.
Shilova, A.V., Platov, E.M. and Lebedev, S.G. 1976. The use of human chorionic gonadothrophin for ovulation date regulation in mares. VIIIth Int. Congr. On Anim. Repro. and A.I. 204-208.

Shorthose, W. R. and P. V. Harris. "Effect of animal age on the tenderness of selected beef muscles." I. Food Sci.
55:1-. 1990 Silberman'', M., "Honnones and Cartilage. Cartilage: development, differentiation, and growth." pp. 327-368.
Academic Press, Inc. 1983 Simon, M., "The effect of management option on the perfonnance of pregnant feedlot heifers." M.S. Thesis.
Kansas State University. 1983 Smith, G. C., B. W. Berry, J. W. Savell, and H. R. Cross. "USDA maturity indexes and palatability ofbeefrib steaks." J. of Food Quality 11 :1. 1988 Smith, G. C., et al., "Relationship ofusda maturity groups to palatability of cooked beef" J. of Food Sci. 47:1100.

Squires, E., "Simultaneous Analysis of Multiple Spenn Attributes by Flow Cytometry0, Diagnostic Techniques and Assisted Reproductive Technology, The Veterinary Clinics of North America, Equine Practice, Vol. 12, No.
1, April 1996, pp127 - 130. ____________________________ Squires, E.L, Moran, D.M., Farlin, ME., Jasko, D.J., Keefe, T.J., Meyers, S.A., Figueiredo, E., McCue, P.M. and Jochle, W. 1994. Effect of dose of GnRH analogue on ovulation in mares.
Theriogenology. 41:757-769.
Squires, E.L., "Early Embryonic Loss in Equine Diagnostic Ultrasonography", lst Ed. pp 157-163 Eds Rantanen & McKinnon. Williams and Wilkins, Baltimore, Maryland (1998) Squires, E.L.., et al, "Cooled and frozen stallion semen", Bulletin No. 9, Colorado State University, Ft. Collins, CO. (1999) Stellflug, J. N., D. K. Ran, R. D. Randel, and Eo L. Moody. "Plasma estrogens in peri-parturient cow." Therio 10:269. 1978 Stevenson, J. S., M. W. Smith, S. R. Jaeger, L. R. Corah, and D. G. Lefever.
"Detection of estrus by visual observation and radiotelemetry in peripubertal, estrus-synchronized beefheifers." J. Anim. Sci. 74:729. 1996 Story, C. E., R. J. Rasby, R. T. Clark, and C. T. Milton. "Age of calf at weaning of spring-calving beef cows and the effect on cow and calf perfomlance and production economics." J. Anim.
Sci. 78:1403. 2000 Sullivan, J.J., Parker, W.G. and Larson, LL. 1973. Duration of estrus and ovulation time in nonlactating mares given human chorionic gonadotropin during three successive estrous periods.
J.A_V.M.A. 162:895-898.
Swanson, E. W. "Future research on problems of increasing meat production by early calving." Comm. Eur.
Commun., Eur. 5545.1975. The Early Calving offleifers and its Impact on Beef Production.
Taljaard, T.L., Terblanche, S.J., Bertschinger, H.J. and Van Vuuren, L.J.
1991. The effect of the laparoscopic insemination technique on the oestrus cycle of the ewe. J. S Afr. Vet. Assoc.
62(2):60-61.
Tatum, J. D., G. C. Smith, B. W. Berry, C. E. Murphey, F. L. Williams, and Z.
L. Carpenter. "Carcass characteristics, time on feed and cooked beef palatability attributes." J.
Anim. Sci. 50:833. 1980 Taylor, C.S., Moore, A.J. Thiessen, R.B. and Bailey, C.M., AFRC Animal Breeding Research Organisation, West Mains Road, Edinburg EH9 3JQ, "Efficiency of Food Utilization in Traditional and Sex-Controlled Systems of Beef Production", pp 401-440.
Taylor, S. C. S., A. J. Moore, R. B. Thiessen, and C. M. Bailey. "Efficiency of food utilization in traditional and sex-controlled systems of beef-production." Animal Production 40:401. 1985 Tervit, H.R., et al., "Successful Culture In Vitro of Sheep and Cattle Ova", Agricultural Research Council, Unit of Reproduction Physiology and Biochemistry, University of Cambridge, 1972, p.
493-497.
Unruh, J. A. "Effects of endogenous and exogenous growth-promoting compounds on carcass composition, meat quality and meat nutritional-valu¨." J. Anim. Sci. 62:1441. 1986 US Application, 09/454,488, entitled "Improved Flow Cytometer Nozzle and Flow Cytometer Sample Handling Methods", filed December 3, 1999.
US Application, 60/238,294, entitled "Hysteroscopic Insemination of Mares"
filed October 5,2000.
US Application, 09/448,643, entiled "Multiple Sexed Embryo Production System for Mammals", filed November 24, 1999.
US Application, 09/511,959 entitled "Methods For Improving Sheath Fluids and Collection Systems For Sex-Specific Cytometer Sorting of Sperm", filed February 23, 2001.
US Application 09/001,394, entitled "Sheath Fluids and Collection Systems for Sex-Specific Cytometer Sorting Of Sperm", filed on December 31, 1997, 87 total pages which includes four drawings.
US Application 09/015, 454, entitled "System for Improving Yield of Sexed Embryos in Mammals", filed on January 29, 1998, 59 total pages which includes drawings.
US Application 60/211093, entitled "Integrated System for Herd Management Using Sexed Semen", filed June 12, 2000.
US Application entitled "System For Separating Frozen-Thawed Sperm Cells Into X-Chromosome And Y-Chromosome Bearing Populations", filed November 28, 2000.
US Application Serial Number 60/094,720, entitled "System for Low Dose Insemination of Equines", filed July 30, 1998.
US Application Serial Number 60/113,143, entitled "Equine Insemination System", December 18, 1998.
US Application Serial Number 60/203,089, entitled "Detector System for Resolving Small Differences in Photo-generated Signal", filed May 9, 2000.
US Application Serial Number 60/211093, entitled "Integrated System for Herd Management Using Sexed Semen", filed June 12, 2000.
US Application Serial Number 60/224,050., entitled "Integrated System for Herd Management With Terminal-Cross Program Using Sexed Semen", filed August 9, 2000.
USDA "Official United States standards for grades of carcass beef." Agric, Marketing Serv., USDA .Washington, ____________________________________________ _ DC. 1997 Vazquez, J. et al., "Nonsurgical Uterotubal Insemination in the Mare", Proceedings of the 44th Annual Convention of the American Association of Equine Practitioners, Baltimore, Maryland, December 6-9, 1998, Vol.
44, pp 68-69 Vazquez, J., et al., "Ad. in Swine; New Strategy for Deep Insemination with Low Number of Spermatozoa Using a Non-surgical Methodology", 14' International Congress on Animal Reproduction, Vol. 2, Stockhlom, July, 2000, p. 289.
Vazquez, J., et al., "Development of a Non-surgical Deep Infra Uterine Insemination Technique", IV International Conference on Boar Semen Preservation, Maryland, August, 1999, p 35 and photo of display board.
Vazquez, J., et al., "Successful Low-Dose Insemination by a Fiberoptic Endoscope Technique in the Sow ", Proceedings Annual Conference of the International Embryo Transfer Society, Netherlands, Theriogenology, Vol.
53, January, 2000, pp. 201.
Vazquez, J., et al.,"Hypoosmotic Swelling Test as Predictor of the Membrane Integrity in Boar Spermatozo", Boar Semen Preservation IV, IVth International Conference on Boar Semen Preservation, Maryland, pp. 263.
Vidament, M., Dupere, A.M., Julienne, P., Evain, A., Noue, P. and Palmer, E.
1997. Equine frozen semen freezeability and fertility field results. Theriogenology. 48:907.
Vincent, B. C., S. D. M. Jones, L. E. Jeremiah, M. A. Price, and J. A. Newman.
"Carcass characteristics and meat quality of once-calved heifers." Canadian J. Anim. Sci. 71:311. 1991 Voss, J.L. and Pickett, B.W. 1976. Reproductive management of the broodmare.
C.S.U. Exp. Sta. Anim. Reprod.
Lab. Gen. Series. Bull. 1-12 Voss, J.L., Pickett, B.W., Burwash, L.D. and Daniels, W.H. 1974. Effect of human chorionic gonadotropin on duration of estrous cycle and fertility of normally cycling, nonlactating mares. J.A.V.M.A. 165:704-706.
Voss, J.L., Squires, E.L., Pickett, B.W., Shideler, R.K. and Eikenberry, D.J.
1982. Effect of number and frequency of inseminations on fertility in mares. J. Reprod. Fertil. Suppl. 32:53-57.
Waggoner, A. W., M. E. Dikeman, I. R. Brethour, and K. E. Kemp. "Performance, carcass, cartilage calcium, sensory and collagen traits of longissimus muscles of open versus 30-month-old heifers that produced one calf." I.
Anim. Sci. 68:2380. 1990 Welch G.R., et al., 1994. Fluidic and optical modifications to a FACS IV for flow sorting of X- and Y-chromosome bearing sperm based on DNA. Cytometry 17 (suppl. 7): 74.
Welch, G., et al., "Flow Cytometric Sperm Sorting and PCR to Confirm Separation of X- and Y- Chromosome Bearing Bovine Sperm0, Animal Biotechnology, 6 (2), 131-139, 1995, pp 131 -139.
Wheeler, T. L., L. v. Cundiff, and R. M. Koch. "Effect of marbling degree on beef palatability in Bos- Taurus and Bos-Indicus cattle." J. Anim. Sci. 72:3145. 1994 Wickersham, E. W. and L. H. Schultz. "Infilience of age at first breeding on growth, reproduction, and production ofwell-fed holstein heifers." J. Dairy Sci. 46:544. 1963 Wilson, C.G., Downie, C.R., Hughes, J.P. and Roser, J.F. 1990. Effects of repeated hCG injections on reproductive efficiency in mares. Eq. Vet. Sci. 4:301-308.
Wilson, M.S. 1993. Non-surgical intrauterine artificial insemination in bitches using frozen semen. IReprod. Fert Suppl. 47:307-311.
Woods, J. and Ginther, 0.J. 1983. Recent studies related to the collection of multiple embryos in mares. 1 Theriogenology. 19:101 - 108.
Woods, J., Bergfelt, D.R. and Ginther, O.J. 1990. Effects of time of insemination relative to ovulation on pregnancy rate and embryonic-loss rate in mares. Eq. Vet. J. 22(6):410-415.
XP-002103478, File Biosis, one sage.
In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such interpretation, common dictionary definitions should be understood as incorporated for each term and all definitions, alternative terms, and synonyms such as contained in the Random House Webster's Unabridged Dictionary, second edition are hereby incorporated by reference. However, as to each of the above, to the extent that such information or statrements incorporated by reference might be _ considered inconsistent with the patenting of this/these invention(s) such statements are expressly not to be considered as made by the applicant(s).
In addition, unless the context requires otherwise, it should be understood that the term "comprise" or variations such as "comprises" or "comprising", are intended to imply the inclusion of a stated element or step or group of elements or steps but not the exclusion of any other element or step or group of elements or steps. Such terms should be interpreted in their most expansive form so as to afford the applicant the broadest coverage legally permissible in countries such as Australia and the like.
Thus, the applicant(s) should be understood to have support to claim at least:
i) each of the staining, separation, isolation, insemination, or fertilization procedures as herein disclosed and described, ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these devices and methods, iv) those alternative designs which accomplish each of the functions shown as are disclosed and described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, ix) methods and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, and x) the various combinations and permutations of each of the elements disclosed.
The claims set forth in this specification are hereby incorporated by reference as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incorporated content of such claims as additional description to support any of or all of the claims or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incorporated content of such claims or any element or component thereof from the description into the claims or vice-versa as necessary to define the subject matter for which protection is sought by this application or by any subsequent continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incorporated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon.

Claims (23)

What is claimed is:
1. A method of fertilizing oocytes, comprising:
a. transferring sperm cells to container with a plurality of oocytes in fertilization medium, wherein said oocytes and sperm cells are from the same species of mammal;
b. sealing said container with said sperm cells and said oocytes;
c. transferring said container with said sperm cells and said oocytes to the inside of an incubation element;
d. establishing incubation conditions within said incubation element;
e. sealing said incubation element; and f. fertilizing at least one oocyte in said container.
2. The method of claim 1, wherein said female mammal is selected from the group consisting of primates, humans, bovids, ovids, equids, swine, and dolphins.
3. The method of claim 1, wherein said fertilization medium comprises modified Tyrode's medium supplemented with 0.6 percent bovine serum albumin, 20µg heparin per milliliter of Tyrode's medium, and a concentration of 5 milli-molar caffeine.
4. The method of claim 1, wherein between about 10 and about 15 of said oocytes are contained within about 50 micro-liters of said fertilization medium.
5. The method of claim 1, wherein said container has heat sealable aperture elements.
6. The method of claim 5, wherein said container comprises a straw having an interior volume of about 0.25 milliliters.
7. The method of claim 1, wherein said incubation element has sealable aperture elements.
8. The method of claim 7, wherein said incubation element comprises a glass tube.
9. The method of claim 1, wherein said incubation conditions comprise an atmosphere of 5 percent carbon dioxide in air and a temperature of 39 degrees Centigrade within said incubation element.
10. The method of claim 1, further comprising the step of transferring said sperm cells to said container with said oocytes in said fertilization medium.
11. The method of claim 10, wherein said step of transferring sperm cells to said container with said oocytes comprises establishing a concentration of sperm cells in said fertilization medium of about 1 million to about 2 million per milliliter of fertilization medium.
12. The method of claim 2, further comprising the step of separating said sperm cells into enriched X-chromosome bearing and Y- chromosome populations.
13. The method of claim 12, further comprising the step of transferring separated sperm cells to said container with said oocytes.
14. The method of claim 13, wherein said step of transferring separated sperm cells to said container with said oocytes comprises establishing a concentration of said separated sperm cells in said fertilization medium of about 1 million to about 2 million per milliliter of fertilization medium.
15. The method of claim 10, 11, 12, 13 or 14 further comprising the step of transferring said container with said oocytes in said concentration of said sperm cells to said incubation element.
16. The method of claim 15, further comprising the step of establishing fertilization conditions within said incubation element.
17. The method of claim 16, wherein said step of establishing fertilization conditions within said incubation element comprises an atmosphere of 5 percent carbon dioxide in air at a temperature between about 37 degrees Centigrade and about 41 degrees Centigrade for a duration of about 18 hours to about 20 hours.
18. The method of claim 16, further comprising the step of transporting said oocytes in said fertilization conditions.
19. The method of claim 18, further comprising the step of fertilizing at least sorne of said oocytes during transport.
20. The method of claim 18, further comprising the step of removing fertilized oocytes from said container.
21. The method of claim 18, further comprising the step of implanting said fertilized oocytes into a female mammal.
22. The method of claim 18, wherein said step of implanting said fertilized oocytes into a female mammal comprises implanting said fertilized oocytes into the same species of said female mammal as said male mammal.
23. The method of claim 18, wherein said step of implanting said fertilized oocytes into female mammal comprises implanting fertilized oocytes into a different species of said female mammal then said male mammal.
CA2887757A 2000-11-29 2001-11-29 System for in-vitro fertilization with spermatozoa separated into x-chromosome and y-chromosome bearing populations Expired - Lifetime CA2887757C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US25378500P 2000-11-29 2000-11-29
US25378700P 2000-11-29 2000-11-29
US60/253,785 2000-11-29
US60/253,787 2000-11-29
CA2468774A CA2468774C (en) 2000-11-29 2001-11-29 System for in-vitro fertilization with spermatozoa separated into x-chromosome and y-chromosome bearing populations

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA2468774A Division CA2468774C (en) 2000-11-29 2001-11-29 System for in-vitro fertilization with spermatozoa separated into x-chromosome and y-chromosome bearing populations

Publications (2)

Publication Number Publication Date
CA2887757A1 true CA2887757A1 (en) 2002-06-06
CA2887757C CA2887757C (en) 2020-03-31

Family

ID=53366349

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2887757A Expired - Lifetime CA2887757C (en) 2000-11-29 2001-11-29 System for in-vitro fertilization with spermatozoa separated into x-chromosome and y-chromosome bearing populations

Country Status (1)

Country Link
CA (1) CA2887757C (en)

Also Published As

Publication number Publication date
CA2887757C (en) 2020-03-31

Similar Documents

Publication Publication Date Title
US8652769B2 (en) Methods for separating frozen-thawed spermatozoa into X-chromosome bearing and Y-chromosome bearing populations
CA2468774C (en) System for in-vitro fertilization with spermatozoa separated into x-chromosome and y-chromosome bearing populations
US9365822B2 (en) System and method for sorting cells
Maxwell et al. Integration of sperm sexing technology into the ART toolbox
CN100433975C (en) High purity X-chromosome bearing and Y-chromosome bearing populations of spermatozoa
AU2002237689A1 (en) System to separate frozen-thawed spermatozoa into X-chromosome bearing and Y-chromosome bearing populations
AU2006230658A1 (en) Integrated herd management system utilizing isolated populations of X-chromosome bearing and Y-chromosome bearing spermatozoa
CA2823259A1 (en) Sex-specific insemination of mammals with low number of sperm cells
JP2006502707A (en) Low-pressure sperm cell separation system
AU2001269795A1 (en) Integrated herd management system utilizing isolated populations of x-chromosome bearing and y-chromosome bearing spermatozoa
CA2887757C (en) System for in-vitro fertilization with spermatozoa separated into x-chromosome and y-chromosome bearing populations
Hollinshead Flow-cytometric sorting of ram spermatozoa: Production of lambs of a pre-determined sex using in vivo and in vitro fertilisation
GB2381005A (en) An improved flow cytometer system for isolating desired cells

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20150410

MKEX Expiry

Effective date: 20211129